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Summary

Acute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex 

microenvironment, complicating efforts to understand how different cell types contribute to 

disease progression. We combined single-cell RNA-sequencing and genotyping to profile 38,410 

cells from 40 bone marrow aspirates, including 16 AML patients and 5 healthy donors. We then 

applied a machine learning classifier to distinguish a spectrum of malignant cell types whose 

abundances varied between patients, and between subclones in the same tumor. Cell type 

compositions correlated with prototypic genetic lesions, including an association of FLT3-ITD 

with abundant progenitor-like cells. Primitive AML cells exhibited dysregulated transcriptional 

programs with co-expression of stemness and myeloid priming genes and had prognostic 
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significance. Differentiated monocyte-like AML cells expressed diverse immunomodulatory genes 

and suppressed T-cell activity in vitro. In conclusion, we provide single-cell technologies and an 

atlas of AML cell states, regulators and markers with implications for precision medicine and 

immune therapies.

eTOC

A combination of transcriptomics and mutational analyses in single cells from acute myeloid 

leukemia patients reveals the existence of distinct functional subsets and their associated drivers

Graphical Abstract

Introduction

Acute myeloid leukemia (AML) is an aggressive blood cancer characterized by an 

accumulation of immature cells of the myeloid lineage. Although most patients initially 

respond to chemotherapy, ~75% relapse and succumb to the disease within 5 years of 

diagnosis. Efforts to link AML relapse to genetically resistant clones have had limited 

success, raising interest in non-genetic drivers of functional heterogeneity (Kreso and Dick, 

2014; Pollyea and Jordan, 2017).

One source of AML cell diversity is the partial recapitulation of myeloid development. 

Normal hematopoietic stem cells (HSCs) give rise to mature blood cell types of the myeloid, 

lymphoid, and erythroid / megakaryocyte lineages. HSC commitment proceeds through a 

series of increasingly lineage-committed progenitor states (Laurenti and Gottgens, 2018), as 

characterized in recent single-cell RNA-sequencing (scRNA-seq) studies (Karamitros et al., 

2018; Velten et al., 2017; Weinreb et al., 2018). AML tumors also comprise primitive and 

differentiated cells. Primitive AML cells, commonly referred to as leukemia stem cells 

(LSCs), sustain the disease and display stem cell properties such as self-renewal, quiescence, 

and therapy resistance (Pollyea and Jordan, 2017). Differentiated AML cells lack self-
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renewal capacity, but could impact tumor biology through pathologic effects on tumor 

microenvironment or hematopoietic function.

AML progression is influenced by normal cells in the microenvironment. The immune 

system can limit tumor cell expansion until sub-populations that evade or suppress host 

immunity emerge. Conversely, intrinsic properties of AML cells, including expression of 

immunomodulatory factors, and extrinsic microenvironmental changes can lead to an 

accumulation of suppressive T-regulatory cells (T-reg) and impair cytotoxic T-lymphocyte 

(CTL) activation (Austin et al., 2016). Enhancing T-cell-mediated AML cell clearance is an 

attractive therapeutic strategy, but immunotherapy trials have been less successful than in 

other cancers (Lichtenegger et al., 2017). This highlights a critical need to better understand 

the cellular components and mechanisms that underlie immunosuppression in the AML 

microenvironment.

scRNA-seq provides a powerful means to characterize malignant and stromal cell 

populations in tumors (Giustacchini et al., 2017; Puram et al., 2017; Zheng et al., 2017). In 

AML, scRNA-seq could potentially address questions related to stemness, developmental 

hierarchies, and interactions between malignant and immune cells. However, AML presents 

unique challenges related to its complex differentiation hierarchies and similarities between 

malignant and normal cells in the ecosystem (Levine et al., 2015). To comprehensively 

analyze AML heterogeneity, transcriptional data on thousands of cells must be 

complemented by genotyping data to distinguish malignant from normal cells. Standard 

plate-based scRNA-seq methods that capture full-length transcripts lack sufficient 

throughput. Recent droplet- and nanowell-based methods offer higher throughput, but the 

resulting sequencing data are biased to 3’ transcript ends and cannot efficiently detect 

mutations specific to malignant cells (Giladi and Amit, 2018). These considerations 

emphasize the need for combined single-cell transcriptional and genetic profiling methods to 

characterize AML ecosystems.

Here, we adapt nanowell-based technology (Gierahn et al., 2017) to acquire transcriptional 

and mutational data for thousands of single cells from BM aspirates. We profiled 30,712 

cells from 16 AML patients and 7,698 cells from 5 healthy donors by scRNA-seq, and 

acquired genotyping information for 3,799 cells. We also incorporated long-read nanopore 

sequencing to phase mutations, detect insertions and fusions, and distinguish subclones. We 

integrated these data in a machine learning classifier that distinguished malignant from 

normal cells, and identified six malignant AML cell types that project along the HSC to 

myeloid differentiation axis. We use this resource to relate developmental hierarchies to 

genotypes, to evaluate properties and prognostic significance of primitive AML cells, and to 

identify differentiated AML cells with immunomodulatory properties.

Results

Identification of cell populations in healthy BM samples

To characterize the baseline cellular diversity in healthy BM, we carried out scRNA-seq 

using a high-throughput nanowell-based protocol, termed Seq-Well (Gierahn et al., 2017). 

We profiled viably frozen cells from four healthy donors (age 21–56), and enriched 
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progenitors from a fifth donor (CD34+CD38− and CD34+) (Figure S1A–B and Table S1). 

Barcoded sequencing reads were assigned to cells and aligned to the transcriptome, and 

individual mRNA molecules were counted using unique molecular identifiers (UMIs). We 

acquired high quality data for 7,698 healthy donor BM cells.

We distinguished cell types by unsupervised clustering using BackSPIN (Figure 1A and 

S1C–D) (Zeisel et al., 2015). Cell clusters expressed established markers of hematopoietic 

populations, such as CD34 for HSC/Prog cells, CD14 for monocytes and CD3 for T-cells 

(Figure 1B). This allowed us to merge 31 clusters into 15 main cell populations. We 

captured a broad representation of cell types, including HSCs and progenitors, as well as 

multiple myeloid, erythroid and lymphoid populations. All 15 cell types were identified in at 

least three donors (Figure 1C), while the sorted CD34+CD38− and CD34+ cells were highly 

enriched for HSCs and progenitors.

We next explored the relationships between these cell types by visualizing K-nearest-

neighbor (KNN) graphs that connected all single cells in our dataset to their five nearest 

neighbors in gene expression space (Weinreb et al., 2018). This revealed putative 

differentiation trajectories, including a continuum of cells from HSCs to monocytes with 

several intermediate states and gene expression gradients (Figure 1D and S1E–G). Our cell 

type annotations are consistent with recent scRNA-seq studies and published gene signatures 

(Figure S1H) (Hay et al., 2018; Karamitros et al., 2018; Laurenti et al., 2013; Novershtern et 

al., 2011; Velten et al., 2017). Thus, scRNA-seq of normal BM reveals diverse hematopoietic 

cell types and implies differentiation trajectories consistent with current views of 

hematopoiesis.

Single-cell profiling of AML tumor ecosystems

To examine cellular diversity in AMLs, we obtained 35 cryopreserved BM aspirates from 16 

AML patients at diagnosis and during treatment (Figure 2A). This cohort includes multiple 

WHO subtypes and is genetically diverse (age 26–74, Table S1). Targeted DNA sequencing 

of all samples in our cohort showed expected mutation frequencies, including DNMT3A 
(44% of patients), FLT3 (38%), and NPM1 (31%, Figure 2B) (Cancer Genome Atlas 

Research, 2013). We performed scRNA-seq for these 35 samples without enrichment to 

achieve a broad overview of the AML ecosystem.

We acquired 30,712 high-quality transcriptomes and visualized cells for each patient using t-

Distributed Stochastic Neighbor Embedding (t-SNE). This revealed distinct cell types whose 

proportions changed markedly over the clinical course (Figure 2C–D). In addition to 

malignant cells, these data revealed presumed normal hematopoietic cell types in the tumor 

ecosystem expressing lineage-specific genes such as hemoglobin (erythroid cells) and CD3 
(T-cells). Samples collected after induction chemotherapy had a predominance of T / NK 

cells, consistent with clearance of AML blasts and histological stains showing frequent 

lymphocytes. Although other cell populations also expressed markers associated with 

specific hematopoietic cell types, their identity as normal or malignant could not be 

distinguished a priori from their expression programs. We therefore explored additional 

methods for distinguishing malignant AML cells.
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Single-cell genotyping by short-read and nanopore sequencing

Prior scRNA-seq studies of tumors have leveraged gene mutations detected in full-length 

transcriptomic data and chromosomal copy number variations (CNVs) to distinguish 

malignant cells (Filbin et al., 2018; Giustacchini et al., 2017). However, high-throughput 

methods yield 3’-biased transcript coverage, which constrains mutation detection. Moreover, 

AMLs frequently lack CNVs. We therefore adapted Seq-Well to amplify and sequence 

portions of transcripts that contain AML mutations (Figure 3A and S2A). We took 

advantage of an intermediate whole transcriptome amplification (WTA) step that yields full-

length cDNAs with cell barcodes (CBs) appended to their 3’ ends. We designed 43 primers 

adjacent to all mutations detected in our cohort by targeted DNA sequencing, and generated 

amplicons containing mutational sites appended to CBs. Sequencing of these products 

enabled us to overlay mutational status onto our scRNA-seq data.

We applied mutation-specific single-cell genotyping to each of the 35 AML samples. We 

successfully detected wild-type and/or mutant transcripts at 27 of the 43 targeted sites (Table 

S2). We detected transcripts in 14 out of 16 patients, with an average of 355 transcripts 

mapping to 258 cells per patient. Mutations near 3’ transcript ends of highly expressed genes 

were more efficiently detected (Figure 3B). For example, NPM1 is highly expressed and its 

W288fs hotspot mutation is 342 bp from the nearest polyA signal, allowing identification of 

a wild-type or mutant transcript in up to 31% of cells. DNMT3A-R882 mutations are only 

161 bp from the nearest polyA signal, but expression is low, such that a wild-type or mutant 

transcript was identified in up to 6% of cells. Application of the method across our patient 

cohort identified 3,745 wild-type and 1,230 mutant transcripts (Table S2). Mutations were 

not detected in healthy donor BM samples and were markedly decreased in AML patients in 

clinical remission (Figure S2B–D). Furthermore, our detected mutation frequencies strongly 

correlated with variant allele frequencies (VAFs) obtained with targeted DNA sequencing (r 

= 0.87, Figure 3C).

To further expand the applicability of our single-cell genotyping protocol, we incorporated 

nanopore sequencing (van Dijk et al., 2018). We reasoned that the long reads provided by 

this platform could enhance detection of mutations across transcripts and reveal long 

insertions, deletions and fusion breakpoints. We amplified representative oncogenes, tumor 

suppressors and fusions along with CBs from three AML patients, and sequenced the 

amplicons using Oxford Nanopore Technologies MinION (Figure S2E). We acquired 0.97 

million reads mapping to the targeted genes, which we consolidated on the basis of CBs to 

255 cells. The nanopore data complemented the Illumina data in several ways. First, in the 

TP53-Q144P and P152R mutant tumor AML328, nanopore sequencing detected mutant or 

wild-type transcripts in 97 cells, representing a 3-fold improvement (Figure 3D–E). 

Transcripts detected only by nanopore were significantly longer than those detected by 

Illumina. Transcripts captured by both methods (n = 30) yielded identical genotyping results 

in all cases. Phasing of TP53 alleles showed that the mutations each affect different 

transcripts, consistent with bi-allelic inactivation of this tumor suppressor. Second, in the 

FLT3 mutant tumor AML328, long reads revealed a 60 bp FLT3 internal tandem duplication 

(ITD) that was missed by short-read sequencing (Figure 3F). Finally, in the RUNX1 fusion 
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tumor AML707B, long reads enabled detection of RUNX1-RUNX1T1 fusion transcript in 

32 cells and revealed the exact sequence of the junction (Figure 3G).

In conclusion, we present methods for amplifying barcoded transcripts of genes that are 

frequently mutated in AML. Sequencing by Illumina and Oxford Nanopore Technologies 

enabled detection and phasing of point mutations, insertions, deletions and fusions, thereby 

genotyping individual cells from AML aspirates (Figure 3H–J).

Machine learning classifier distinguishes malignant from normal cells

We next integrated single-cell mutation calls and transcriptomes for all patients, with the 

goal to distinguish malignant from normal cells. Since informative genetic calls were 

acquired for only a subset of cells, we proceeded as follows. First, we selected all AML cells 

for which single-cell genotyping detected mutations in the assessed genes. We then used the 

random forest machine learning algorithm to classify these putatively malignant cells 

according to their similarity to all 15 normal BM cell types (Figure 4A and S3A–D). The 

vast majority of cells with mutations resembled one of six normal cell types along the HSC 

to myeloid axis (HSC, progenitor, GMP, promonocyte, monocyte or cDC; Figure 4B–C). We 

therefore annotated cells with detected mutations that were classified along this axis as 

HSC-like, progenitor-like, GMP-like, promonocyte-like, monocyte-like or cDC-like 

malignant cells. These malignant cell types were then incorporated as additional classes in a 

second classifier that was used to annotate all AML cells in our dataset as malignant or 

normal (Figure 4A, D–E).

