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OPTIMALITY AND SUB-OPTIMALITY OF PCA I:

SPIKED RANDOM MATRIX MODELS

By Amelia Perry∗†‖ and Alexander S. Wein∗‡‖ and Afonso S.

Bandeira§∗∗ and Ankur Moitra¶‖

Massachusetts Institute of Technology‖

Courant Institute of Mathematical Sciences, New York University∗∗

A central problem of random matrix theory is to understand the
eigenvalues of spiked random matrix models, introduced by John-
stone, in which a prominent eigenvector (or “spike”) is planted into
a random matrix. These distributions form natural statistical mod-
els for principal component analysis (PCA) problems throughout the
sciences. Baik, Ben Arous and Péché showed that the spiked Wishart
ensemble exhibits a sharp phase transition asymptotically: when the
spike strength is above a critical threshold, it is possible to detect the
presence of a spike based on the top eigenvalue, and below the thresh-
old the top eigenvalue provides no information. Such results form the
basis of our understanding of when PCA can detect a low-rank signal
in the presence of noise. However, under structural assumptions on
the spike, not all information is necessarily contained in the spectrum.
We study the statistical limits of tests for the presence of a spike, in-
cluding non-spectral tests. Our results leverage Le Cam’s notion of
contiguity, and include:
i) For the Gaussian Wigner ensemble, we show that PCA achieves the
optimal detection threshold for certain natural priors for the spike.
ii) For any non-Gaussian Wigner ensemble, PCA is sub-optimal for
detection. However, an efficient variant of PCA achieves the optimal
threshold (for natural priors) by pre-transforming the matrix entries.
iii) For the Gaussian Wishart ensemble, the PCA threshold is optimal
for positive spikes (for natural priors) but this is not always the case
for negative spikes.
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2 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

1. Introduction. One of the most common ways to analyze a collec-
tion of data is to extract top eigenvectors of a sample covariance matrix
that represent directions of largest variance, often referred to as principal
component analysis (PCA). Starting from the work of Karl Pearson, this
technique has been a mainstay in statistics and throughout the sciences for
more than a century. For instance, genome-wide association studies con-
struct a correlation matrix of expression levels, whereby PCA is able to
identify collections of genes that work together. PCA is also used in eco-
nomics to extract macroeconomic trends and to predict yields and volatility
(Litterman and Scheinkman, 1991; Forni et al., 2000; Stock and Watson,
2002; Egloff, Leippold and Wu, 2010), and in network science to find well-
connected communities (McSherry, 2001). More broadly, it underlies much
of exploratory data analysis, dimensionality reduction, and visualization.

Classical random matrix theory provides a suite of tools to characterize
the behavior of the eigenvalues of various random matrix models in high-
dimensional settings. Nevertheless, most of these works can be thought of
as focusing on a pure noise model (Anderson, Guionnet and Zeitouni, 2010;
Bai and Silverstein, 2010; Tao, 2012) where there is not necessarily any
low-rank structure to extract. A direction initiated by Johnstone (2001)
has brought this powerful theory closer to statistical questions by intro-
ducing spiked models that are of the form “signal + noise.” Such models
have yielded fundamental new insights on the behaviors of several methods
such as principal component analysis (PCA) (Johnstone and Lu, 2004; Paul,
2007; Nadler, 2008), sparse PCA (Amini and Wainwright, 2008; Vu and Lei,
2012; Berthet and Rigollet, 2013a; Ma, 2013; Shen, Shen and Marron, 2013;
Cai, Ma and Wu, 2013; Birnbaum et al., 2013; Deshpande and Montanari,
2014a; Krauthgamer, Nadler and Vilenchik, 2015), and synchronization al-
gorithms (Singer, 2011; Boumal et al., 2014; Bandeira, Boumal and Singer,
2014; Boumal, 2016). More precisely, given a true signal in the form of an n-
dimensional unit vector x called the spike, we can define two natural spiked
random matrix ensembles as follows:

• Spiked (Gaussian) Wishart: observe the sample covariance Y = 1
NXX⊤,

where X is an n × N matrix with columns drawn i.i.d. from N (0, In +
βxx⊤), in the high-dimensional setting where the sample count N and
dimension n scale proportionally as n/N → γ. We allow β ∈ [−1,∞).

• Spiked Wigner: observe Y = λxx⊤ + 1√
n
W , where W is an n×n random

symmetric matrix with entries drawn i.i.d. (up to symmetry) from a fixed
distribution of mean 0 and variance 1.

