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Abstract

3D polyhedral wireframe DNA nanoparticles (DNA-NPs) fabricated using scaffolded DNA 

origami offer complete and independent control over NP size, structure, and asymmetric 

functionalization on the 10–100 nm scale. However, the complex DNA sequence design needed 

for the synthesis of these versatile DNA-NPs has limited their widespread use to date. While the 

automated sequence design algorithms DAEDALUS and vHelix-BSCOR apply to DNA-NPs 

synthesized using either uniformly dual or hybrid single-dual duplex edges, respectively, these 

DNA-NPs are relatively compliant mechanically and are therefore of limited utility for some 

applications. Further, these algorithms are incapable of handling DNA-NP edge designs composed 

of more than two duplexes, which are needed to enhance DNA-NP mechanical stiffness. As an 

alternative, here we introduce the scaffolded DNA origami sequence design algorithm TALOS, 

which is a generalized procedure for the fully automated design of wireframe 3D polyhedra 

composed of edges of any cross section with an even number of duplexes, and apply it to DNA-

NPs composed uniformly of single honeycomb edges. We also introduce a multiway vertex design 

that enables the fabrication of DNA-NPs with arbitrary edge lengths and vertex angles and apply it 

to synthesize a highly asymmetric origami object. Sequence designs are demonstrated to fold 

robustly into target DNA-NP shapes with high folding efficiency and structural fidelity that is 

*Corresponding Author mark.bathe@mit.edu.
†H.J., T.R.S., and K.Z. contributed equally.
Author Contributions
H.J., T.R.S., and M.B. conceived of the automatic design approach for rigid DNA origami nanoparticles. H.J. implemented the design 
algorithm and processed the results to make the figures. T.R.S. implemented the particle folding and purification assays, and generated 
gel shift, melting curve, and dynamic light scattering experimental data. W.P.B. performed the molecular dynamics simulations and 
analyzed the trajectories. H.J., T.R.S. and W.P.B. implemented the web server. K.Z. and W.C. contributed to the cryo-EM experimental 
design. K.Z. and S.L. collected and analyzed the cryo-EM data. M.B. supervised the project. All authors interpreted the results and 
wrote and edited the manuscript.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b08671.

The authors declare the following competing financial interest(s): H.J., T.S., and M.B. are inventors on a pending patent related to this 
work, filed on April 27, 2017 (PCT/US2017/029891). All other authors declare that they have no other competing interests.

HHS Public Access
Author manuscript
ACS Nano. Author manuscript; available in PMC 2019 August 04.

Published in final edited form as:
ACS Nano. 2019 February 26; 13(2): 2083–2093. doi:10.1021/acsnano.8b08671.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://10.1021/acsnano.8b08671


verified using single particle cryo-electron microscopy and 3D reconstruction. In order to test its 

generality, we apply TALOS to design an in silico library of over 200 DNA-NPs of distinct 

symmetries and sizes, and for broad impact, we also provide the software as open source for the 

generation of custom NP designs.

Graphical Abstract

Keywords

DNA nanotechnology; scaffolded DNA origami; wireframe origami; six-helix bundle; 3D cryo-
EM reconstruction; molecular dynamics

DNA is a versatile construction material that enables the fabrication of complex 2D1–6 and 

3D nanoscale materials2,3,7–15 with applications in molecular computing,16–19 light 

harvesting, metallic nanowire and nanoparticle (NP) casting,24–28 and hierarchical materials.
29–32 Scaffolded DNA origami is a particularly powerful approach for synthesizing discrete 

objects of monodisperse chemical and geometric composition.1 By virtually threading a long 

single-stranded DNA “scaffold strand” through each base pair in the target object and 

designing complementary oligonucleotide “staple strands” assuming Watson–Crick base 

pairing, thermal annealing in folding buffer results in the formation of self-assembled 

objects of predefined chemical, structural, and mechanical properties.1,8,9,33

Wireframe DNA origami is one class of scaffolded DNA origami objects with particular 

versatility in its ability to program nearly any polyhedral 2D3,4,6 or 3D3,11,12 geometry. In 

this approach, each edge of the wireframe structure may in principle consist of one, two, or a 

multitude of duplexes that are interconnected via single-and double-stranded (DX) DNA 

crossover motifs, with edges merging at multiway junctions (vertices).3,34,35 Despite their 

theoretical capacity to be applied to nearly any 2D or 3D geometry, the complexity of the 