We validated our malignant/normal classifications and cell type annotations by several 

methods. First, 5-fold cross-validation showed that the second classifier distinguishes 

malignant cells with >95% sensitivity and >99% specificity (Figure S3E). Second, the 

transcriptomes of non-malignant cells from AML aspirates closely resembled counterparts 

from normal BM aspirates (Figure S3F–G). Third, AML707B harbored a Y-chromosome 

deletion and, consistently, Y-chromosome transcripts were not detected in malignant cells 

from this tumor (Figure S3H). Fourth, AML328 harbored a chromosome 7 deletion, which 

we detected as loss-of-heterozygosity of a highly expressed SNP in the 3’ UTR of ACTB 
specifically in malignant cells from this tumor (Figure S3I).

Overall, we detected 13,489 malignant AML cells (44% of cells, Figure S4A–C). The 

fraction of single cells classified as malignant for any given tumor was consistent with 

clinical blast counts (r = 0.93, Figure 4F). Together, these data support the accuracy of our 

approach for distinguishing malignant from normal cell types in AML tumors.

Intra-tumoral heterogeneity of malignant AML cells

Intra-tumoral heterogeneity has been extensively studied using cell surface markers (Kreso 

and Dick, 2014). However, this approach relies on predefined markers that may not 

accurately represent underlying transcriptional programs and may be expressed by both 

malignant and normal cells (Levine et al., 2015). We therefore explored the potential of our 

unbiased transcriptomic classification to provide additional insights. The six malignant cell 

types identified by our classifier were each represented by at least 1,000 cells in our dataset 

and identified in at least ten patients (Figure S4). However, their relative abundances varied 
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markedly between tumors, with some consisting primarily of one or two cell types, and 

others comprising a spectrum of malignant cell types (Figure 4G–H and S5A). The cell type 

abundances estimated by our classifier corresponded closely to clinical parameters 

determined by cell morphology and surface phenotypes (Figure 4I). For example, 

AML707B had a high proportion of cells classified as GMP-like, consistent with flow 

cytometry showing low levels of myeloid differentiation markers. In contrast, AML419A 

had a higher proportion classified as differentiated myeloid cells (60%), consistent with the 

clinical diagnosis of AML with monocytic differentiation. Despite a strong overall 

correlation with clinical flow-based estimates of myeloid differentiation (r = 0.87, Figure 

S5B), the scRNA-seq data revealed more extensive malignant cell diversity than could be 

appreciated from a limited number of markers. For example, AML921A and AML329 had 

representation for all six malignant cell types including cDC-like cells (Figure 4G–I). Thus, 

scRNA-seq data are consistent with clinical parameters, but provide more detailed 

information on AML cell types and differentiation states.

AML419A harbors subclones with distinct cell type compositions

We next considered the underlying causes of variability in malignant cell type abundances. 

While most of our tumors were predominated by a few proximate cell types or a spectrum 

along the myeloid axis, AML419A contained two malignant cell types at opposite ends of 

the developmental axis (Figure 4G–H). We hypothesized that the corresponding populations 

of HSC/Prog-like cells and differentiated monocyte-like cells reflected different genetic 

subclones. Genotyping of AML419A revealed three activating FLT3 mutations: FLT3-ITD, 

FLT3-A680V and FLT3-N841K (Table S1). Analysis of nanopore sequencing reads allowed 

each mutation to be assigned to a different allele, while a fourth allele was wild-type (Figure 

5A). Given that this AML was cytogenetically normal and that targeted DNA sequencing 

failed to detect CNVs, the four FLT3 alleles implied the existence of multiple subclones. 

Consistently, although we detected FLT3-ITD and FLT3-A680V transcripts in the same 

cells, the FLT3-N841K mutation never co-occurred with other mutant alleles in the same cell 

(Figure 5B). Integration of these data with VAFs from bulk DNA sequencing enabled us to 

infer a putative phylogeny of AML419A: that it evolved one subclone ‘A’ with a FLT3-

A680V mutation, a second subclone ‘B’ with an additional FLT3-ITD mutation on the 

opposite allele, and an independent third subclone ‘C’ with a FLT3-N841K mutation only 

(Figure 5C).

As these mutations confer FLT3 gain-of-function by different mechanisms (Figure 5D) 

(Leick and Levis, 2017), we investigated whether the corresponding subclones have different 

phenotypes. We could confidently assign 13 cells to subclone C, based on detection of 

FTL3-N841K transcripts, and another 10 cells to subclone B, based on detection of FLT3-

ITD transcripts (Figure 5E). We could not definitively assign the 17 cells for which we only 

detected a FLT3-A680V transcript, and therefore annotated them as either clone A or B. 

These assignments enabled us to compare the cell type compositions of the different 

subclones by evaluating the expression of genes that are specific to each of the six malignant 

cell types (Table S3). A majority of cells in subclones A/B expressed signature genes 

associated with progenitor-like cells (19/27 cells, Figure 5E). In contrast, nearly all subclone 

C cells expressed genes associated with differentiated monocyte-like or cDC-like cells 
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(12/13 cells). Thus, combined genetic and transcriptional analysis suggest that AML419A 

contains a FLT3-A680V/ITD subclone consisting mostly of primitive cells, and a separate 

FLT3-N841K subclone consisting mostly of differentiated cells. The two subclones converge 

on cells with similar transcriptional states, but harbor them in different proportions. These 

results suggest that alternate FLT3 genotypes can profoundly influence cellular hierarchies 

of AML subclones within a single tumor.

AML cellular hierarchies correlate with underlying genetic alterations

These FLT3 associations prompted us to examine the relationship between genotype and 

cellular hierarchy across a larger AML cohort. To this effect, we used the scRNA-seq data to 

derive gene signatures for each of the six malignant cell types (Table S3). These signatures 

were designed to equally weight each malignant cell type and to exclude genes that are 

expressed in normal cell types that can be prevalent in AML tumors, thus distinguishing our 

approach from prior studies that have stratified AMLs by variable genes or signatures of 

sorted populations (Cancer Genome Atlas Research, 2013; Ng et al., 2016). We used our 

signatures to score bulk expression profiles of 179 diagnostic AML aspirates from the 

Cancer Genome Atlas (TCGA), and thereby infer their cell type compositions.

Hierarchical clustering of the TCGA AMLs by these signatures revealed seven clusters of 

tumors with distinct malignant cell type compositions (Figure 5F and S5C). Several clusters 

included tumors with high abundances of specific cell types, such as GMP-like (clusters A-

B), progenitor-like (cluster D) or monocyte-like cells (cluster E). Others comprised tumors 

that contain a spectrum of malignant cell types along the HSC to myeloid axis (cluster G). 

These inferences indicate marked variability in cell type compositions and developmental 

hierarchies.

We next examined the relationship between these inferred hierarchies and underlying 

genotypes. Remarkably, the clusters derived solely from cell type abundances corresponded 

closely to the genetics of the AMLs (Figure 5G). For example, TCGA tumors with uniquely 

high GMP-like scores (cluster B) perfectly overlapped with RUNX1-RUNX1T1 fusions. In 

line with this observation, the one AML in our scRNA-seq dataset harboring this genetic 

alteration (AML707B) consisted almost entirely of GMP-like cells (Figure 4G–H). A second 

cluster of tumors with a spectrum of cell types and relatively high monocyte-like and cDC-

like scores (cluster F) overlapped almost perfectly with CBFB-MYH11 fusions (P < 0.001). 

Consistently, the one AML in our scRNA-seq dataset harboring this genetic alteration 

(AML1012) showed similar cell type abundances (Figure S5A). A third cluster with high 

GMP-like scores (cluster A) perfectly overlapped with acute promyelocytic leukemias 

(APL) with PML-RARA fusions. Two other clusters were enriched for cytogenetically 

complex tumors and those harboring CEBPA, RUNX1, and TP53 mutations (clusters C, G). 

These clusters have distinct malignant cell type compositions, with cluster C representing 

the most undifferentiated group of AMLs (enriched for FAB M0 subtype) and cluster G 

recapitulating a spectrum of differentiation.

Taken together, our analyses reveal striking variability in the abundances of malignant cell 

types across AMLs, and suggest a prominent role for genotype in determining the cell type 

composition and hierarchy of a given tumor.
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Differential effects of FLT3 genotypes on AML differentiation

The remaining two TCGA clusters (D, E) both contained NPM1 mutant tumors, but differed 

markedly in their cell type compositions (Figure 5F–G). Cluster D was enriched for 

undifferentiated HSC/Prog-like cell signatures and harbored multiple FLT3-ITD mutant 

tumors. Cluster E was enriched for monocyte-like and cDC-like cell signatures and harbored 

FLT3-TKD mutant tumors. These associations are reminiscent of the alternate FLT3 
subclones in AML419A (Figure 5E), and suggest that FLT3-ITD confers a strong 

differentiation block.

To test this hypothesis, we expressed FLT3-WT (wild-type), FLT3-TKD or FLT3-ITD in the 

MUTZ-3 cell line and examined the resulting cellular phenotypes by flow cytometry. We 

found that FLT3 expression increased the percent of primitive CD34+ MUTZ-3 cells (Figure 

5H–I and S5D–F). This effect was most pronounced with the FLT3-ITD construct, 

consistent with the potent signaling activity of the corresponding protein variant and with the 

primitive composition of FLT3-ITD AMLs. Although FLT3 mutations have been primarily 

described as enhancers of proliferation, our findings point to additional effects on cell 

differentiation that may help explain why FLT3-ITD AMLs have worse outcomes than 

FLT3-TKD mutant tumors (Leick and Levis, 2017).

Dysregulated transcriptional programs in primitive AML cells

We next turned our focus to primitive AML cell types, which fuel tumor growth. We found 

that primitive AML cells upregulate genes involved in stress response and redox signaling 

(XBP1, GPX1), proliferation (FLT3, PIM1, MYC) and self-renewal (HOXA9, BMI1), 

relative to their normal counterparts (Figure 6A, S6A–E, Table S4). We also evaluated 

preferentially-expressed surface markers as these provide opportunities for targeted therapies 

(Pollyea and Jordan, 2017). This highlighted established LSC markers such as CD96, CD47 
and IL1RAP (Figure 6B, S6C), as well as additional candidates such as CD36 and CD74 
(MHCII invariant chain).

To further relate the differentiation states of primitive malignant and normal cells, we 

generated three gene signatures that represent successive stages of normal hematopoietic 

development: HSC/Prog (including MEIS1, NRIP1, MSI2), GMP (including MPO, ELANE, 

AZU1) and differentiated myeloid (including LYZ, MNDA, CD14) (Figure S6F and Table 

S3). As expected, application of these signatures to single cells from normal BMs clearly 

distinguished major cellular subsets of HSC/Prog, GMP and differentiated myeloid cells 

(Figure 6C–D). However, a distinct pattern emerged when we applied these signatures to 

malignant AML cells. HSC/Prog signature genes and GMP signature genes were frequently 

co-expressed in the same malignant cells, contrasting markedly with their exclusivity in 

normal hematopoiesis. Malignant HSC/Prog-like cells also expressed myeloid factors, such 

as MPO and ELANE, that are absent in normal HSC/Prog cells, consistent with prior reports 

of lineage priming in LSCs (Goardon et al., 2011; Krivtsov et al., 2006).

Finally, we considered the clinical implications of the primitive AML populations. The 

relative proportions of HSC/Prog-like and GMP-like cells varied markedly among the 

tumors in our cohort. We therefore used our signatures for these malignant cell types to 
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score the 179 TCGA AMLs. The signatures were anti-correlated across the bulk expression 

profiles (r = −0.24, Figure 6E), supporting the observation that the developmental states of 

primitive AML cells vary between tumors. We partitioned the AMLs into a group with 

relatively higher expression of HSC/Prog-like genes (n = 98), and a group with higher 

expression of GMP-like genes (n = 81). We found that patients with higher HSC/Prog-like 

signals, whose tumors presumably contain more primitive LSCs, had significantly worse 

outcomes (P < 0.0001, log-rank test; Figure 6F). This survival difference was more 

pronounced than those of the individual signatures (Figure S6G) and maintained when we 

excluded APL cases (P = 0.0013). Although prior studies have correlated stem cell 

signatures to AML outcome (Ng et al., 2016), our single-cell data nominate specific HSC/

Prog-like cell states and transcriptional programs that may underlie these associations and 

bear further study.

T-cell signatures are suppressed in AML patients

T-cells can in principle eliminate AML cells, as demonstrated by the ability of graft-versus-

leukemia to yield durable cures following stem cell transplantation, but may be 

compromised in AML (Austin et al., 2016). We therefore examined the T-cells in our single-

cell data. In normal BM, we identified two T-cell subsets, naïve T-cells (IL7R, CCR7) and 

CTLs (CD8A, GZMK), and a related population of NK cells (NCAM1/CD56, KLRD1) 

(Figure 1). We recovered the same three populations when we performed unsupervised 

clustering of all T- and NK cells from tumor and normal samples (Figure 7A). Supervised 

analysis also identified a subset of cells expressing T-reg markers, but their limited numbers 

precluded further analysis.