We adopt a Bayesian viewpoint, taking the spike x to be drawn from an
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OPTIMALITY AND SUB-OPTIMALITY OF PCA 3

arbitrary but known prior. This enables our approach to address structural
assumptions on the spike, such as sparsity or an entrywise constraint to
{±1/

√
n}, to model variants of sparse PCA or community detection (Desh-

pande, Abbe and Montanari, 2016).
The Wishart model describes the sample covariance of high-dimensional

data. The Gaussian Wigner distribution arises from the Wishart as a partic-
ular small-γ limit (Johnstone and Onatski, 2015). The spiked Wigner model
also describes various inference problems where pairwise measurements are
observed between n entities; this captures, for instance, Gaussian variants
of community detection (Deshpande, Abbe and Montanari, 2016) and Z/2
synchronization (Javanmard, Montanari and Ricci-Tersenghi, 2016).

We will refer to the parameter β or λ as the signal-to-noise ratio (SNR).
In each of the above models, we study the following statistical questions:

• Detection: For what values of the SNR is it possible to consistently test
(with probability 1 − o(1) as n → ∞) between a random matrix drawn
from the spiked distribution and one from the unspiked distribution?

• Recovery : For what values of the SNR can an estimator x̂ achieve corre-
lation with the true spike x that is bounded above zero as n → ∞?

We primarily study the detection problem, which has previously been ex-
plored in various statistical models (Donoho and Jin, 2004; Cai, Jin and
Low, 2007; Sun and Nobel, 2008; Ingster, Tsybakov and Verzelen, 2010;
Arias-Castro, Candès and Durand, 2011; Arias-Castro, Candès and Plan,
2011; Arias-Castro, Bubeck and Lugosi, 2012; Butucea and Ingster, 2013;
Sun and Nobel, 2013; Arias-Castro and Verzelen, 2014; Verzelen and Arias-
Castro, 2015).

The spiked random matrix models above all enjoy a sharp characterization
of the performance of PCA through random matrix theory. In the complex
Wishart case, the seminal work of Baik, Ben Arous and Péché (2005) showed
that when β >

√
γ an isolated eigenvalue emerges from the Marchenko–

Pastur-distributed bulk. Later Baik and Silverstein (2006) established this
result in the real Wishart case. In the Wigner case, the top eigenvalue sepa-
rates from the semicircular bulk when λ > 1 (Péché, 2006; Féral and Péché,
2007; Capitaine, Donati-Martin and Féral, 2009; Pizzo, Renfrew and Sosh-
nikov, 2013). Each result establishes a sharp spectral threshold at which PCA
(top eigenvalue) is able to solve the detection problem for the respective
spiked random matrix model. Moreover, it is known that above this thresh-
old, the top eigenvector correlates nontrivially with x, while the correlation
concentrates about zero below the threshold. Despite detailed research on
the spectral properties of spiked random matrix models, much less is known
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4 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

about the more general statistical question: can any hypothesis test con-
sistently detect the presence of a spike below the threshold where PCA
succeeds? Our main goal in this paper is to address this question in each of
the models above, and as we will see, the answer varies considerably across
them. Our results shed new light on how much of the accessible information
about x is not captured by the top eigenvalue, or even by the full spectrum.

Several recent works have examined this question. Onatski, Moreira and
Hallin (2013) study the spiked Wishart model where x is an arbitrary un-
known unit vector (which, by rotational symmetry, is equivalent to drawing
x from the uniform prior on the unit sphere). They identify the optimal hy-
pothesis testing power (between spiked and unspiked) and in particular show
that there is no test to consistently detect the presence of a spike below the
spectral threshold. Even more recent work (Onatski, Moreira and Hallin,
2014; Dobriban, 2016; Ke, 2016) elaborates on this point in other spiked
models. In the Gaussian Wigner model it has been established by Monta-
nari, Reichman and Zeitouni (2015) and Johnstone and Onatski (2015) that
detection is impossible below the spectral threshold, and the former used
techniques similar to those of the present paper, which are not fundamen-
tally limited to spherically symmetric models; indeed, these techniques were
applied to sparse PCA by Banks et al. (2017).