DNA sequence design needed to fold such objects has limited their broad use. Specifically, 

the presence of numerous multiway junctions renders the manual scaffold routing and 

complementary staple design needed for wireframe assemblies extremely challenging, even 

for experts, compared with rectilinear objects that are quite commonly programmed 

semimanually using the software caDNAno.36
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While automated sequence design procedures exist for 2D4,6 and 3D11,12 wireframe 

geometries composed of up to two duplexes per edge, these assemblies are also limited in 

their mechanical stiffness. An alternative, commonly used design strategy to increase 

mechanical stiffness in structured nucleic acid assemblies is the six-helix bundle (6HB),37 in 

which DNA duplexes are organized on a honeycomb lattice. As expected, 6HBs have been 

shown to have significantly increased mechanical stiffness with respect to isolated duplexes,
38,39 with up to a 66-fold increase in persistence length in 12 mM MgCl2 salt,40 which 

suggests that crossovers rigidly interconnect duplexes so that their cross section behaves as a 

homogeneous mechanical beam.40–42 In addition, 6HBs are biologically more resistant to 

nucleases because of their larger cross section.43,44 However, the complexity of the scaffold 

routing and staple sequence design needed to fabricate these objects have been limiting, with 

only several wireframe 6HB DNA-NPs reported,43,45–47 despite numerous important 

applications in metallic patterning32,46,47 and therapeutics.43–45 In addition, published 6HB 

DNA-NP design strategies have been limited to using only single-instead of multilayer 

scaffold linkages between each wireframe edge, possibly further limiting their mechanical 

stiffness and stability. And while conversion of DNA to inorganic materials48 or introducing 

chemical cross-linking49 increases origami mechanical stiffness for applications in materials 

science, biological applications often require DNA origami objects to be used in their native, 

or near-native, state.45,50–52

The previously published sequence design algorithms vHelix-BSCOR4 and PERDIX6 for 

2D and vHelix-BSCOR11 and DAEDALUS12 for 3D wireframe scaffolded DNA origami 

have enabled the facile design of arbitrary 2D and 3D wireframe geometries, but each 

procedure is constrained to use a maximum of two duplexes per edge. While vHelix-

BSCOR4,11 and DAEDALUS12 are fundamentally limited to using two duplexes per edge, 

PERDIX6 introduced a dual-graph approach that generalizes the solution to the scaffold 

routing problem that allows for any even number of duplexes per edge, in addition to 

arbitrary edge lengths, vertex degrees, and vertex angles in 2D6 and 3D, as demonstrated 

here for 6HB-based 3D wireframe polyhedra.

This algorithm, called TALOS (Three-dimensional, Algorithmically-generated Library of 

DNA Origami Shapes), enables the fully automated, top-down sequence design of 

polyhedral 6HB DNA-NPs with enhanced mechanical stiffness compared with previously 

published approaches11,12 and also offers control over the distribution of staple lengths. To 

further enhance 6HB DNA-NP stiffness beyond previous designs that employed only a 

single-vertex scaffold crossover between each pair of neighboring edges (“flat vertex”; FV),
32,43,45–47 we also introduce a three-way vertex crossover or “mitered vertex” (MV) motif. 

This motif is realized by extending the duplexes within individual vertices in order to ensure 

that every duplex within each honeycomb wireframe edge is connected to another duplex in 

a neighboring wireframe edge. Importantly, akin to the 2D implementation of PERDIX,6 the 

MV design motif enables DNA-NPs to consist of arbitrary edge lengths and vertex angles, 

which cannot be realized with other 3D polyhedral DNA origami sequence design 

algorithms.11,12

We validate TALOS experimentally for both vertex types (FV/MV) using folding assays, 

transmission electron microscopy (TEM), and single particle cryo-electron microscopy 
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(cryo-EM) and 3D reconstruction. Results demonstrate high yield of formation of origami 

objects and high structural fidelity at the nanometer scale. While direct experimental 

measurement of the relative mechanical stiffness offered by the MV design compared with 

the conventional FV design is beyond the scope of the current work, molecular dynamics 

(MD) simulations offer theoretical evidence for the relative increase in DNA-NP stiffness for 

the MV design. Finally, in order to test the generality of our sequence design procedure, we 

apply it to generate an in silico library of 240 DNA-NPs ranging from 10 to 200 nm in size, 

with explicit control over the distributions of staple lengths, which may be limited by 

chemical modifications or other synthetic constraints. For broad dissemination of our 

approach, TALOS is provided both as standalone open-source software (library of 240 

DNA-NPs and TALOS software package) and as a simple web interface (http://talos-dna-

origami.org) for custom DNA-NP design.

RESULTS AND DISCUSSION

Any target 3D polyhedron can be defined by its 2D enclosing polyhedral surface, which may 

be represented by the set of edges and vertices that constitute the equivalent wireframe 

model. To specify the target wireframe geometry, standard polyhedron file formats can be 

used to define the spatial coordinates of all vertices and polygonal faces, which are 

equivalently defined by their enclosing edges and boundary vertices. For the current 

application, this wireframe geometry is used to define the target DNA-based molecular 

geometry to render, with each edge in the node-edge network consisting of the 6HB motif 

(Figures 1, S1, and S2).37 If instead of a discrete polyhedron the target geometry is a 

smooth, continuous 3D geometry, then standard meshing and discretization procedures may 

be used to convert it to a representative wireframe model, as commonly performed, for 

example, in computer-aided visualization and finite element analysis.53

Scaffold Routing.