AML aspirates tended to have proportionally fewer T-cells and CTLs than normal controls 

(Figure 7B–C). To corroborate this finding, we used immunohistochemistry (IHC) to 

quantify CD3+ T-cells, CD8+ CTLs, and CD25+FOXP3+ T-regs in an additional cohort of 15 

diagnostic AMLs and 15 normal BMs. We again found that AMLs contained significantly 

fewer T-cells and CTLs and had a reduced CTL:T-cell ratio (Figure 7D–F). Conversely, the 

tumors had relatively greater numbers of T-regs, consistent with prior reports that this 

suppressive subset is increased in AML (Ustun et al., 2011). Thus, scRNA-seq and IHC 

reveal consistent changes in T-cell numbers and composition, indicative of an 

immunosuppressive tumor environment.

Differentiated AML cells suppress T-cell activation in vitro

The altered immune microenvironment in AML could potentially reflect activities of 

specific malignant cell types, such as differentiated myeloid cells (Figure 7G). We therefore 

tested whether AML cells suppress T-cell activation in vitro. We used a bioassay based on a 

CD4+ T-cell line with a Nuclear Factor of Activated T-cells (NFAT) reporter. We stimulated 

these T-cells with CD3/CD28 beads and measured NFAT activation in the presence of the 

AML cell lines MUTZ-3 and OCI-AML3. The MUTZ-3 cells had a strong inhibitory effect, 

reducing T-cell activation up to 5-fold in a dose-dependent manner (Figure 7H and S7A). We 

validated this result by showing that MUTZ-3 cells also inhibited activation of primary T-

cells from healthy donors, as assessed by flow cytometry for the T-cell activation marker 

CD69 (Figure 7I).
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We next investigated whether the immunomodulatory properties of MUTZ-3 are mediated 

by specific sub-populations. We performed co-culture assays with sorted HSC/Prog-like 

(CD34+) or monocyte-like (CD14+) MUTZ-3 cells. The CD14+ cells reduced T-cell 

activation by 10-fold (P < 0.0001, Figure 7J), while the CD34+ cells had little effect. This 

prompted us to examine the immunomodulatory functions of monocyte-like cells from 

primary AMLs. We isolated CD14+ and CD14− cells from five AML tumors and six normal 

BMs. The leukemic origin of the CD14+ AML cells was verified by targeted DNA 

sequencing of the sorted populations (Figure S7B). We found that CD14+ cells from three 

out of five AMLs strongly inhibited T-cell activation (up to 5.3-fold), whereas CD14− cells 

had little or no effect (Figure 7K). Notably, CD14+ cells from normal BM had only a subtle 

effect in this assay (1.4-fold). These results suggest that a subset of AMLs give rise to 

CD14+ monocyte-like that can suppress T-cell activation.

Evidence for immunomodulatory functions led us to examine the expression states of 

monocyte-like AML cells across our tumors. Recent studies have classified normal 

monocytes into four subtypes: classical, non-classical, and two intermediate states with 

either trafficking or cytotoxic features (Villani et al., 2017). Analysis of the corresponding 

signatures revealed that monocyte-like AML cells exhibit features of classical and non-

classical monocytes, but lack cytotoxic signature genes (Figure 7G and S7C). Despite their 

malignant origin, monocyte-like cells were similar to normal monocytes with respect to 

these subtype signatures.

Nonetheless, an unbiased comparison of malignant and normal cells revealed 296 genes that 

were preferentially expressed in malignant monocyte-like cells from one or more tumors 

(Figure S7D and Table S4). This set contained many genes with annotated functions in 

immune regulation, whose expression varied markedly between patients (Figure 7L). For 

example, monocyte-like cells from specific tumors over-expressed TNF pathway genes 

(TRAIL/TNFSF10, TNFAIP2), IL-10 pathway genes (STAT1, HMOX1), or regulators of 

reactive oxygen species (TXNIP), all of which have been associated with myeloid-derived 

suppressor cells (Hartwig et al., 2017; Veglia et al., 2018). Furthermore, several tumors 

strongly expressed two surface markers associated with immunosuppressive myeloid cells: 

CD206/MRC1 and CD163 (Biswas and Mantovani, 2010). We found that expression of 

these markers was associated with poor outcome in the TCGA cohort (Figure 7M). Our data 

suggest that differentiated monocyte-like AML cells have immunomodulatory functions that 

contribute to the pathogenesis of this disease.

Discussion

Intratumoral heterogeneity in AML has been appreciated since the 1960s, but it has only 

recently become possible to study the complexity of tumors using high-dimensional single-

cell analyses (Giustacchini et al., 2017; Levine et al., 2015; Zheng et al., 2017). Here we 

combined scRNA-seq and genotyping to characterize AML tumor ecosystems, distinguish 

malignant from normal cells, and elucidate subclones. We identified six malignant cell types 

along the HSC to myeloid differentiation axis whose abundances vary widely between 

AMLs with different genotypes. We further investigated cells at opposite ends of this axis, 

documenting dysregulated transcriptional programs in HSC-like AML cells and 
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immunomodulatory properties of monocyte-like AML cells. Our study provides powerful 

single-cell technologies, a rich resource of single-cell transcriptomes, and insights into AML 

hierarchies, LSC programs and tumor-immune interactions.

To address unique challenges posed by the AML ecosystem, we established methods that 

combine high-throughput scRNA-seq with single-cell genotyping of recurrently mutated 

AML genes. We used short-read and nanopore sequencing to detect and phase point 

mutations, insertions, deletions and fusions in individual cells. We then integrated 

transcriptional and genetic data for AMLs and normal BMs in a machine learning classifier, 

which identified six malignant AML cell types that shared features with normal 

hematopoietic cells. Although we primarily deployed these technologies to distinguish 

malignant cells, our identification of genetic subclones in a FLT3 mutant AML suggest their 

potential, with further innovations, to characterize pre-malignant clones and LSC evolution.

The relative abundances of malignant cell types varied markedly between the 16 AMLs that 

we profiled at the single cell level, as well as across 179 bulk AML profiles queried with cell 

type-specific gene signatures. Single-cell data were instrumental for the latter analysis as 

they enabled generation of precise malignant cell signatures that were robust to confounding 

signals from non-malignant cells in tumors. Unsupervised clustering of TCGA bulk 

expression profiles by these gene signatures yielded seven groups of AMLs with distinct cell 

type compositions, indicative of shared differentiation programs or cellular hierarchies. 

Remarkably, each AML group was strongly enriched for characteristic genetic lesions. 

Hence, the genotypes that define molecular subtypes used for patient risk stratification are 

also associated with characteristic cellular hierarchies.

Our results provide particular insight into the functional significance of FLT3 genotypes. 

TCGA tumors with FLT3-TKD mutations are enriched for differentiated AML cells, while 

those with FLT3-ITD insertions have higher abundances of primitive cells. A similar 

conclusion emerged from an in-depth analysis of genetic subclones in a single AML tumor. 

Nanopore sequencing enabled us to phase four distinct FLT3 alleles in this tumor and assign 

them to distinct subclones. We found that a FLT3-ITD subclone primarily contained 

primitive cells, while a FLT3-TKD subclone in the same tumor primarily contained 

differentiated cells. We also demonstrated that FLT3-ITD expression suppresses 

differentiation of AML cells in vitro. These inter-tumoral, intra-tumoral and in vitro findings 

suggest that FLT3 variants differentially affect AML differentiation, and may explain the 

association of FLT3-ITD with poor patient outcomes (Leick and Levis, 2017).

While our data emphasize prominent roles for genetics in shaping AML hierarchies, they do 

not exclude additional effects of genotype on the intrinsic transcriptional states of specific 

cell types. Indeed, we find such examples in supervised analyses of malignant progenitors in 

NPM1 mutant and RUNX1-RUNX1T1 fusion tumors (Figure S6D–E). These genotype-

specific alterations are superimposed upon already deranged transcriptional states of 

malignant progenitors (Figure 6C–D), which conflate stemness and myeloid programs. Our 

definition of the transcriptional states of malignant AML cell types, their inter-tumoral 

variability, and their close association to tumor genetics is an important milestone with 
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implications for treatment response, relapse and the development of genotype-specific 

precision therapies.

Lastly, while AML studies often focus on primitive cell types with self-renewal capacity, we 

find evidence that differentiated malignant cells also contribute to AML biology. Monocyte-

like AML cells, which are present at variable abundances in a majority of our tumors, 

potently inhibit T-cell activation in vitro. These cells could contribute to altered T-cell 

phenotypes and an immunosuppressive AML microenvironment (Austin et al., 2016). 

Monocyte-like cells express a range of immunomodulatory genes, including TNF and IL-10 

pathway genes, antigen presentation components and leukocyte immunoglobulin-like 

receptors (Deng et al., 2018; Hartwig et al., 2017). However, the expression of these genes 

varies markedly between tumors, which may confound efforts to characterize and modulate 

their activities. Nevertheless, our data can guide future efforts to define the functions and 

mechanisms of immunomodulatory AML populations, to evaluate their relationship to 

myeloid-derived suppressor cells, and to modify their activities for therapeutic benefit 

(Lichtenegger et al., 2017; Pyzer et al., 2017; Veglia et al., 2018).

In summary, we leveraged innovations in single-cell transcriptomics and genotyping to parse 

heterogeneous AML ecosystems. Our results provide insight into the aberrant regulatory 

programs of primitive AML cells, reveal a striking correspondence between developmental 

hierarchies and tumor genetics, and identify differentiated AML cells with 

immunosuppressive properties. Our data and findings can guide therapeutic strategies to 

target critical and specific components of the malignancy.

STAR * METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Bradley E. Bernstein (bernstein.bradley@mgh.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tumor specimens—All acute myeloid leukemia (AML) patients consented to an 

excess sample banking and sequencing protocol that covered all study procedures and was 

approved by the Institutional Review Board (IRB) of the Dana-Farber Cancer Institute. 

Normal bone marrow (BM) and CD4+ T-cell donors consented to the same protocol or an 

IRB-approved protocol from Lonza that covers all study procedures. Demographic and 

clinical details are provided in Table S1.

Cell lines—MUTZ-3 cells were purchased from DSMZ (ACC-295), 5637 cells were 

purchased from ATCC (HTB-9) and OCI-AML3 cells were received from Dr. Mark Minden 

(University of Toronto). Cell line verification by Short Tandem Repeat profiling was 

performed upon receipt and every six months (ATCC 135-XV). OCI-AML3 and 5637 cells 

were cultured at 37°C in RPMI-1640 with Glutamax (Thermo 61870–036) with 10% heat-

inactivated FBS (Peak Serum PS-FB1) and P/S (RPMI+). MUTZ-3 cells were cultured at 

37°C in MEM-alpha (Thermo 12571–063) with 20% heat-inactivated FBS (Peak Serum PS-

FB1), P/S, and 10% 5637-conditioned medium. We used the heterogeneous MUTZ-3 cells 
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to confirm that cell type annotations correlated with phenotypic and functional 

characteristics (Figure S5D–F). Specifically, culture initiation and proliferation were 

restricted to CD34+ HCS/Prog-like MUTZ-3 cells, whereas CD14+ monocyte-like cells 

lacked these properties.

METHOD DETAILS

Cell preparation—Aspirates from the iliac crest of normal BM donors and AML patients 

were processed using density gradient centrifugation to isolate mononuclear cells, viably 

frozen with 10% DMSO and stored in liquid nitrogen (only BM5 was not frozen). Frozen 

cells were thawed using standard procedures, and viable cells were enriched using magnetic 

removal of dead cells (Miltenyi Biotec 130–090-101) or flow cytometry to sort propidium 

iodide-negative cells.

To sort primitive cells from a fresh BM aspirate (BM5), 200 million cells were enriched for 

CD34 using Miltenyi Biotec magnetic enrichment microbeads (130–046-702) and sorted by 

flow cytometry. Briefly, cells were resuspended in 600 μl PBS with 2% FBS (Peak Serum 

PS-FB1) and incubated with 200 μl FcR blocking reagent and 200 μl CD34 antibody-

conjugated magnetic beads (epitope QBEND/10). Cells were applied to an MS column 

(Miltenyi Biotec 130–042-201) on a magnet followed by collection of the CD34+ fraction. 

Next, CD34+ cells were resuspended in 1 ml PBS with 2% FBS, 10 μl PE-conjugated CD38 

antibody (BD 347687) and 10 μl APC-conjugated CD34 antibody (BD 340441, clone 8G12 

which is not inhibited by QBEND/10 antibody binding). Cells were stained for 15 minutes 

on ice, washed with PBS 2% FBS, resuspended in PBS 2% FBS with DAPI, and sorted on a 

Sony SH800 sorter (Figure S1B). Post-sorting analysis showed 95–96% purity. Then, 10,000 

CD34+ cells and 10,000 CD34+CD38− cells were used for Seq-Well scRNA-seq.