In another line of work, several papers have studied recovery in struc-
tured spiked random matrix models through approximate message passing
(Donoho, Maleki and Montanari, 2009; Bayati and Montanari, 2011; Ja-
vanmard and Montanari, 2013), Guerra interpolation (Guerra, 2003), and
other tools originating from statistical physics. These results span sparse
PCA (Deshpande and Montanari, 2014b; Lesieur, Krzakala and Zdeborová,
2015a), non-negative PCA (Montanari and Richard, 2016), cone-constrained
PCA (Deshpande, Montanari and Richard, 2014), and general structured
PCA (Rangan and Fletcher, 2012; Lesieur, Krzakala and Zdeborová, 2015b;
Deshpande, Abbe and Montanari, 2016; Krzakala, Xu and Zdeborová, 2016;
Barbier et al., 2016; Lelarge and Miolane, 2016). Methods based on ap-
proximate message passing typically exhibit the same threshold as PCA,
but above the threshold they obtain better (and often optimal) estimates
of the spike. In many cases, the above techniques give the asymptotic mini-
mum mean square error (MMSE) and, in particular, identify the threshold
for nontrivial recovery. However, they do not typically address the detec-
tion problem (although we expect the detection and recovery thresholds to
match), and they tend to be restricted to i.i.d. priors.

We develop a number of general-purpose tools for proving both upper and
lower bounds on detection. We defer the precise statement of our results in
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OPTIMALITY AND SUB-OPTIMALITY OF PCA 5

each model to their respective sections, but for now we highlight some of
our main results:

• In the Gaussian Wigner model, detection is impossible below the spectral
threshold (λ = 1) for priors such as the spherical prior1 (Corollary 3.14),
the Rademacher prior2 (Corollary 3.12), and any sufficiently subgaussian
prior (Theorem 3.10). We also study sparse Rademacher priors3, where
we see that the spectral threshold is sometimes optimal and sometimes
sub-optimal depending on the sparsity level (Section 3.7).

• In the Wigner model with non-Gaussian noise, the spectral threshold is
never optimal (subject to mild conditions): there is an entrywise pre-
transformation on the observed matrix that exploits the non-Gaussianity
of the noise and strictly improves the performance of PCA (Theorem 4.8).
This method was first described by Lesieur, Krzakala and Zdeborová
(2015b) and we give a rigorous analysis. Moreover we provide a lower
bound (Theorem 4.4) which often matches this upper bound.

• In the Wishart model, the PCA threshold is optimal for the spherical
prior, both for positive and negative β. For the Rademacher prior, PCA
is optimal for all positive β; however, in the less-studied case of negative
β, an inefficient algorithm succeeds below the spectral threshold when γ
is sufficiently large. This exposes a new statistical phase transition that
seems to be previously unexplored. For the sparse Rademacher prior, PCA
can be sub-optimal in both the positive and negative β regimes, but it is
always optimal for sufficiently large positive β.

We emphasize that when we say PCA is optimal, we refer only to the
threshold for consistent detection. In essentially all cases we consider (ex-
cept the spherical prior), the top eigenvector has sub-optimal estimation
error above the threshold; optimal error is often given by an approximate
message passing algorithm such as that of Deshpande, Abbe and Monta-
nari (2016). Furthermore, PCA does not achieve optimal hypothesis testing
power below the threshold, and in fact no method based on a finite number
of top eigenvalues can be optimal in this sense (Onatski, Moreira and Hallin,
2013, 2014; Johnstone and Onatski, 2015; Dobriban, 2016).

All our lower bounds follow a similar pattern and are based on the notion
of contiguity introduced by Le Cam (1960). On a technical level, we show
that a particular second moment is bounded which (as is standard in conti-
guity arguments) implies that the spiked distribution cannot be consistently

1x is uniform on the unit sphere in R
n

2x is i.i.d. uniform on {±1/
√
n}

3x is i.i.d. where each entry is 0 with probability 1−ρ and otherwise uniform on {± 1√
ρn

}
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6 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

distinguished (with o(1) error as n → ∞) from the corresponding unspiked
distribution. We develop general tools for controlling the second moment
based on subgaussianity and large deviations theory that apply across a
range of models and a range of different priors on x.

While bounds on the second moment do not a priori imply anything
about the recovery problem, it follows from results of Banks et al. (2017)
that many of our non-detection results imply the corresponding non-recovery
results. The value of the second moment also yields bounds on hypothesis
testing power (see Proposition 2.5).

Our work fits into an emerging theme in statistics: we indicate several
scenarios when PCA is sub-optimal but the only known tests that beat it
are computationally inefficient. Such computational vs. statistical gaps have
received considerable recent attention (e.g. Berthet and Rigollet (2013b); Ma
and Wu (2015)), often in connection with sparsity. We provide evidence for a
new such gap in the negatively-spiked Wishart model with the Rademacher
prior, offering an example where sparsity is not present.