In order to route the single-stranded scaffold throughout the entire target DNA origami 

object, a node-edge graph representation of the complete 6HB DNA-NP must be defined for 

either the FV or MV case. In this representation, a node-edge graph consists of nodes 

representing the scaffold crossing between each wireframe edge at the vertex and graph 

edges representing every DNA duplex along each wireframe edge. To construct this node-

edge graph, each target wireframe edge, irrespective of vertex type, is first replaced with six 

disconnected line segments on a honeycomb lattice centered on the original wireframe edge 

(Figures 1(i), S1a–e, and S2a, representative of DNA duplexes in the final structure).6 This 

6HB geometry forms three duplex layers: an “inner” layer closest to the NP center, a 

“middle” layer, and an “outer” layer away from the center of the structure. In the FV case, 

the nearest two line segments (depending on the layer shown in Figures S3 and S4) from 

neighboring edges are connected to form a new graph node, representing the wireframe 

edge-to-edge scaffold crossing (Figure S1e,f), with these segments scaled to multiples of 21 

bp, as required by the natural helicity of B-form DNA.34 The remaining four line segments 

of each wireframe edge connected to a neighboring line segment in the same wireframe 

edge, forming a new graph node representing the scaffold crossing at the FV (Figures S3 and 

S4).
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In the case of the MV, the ends of each line segment constituting a DNA duplex are extended 

to the points of steric hindrances based on B-form DNA geometry. Once extended, nearest 

neighbor segments between each wireframe edge are connected to generate a new node, 

which are representative of scaffold crossings between wireframe edges and thereby form 

three scaffold crossings between the edges in the final object (Figure S2a,b). Thus, in both 

the FV and MV designs, all line segments are connected to two other segments and are part 

of a closed circuit (“loop”; Figures S1f and S2b). This constitutes the graph representation of 

the 6HB DNA-NP without crossovers.

With this graph representation constructed, we next determine the scaffold crossover 

positions (Figure S5) to route the scaffold around the entire object by using the loop–

crossover structure previously defined in the 2D PERDIX algorithm6 but modified it to 

allow for connecting wireframe edges in 3D and across honeycomb layers. Briefly, this is 

accomplished by identifying all crossover locations between any two duplexes based on the 

natural helical twist of B-form DNA (Figures 1(ii), S1g,h, and S2c,d). The loop–crossover 

structure is then converted into its dual graph (Figures 1 (iii), S1i, and S2e),6 with each 

closed loop becoming a node and each possible crossover connecting two loops becoming 

an edge joining the two respective nodes. The minimum spanning tree of this dual graph is 

then calculated (Figures S1j and S2f) using Prim’s algorithm with the members of this tree 

(blue in the inset panel of Figure 1 (iii)) corresponding to the subset of crossovers needed to 

complete an Eulerian circuit. The spanning tree is then inverted back to the loop-crossover 

structure, which now only contains the crossovers that satisfy an Eulerian circuit (Figures 

1(iv), S1k,i, and S2g,h).6 The minimum spanning tree from the dual graph additionally 

yields the order in which the scaffold traverses each vertex. This dual-graph algorithm 

generalizes to any routing composed of an even number of duplexes per wireframe edge, 

unlike our lab’s previously published direct spanning tree approach.12

As in the 2D PERDIX algorithm, the MV design presented here allows for the generation of 

objects with arbitrary edge length and not constrained to 21-bp multiples. This is 

accomplished when converting from the loop–crossover structure to the final model, where 

unpaired scaffold nucleotides are introduced to accommodate 5′- and 3′-end misalignment 

between every two neighboring connected duplexes at each vertex based on the natural B-

form helicity of DNA and the distance between the two duplexes, as performed previously.6

Staple Design.

With the scaffold routing completed, staple sequences for folding the DNA-NP can be 

determined. Staples are assigned by generating the complementary sequences to the scaffold 

and routing through all permissible staple crossovers (see Supplementary Methods as well as 

Figures 1(v), S1m, S2i, and S5).36 As a result of the routing, a subset of these staples form 

closed loops and are therefore nicked at the centers of their longest continuous double-

stranded DNA domains to allow for linear oligonucleotide synthesis. Each staple is further 

divided to be within user-defined lengths (ranging from 20 to 60 nt by default, see Figures 

S5–S7) while maximizing the number of continuous 14-nt duplex domains across all staples, 

which is known to improve 6HB assembly yields (Figures S8–S18 and Tables S1–S4).54,55
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Poly-T stretches are used within vertex staples to covalently bridge two neighboring 

wireframe edges, with the length of each poly-T stretch determined based on the distance 

between the centroids of the two terminal duplex nucleotides, as implemented previously.6 

In addition, in the MV case, staple design patterns are generated that allow for the necessary 

extensions of DNA duplexes at each vertex.