Single-cell transcriptome profiling—Seq-Well was performed as described (Gierahn et 

al., 2017), with the following changes: we performed 18 PCR cycles for WTA, and we used 

a template switching oligo with an LNA-modification of the last guanine (Table S2). Briefly, 

an array with ~90,000 nanowells is loaded with mRNA capture beads that are bound to 

oligos with a primer binding sequence, cell barcode (CB), unique molecular identifier (UMI) 

and polyT sequence (Chemgenes NC0927472). The size of the beads relative to the wells of 

the array ensures that only one bead will occupy each well. Then, a cell suspension of 200 μl 

contained 10,000 cells is loaded and cells enter nanowells by gravity in approximately 20 

minutes. The cell : nanowell ratio ensures that nanowells only contain a single cell. A 

partially permeable polycarbonate membrane (Sterlitech Custom Order) is used to seal the 

surface of the array, which allows buffers to pass through but traps the bead and the cell. 

Cells are lysed with a lysis buffer and mRNA binds to the polyT sequence on the oligo that 

is linked to the bead, which is contained in the same well. Following a bead removal process 

and pooling of all the beads, the bead-bound mRNA is reverse transcribed to produce cDNA 

which is then used for WTA PCR. Sequencing libraries are prepared using Nextera reagents 

(Illumina FC-131–1096). Libraries from 2–3 nanowell arrays were sequenced per run, 

yielding 350–550 million reads on an Illumina NextSeq 500 instrument. Sequencing was 

performed according to manufacturer’s instructions, with the following adjustments: (1) 

Libraries were loaded at 2.5 pM, (2) a Custom Read 1 Primer (CR1P, Table S2) was used by 
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diluting 6.6 μl of CR1P (100 μM) to 2.2 ml with HT1 buffer (provided by Illumina), (3) we 

did not use PhiX because it would be incompatible with CR1P. Read length was 20 cycles 

for Read 1, 8 cycles for the library index, and 50 or 64 cycles for Read 2 (64 cycles were 

used for single-cell genotyping; all single-cell Seq-Well reads were shortened to 50bp for 

comparability).

Reproducibility of the Seq-Well protocol was supported by the following measures: (1) BM 

samples from healthy donors were processed months apart (BM1 processed on April 11, 

2017, BM2 processed on April 24, 2017, BM4 processed on June 10, 2017, BM3 processed 

on July 24, 2017 and BM5 processed on November 15, 2017). However, we did not observe 

batch dependent clustering (Figure S1E) and the variability in cell type frequencies between 

individuals was within the expected range (Figure 1C). (2) We verified that non-malignant 

cells from different AML patients cluster together (Figure S3G). (3) AML921A was 

processed in two technical replicates, resulting in highly similar data. (4) Different samples 

from the same patient were always thawed and processed simultaneously.

Targeted DNA sequencing—Targeted sequencing of genetic mutations was performed 

using the Rapid Heme Panel (RHP) platform, which is a service by the Center for Advanced 

Molecular Diagnostics of Brigham and Women’s Hospital (Kluk et al., 2016). Briefly, a set 

of 95 genes that are recurrently mutated in hematological malignancies are amplified and 

sequenced at 1500× coverage on average. Single nucleotide variants and small insertions/

deletions are detected at allele frequencies of ≥5%. This platform was used for every AML 

patient at diagnosis, some patients at later time points (Table S1), and sorted CD14+ cells 

(Figure S7B). The frequency of mutations identified in our cohort (e.g. DNMT3A mutations 

in 44% of patients, FLT3 alterations in 38% of patients, and NPM1 alterations in 31% of 

patients; Figure 2B) was comparable with larger AML genome sequencing cohorts (Cancer 

Genome Atlas Research, 2013).

Single-cell genotyping by short-read sequencing—We designed an adaptation of 

the Seq-Well method for targeted amplification of known mutations from the WTA product 

(Figure S2A). The starting material for this single-cell genotyping method is the product of 

the Seq-Well WTA reaction (only a fraction of which is used for scRNA-seq). The method 

consists of two PCR reactions with a streptavidin bead enrichment in between. The first PCR 

reaction serves to add a biotin tag and Nextera adapter (NEXT) to the mutation of interest 

while retaining the UMI and CB of the transcripts. We designed biotinylated primers to 

detect specific mutations (Table S2), that were known because every patient underwent 

targeted DNA sequencing (see above). For every AML sample, a 10× primer mix is created 

containing the SMART-AC primer at 3 μM, which is common to all initial reactions, and 1–

6 mutation-specific primers (such as Next_NPM1_833) at a combined concentration of 3 

μM.

To prepare the template for the single-cell genotyping reaction, WTA products from an 

AML sample are pooled and diluted to be used at 10 ng in a total volume of 10 μL (every 

AML sample is split into several WTA reactions during the Seq-Well protocol). Next, 2.5 μL 

of the 10× primer mix and 12.5 μL of KAPA HiFi Hotstart ReadyMix (Fisher Scientific 

KK2602) are added to the template and PCR is performed using the following conditions: 
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initial denaturation at 95°C for 3 minutes, followed by 12 cycles of 98°C for 20 seconds, 

65°C for 15 seconds, and 72°C for 3 minutes, and final extension at 72°C for 5 minutes. 

Following amplification, the PCR product is purified with 0.7× AMPure XP beads to 

remove primers (Beckman Coulter A63881). Since the SMART-AC primer is nearly 

complementary to both ends of the WTA product, this first PCR yields many unintended 

full-length fragments. Using Streptavidin-coupled Dynabeads, only biotinylated fragments 

containing the mutation of interest are captured (following manufacturer’s instructions, 

ThermoFisher 60101). Dynabeads/DNA-complex is eluted in 23 μL H2O.

To add Illumina adapters (P5, P7), an index barcode to identify the library (Index_BC), and 

a CR1P binding sequence to the fragments, a second PCR is performed using 23 μL of 

streptavidin-bound product as template, with 2 μL of 5 μM primer mix (P5_SMART_Hybrid 

and N70_BCXX, Table S2) and 25 μL PFU Ultra II HS 2× Master Mix (ThermoFisher 

Q32854). The parameters used for PCR2 are an initial denaturation at 95°C for 2 minutes, 

then 4 cycles of 95°C for 20 seconds, 65°C for 20 seconds, and 72°C for 2 minutes, 

followed by 10 cycles of 95°C for 20 seconds and 72°C for 2 minutes and 20 seconds, and 

then a final extension at 72°C for 5 minutes.

After the second PCR, the streptavidin beads are magnetized and the supernatant is saved 

and then purified with 0.7× AMPure XP beads. After eluting in 20 μL of TE, the AMPure 

XP beads are magnetized and the supernatant is saved for sequencing. The resulting libraries 

are similar to Seq-Well scRNA-seq libraries but with targeted integration of the NEXT 

sequencing primer binding site adjacent to the mutation of interest. The libraries were 

generally 0.5–30 ng/μl and 200–800 bp in size. Single-cell genotyping libraries were 

sequenced together with Seq-Well scRNA-seq libraries on an Illumina NextSeq500 

instrument. Genotyping and scRNA-seq libraries from the same AML sample were not 

sequenced in the same run to prevent cross-contamination of libraries. The computational 

analysis of single-cell genotyping data is described in detail below.

Single-cell genotyping by nanopore sequencing—In addition to short-read Illumina 

sequencing, we performed long-read nanopore sequencing for three AML samples. We 

reasoned that nanopore sequencing would improve detection of long amplicons and would 

enable detection of large tandem duplications and gene fusions for which the exact fusion 

junction was unknown. WTA products were amplified using primers designed for TP53, 

FLT3, and the RUNX1-RUNX1T1 (Table S2). Amplicons containing the mutation site, UMI 

and CB were amplified as described above for the single-cell genotyping procedure. PCR 

products were further amplified with P5 and P7 primers for an additional 15 cycles to obtain 

enough material for nanopore library preparation. Amplicons were purified using a 0.7× 

AMPure XP bead cleanup, and library construction was performed using the SQKLSK108 

(1D) and SQK-LSK308 (1D2) Ligation Sequencing Kit (Oxford Nanopore Technologies, 

ONT) according to manufacturer’s instructions, with some modifications. Briefly, 1 μg 

purified DNA was subjected to end repair and dA-tailing using the NEBNext Ultra II End-

Repair/dA-tailing Module. Next, a 1X volume AMPure XP bead cleanup was performed and 

nanopore sequencing adapters were ligated to the eluted DNA using the Blunt/TA Master 

Mix (NEB). In order to capture shorter amplicons, the final clean-up of the adapter-ligated 

DNA was modified and performed with 0.7× AMPure XP beads. The purified-ligated DNA 
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was quantified by fluorometry (Qubit) and 300–500 ng was DNA mixed with RBF (Running 

Buffer with Fuel mix, ONT) and LLB (Library Loading Beads, ONT) before loading on 

R9.4/R9.5 flow cells (FLOMIN106/FLO-MIN107, ONT). We produced data from four 

different flow cells that were run for 10–48 h on a MinION sequencing device as per 

manufacturer’s guidelines and controlled using the MinKNOW 2.2 software. Reads were 

base-called using the albacore software (version 2.3.3). Individual (unpaired) reads were 

used for samples processed using the 1D2 sequencing kit. The computational analysis of 

long-read single-cell genotyping data is described in detail below.

Lentiviral expression of FLT3 mutants—FLT3-WT and FLT3-ITD containing 

plasmids were provided by Dr. Andrew Lane. The coding sequences were amplified using 

the primers (for) 5’-CACCATGCCGGCGTTGGCG-3’ and (rev) 5’-

CTACGAATCTTCGACCTGAGC-3’ and cloned into the pENTR/D-TOPO vector using 

manufacturer’s instructions (Thermo Fisher K240020). pENTR-FLT3-D835Y was generated 

from pENTR-FLT3-WT using the QuikChange Lightning Site-Directed Mutagenesis Kit 

(Agilent 210518) with the primers 5’-

GTTGGAATCACTCATGATATATCGAGCCAATCCAAAGTCAC-3’ and 5’-

GTGACTTTGGATTGGCTCGATATATCATGAGTGATTCCAAC-3’. Next, pENTR-FLT3-

WT, pENTR-FLT3-D835Y and pENTR-FLT3-ITD were recombined with pMAL to 

generate the expression vectors FLT3-WT, FLT3-D835Y and FLT3-ITD marked by eGFP 

from a bidirectional minimal hCMV-hPGK promoter. As a control (CTRL), we used pMAL-

LUC (expressing humanized Renilla luciferase instead of FLT3). Vector sequences were 

verified by Sanger sequencing. CTRL, FLT3-WT, FLT3-D835Y and FLT3-ITD lentiviral 

particles were packaged in 293T cells by co-transfecting VSV.G (Addgene Plasmid 14888), 

dRT-pMDLg/pRRE (Addgene Plasmid 60488) and pRSV-Rev (Addgene Plasmid 12253) 

using Fugene (Promega E2311). Lentiviral particles were concentrated 50X using LentiX 

Concentrator (Takara 631232), resuspended in RPMI+ and stored at −80°C.

MUTZ-3 cells were transduced with 1–3 μl virus to achieve 20–40% GFP+ cells. Cells were 

cultured in the presence of FLT3 ligand blocking antibody (R&D Systems MAB308–100) to 

minimize the impact of endogenous (wild-type) FLT3 signaling. After four days, MUTZ-3 

cell differentiation was read out using flow cytometry for GFP (to gate on transduced cells), 

CD34 (APC, BD 340441) and CD14 (PE-Cy7, Coulter A22331).

Flow cytometry—Flow cytometry for surface marker analysis was performed using 

similar procedures as cell sorting (see “Cell preparation”) and analyzed on a BD Cytoflex or 

BD LSRII. Fluorochromeconjugated antibodies are listed in the Key Resources Table. Cell 

cycle analysis was performed as follows: (1) stain MUTZ-3 cells with CD14-PE-Cy7 

(Coulter A22331) and CD34-FITC (BD Pharmingen 348053) antibodies; (2) spin and 

permeabilize using Phosphoflow Perm 2 solution (BD 347692 diluted 10× in H2O); (3) wash 

with PBS 2% FBS; (4) stain with Ki67 Alexa Fluor 647 (BD Pharmingen 561126); (4) 

wash; (5) resuspend in Cytofix buffer (BD 554655 diluted 4× in PBS) with DAPI at 1 μg / 

ml; (5) analysis on an BD LSRII analyzer within 30 minutes. Data was analyzed using 

FlowJo software (Tree Star, Inc.).
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Immunohistochemistry—Slides were run on the Bond III Imunostainer (deparaffinized 

on the machine) by Leica (Buffalo Grove, IL). The machine uses several retrievals including 

ER1 which is low pH (citrate based) and ER2 which is high pH (EDTA based) and heats the 

slides during the retrieval. The following antibodies were used: CD3 clone LN-10 (Leica), 

1:300, 1 hour incubation with primary, retrieval ER2 20 minutes, detection with Bond 

Polymer Refine (DAB); CD8 clone C8/144R (Dako), 1:200, 1 hour incubation with primary, 

retrieval ER2 30 minutes, detection with Bond Polymer Refine; FOXP3/CD25 double stain: 

FOXP3 clone 206D (Biolegend), 1:50, retrieval ER2 40 minutes, detection with Bond 

Polymer Refine (DAB), CD25 clone 4C9 (Lifespan), 1:50, 1 hour incubation, detection with 

Bond Polymer Refine Red Detection.