Outline. In Section 2 we give preliminaries on contiguity and the sec-
ond moment method. In Section 3 we study the spiked Gaussian Wigner
model, in Section 4 we study the spiked non-Gaussian Wigner model, and
in Section 5 we study the spiked Wishart model. Some proofs are deferred
to appendices in Supplement A (included in this document).

2. Contiguity and the second moment method. Contiguity and
related ideas will play a crucial role in this paper. First introduced by Le Cam
(1960), contiguity is a central concept in the asymptotic theory of statistical
experiments, and has found many applications throughout probability and
statistics. Our work builds on a history of using contiguity and related tools
such as the small subgraph conditioning method to establish fundamental
results about random graphs (e.g. Robinson and Wormald (1994); Janson
(1995); Molloy et al. (1997); see Wormald (1999) for a survey) and impos-
sibility results for detecting community structure in the sparse stochastic
block model (Mossel, Neeman and Sly, 2015; Banks et al., 2016). Contiguity
is formally defined as follows:

Definition 2.1 (Le Cam (1960)). Let distributions Pn, Qn be defined
on the measurable space (Ωn,Fn). We say that the sequence Qn is contiguous

3Recall that Type I error refers to the probability of reporting a spike when none exists
(false positives), while Type II error is the probability of reporting no spike when one does
exist (false negatives).
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OPTIMALITY AND SUB-OPTIMALITY OF PCA 7

to Pn, and write Qn ⊳ Pn, if for any sequence An of events,

lim
n→∞

Pn(An) = 0 =⇒ lim
n→∞

Qn(An) = 0.

Contiguity readily implies that the distributions Pn and Qn cannot be con-
sistently distinguished (given a single sample) in the following sense:

Observation 2.2. If Qn ⊳ Pn then there is no hypothesis test of the
alternative Qn against the null Pn with Pr[type I error]+Pr[type II error] =
o(1).

Note that Qn⊳Pn and Pn⊳Qn are not equivalent, but either of them implies
non-distinguishability. Also, showing that two (sequences of) distributions
are contiguous does not rule out the existence of a test that distinguishes be-
tween them with constant error probability (better than random guessing).
In fact, such tests do exist for the spiked Wigner and Wishart models, for
instance by thresholding the trace of the matrix; optimal tests are discussed
by Onatski, Moreira and Hallin (2013) and Johnstone and Onatski (2015).

Our goal in this paper is to show thresholds below which spiked and
unspiked random matrix models are contiguous. We will do this through
computing a particular second moment, related to the χ2-divergence as 1 +
χ2(Qn||Pn), through a classical form of the second moment method:

Lemma 2.3. Let {Pn} and {Qn} be two sequences of distributions on
(Ωn,Fn). If the second moment

E
Pn

[(
dQn

dPn

)2
]

exists and remains bounded as n → ∞, then Qn ⊳ Pn.

All of the contiguity results in this paper will follow through Lemma 2.3
and its conditional variant below. The roles of Pn and Qn are not symmetric,
and we will always take Pn to be the unspiked distribution and take Qn to be
the spiked distribution, as the second moment is more tractable to compute
in this direction. We include the proof of Lemma 2.3 here for completeness:

Proof. Let {An} be a sequence of events. Using Cauchy–Schwarz,

Qn(An) =

∫

An

dQn

dPn
dPn ≤

√∫

An

(
dQn

dPn

)2

dPn ·
√∫

An

dPn.

The first factor on the right-hand side is bounded; so if Pn(An) → 0 then
also Qn(An) → 0.
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8 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

There will be times when the above second moment is unbounded but
we are still able to prove contiguity using a modified second moment that
conditions away from rare ‘bad’ events that would otherwise dominate the
second moment. This idea has appeared previously (Arias-Castro and Verze-
len, 2014; Verzelen and Arias-Castro, 2015; Banks et al., 2016, 2017).

Lemma 2.4. Let ωn be an event that occurs with probability 1 − o(1)
under Qn. Let Q̃n be the conditional distribution of Qn given ωn. If the

modified second moment EPn

[
(dQ̃n/dPn)

2
]
remains bounded as n → ∞,

then Qn ⊳ Pn.

Proof. By Lemma 2.3 we have Q̃n⊳Pn. As Qn⊳Q̃n we have Qn⊳Pn.