The final structure is then converted into a 3D atomic model for visualization and 

downstream modeling using MD and other approaches (Figures S19–S36), and a caDNAno 

(*.json) file is generated for manual base editing and staple functionalization (Figures S37–

S45). This generalized solution for scaffold routing applies to 3D object generation of any 

even number of duplexes organized on a honeycomb lattice edge, although determining the 

precise staple routing for such objects becomes increasingly complex as the number of 

duplexes increases and is therefore left for future work.

Folding Validation.

To evaluate the generality and robustness of our automatic design procedure, we used it to 

generate scaffold routings and staple sequence designs for DNA-NPs of different 6HB edge 

lengths, vertex junction numbers, vertex angles, and vertex types (Tables S5–S17). As a 

result of their simpler design, conventional, single-edge-to-edge crossing FV DNA-NPs 

were analyzed first (Table S6). Particle folding was optimized based on salt and staple 

concentrations and annealing times to determine a protocol that maximized band resolution 

in agarose gel mobility shift assays (Figures S46–S50) and maximized yield of particle self-

assembly, as judged by TEM (Figures S51–S54) for the 6HB DNA-NP. Optimal folding 

conditions were found to be consistent with previously published results8 and subsequently 

used for folding prior to 3D structural characterization using cryo-EM reconstruction.

Three tetrahedra of 42-bp (14.3 nm), 63-bp (21.4 nm), and 84-bp (28.6 nm) edge lengths 

were first used to evaluate the FV design based on an object composed purely of three-way 

junctions. Four-way and five-way junction objects were additionally evaluated using a 

regular octahedron of 84-bp edge length and a pentagonal bipyramid of 42-bp edge length 

(Figures 2a–c and S51–S57). Circular maps showing distinct domains of the scaffold 

connected by individual staples were generated to illustrate the complexity of scaffold 

folding that clearly benefits from our fully automated algorithm (Figure 2a). Both agarose 

gel electrophoretic mobility analysis and TEM indicated that particles were well-folded and 

monodisperse (Figures 2b, S48, and S51–S54). Cryo-EM was then used (Figures 2c and 

S55–S57) to visualize the particles flash-frozen from room temperature in their 3D state, 

further validating anticipated geometries and monodispersities.

We evaluated the MV design by synthesizing three distinct regular tetrahedra (42-, 63-, and 

84-bp edge lengths) and a regular octahedron of 84-bp edge length (Figures 2d–f and S58–

S64). The circular maps for the MV designs further illustrated their increased sequence 

design complexity with respect to the FV designs, solved by TALOS. Agarose gel shift 

assays showed a clear shift compared with the M13 ssDNA scaffold band in all cases 

(Figures 2e and S48). Mono-dispersities and sizes of DNA-NPs in solution were 

characterized using dynamic light scattering (Movies S1 and S2), further demonstrating that 

DNA-NPs were largely monomeric (Figure S49). Thermal stabilities of the DNA-NPs were 
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characterized using melting curve analysis, which revealed that both FV- and MV-type 

objects have similar melting temperatures near 68–70 °C (Figure S50). To further 

characterize self-assembly, each object was visualized using cryo-EM (Figures 2f and S60–

S64), showing DNA-NPs with anticipated target geometries. Wide-field view imaging using 

TEM showed in each case that DNA-NPs were also well-folded and monodisperse (Figure 

2g).

Single Particle Cryo-EM and 3D Reconstruction.

To investigate the quality of the atomic structural predictions generated by TALOS, four 

DNA-NPs of 84-bp edge length representing both FV and MV designs and two distinct 

geometries were reconstructed in 3D using single-particle cryo-EM analysis. FV tetrahedral 

(Figures 3a, S65, and Movie S3) and octahedral (Figures 3b, S66, and Movie S4) particles 

were selected for class averaging and reconstructed to 21 and 18 Å resolution, respectively. 

The FV tetrahedron showed a lack of electron density at each vertex, as expected, but also 

showed a notable 3° twist at each vertex with 0.79 correlation with the atomic model. The 

electron density map for the octahedron showed no detectable twist, in contrast to the dual-

helix edge octahedron reported previously.12 The electron density aligned with the atomic 

model with a correlation of 0.83 and, like the tetrahedron, lacked electron density in the 

regions corresponding to the absence of a DNA duplex in this FV design.