T-cell activation bioassay—The T-cell activation bioassay was purchased from Promega 

(J1621) and carried out according to manufacturer’s instructions. Briefly, 25 μl RPMI+ 

containing 100,000 Human T-Activator CD3/CD28 beads (Thermo Fisher 11131D) was 

combined with 25 μl RPMI+ containing 100,000 BM or AML cells and 25 μl RPMI+ 

containing 100,000 TCR/CD3 Effector Cells (total 75 μl / well). The TCR/CD3 Effector 

Cells are Jurkat cells with endogenous TCR, CD3, CD4 and CD28 expression and a 

luciferase reporter driven by a Nuclear Factor of Activated T-cells Response Element 

(NFAT-RE). Engagement of TCR/CD3 with an appropriate ligand, such as CD3/CD28 

beads, results in NFAT-RE mediated luminescence. The beads and cells were incubated at 

37°C for 6 hours followed by reading out luciferase using Bio-Glo (Promega G7941) on a 

BioTek SYNERGY HT machine. Positive control wells contained Human T-Activator CD3/

CD28 beads and TCR/CD3 Effector cells (no BM / AML cells, 100% luminescence). 

Background control wells contained 75 μl RPMI+, and never exceeded 1% of positive 

controls. Negative controls wells contained TCR/CD3 Effector cells ± BM / AML cells (no 

beads), and never exceeded background levels. Luminescence was calculated by subtracting 

background and shown as a percentage of positive control wells.

Activation of primary CD4+ T-cells was tested by adding together 25 μl RPMI+ containing 

100,000 Human T-Activator CD3/CD28 beads and 25 μl RPMI+ containing 100,000 

MUTZ-3 cells. Primary CD4+ T-cells (Lonza 2W-200) were thawed and 100,000 cells were 

added per well in 25 μl RPMI+ (total 75 μl / well). The beads and cells were incubated at 

37°C for 6 hours followed by flow cytometry for CD4-FITC (Biolegend 357405), CD33-PE-

Cy7 (BD 333946) and CD69-APC (Biolegend 310909). After gating on (P1) lymphocytes 

and (P2) CD4+CD33− cells, the mean fluorescence of CD69 was used as a measure of 

activation.

To specifically assess the effect of HSC/Prog-like (CD34+) and monocyte-like (CD14+) 

AML cells in the T-cell bioactivation assay, cells were sorted using Miltenyi Biotec 

magnetic enrichment microbeads (130–046-702 or 130–050-201) according to 

manufacturer’s instructions. Briefly, cells were incubated with antibody-conjugated 

magnetic beads and applied to an MS column on a magnet followed by collection of 

negative (flow-through) and positive fractions.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Cell barcode processing—All sequencing data was first assessed by looking at general 

quality metrics such as cluster density, total yield, and per-cycle base quality. Sequencing 

libraries were then split by library barcodes using bcl2fastq version 2.15.0.4 and default 

settings, except for allowing for 2 mismatches to library barcode sequences when 

appropriate. Read 1, containing a 12 bp CB and an 8 bp UMI, yielded 20 bp reads. Read 2, 

containing part of the transcript, yielded 50 bp reads. For some of the sequencing runs Read 

2 was sequenced for up to 64 cycles. The extra bases were used only for single-cell 

genotyping analysis. All downstream analyses were performed using the R programming 

language (version 3.4), unless otherwise noted. We made extensive use of the data.table and 

Rsamtools packages.

To analyze our single-cell sequencing data, we employed an approach to annotate 

sequencing reads by CB before sequence alignment and quantification. First, we counted all 

unique 12 bp CBs for each library. We excluded CBs occurring less than 100 times, and 

filtered barcodes containing stretches of eight identical nucleotides. Next, we excluded CBs 

that were associated with non-random UMIs. For all reads associated with a given CB, we 

checked that the frequency of any nucleotide did not exceed 90% at each base of the UMI. 

The majority of reads filtered this way contained part of the Tn5 binding sequence, i.e. 

reflected events in which the transposase integrated within the CB/UMI, yielding very short 

fragments with invariable (non-random) UMI sequences.

We noticed that a number of CBs (5–20%, depending on the batch of barcoded beads) were 

associated with UMIs that contained a Thymine as the last nucleotide. These sequences 

often represent CBs in which a single nucleotide is missing due to errors in the split-pool 

synthesis. In this case reads start with a 11 bp CB, followed by the 8 bp UMI and the first 

base of the poly-T sequence that hybridizes to the poly-A tail of captured mRNAs. If not 

corrected, this causes a single cell to produce four different single-cell transcriptomes. We 

corrected these barcodes if in fact four different CBs were detected with a similar number of 

total reads that were variable in their last base. The UMIs were also corrected accordingly.

To filter out CBs that likely resulted from sequencing errors, we ranked all CBs according to 

their number of reads (requiring at least 1,000 reads). We filtered out all CBs that had a 

higher ranked CB that was different in only one position (hamming distance 1).

This final list of CBs was then used to generate a fastq file containing the Read 2 sequences 

of the remaining cells. The library barcode, the CB, and the UMI were appended to the read 

identifier. For some of the sequencing runs we noticed a higher number of reads that were 

excluded because the library barcode was not detected accurately. We rescued these reads if 

their CB matched uniquely to one of the libraries that were sequenced together in the 

respective run. Resulting fastq files for each sample were deposited in GEO (GSE116256).

Sequence alignment and gene quantification—Sequencing reads were aligned to the 

human genome (hg38) using STAR version 2.5.2b and default parameters. Alignments were 

guided by using RefSeq gene annotations. Transcripts were quantified using the “--

quantMode TranscriptomeSAM” option. This resulted in two alignment files, one in which 
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reads were aligned to the genome, and one which contained pseudo-alignments to the 

transcriptome.

The transcriptome alignments were used to quantify gene expression. For every read all the 

unique gene names of the transcripts the read aligned to were recorded. Some reads aligned 

to multiple genes, which often reflected a primary gene and one or more pseudo-, antisense-, 

or readthrough-genes. We checked if any of the gene names was contained in all the other 

gene names, with a “-” before or after (antisense- and readthrough-genes), or followed by 

“P” and a digit (pseudo-genes). If this was the case, we only kept the primary gene. Reads 

that still mapped to multiple genes were filtered. In a second step, all reads that mapped to 

the same gene and had an identical UMI sequence were collapsed. This yielded a digital 

expression matrix consisting of UMI counts for each cell and gene.

For all downstream analysis we required cells to have at least 1,000 UMIs (gene counts, 

indicative of the number of captured transcripts) mapping to at least 500 unique genes. We 

additionally excluded cells for which more than 20% of the gene counts reflected either 

mitochondrial genes or ribosomal RNAs, as these likely reflected poor quality cells. 

Resulting digital expression matrices for each sample were deposited in GEO. For 

downstream analyses, we normalized gene counts to a total of 10,000 for each cell.

BackSPIN clustering—Initial QC yielded 7,698 cells from normal BM donors. We 

randomly filtered 783 cells of 1,590 BM5 CD34+CD38− cells to reduce representation of 

this population. The remaining 6,915 normal BM cells were then clustered into cell types 

using BackSPIN (Zeisel et al., 2015). BackSPIN employs a bi-clustering algorithm which 

iteratively splits both cells and genes, until a predetermined number of splits is reached. We 

selected the BackSPIN algorithm because it performs well when dealing with a relatively 

large number of cell populations. This is especially true for datasets in which some clusters 

are demarcated by a large number of differentially expressed genes (e.g. between the 

myeloid and lymphoid lineages), and others by relatively few genes (e.g. different 

populations within the myeloid lineage).

For clustering, we first determined the most variably expressed genes in the dataset. We 

performed a linear fit of the log-transformed average expression values and the log-

transformed coefficients of variation (standard deviation divided by the average expression). 

Variably expressed genes were determined as genes associated with a residual larger than 

two times the standard deviation of all residuals. From these genes we excluded a set of 

genes that were associated with cell cycle (ASPM, CENPE, CENPF, DLGAP5, MKI67, 
NUSAP1, PCLAF, STMN1, TOP2A, TUBB). This yielded in the order of 1,000 to 2,000 

variably expressed genes depending on the set of cells (Figure S1C, S4A). Expression values 

were log-transformed (after addition of 1) before performing BackSPIN clustering. We used 

default settings and a maximum splitting depth of 5. In the healthy BM data this yielded a 

final set of 31 clusters.

In a first post-processing step we calculated the average expression level of each gene for 

each cluster. If gene expression of a single cell correlated higher to the average gene 

expression of another cluster than the cluster it was part of, we reassigned the cell to the 
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cluster it was most highly correlated to. For the healthy BM data, we merged clusters if their 

average gene expression profiles were highly correlated and if they were characterized by 

similar cell type-specific marker genes. This yielded 15 cell types across the undifferentiated 

compartment and the three main lineages (erythroid, lymphoid, and myeloid, Figure 1A).

We independently clustered normal BM cells using SC3, a different clustering algorithm that 

is also designed for single cell analysis. We used a two-step strategy that first separates the 

main lineages (Undifferentiated, Myeloid, Erythroid, and Lymphoid), and then clustered 

again within each lineage. The results were concordant with our BackSPIN clustering results 

(data not shown). We conclude that the BackSPIN algorithm is an appropriate choice for 

clustering cell types in our scRNA-seq data.

KNN and t-SNE visualization—We employed two different methods for visualizing 

similarities between cells in two-dimensional space: visualization of k-nearest-neighbor 

(KNN) graphs and t-distributed stochastic neighbor embedding (t-SNE). For both methods 

we started with the same set of variable genes as for the BackSPIN clustering. For KNN 

visualization we calculated pairwise correlation coefficients between single cells. Then we 

constructed a graph by connected each cell to its five most highly correlated neighbors. This 

graph was visualized using SPRING, an interactive tool that uses force-directed graph 

drawing. For t-SNE visualization we used the Rtsne implementation in R and default 

parameters, except setting the maximum number of iterations to 2,000 (5,000 for the healthy 

BM data). Throughout the study, we show only two different KNN visualizations (healthy 

BM and T / NK cells, Figure 1D and 7A, respectively) and two different t-SNE 

visualizations (AML556 and AML707B, Figure 2C–D). These visualizations are reused in 

other figures to highlight additional cell parameters, such as sample-of-origin, mutation 

status, and gene expression levels.

Short-read single-cell genotyping analysis—Short reads from libraries of single-cell 

genotyping by Illumina sequencing were processed using the CBs detected from the regular 

Seq-Well protocol. This ensured detection of fragments even if there were only few reads for 

a given CB. Resulting fastq files for all samples were deposited in GEO. All genotyping 

reads were aligned to a short reference index consisting only of the expected transcripts 

using BWA-MEM and default mapping parameters.

For each mutational site and AML sample, we then determined the expected read sequence 

for both the wildtype and the mutant allele. These were identical to the most frequently 

detected read sequences for most of the sites. For some primers we observed unspecific 

amplification of other transcripts. This however did not affect our interpretation of the 

targeted site. We only retained reads that contained the exact mutant or wildtype sequence at 

the expected position. In case of short insertions and deletions (e.g. NPM1 insertion), we 

required the exact mutant sequence to be detected. We allowed for one mismatch to the 

reference transcript in the remaining read sequence.

We then counted the number of reads supporting the mutant or wild-type transcript for each 

CB and UMI. Since most transcripts were detected hundreds of times, we required at least 

10 sequencing reads per CB and UMI. For each mutant transcript we frequently also 
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detected a wild-type transcript with the same CB and UMI, albeit at a much lower frequency 

(0.1–1%). The same was observed for wild-type transcripts, for which we also detected the 

mutant transcript at much lower frequency. This is consistent with a low background 

sequencing error rate. These erroneous transcripts were filtered out. Similarly, we filtered 

transcripts that likely resulted from sequencing errors in the UMI if for the same CB there 

was a similar UMI that was different in only one base and detected with more reads. For 

each cell and mutational site, we then summarized the detected mutant and wild-type 

transcripts and used these annotations throughout the study. A detailed overview of this data 

is presented in Table S2. Genotyping results for each single cell from every sample are 

provided within annotation files that were deposited in GEO.

Long-read single-cell genotyping analysis—Long reads from libraries of single-cell 

genotyping by nanopore sequencing were aligned to the human genome using minimap2 

using the following non-standard parameters: -x splice -u b -k 14. We proceeded with 0.97 

million reads aligned to the targeted genes (TP53 and FLT3 in AML328, FLT3 in 

AML419A, and RUNX1/RUNX1T1 in AML707B). Fastq files containing these reads were 

deposited in GEO.