Moreover, given a value of the second moment, we are able to obtain
bounds on the tradeoff between type I and type II error in hypothesis testing,
which are valid non-asymptotically:

Proposition 2.5. Consider a hypothesis test of a simple alternative Q
against a simple null P . Let α be the probability of type I error, and β the
probability of type II error. Regardless of the test, we must have

(1− β)2

α
+

β2

(1− α)
≤ E

P

(
dQ

dP

)2

,

assuming the right-hand side is defined and finite. Furthermore, this bound
is tight: for any α, β ∈ (0, 1) there exist P,Q, and a test for which equality
holds.

Proof. Let A be the event that the test selects the alternative Q, and
let A be its complement.

E
P

(
dQ

dP

)2

=

∫
dQ

dP
dQ =

∫

A

dQ

dP
dQ+

∫

A

dQ

dP
dQ

≥
(∫

A dQ
)2

∫
A(dP/dQ) dQ

+

(∫
A dQ

)2
∫
A(dP/dQ) dQ

=
(1− β)2

α
+

β2

(1− α)

where the inequality follows from Cauchy–Schwarz. The following example
shows tightness: let P = Bernoulli(α) and let Q = Bernoulli(1 − β). On
input 0, the test chooses P , and on input 1, it chooses Q.

Although contiguity is a statement about non-detection rather than non-
recovery, our results also have implications for non-recovery. In general, the
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OPTIMALITY AND SUB-OPTIMALITY OF PCA 9

detection problem and recovery problem can have different thresholds, but
such counterexamples are often unnatural. For a wide class of problems with
additive Gaussian noise, the results of Banks et al. (2017) imply that if the
second moment from above is bounded then nontrivial recovery is impossible.
This result applies to the Gaussian Wigner model and the positively-spiked
(β > 0) Wishart model4, and so our non-detection results immediately imply
non-recovery results in those settings.

3. Gaussian Wigner models.

3.1. Main results. We define the spiked Gaussian Wigner model:

Definition 3.1. A spike prior is a family of distributions X = {Xn},
where Xn is a distribution over Rn. We require our priors to be normalized
so that x(n) drawn from Xn has ‖x(n)‖ → 1 (in probability) as n → ∞.

Definition 3.2. For λ ≥ 0 and a spike prior X , we define the spiked
Gaussian Wigner model GWig(λ,X ) as follows. We first draw a spike x ∈ R

n

from the prior Xn. Then we reveal

Y = λxx⊤ +
1√
n
W

where W is drawn from the n×n GOE (Gaussian orthogonal ensemble), i.e.
W is a random symmetric matrix with off-diagonal entries N (0, 1), diagonal
entries N (0, 2), and all entries independent (except for symmetry Wij =
Wji). We denote the unspiked model (λ = 0) by GWig(0).

It is well known that this model admits the following spectral behavior.

Theorem 3.3 (Féral and Péché (2007); Benaych-Georges and Nadaku-
diti (2011)). Let Y be drawn from GWig(λ,X ) with any spike prior X
supported on unit vectors (‖x‖ = 1).

• If λ ≤ 1, the top eigenvalue of Y converges almost surely to 2 as
n → ∞, and the top (unit-norm) eigenvector v has trivial correlation
with the spike: 〈v, x〉2 → 0 almost surely.

• If λ > 1, the top eigenvalue converges almost surely to λ+1/λ > 2, and
v estimates the spike nontrivially: 〈v, x〉2 → 1− 1/λ2 almost surely.

4For the Wishart case, consider the asymmetric n × N matrix of samples, which can
be equivalently written as

√
βxu⊤ +W where u ∼ N (0, IN) and W is i.i.d. N (0, 1).
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10 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

It follows that if ‖x‖ → 1 in probability then the above convergence holds
in probability (instead of almost surely). Thus PCA solves the detection
and recovery problems precisely when λ > 1. In the critical case λ = 1 or
near-critical case λ → 1, there is also a test to consistently distinguish the
spiked and unspiked models based on their spectra (Johnstone and Onatski,
2015); see Appendix A for details. Our goal is now to investigate whether
detection is possible when λ < 1.

As a starting point, we compute the second moment of Lemma 2.3:

Proposition 3.4. Let λ ≥ 0 and let X be a spike prior. Let Qn =
GWign(λ,X ) and Pn = GWign(0). Let x and x′ be independently drawn
from Xn. Then

E
Pn

(
dQn

dPn

)2

= E
x,x′

exp

(
nλ2

2
〈x, x′〉2

)
.

We defer the proof of this proposition until Section 3.2. For specific choices
of the prior X , our goal will be to show that if λ is below some critical
λ∗
X , this second moment is bounded as n → ∞ (implying that detection is

impossible). We will specifically consider the following types of priors.