To test the design fidelity of MV DNA-NPs, tetrahedral (Figures 3c, S68, S69, and Movie 

S5) and octahedral (Figures 3d, S70, and Movie S6) particles of 84-bp edge lengths were 

frozen to grids, and individual particles were selected for class averaging and particle 

reconstruction, yielding resolutions of 25 and 15 Å, respectively. In each case, the electron 

density agreed well with the atomic model, including the density for the three-way MVs, 

with a total correlation of 0.82 for the tetrahedron and the octahedron. The vertex twist was 

absent in all cases in the MV forms of the tetrahedron and octahedron, likely because of the 

close packing of free duplex ends at juxtaposed edges within individual multiway junctions. 

The resolution obtained from these reconstructions is on the same order as the DX-tile 

wireframe origami previously reported (18–21 Å)12 and the periphery of a densely packed, 

asymmetric pointer object (14 Å).56 We speculate that resolution is limited by the 

assumption of particle symmetry that is imposed during reconstruction, which is required 

because of the challenges associated with distinguishing distinct particle orientations 

algorithmically. Atomic-level thermal fluctuations frozen-in prior to single-particle imaging 

may additionally limit the maximum resolution obtainable for this class of objects.

Molecular Dynamics Characterization of DNA-NP Flexibility.

In order to gain further insight into the differences in the overall mechanical stiffness of the 

FV versus MV DNA-NPs, MD was used to simulate the conformational dynamics of regular 

tetrahedra of 42-bp edge length (Figure 4a,b and Movies S7, S8, and S9) and also compared 

with a DX-edge variant of the same edge length.12,57 The root-mean-square deviation 

(RMSD) of each DNA-NP from its ground-state geometry illustrates the magnitude of 

thermal fluctuations for each type of vertex design (Figures 4c and S71). The FV DNA-NP 

exhibited similar flexibility to the DX-edge DNA-NP, where both were more flexible than 

the corresponding MV variant. Specifically, total RMSD values were 11.9 ± 0.6 and 11.0 
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± 0.9 Å for the FV and DX DNA-NPs, respectively, versus 9.5 ± 0.6 Å for the MV design. 

The observed conformational flexibility of the FV DNA-NP design results in part due to the 

unconstrained ends of the outer 6HB duplexes, which exhibited significant dynamical 

motion compared with the overall structure. This is in contrast with the MV DNA-NP, in 

which the middle and outer duplexes exhibited relatively lower conformational flexibility 

due to their sterically and covalently constrained terminal ends. To further investigate local 

conformational dynamics, the root-mean-square fluctuation (RMSF) of each atom was 

calculated. This analysis highlighted regions of significantly enhanced conformational 

flexibility near the vertices, as visualized in red in Figure 4d. Importantly, the middle and 

outer duplexes in the MV design are longer than the inner duplexes, thus generating 24 

additional double crossovers in the structure, thereby likely increasing overall mechanical 

stiffness compared with FV counterparts. The MVs also contain a 3-fold increase in edge-to-

edge crossings at each vertex, likely further contributing to the suppressed conformational 

fluctuations observed (Figure 4d). As expected, suppressed overall edge bending and vertex 

twisting of the FV and MV DNA-NPs was observed with respect to the DX DNA-NP design 

(Figures S72–S75),12,57 which is likely a result of the overall enhanced mechanical stiffness 

of the 6HB edge itself.40 Importantly, the conformational dynamics in response to thermal 

fluctuations probed here only offers a lower bound on the enhanced mechanical stiffness of 

the MV DNA-NP design with respect to its FV counterpart. Large-scale, nonlinear 

deformations using an active probe such as atomic force microscopy would be needed to 

reveal the full extent of the enhanced mechanical stiffness offered by this alternative vertex 

design.48

In Silico DNA-NP Library Generation.

To evaluate the generality of TALOS for application to a broad set of polyhedral geometries, 

we applied it generate the sequence design of all Platonic solids that have equal edge 

lengths, angles, and vertex junction numbers, as well as more complex geometries including 

Archimedean solids with unequal vertex angles, Johnson solids that include heterogeneity in 

vertex junction numbers, and Catalan solids that have unequal edge lengths (Figures S19–

S31). Out of these 40 distinct geometric families, 28 (FV) and 32 (MV) DNA-NPs required 

scaffolds longer than the 7249-nt M13mp18 (Table S5), for which the remaining sequences 

were generated using 8064 nt,8 recombinant phage sequences up to 31 274 nt,58 or a random 

sequence.

Because each duplex of the wireframe edge is independently extended to meet its 

neighboring-edge duplex in the MV design, asymmetric polyhedra with arbitrary edge 

lengths and vertex angles can also be generated using this design strategy. Two such 

examples are an asymmetric tetrahedron (Figure 5c, left) and a twisted triangular prism 

(Figure 5c, right). The asymmetric tetrahedron was designed with 42-bp, 69-bp, 103-bp, and 

130-bp edge lengths, with the angle between each two edges on every vertex different due to 

the incongruence of each triangular face (Figure S76a). Folding of the asymmetric 

tetrahedron was validated by agarose gel mobility shift and TEM (Figure S76b,c). As an 

extension of the arbitrary vertex angle of the asymmetric tetrahedron, a twisted triangular 

prism was additionally designed with a 30° right-handed twist between the triangular top 
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and bottom faces of the prism, with edge-to-edge angles of 60, 89, and 111° (Figure 5c), 

with the individual duplex extensions at the vertex generated to constrain these angles.