For each gene and sample, we then matched every CB detected from the regular Seq-Well 

data to the last 250 bp of the 3’ end (as determined by mapping orientation) of all aligned 

reads. We allowed for one mismatch (including 1 bp insertions and deletions). We included 

the last 3 bases of the invariable adapter sequence (TAC) before the CB (12 bp) to improve 

specificity. We found that most CBs mapped to defined positions within the nanopore reads, 

consistent with their expected position 3’ of the poly-A tail and 5’ of the SMART sequence, 

Illumina P5 adapter and Nanopore adapter (illustrated in Figure S2A). To ensure accurate 

barcode matching, we performed three additional filtering steps: First, we narrowed the 

window of expected starting positions of the CBs to 70–130 for reads aligning to the gene in 

forward orientation, and 40–110 for reads aligning in reverse orientation. For data generated 

using the 1D2 kit we used windows from 80–180 and 40–160. We proceeded with CBs that 

mapped to the respective windows in ≥90% of reads in which it was detected. Second, we 

checked for the location of the poly-A tail relative to the mapped CB. For all reads 

associated with a given CB, we required an average number of at least 5 A’s starting within 

7 to 11 bp from the last base of the CB (the 8 bp UMI lies in between the CB and poly-A) 

and removed CBs which did not fulfill these criteria. Lastly, we filtered a small number of 

reads associated with multiple CBs. For all remaining CBs, we sampled a maximum number 

of 1,000 reads for downstream genotyping.

To perform single nucleotide variant calling for TP53 and FLT3, we separately aligned all 

reads for each CB to a transcript reference that consisted only of the targeted gene using 

minimap2. We separately aligned reads to references corresponding to every mutant allele 

we detected. We then used nanopolish (version 0.10.2) to first create indices for all fast5 

files associated with each CB, and then performed variant calling from the raw nanopore 

signal at the exact positions of the variants. The following non-default parameters were used: 

--ploidy=2 --min-flanking-sequence=10 --calculate-all-support --min-candidate-

frequency=0.1. As nanopolish only reports variants but not wild-type calls, we repeated the 

analysis for each mutant allele reference in which wild-type transcripts appear as mutant, 
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and subsequently merged all variant calls. For the final genotyping, we required a coverage 

of at least 10 reads, and a supporting base fraction of at least 0.5, as reported by nanopolish.

To call FLT3 internal tandem duplications (ITDs) in AML328 and AML419A, we aligned 

all reads for each CB to a transcript reference that consisted of the FLT3 transcript 

containing the ITD using minimap2. Using this reference, alignments of reads from wild-

type transcripts appear to have a deletion, whereas transcripts containing the ITD do not. For 

each read, we calculated the average coverage in two 50 bp windows on either side of the 

duplicated sequence, and only considered reads with at least 80% coverage in both windows. 

We then calculated the average coverage of the duplicated sequence, which showed a 

bimodal pattern corresponding to the ITD (≥80% coverage) and wildtype allele. For the final 

genotyping we required a coverage of at least 10 reads. Cells associated with ≥80% of reads 

corresponding to the ITD were called as mutant, and cells associated with ≤20% of reads 

corresponding to the ITD were called as wild-type.

To call RUNX1-RUNX1T1 fusion transcripts in AML707B, we aligned all reads for each 

CB to a transcript reference that consisted only of the RUNX1 gene, and independently to a 

reference containing only the RUNX1T1 gene. For each read, we then calculated the 

covered bases in either alignment. For each cell, we calculated the fraction of reads aligning 

for more than 100 bp to either reference and required at least 10 aligned reads. For the final 

genotyping we only considered cells that were associated with ≥30% of reads aligning to 

RUNX1. Cells associated with ≥10% of reads aligning to RUNX1T1 were called as mutant, 

and cells associated with ≤1% of reads aligning to RUNX1T1 were called as wild-type.

For visualization of the genotyping analysis by nanopore sequencing (Figure 3D, 3F–G, 5A) 

we selected representative transcripts for each mutant and wild-type allele, and then selected 

100 supporting reads for display. Genomic alignments were visualized using the Integrated 

Genomics Viewer. We further processed IGV images to only show variants at the mutated 

sites, which were broadened to the width of the entire exon for clarity. Nanopore genotyping 

results for each single cell were deposited in GEO. Additionally we deposited raw nanopore 

signal (fast5) files for all reads associated with mutant or wild-type transcripts.

In total, our study acquired transcriptomes for 38,410 cells and genotyping information for 

3,799 of these cells using both short-read Illumina sequencing and long-read nanopore 

sequencing. It is the first to combine single-cell transcriptomics and genotyping in a high-

throughput format (droplet or nanowell). For comparison, Smart-seq2 studies typically 

acquire full-length transcriptomes for a few thousand cells, and has been adapted for 

targeted genotyping of ~1000 cells (Giustacchini et al., 2017). However, its plate-based 

format cannot efficiently scale to the numbers of cells that we process here. Other published 

methods assess genomic DNA and transcriptomes from the same cell, allowing detecting of 

mutations in lowly-expressed genes and non-transcribed regions. However, current iterations 

are limited in throughput to a few hundred cells (Macaulay et al., 2017). Recent online 

reports combine scRNA-seq and mutation detection to analyze hematologic malignancies 

(Nam et al., bioRxiv: 444687, Petti et al., bioRxiv: 434746, Rodriguez-Meira et al., bioRxiv: 

474734, Velten et al., bioRxiv: 500108). Each approach has its specific advantages.
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Generation of the Random forest classifier—The Random forest algorithm is a 

machine learning approach that uses a large number of binary decision trees that are learned 

from random subsets of a training set. These trees (the forest) can then be applied to a given 

sample to generate a class probability that reflects its similarity to a given class of the 

training set. If a single class prediction is required, the class with the highest probability 

score is used (majority vote). Random forest classifiers are particularly well suited if the 

dataset contains many different classes, many samples and many features. In our case 

samples represent single-cell expression profiles, features represent genes, and classes 

represent different cell types. For our analysis we used the randomForest R package version 

4.6–14.

We used Random forest-based classification for two different purposes: To predict similarity 

of single cells to the 15 different cell types detected in healthy BM (classifier 1), and to 

predict if a single cell from a tumor sample is malignant or normal (classifier 2). To train the 

first classifier, we first performed a feature selection step to select the most informative 

genes from all 14,554 expressed genes in the dataset (average expression > 0.01). Feature 

selection was performed by training an “outer” random forest classifier on all expressed 

genes. We trained 1,000 trees, using a random subset of 50 cells from each cell type for each 

tree. Based on the reported overall gene importance in the “outer” classifier, we then 

selected only the 1,000 most informative genes for training of the “inner” classifier. The 

reported out-of-bag (OOB) error (i.e. misclassification error of cells that were not used for 

learning of a given tree) was 20% lower for the “inner” than for the “outer” classifier, 

justifying the use of an initial feature selection step. The “inner” classifier was further 

evaluated by performing 5-fold cross-validation by splitting the training dataset into five 

equally sized parts. In each iteration of the cross-validation, four of these parts were used to 

generate a classifier that was then used for predicting class probabilities of the remaining 

part. Results of the cross-validation are provided in Figure S3A.

The second classifier is used for determining if a cell for which we did not detect a mutant 

transcript is malignant or normal, based on its similarity to normal and malignant cells (i.e. 

cells from healthy BM and HSC to myeloid-like cells from tumor samples for which we 

detected mutant transcripts). We first attempted to use a classifier that distinguishes between 

just these two classes. However, we achieved much better results by using all 15 normal and 

six malignant cell types in a combined training set (21 classes), presumably because a 

malignant monocyte-like cell is more similar to a normal monocyte than to a malignant 

HSC-like cell. For malignant cells we used cell type annotations as predicted by the first 

classifier, with the following exceptions: to have at least 65 HSC-like cells for each 

malignant class (required for having >50 cells for 5-fold cross-validation), we reclassified 23 

cells initially classified as progenitor-like with highest prediction scores for the HSC cell 

type as HSC-like cells. We also reclassified 29 cells that were initially classified as early 

Erythroid progenitors as progenitor-like cells, if their prediction score for the Progenitor cell 

type was higher than their prediction score for the late Erythroid cell type. The second 

classifier was then generated using the combined training set of 21 classes and the same 

parameters as for the first classifier. The second classifier reached 95.2% sensitivity and 
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99.7% specificity in distinguishing malignant from normal cells, as measured by 5-fold 

cross-validation. Results of the 5-fold cross-validation are provided in Figure S3E.

To exclude the possibility that the high frequency of cells with detected NPM1 mutations 

affected the classifier, we generated a separate classifier that does not consider NPM1 

mutant calls. This separate classifier had equally high specificity (99.8% of normal cells 

correctly called normal), and sensitivity (93% of malignant cells correctly called malignant) 

in 5-fold cross-validation. It is also consistent with the original classifier: 97% of cells 

originally classified as normal were classified as normal; 91% of cells originally classified as 

malignant were classified as malignant. These results indicate that the classifier is robust to 

the frequency of NPM1 mutations in the training set.

To independently assess whether the Random Forest classifier was an appropriate choice for 

classifying cell types, we compared the performance of our first random forest (RF) 

classifier to an independent Support vector machine (SVM) classifier. We used the e1071 R 

package and default parameters, except for assigning class weights inverse to the class size 

to account for differences in cell numbers per cell population. While the SVM classifier 

generated reasonable results, it did not perform as well as our random forest classifier in 

cross-validation. For example, a larger number of cells are misclassified to a different 

lineage (9.2% vs 3.8%). We conclude that the random forest algorithm is an appropriate 

choice for classifying cell types in our scRNA-seq data.

Random-forest based classification—When applying both classifiers to single cells 

from tumor samples, we first determined from the second classifier if the prediction score 

was highest for a malignant or normal cell type. If a cell was classified as malignant, we 

then used the highest prediction score of the HSC to myeloid cell types (HSC, progenitor, 

GMP, promonocyte, monocyte, cDC) from the first classifier for cell type assignment. If a 

cell was classified as normal, we used the highest prediction score from the first classifier.

We evaluated normal and malignant cell predictions by performing unsupervised BackSPIN 

clustering of all cells that were predicted as one of six HSC to myeloid cell types. This 

analysis was performed for each patient separately. We included 250 normal cells of each 

cell type from healthy BM samples in this clustering. For some samples we identified cells 

for which we could make a better judgement by considering the additional evidence at hand 

(e.g. mutated transcripts, targeted DNA sequencing results). We then refined these cells as 

malignant or normal. In total 578 cells were refined as malignant (1.9% of cells), and 573 

cells were refined as normal (1.9%). An example of this evaluation is shown in Figure S4A. 

We also identified eight samples from four different patients for which we were not 

confident about the classification results (AML314, AML371, AML722B and AML997, 

3.7% of cells). These samples were of poorer quality and had fewer detected cells, and were 

excluded from downstream analyses of malignant cells. Final classification results for each 

single cell from every sample are provided within annotation files that were deposited in 

GEO.

We used prediction scores for projecting single cells onto the KNN visualization of normal 

BM cells (shown in Figure 4B, 4H, S5A, S5D). For this purpose, we placed a grid of 50×50 
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equally sized bins onto the two-dimensional visualization of normal BM cells. We then 

identified the 20 most highly correlated normal BM cells for every cell to be projected, and 

recorded the density of these 20 most correlated BM cells for each bin of the grid.

Generation of gene signatures—We generated cell type-specific gene signatures by 

correlating log-transformed gene expression values to cell type prediction scores from the 

first Random forest classifier, and then considering the most highly correlated genes. This 

analysis was performed for each cell type along the HSC to myeloid differentiation axis (6 

out of 15 detected cell types) across all malignant cells from AML patient samples at 

diagnosis (11,641 cells). For each gene, the second-highest correlation coefficient was 

subtracted from the highest correlation coefficient, to ensure that a gene is specific to a 

certain cell type (and not also highly correlated to another cell type). This correction 

included correlation coefficients of normal cells from healthy BM (4,430 cells) to the 

remaining nine cell types. This prevents genes that are more highly correlated to the 

erythroid and lymphoid cell types to be part of the HSC to myeloid signatures. We also 

included correlation coefficients of gene expression values to cell cycle signature scores 

(described below), which prevents genes that are highly expressed in cycling cells to be 

associated with a certain cell type. After this correction, the 30 most highly correlated genes 

to each cell type defined six tumor-derived gene signatures (shown in Figure 5E–F, S5C). In 

addition, we generated gene signatures for combined HSC and progenitor prediction scores, 

and for combined promonocyte, monocyte and cDC prediction scores, as a number of genes 

were correlated to each of these classes (shown in Figure 6E, S6G). We also generated three 

normal-derived combined signatures by correlating expression values to cell type prediction 

scores across normal cells from healthy BM (shown in Figure 6C–D, S6F). All gene 

signatures are provided in Table S3.