CONCLUSIONS

Taken together, the preceding examples illustrate the capabilities of our procedure to fully 

automate complex scaffold routing and staple design for diverse polyhedral 3D geometries 

based on top-down geometric specification alone (Figure 5). While the folding of each 

DNA-NP would need to be validated experimentally prior to its use in applications, here we 

have provided the in silico-produced staple sequences for 240 DNA-NP geometries (Library 

of 240 Particles) that could serve as a platform for future library generation of diverse DNA-

NP geometries for self-assembly of hierarchical NP-based materials.46,59 Lastly the dual-

graph procedure employed may also be further generalized to employ alternative multihelix 

edge types8,10,32,54 as well as possibly the incorporation of insertions and deletions to 

program curvature and twist.9

METHODS

Top-Down Sequence Design.

TALOS (Three-dimensional, Algorithmically generated Library of DNA Origami Shapes) is 

available for use as open-source software (http://github.com/lcbb/talos ) and online at http://

talos-dna-origami.org. Additional details can be found in the Supporting Information and 

documentation provided with the software.

Materials.

Full length single-stranded M13 was purchased from Guild BioSciences (Dublin, OH). 

Oligonucleotides were purchased from Integrated DNA Technologies (Coralville, IA), 

typically in 96-well plate format brought up to 200 nM concentration in nuclease-free water. 

Each staple (20 μL) was combined in equal volumes to obtaining an equimolar staple mix. 

Tris-acetate-EDTA (TAE, 10×), MgCl2 hexahydrate, and NaCl were purchased from Sigma-

Aldrich (St. Louis, MO).

DNA Nanoparticle Assembly.

DNA-NPs were folded in a solution of 20 nM scaffold, 600 nM staples, 1× TAE, 100 mM 

NaCl, and 14 mM MgCl2 and annealed over the course of 22 h (95 °C for 5 min, 85 °C 

down to 76 °C for 5 min/°C, 75 °C down to 30 °C for 13.75 min/0.5 °C, 29 °C down to 

25 °C for 10 min/°C, followed by 15 min at 37 °C) on a Bio-Rad T100 thermocycler 

(Hercules, CA). Folding was initially checked by agarose gel mobility shift assays. Folded 

sample (20 μL) was combined with 4 μL of 6× loading buffer (NEB) and loaded to a 2% 

agarose gel with 1× TAE and 12.5 mM MgCl2 and 1× SybrSafe (ThermoFisher, Waltham, 

MA). Each gel was run at 90 V for 5 min followed by 65 V for 2–4 h in 1× TAE with 12.5 

mM MgCl2. Gels were run in an ice-chilled water bath. Gels were then visualized under blue 

light.
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Folded DNA-NPs were purified from staples and folding buffer by the use of buffer 

exchange via spin filter concentrator columns with MWCO = 100 kDa cleaned with 

nuclease-free water. DNA-NPs were exchanged into buffer composed of 1× TAE with 100 

mM NaCl and 12 mM MgCl2 by centrifugation at 3000 rpm for 40 min at 25 °C, diluted 

approximately 10-fold, and reconcentrated a total of six times. For TEM, the final DNA-NP 

concentration was approximately 10 nM, while for cryo-EM the final DNA-NP 

concentration was approximately 100 nM. For TEM, samples were floated to the Formvar 

surface and stained by 2% uranyl formate with 25 mM NaOH. Negative stained TEM 

images were captured using a Thermo-Fisher FEI Tecnai Spirit Transmission Electron 

Microscope (Waltham, MA) set to 120 kV potential.

Cryo-EM Data Collection and Single-Particle Image Processing.

Freshly concentrated DNA nanostructure solution (3 μL) was applied onto the glow-

discharged 200-mesh Quantifoil 2/1 grid, blotted for three seconds, and rapidly frozen in 

liquid ethane using a FEI Vitrobot Mark IV (Hillsboro, OR). All grids were screened on a 

JEOL JEM2200FS cryo-electron microscope (Peabody, MA) or a FEI Talos Arctica cryo-

electron microscope operated at 200 kV and then imaged in the JEOL 3200 cryo-electron 

microscope or in a FEI Titan Krios cryo-electron microscope. Micrographs were recorded 

with a Gatan K2 Summit direct electron detector in counting mode, where each image is 

composed of 32 individual frames with an exposure time of 8 s and a total dose of ~40 

electrons per Å2. A total of 96 images for the FV tetrahedron of 84-bp edge length, 119 

images for the MV tetrahedron of 84-bp edge length, 724 images for the FV octahedron of 

84-bp edge length, 657 images for octahedron with MV, and 662 images for the MV 

tetrahedron of 63-bp edge length were collected with a defocus range of ~1.5–4 μm. All the 

images were motion-corrected using MotionCor2.60 Single-particle image processing and 

3D reconstruction was performed using the image processing software package EMAN2.61 

All particles were picked manually by e2boxer.py in EMAN2. The initial models generated 

by TALOS software were low-pass-filtered to 60 Å to avoid model bias. The following steps 

were performed as previously described.12 A total of 1669 particles for the FV tetrahedron 

of 84-bp edge length, 1092 particles for the MV tetrahedron of 84-bp edge length, 3308 

particles for the FV octahedron of 84-bp edge length, 5705 particles for MV octahedron, and 

2511 particles for the MV tetrahedron of 63-bp edge length were used for final refinement, 

applying tetrahedral, tetrahedral, octahedral, octahedral, and tetrahedral symmetries, 

respectively. Resolutions for the final maps were estimated using the 0.143 criterion of the 

Fourier shell correlation (FSC) curve without any mask. A Gaussian low-pass filter was 

applied to the final 3D maps displayed in the UCSF Chimera software package.62 

Correlation of each map with its corresponding atomic model is calculated by the UCSF 

Chimera fitmap function.

All-Atom Molecular Dynamics Simulations.

All-atom MD simulations were performed for tetrahedra of 42-bp edge length to compare 

the stability and dynamical motion of the FV versus MV design as well as the DX-edge 

design. The PDB files for the initial atomic coordinates of the FV and MV DNA-NP were 

generated using the TALOS algorithm, and the initial atomic coordinates of the DX DNA-

NP were generated using the DAEDALUS algorithm.12 All-atom systems were solvated in 
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TIP3P water63 with explicit Mg2+ and Cl− ions added to neutralize DNA charges and to set 

the ion concentration to 12 mM, consistent with the experimental conditions. The all-atom 

system sizes for the fully solvated DNA-NP were 1.2 × 106 (DX), 2.2 × 106 (FV), and 3.3 × 

106 (MV) atoms, with the DNA alone comprising 3.4 × 104 (DX), 9.9 × 104 (FV), and 1.4 × 

105 (MV) atoms. The MD simulations were performed with the program NAMD2,64 the 

CHARMM36 force field,65 and Allnér Mg2+ parameters,66 with an integration time step of 2 

fs and periodic boundary conditions applied to an orthogonal simulation cell. The van der 

Waals energies were calculated with a 12 Å cutoff, a switching function applied from 10 to 

12 Å, and a 14 Å pair list distance. The Particle Mesh Ewald (PME) method67 was used to 

calculate full electrostatics with a maximum grid point spacing of 1 Å. Full electrostatic 

forces were computed every two time steps (every 4 fs), and nonbonded forces were 

calculated at each time step (2 fs). Equilibration and production simulations were performed 

in the NpT ensemble using the Nosé–Hoover Langevin piston method68 for pressure control 

with an oscillation period of 200 fs and a damping time of 100 fs. Langevin forces were 

applied to all heavy atoms for temperature control (300 K) with coupling coefficients of 5 ps
−1. All hydrogen atoms were constrained to their equilibrium lengths during the simulations 

and atomic coordinates were recorded every 1 ps for downstream analysis of coordinate 

trajectories. Prior to production MD, solvent and ions were allowed to equilibrate for 1 ns, 

while the nucleic acid atoms were spatially constrained. For production MD, the DNA-NPs 

were run for 200 ns.

Analysis of 6HB Flexibility from MD Trajectories.

Atomic coordinates for tetrahedra of 42-bp edge length (FV and MV and DX edge) were 

extracted from production MD simulations every 1 ns. First, at each sampled time point, the 

atomic coordinates were superposed onto the reference geometric coordinates (t = 0 ns) by 

global minimization of the RMSD of the sampled atomic coordinates with respect to these 

reference coordinates. The total RMSD of all atoms was calculated as well as local RMSD 

values for inner, middle, and outer duplexes in the 6HB DNA-NPs. As a result of an 

equilibration time of approximately 50 ns, the total RMSD was calculated from the average 

of three separate bins of 50 ns (50–100, 100–150, and 150–200 ns). Superposition of atomic 

coordinates and RMSD calculations were performed using the Python package ProDy.66 

This software package was also used to calculate the RMSF values of all atomic coordinates 

averaged over the production MD simulations for each tetrahedron of 42-bp edge length.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the top-down sequence design procedure TALOS for scaffolded 6HB DNA-