Scoring cells for gene signatures—We calculated cell cycle-gene expression scores in 

single cell profiles by using a minimal gene signature of ten genes that are highly expressed 

in cycling cells (ASPM, CENPE, CENPF, DLGAP5, MKI67, NUSAP1, PCLAF, STMN1, 
TOP2A, TUBB). For each of these genes, we selected the 100 genes with the smallest 

difference in average expression level as a background gene set. The average expression of 

the background gene set was then subtracted from the respective signature gene, and the 

average of the resulting values of all signature genes was kept as the cell cycle-gene 

expression score. A similar strategy for scoring gene signatures from single-cell expression 

data has been described previously (Puram et al., 2017). For most illustrations, the signature 

scores were binarized (e.g. Figure 4G, 6C). Cells were classified as cycling if the signature 

score was larger than a threshold value. The threshold represented the median score plus 

1.5× the median absolute deviation, as calculated from the normal BM data.

To compare our normal BM single cell data with prior publications, we scored published 

gene expression signatures in the same way as the cell cycle signature described above. In 

Figure S1H, we show scores of our normal BM cells for microarray-derived expression 

signatures of HSCs and NK cells (Laurenti et al., 2013; Novershtern et al., 2011), and 

scRNA-seq derived signatures of CD34+ MultiLin progenitors (Hay et al., 2018), GMPs 

(Karamitros et al., 2018) and megakaryocyte erythrocyte progenitors (Velten et al., 2017). In 
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Figure S7C, we show scores of our monocyte and monocyte-like cells for scRNA-seq 

derived signatures of Mono1 (classical), Mono2 (non-classical), Mono3 (intermediate/

trafficking) and Mono4 (intermediate/cytotoxic) (Villani et al., 2017). To visualize these 

signature scores in Figure 7G, monocytes and monocyte-like cells were placed (if Mono1 > 

Mono2) at x = Mono1 or (if Mono1 < Mono2) at x = -Mono2, and (if Mono 3 > Mono4) at y 

= Mono3 or (if Mono3 < Mono4) at y = -Mono4.

Bulk expression analysis—Bulk RNA-seq expression levels from the TCGA-LAML 

study were downloaded from the companion website of the original publication (Cancer 

Genome Atlas Research, 2013) (https://tcga-data.nci.nih.gov/docs/publications/laml_2012). 

We downloaded processed RPKM expression levels of 179 samples (laml.rnaseq.

179_v1.0_gaf2.0_rpkm_matrix.txt.tcgaID.txt.gz). Information on cytogenetic alterations, 

genetic mutations and FAB classification was gathered from the updated supplementary 

table (SuppTable01.update.2013.05.13.xlsx). The most recent survival data was downloaded 

from the cBioPortal.

For unsupervised clustering of TCGA samples according to six tumor-derived gene 

signatures (Figure 5F) we first log-transformed the RPKM expression levels and calculated 

Z-scores. We then calculated pairwise Euclidean distances between samples and performed 

hierarchical clustering using Ward’s method. Seven clusters were identified based on the 

resulting dendrogram. Association of clusters with genetic alterations and histological 

variants was tested using Fisher’s exact test between all seven clusters (Figure 5G). The 

same information is shown in Figure S5C, but samples are clustered according to the 

analysis performed in TCGA (Cancer Genome Atlas Research, 2013).

In addition to the unsupervised clustering analysis, we also calculated expression scores for 

cell type-specific signatures in bulk profiles using a similar approach as described above for 

the scoring of gene signatures in single cells: For each gene in a given signature, we selected 

the 100 genes with the smallest difference in average expression level as a background gene 

set. The average expression of the background gene set was then subtracted from the 

respective signature gene, and the average of the resulting values of all signature genes was 

kept as the signature score. A similar approach for scoring bulk expression samples has been 

described previously (Puram et al., 2017). These scores were used to stratify patients into 

two groups, followed by Kaplan-Meier survival analysis (shown in Figure 6E–F and S6G).

Statistical testing—We used unpaired Student’s t tests for in vitro assays of myeloid 

differentiation (Figure 5I), T-cell type frequencies (Figure 7E–F) and T-cell activation 

(Figure 7H–K, Figure S7A). We used a paired Wilcoxon test to compare correlations of gene 

expression to prediction scores (Figure 6D). We used Fisher’s exact test for analysis of 

clinical parameters of TCGA samples (Figure 5G, S5C). We used the Kruskal-Wallis rank 

sum test for analyzing gene expression differences (Figure 6B, Figure S6D–E, Figure S7D). 

We used a log-rank test for analyzing survival analysis (Figure 6F, Figure 7M, Figure S6G). 

We used ELDA software to assess culture-initiating cell frequencies (Figure S5E). Statistical 

analyses were performed using Microsoft Excel (Student’s t test), the ELDA website (http://

bioinf.wehi.edu.au/software/elda) and using the R language for Statistical Computing (all 

others). Parameters such as sample size, number of replicates, number of independent 
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experiments, measures of center, dispersion, and precision (mean ± SD) and statistical 

significance are reported in Figures and Figure Legends.

DATA AND SOFTWARE AVAILABILITY

The raw data, gene expression matrices, genotyping information and cell annotations have 

been deposited in the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under 

accession number GSE116256. R scripts written for performing gene quantification, 

unsupervised clustering, training and application of the random forest-based classifier and 

other analyses are shared via GitHub (https://github.com/BernsteinLab/aml2019).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Technology for high-throughput single-cell RNA-sequencing and genotyping

• Variable cell type composition of AML correlates to genetics and outcome

• Primitive AML cells aberrantly co-express stemness and myeloid priming 

genes

• Differentiated AML cells express immunomodulatory factors and suppress T-

cells
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Figure 1. Identification of cell populations in healthy BM samples
A. BackSPIN clustering of scRNA-seq data for 6,915 hematopoietic cells from normal BM 

identified 31 clusters of cells with similar transcriptional states. Heatmap shows the pairwise 

correlation between the average expression profiles of these clusters (rows and columns). 

Clusters were merged into 15 cell populations based on marker gene expression (right).

B. Heatmap shows the expression of 55 selected cell type-specific genes (rows) across 6,195 

single cells ordered by the BackSPIN-defined clusters (columns).

C. Stacked barplots show the frequencies of BackSPIN-defined cell types in five normal 

BMs.

D. KNN visualization of 6,915 single-cell transcriptomes (points), with similar cells 

positioned closer together. Points are color-coded by cell type annotations as in C.

See also Figure S1.
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Figure 2. Single-cell profiling of AML tumor ecosystems
A. Overview of AML patients and BM aspirate collections. Cell numbers reflect single-cell 

transcriptomes that passed quality thresholds. For each patient, pie charts indicate time of 

sample collections, relative to diagnosis, and clinical blast count.

B. Chart shows genetic alterations (red) detected in our cohort by targeted DNA sequencing 

and cytogenetics.

C-D. t-SNE plots show single cells from AML556 (C) or AML707B (D) at successive 

collections. Each plot shows cells from the indicated time point (red) and other time points 

(gray). t-SNE plots and corresponding H&E stains depict marrows dominated by AML cells 

at presentation (Day 0), hypocellular marrows with T-cells after chemotherapy (Day 15–18), 

or repopulating hematopoiesis (Day 31–41). Scale bar 50 μm.

See also Table S1.
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Figure 3. Single-cell genotyping by short-read and nanopore sequencing
A. Illustration depicts procedures for acquiring transcriptional and genotypic information 

from single cells. Nanowell plates and beads generate WTA product wherein each cDNA is 

appended to a UMI, a cell-specific barcode (CB), and a priming site (SMART). Product is 

split and used as input for Tn5-mediated scRNA-seq library generation (left) and single-cell 

genotyping (right). The single-cell genotyping reaction utilizes biotinylated primers to 

amplify mutational sites in target genes along with corresponding UMI and CB for 

sequencing.

van Galen et al. Page 34

Cell. Author manuscript; available in PMC 2020 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Bubble plot depicts the frequency of mutation detection by single-cell genotyping with 

short-read Illumina sequencing. Detection is more efficient for mutations in highly 

expressed genes and near the 3’ polyA signal.

C. Scatter plot compares mutation frequencies from DNA sequencing (y-axis) or single-cell 

genotyping (x-axis). Each point corresponds to a mutational site in a specific AML sample. 

Six examples are highlighted.

D. Genome plot illustrates long nanopore reads for three selected TP53 transcripts from 

AML328. For each transcript, 100 reads are shown (reads were matched by CB and UMI, 

indicating they came from the same transcript). Black arrow indicates the location of the 

primer used for amplification. Base mismatches encoding Q144P (orange) or P152R (blue) 

mutations are indicated.

E. Stacked barplot shows the number of cells in which wild-type or mutant TP53 transcripts 

of indicated lengths were detected by short-read (gray) or nanopore sequencing (green), or 

both (red). Fragment length was determined from the nanopore data.

F. Genome plot illustrates nanopore reads for two selected FLT3 transcripts from AML328. 

For each transcript, 100 reads corresponding to the ITD or wild-type allele are shown. Black 

arrow indicates the location of the primer used for amplification. Base insertions 

representing a newly detected 60 bp ITD are indicated in exon 14 (pink).

G. Genome plot illustrates nanopore reads of a fusion transcript from AML707B aligning to 

the RUNX1T1 (left) and RUNX1 (right) loci. One hundred reads are shown. Nanopore 

sequencing enabled detection of the fusion without prior knowledge of the junction.

H-I. t-SNE plots for AML556 (H) and AML707B (I) as in Figure 2C–D show cells for 

which wild-type (blue) or mutant (red) transcripts were detected by single-cell genotyping 

with Illumina sequencing.

J. t-SNE plot for AML707B shows cells for which RUNX1-RUNX1T1 fusion transcripts 

(green) were detected by nanopore sequencing.

See also Figure S2 and Table S2.
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Figure 4. Machine learning classifier distinguishes cell types in the AML ecosystem
A. Schematic of machine learning classifiers used to predict AML cell types (Classifier 1) 

and to distinguish malignant from normal cells in AML tumors (Classifier 2).

B. KNN visualization shows single-cell transcriptomes from normal BM (gray; as in Figure 

1D). Cells from AML samples for which wild-type or mutant transcripts were detected were 

projected onto this graph according to their similarity to the normal cells. Boxes depicting 

the density of projected cells are colored according to the ratio between wild-type and 
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mutant transcripts. Cells with mutant transcripts (red) project along the HSC to myeloid 

differentiation axis.

C. Barplot shows classification of AML cells with mutant transcripts by the first Random 

forest classifier. The majority are classified as one of six cell types along the HSC to 

myeloid axis, thereby defining six malignant cell types.

D-E. t-SNE plots of AML556 (D) and AML707B (E) as in Figure 2C–D with cells colored 

by their classification as malignant (red) or normal (grey).

F. Scatter plot compares clinical blast counts (y-axis) to the fraction of cells classified as 

malignant by the machine learning classifier (x-axis). Each point corresponds to a specific 

AML BM aspirate (n = 27).

G. Heatmaps show cell type prediction scores (rows) for all malignant cells (columns) from 

five representative tumors. Cells in which wild-type and/or mutant transcripts were detected, 

or that express cell cycle signature genes are indicated below.

H. KNN visualizations show single-cell transcriptomes of normal BM cells (gray; as in 

Figure 1D). Malignant cells from the respective AMLs were projected onto this graph 

according to their similarity to the normal cells. The density of projected cells (red) conveys 

the distinct cell type compositions of these tumors.

I. Flow cytometry plots show expression of myeloid differentiation markers by the AML 

samples.

See also Figure S3–5.
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Figure 5. AML cellular hierarchies correlate with underlying genetic alterations
A. Genome plot illustrates nanopore reads for four selected FLT3 transcripts from 

AML419A. For each transcript, 100 reads are shown. Black arrow indicates the location of 

the primer used for amplification (exon 11). Base mismatches encoding A680V (exon 16; 

green) or N841K (exon 20; red) mutations are indicated. Base insertions representing a 24 

bp ITD are indicated in exon 14 (pink). The mutations do not co-occur on the same 

transcripts.
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B-C. Diagrams show AML419 evolution inferred from co-occurrence of mutations in single 

cells (B) and VAFs from bulk DNA sequencing (C). The most likely model yields one 

subclone with an A680V mutation, a second subclone with an ITD, and a third subclone that 

exclusively harbors an N841K mutation.

D. Diagram shows FLT3 protein domains and location of mutations.

E. Heatmap shows expression of 180 signature genes for the six malignant cell types (rows) 

in 40 single cells from AML419A (columns). Cells were assigned to subclone A or B, or 

subclone C on the basis of FLT3 genotypes.

F. Heatmap shows expression of 180 signature genes for the six malignant cell types (rows) 

in 179 AMLs profiled by bulk RNA-seq (columns). Unsupervised clustering revealed seven 

subsets of patients with different inferred cell type abundances (clusters A-G).

G. Charts indicate chromosomal aberrations (top), mutations (middle) and FAB 

classifications (bottom) for AMLs in F. Correspondence between cell type compositions and 

genetics is evident. P-values indicate non-random distribution of events between clusters 

(Fisher’s exact test). n.s., not significant.

H. Flow cytometry histograms show expression of the primitive cell marker CD34 in 

MUTZ-3 cells, four days after transduction with FLT3-WT, FLT3-D835Y, FLT3-ITD or a 

control gene (luciferase).

I. Plot shows change in the percent of CD34+ cells following transduction of FLT3 variants 

as in H. P-values were calculated using Student’s t-test compared to CTRL (mean + SD of n 

= 6 transductions). * P < 0.05, ** P < 0.01, **** P < 0.0001.

See also Figure S5 and Table S3.
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Figure 6. Dysregulated transcriptional programs in malignant progenitors
A. Scatterplot positions genes (dots) by their preferential expression in malignant HSC/

Prog-like cells relative to normal counterparts (x-axis), and by their correlation to HSC/Prog 

prediction scores across malignant cells (y-axis). Genes in the top right are preferentially 

expressed in malignant HSC/Prog-like cells, relative to normal progenitors and other 

malignant cell types (red).

B. Heatmap shows expression of surface markers (rows) in normal BM cells (left, columns) 

or malignant cells from diagnostic AML aspirates (right, columns). CD14 is shown for 
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comparison. P-values between HSC-like cells and normal HSCs are calculated by FDR-

adjusted Kruskal test.

C. Heatmaps show expression of normal BM-derived signature genes for HSC/Prog, GMP 

or differentiated myeloid cells (n = 90; rows) in normal BM (left, columns) or malignant 

AML cells (right, columns). Cells are ordered by their classifier prediction scores (shown on 

top). Cells that express cell cycle genes are indicated. Primitive AML cells co-express HSC/

Prog and GMP programs.

D. Plot shows correlation of 30 normal BM-derived HSC/Prog signature genes (red dots) 

with GMP prediction score across normal or malignant cells. Right: Plot shows correlation 

of 30 normal BM-derived GMP signature genes (blue dots) with HSC/Prog prediction score 

across normal or malignant cells. HSC/Prog genes and GMP genes are aberrantly correlated 

in malignant cells. P-values were calculated by paired Wilcoxon test.

E. HSC/Prog-like and GMP-like signatures were applied to TCGA RNA-seq profiles. 

Heatmap shows expression of 60 signature genes (rows) across 179 bulk AML profiles 

(columns).

F. Kaplan-Meier curves show the survival of 179 AML patients stratified by signature scores 

in E. Patients with higher HSC/Prog-like scores have worse outcomes. P-value was 

calculated by log-rank test.

See also Figure S6 and Table S3–4.
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Figure 7. AML-derived monocyte-like cells have immunomodulatory properties
A. KNN visualization shows all T- and NK cells identified in normal BM and AML samples. 

BackSPIN analysis distinguished three clusters of cells that express markers of naïve T-cells, 

CTLs or NK cells.

B. Boxplots show the relative numbers of cells annotated as T-cells or CTLs by scRNA-seq 

(median ± quartiles for 4 normal BMs and 16 diagnostic AMLs).

C. Pie charts show relative numbers of cells annotated as CTLs or naïve T-cells by scRNA-

seq (mean for two normal BM donors and six diagnostic AMLs with >50 T / NK cells).
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D. Representative IHC stains for T-cells (CD3) and CTLs (CD8) in normal BM and AML. H 

& E stains are also shown. Scale bar 50 μm.

E. Boxplots show relative numbers of T-cells or CTLs identified in IHC stains (median ± 

quartiles for 15 normal BMs and 15 diagnostic AMLs).

F. Pie charts show relative numbers of CTLs (CD8+), T-regs (CD25+FOXP3+) and other T-

cells, per IHC stains (mean for 15 normal donors and 15 AMLs). AMLs have fewer T-cells 

and CTLs, but greater numbers of T-regs, consistent with an immunosuppressive 

microenvironment.

G. Scatterplot shows 2,385 malignant monocyte-like cells from AMLs (red dots) and 567 

monocytes from normal BMs (black dots). Cells are placed according to their signature 

scores for Mono1 (right), Mono2 (left), Mono3 (up) and Mono4 (down) (Villani et al., 

2017).

H. Barplot shows activation of a CD4+ T-cell line after stimulation with CD3/CD28 beads in 
vitro. T-cell activation was read out by an NFAT reporter. The assay was performed in the 

absence (Control) or presence of OCI-AML3 or MUTZ-3 cells (mean ± SD of n ≥ 3 

experiments).

I. Barplot shows activation of primary CD4+ T-cells after stimulation with CD3/CD28 beads 

in vitro. T-cell activation was read out by flow cytometry for CD69. The assay was 

performed in the absence or presence of MUTZ-3 cells (mean ± SD of n = 6 replicates).

J. Barplots show activation of a CD4+ T-cell line as in H. The assay was performed in the 

presence of 100,000 sorted CD34+ or CD14+ MUTZ-3 cells (n = 3 experiments).

K. Barplots show activation of a CD4+ T-cell line as in H, J. The assay was performed in the 

presence of 100,000 sorted CD14− or CD14+ primary cells from normal BMs (n = 6 donors) 

or AML aspirates (n ≥ 3 technical replicates each). Significance is only indicated when T-

cell activation was reduced >1.5-fold compared to Control.

L. Heatmap shows expression of curated immunomodulatory genes (rows) in monocytes 

from normal BM (left, columns) and monocyte-like cells from AMLs (right, columns). Only 

AMLs with >50 monocyte-like cells are shown.

M. Kaplan-Meier curves show the survival of 179 AML patients stratified by expression of 

MRC1/CD206 or CD163. P-values in M were calculated by log-rank test. All other P-values 

were calculated by Student’s t test. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

See also Figure S7 and Table S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse CD15-V450, clone MMA BD Biosciences Cat# 642917; RRID: AB_1645751

Monoclonal mouse CD34-FITC, clone 
8G12

BD Biosciences Cat# 348053; RRID: AB_2228982

Monoclonal mouse CD38-PE, clone HB7 BD Biosciences Cat# 347687; RRID: AB_400341

Mouse CD14-APC, clone RMO52 Beckman Coulter Cat# IM2580U

Monoclonal mouse CD11b-APC-Cy7, 
clone ICRF44

BD Biosciences Cat# 557754; RRID: AB_396860

Monoclonal mouse FLT-3, clone 40406 R & D Systems Cat# MAB308; RRID: AB_2104978

Mouse CD34-APC, clone 8G12 BD Biosciences Cat# 340441; RRID: AB_400514

Anti-Human CD14-PC7 antibody Beckman Coulter Cat# A22331; RRID: AB_10639528

Monoclonal rat CD4-FITC, clone 
A161A1

BioLegend Cat# 357405; RRID: AB_2562356

Mouse CD33-PE-Cy7 , clone P67.6 BD Biosciences Cat# 333946; RRID: AB_399961

Monoclonal mouse CD69-APC, clone 
FN50

BioLegend Cat# 310909; RRID: AB_314844

Monoclonal mouse Ki67-Alexa Fluor® 
647, clone B56

BD Biosciences Cat# 561126; RRID: AB_10611874

Biological Samples

See Table S1 for a list of patients 
included in the study.

Chemicals, Peptides, and Recombinant Proteins

(3-Aminopropyl)triethoxysilane (APTES) Sigma Cat# A3648–100ML

p-Phenylene diisothiocyanate (PDITC) Sigma Cat# 258555–5G

Pyridine Sigma Cat# 270970–1L

N,N-Dimethylformamide (DMF) Sigma Cat# 227056–2L

Chitosan Sigma Cat# C3646–100G

Poly(L-glutamic) acid sodium solution Sigma Cat# P4761–100MG

Sodium Carbonate ReagentPlus Sigma Cat# S2127–500G

Guanidine Thiocyanate (GITC) Sigma Cat# G9277–500g

Sarkosyl (10%, 500 ml) Fisher Scientific Cat# 50–843-132

Maxima H Minus Reverse Transcriptase Thermo Fisher Cat# EP0753

20% Ficoll PM-400 Sigma Cat# F5415–50mL

Betaine Sigma Cat# B0300–5VL

1 M MgCl2 Sigma Cat# 63069–100ML

1 M Tris-HCl pH 8.0 Boston BioProducts Cat# BBT-80

10 mM dNTPs New England BioLabs Cat# N0447L

RNAse Inhibitor Thermo Fisher Cat# AM2696

Exonuclease I New England Biolabs Cat# M0293S

Poly(ethylene glycol) (PEG) Mn 400 Sigma Cat# 202398–250G
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REAGENT or RESOURCE SOURCE IDENTIFIER

Poly(ethylene glycol) (PEG) BioUltra 
8,000

Sigma Cat# 89510–250G-F

Acetone Avantor Cat# 2440–10

BSA Sigma Cat# A9418–100G

2-Mercaptoethanol Fisher Scientific Cat# NC0753648

Tween-20 Fisher Scientific Cat# 65–520-4100ML

EDTA (0.5M, pH 8.0) Boston Bioproducts Cat# BM-150

Sodium Chloride Fisher Chemical Cat# S671–3

UltraPure Distilled Water Thermo Fisher Cat# 10977023

Sodium hydroxide Sigma Cat# S8045–500G

AMPure XP (SPRI) beads Beckman Coulter Cat# A63881

Critical Commercial Assays

KAPA HiFi Hotstart Readymix PCR Kit Kapa Biosystems Cat# KK2602

Nextera XT DNA Library Preparation Kit Illumina Cat# FC-131–1096

Hybridization Chamber Kit - SureHyb 
enabled

Agilent Cat# G2534A

MACOSKO-2011–10 mRNA Capture 
Beads

Chemgenes Cat# NC0927472

Dynabeads™ kilobaseBINDER™ Kit ThermoFisher Cat# 60101

PfuUltra II Hotstart PCR Master Mix Agilent Cat# 600852

Qubit dsDNA HS Assay Kit ThermoFisher Cat# Q32854

BioA High Sensitivity DNA Kit Agilent Cat# 5067–4626

High Sensitivity D5000 ScreenTape Agilent Cat# 5067–5592

Bio-Glo™ Luciferase Assay System Promega Cat# G7941

Jurkat NFAT reporter cells Promega Cat# J1621

Dynabeads® Human T-Activator CD3/
CD28

Gibco Cat# 11131D

Dead Cell Removal Kit Miltenyi Biotec Cat# 130–090-101

CD34 MicroBead Kit Miltenyi Biotec Cat# 130–046-702

CD14 MicroBeads Miltenyi Biotec Cat# 130–050-201

MS Columns Miltenyi Biotec Cat# 130–042-201

FuGENE® HD Transfection Reagent Promega Cat# E2311

Lenti-X™ Concentrator Takara Cat# 631232

Ligation Sequencing Kit Oxford Nanopore Technologies Cat# SQK-LSK109

NEBNext Ultra II End-Repair/dA-tailing 
Module

New England BioLabs Cat# E7645

Blunt/TA Ligase Master Mix New England BioLabs Cat# M0367

QuikChange Lightning Site-Directed 
Mutagenesis Kit

Agilent Cat# 210518

pENTR™/D-TOPO™ Cloning Kit ThermoFisher Cat# K240020

Permeabilizing Solution 2 BD Biosciences Cat# 347692

BD Cytofix™ Fixation Buffer BD Biosciences Cat# 554655
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw data GEO Accession number GSE116256

Processed data GEO Accession number GSE116256

Experimental Models: Cell Lines

MUTZ-3 DSMZ Cat# ACC-295; RRID: CVCL_1433

OCI-AML3 University of Toronto, Minden 
Lab

N/A

5637 ATCC Cat# HTB-9; RRID: CVCL_0126

THP-1 Broad Institute Genetic 
Perturbation Platform

 N/A

Oligonucleotides

See Table S2 for a list of oligonucleotide 
sequences.

Recombinant DNA

VSV.G Addgene Cat# 14888

dRT-pMDLg/pRRE Addgene Cat# 60488

pRSV-Rev Addgene Cat# 12253

pMAL University of Toronto, Dick lab N/A

Software and Algorithms

R version 3.4 R Core Team https://www.r-project.org

R package - data.table CRAN https://cran.r-project.org/web/packages/data.table/index.html

R package - Rsamtools Bioconductor http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

R package - Rtsne Github https://github.com/jkrijthe/Rtsne

R package - randomForest CRAN https://cran.r-project.org/web/packages/randomForest/index.html

STAR version 2.5.2b Github https://github.com/alexdobin/STAR

SPRING Kleintools (Weinreb et al., 
2018)

https://kleintools.hms.harvard.edu/tools/spring.html

BackSPIN Github (Zeisel et al., 2015) https://github.com/linnarsson-lab/BackSPIN

BWA-MEM Cornell University https://arxiv.org/abs/1303.3997

FlowJo version 10.4.2 TreeStar https://www.flowjo.com

Prism 7 GraphPad Software https://www.graphpad.com/scientific-software/prism/

Integrative Genomics Viewer (IGV 
version 2.4.8)

Broad Institute http://software.broadinstitute.org/software/igv/ download

Albacore version 2.3.3 Github https://github.com/dvera/albacore

SC3 Bioconductor http://bioconductor.org/packages/release/bioc/html/SC3.html
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