NPs. The arbitrary target geometry is based on a polyhedral mesh, with discretized line 

segments (step (i)) to represent six DNA duplexes per wireframe edge with the endpoints 

joined (step (ii)) to form closed loops with geometrically allowable scaffold double 

crossovers between them. The dual graph of the loop–crossover structure is obtained (step 

(iii)) by converting each closed scaffold loop to a node and connecting each possible 

scaffold double crossover to an edge. The minimum spanning tree of the dual graph was 

then determined and inverted (step (iv)), defining the DNA scaffold routing. On the basis of 

the user-defined staple length (for this example, 20 to 60 nt (a) and 15 to 49 nt (b)), staple 

sequences generated (step (v)) by the algorithm were used with the input scaffold to 

synthesize (step (vi)) the 3D DNA-NP in one-pot thermal annealing.
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Figure 2. 
Validation of 6HB DNA-NP origami objects synthesized using TALOS sequence designs. 

(a–c) In the FV case, the routed structure is generated such that each wireframe edge is 

connected covalently to its neighboring edges by one scaffold and staple crossing. A circular 

map is rendered, in which the outer circle representing the scaffold has points assigned in the 

center of each double-stranded DNA domain with staple connections between regions 

rendered as lines traversing the circle (see also Figures S14–S18). Characterization of 

folding for FV tetrahedra of 63-bp and 84-bp edge lengths and an FV octahedron of 84-bp 

edge length with agarose gel mobility shift assays ((b); uncropped gel images in Figure S48) 

and cryo-EM (c). (d–f) In the MV case, the routed structure is generated such that each 

wireframe edge is connected covalently to its neighboring edges by three scaffold and staple 

crossings. Characterization of folding for MV tetrahedra of 63- and 84-bp edge lengths and 

an MV octahedron of 84-bp edge length with agarose gel mobility shift assays ((e); 

uncropped gel images in Figure S48) and cryo-EM (f). (g) Wide-field TEM micrograph 

shows monodisperse MV octahedra of 84-bp edge length (see also Figures S51–S64). Scale 

bars are 5 nm in atomic models and 20 nm in cryo-EM and 200 nm in the wide-field TEM.
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Figure 3. 
3D characterization of 6HB DNA-NPs using cryo-EM reconstructions compared with 

predicted atomic models. (a) The FV tetrahedron of 84-bp edge length shows straight edges 

with a distinctive FV type and a 3° left-handed twist visible at each vertex, with a clear 

signature of a 6HB along the edge (arrow). (b) The FV octahedron of 84-bp edge length has 

straight edges and regular programmed vertices with characteristic open vertices and no 

detectable deviation along the edge compared to the atomic model, with a clear signature of 

a 6HB along the edge (arrow). (c) The MV tetrahedron of 84-bp edge length shows the 

characteristic programmed electron-dense vertex (arrow). (d) The MV octahedron of 84-bp 
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edge length has straight edges and electron-dense vertices with approximately a 1 nm 

deviation along the edge from the predicted atomic model (arrow). Scale bars are 5 nm.
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Figure 4. 
Molecular dynamics simulations of tetrahedra. (a,b) Superposition of molecular dynamics 

snapshots of FV (a) and MV (b) tetrahedra of 42-bp edge length at 0, 100, and 200 ns. Initial 

atomic models were generated by TALOS. (c) Total RMSD of all nucleic acid atoms based 

on the ground-state atomic model generated by TALOS. The FV and DX tetrahedra of 42-bp 

edge lengths show additional dynamical motion due to vertex fluctuations compared with 

the MV design. (d) All-atom RMSFs were calculated for the FV, MV, and DX tetrahedra 

over the 200 ns simulation and mapped as a white-to-red color gradient on each of the 

structures.
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Figure 5. 
Fully automatic sequence design of diverse scaffolded 6HB DNA-NPs. (a) 3D 

representations of geometric models as input to the algorithm with associated 3D atomic 

models and circular map of the DNA-NPs for a tetrahedron, cube, octahedron, and 

pentagonal bipyramid using the automatic scaffold routing and sequence design procedure 

for the FV and MV cases. (b) 3D representations of geometric and atomic models for two 

Platonic-, Archimedean-, Johnson-, and Catalan-type geometries, with additional DNA-NPs 

shown in Figures S19–S31. All DNA-NPs in panels (a) and (b) have a minimum 42-bp edge 

length, and the required scaffold lengths are shown in Table S5. (c) The generality of the 

MV design for arbitrary edge length and arbitrary vertex angle with a fully asymmetric 

tetrahedron (left) and a twisted triangular prism (right). For both objects, the inner, middle, 

and outer layers of helices are shown with helical extensions shown in gray and vertices 

zoomed-in to show the 6HB extensions (gray) to achieve the modeled angles. Individual 

particles are not shown to scale.
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