Definition 3.5. Let Xsph denote the spherical prior: x is a uniformly
random unit vector in R

n.

By spherical symmetry, the spherical prior is equivalent to asking for a test
that works for any unit-norm spike (i.e. no prior). Without loss of generality,
any test for the spherical prior depends only on the spectrum.

Definition 3.6. If π is a distribution on R with E[π] = 0 and Var[π] =
1, let iid(π/

√
n) denote the spike prior that samples each coordinate of x

independently from π/
√
n.

We will give two general techniques for showing contiguity for various pri-
ors. We call the first method the subgaussian method, and it is presented in
Section 3.3. The idea is that if the correlation 〈x, x′〉 between two indepen-
dent draws from the prior is sufficiently subgaussian, this implies strong tail
bounds on 〈x, x′〉 which can be integrated to show that the second moment
is bounded. For instance, this gives results in the case of an i.i.d. prior where
the entrywise distribution π is subgaussian.

In Section 3.6 we present our second method, the conditioning method,
which uses the conditional second moment method and can improve upon
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OPTIMALITY AND SUB-OPTIMALITY OF PCA 11

the subgaussian method is some cases. It only applies to finitely-supported
i.i.d. priors and is based on a result from Banks et al. (2016).

For certain natural priors, we are able to show contiguity for all λ < 1,
matching the spectral threshold. In particular, this holds for the spherical
prior Xsph (Corollary 3.14), the i.i.d. Gaussian prior iid(N (0, 1/n)) (Corol-
lary 3.11), the i.i.d. Rademacher prior iid(±1/

√
n) (Corollary 3.12), and

more generally for iid(π/
√
n) where π is strictly subgaussian (Theorem 3.10).

Not all priors are as well behaved as those above. In Section 3.7 we discuss
the sparse Rademacher prior, where we see that the PCA threshold is not
always optimal.

In Section 3.5 we show that (in some sense) similar priors have the same
detection threshold (Proposition 3.13). One corollary (Corollary 3.15) is that
regardless of the prior, no test based only on the eigenvalues can succeed
below the λ = 1 threshold.

Our results often yield the limit value of the second moment and there-
fore imply asymptotic bounds on hypothesis testing via Proposition 2.5; see
Appendix B for details.

3.2. Second moment computation. We begin by computing the second
moment EPn [(dQn/dPn)

2] where Qn = GWign(λ,X ) and Pn = GWign(0).
First we simplify the likelihood ratio:

dQn

dPn
=

Ex∼Xn exp(−n
4 〈Y − λxx⊤, Y − λxx⊤〉)

exp(−n
4 〈Y, Y 〉)

= E
x∼Xn

exp

(
λn

2
〈Y, xx⊤〉 − nλ2

4
〈xx⊤, xx⊤〉

)
.

Now passing to the second moment:

E
Pn

(
dQn

dPn

)2

= E
x,x′∼Xn

E
Y∼Pn

exp

(
λn

2
〈Y, xx⊤ + x′x′⊤〉

−nλ2

4

(
〈xx⊤, xx⊤〉+ 〈x′x′⊤, x′x′⊤〉

))
,

where x and x′ are drawn independently from Xn. We now simplify the
Gaussian moment-generating function over the randomness of Y , and cancel
terms, to arrive at the expression

= E
x,x′

exp

(
nλ2

2
〈x, x′〉2

)
,

which proves Proposition 3.4.
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12 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

3.3. The subgaussian method. In this section we give a general method

for controlling the second moment Ex,x′ exp
(
nλ2

2 〈x, x′〉2
)
. We will need the

concept of a subgaussian random variable.

Definition 3.7. A R
n-valued random variable X is σ2-subgaussian if

E[X] = 0 and, for all v ∈ R
n, E exp(〈v,X〉) ≤ exp(σ2‖v‖2/2).

The most general form of the subgaussian method is the following.

Proposition 3.8. Let X be any spike prior. Let Pn = GWign(0) and
Qn = GWign(λ,X ). With x and x′ drawn independently from Xn, sup-
pose 〈x, x′〉 is (σ2/n)-subgaussian for some constant σ. If λ < 1/σ then

Ex,x′ exp
(
nλ2

2 〈x, x′〉2
)
is bounded and so Qn ⊳ Pn.

Proof. Using the well-known subgaussian tail bound Pr[|〈x, x′〉| ≥ t] ≤
2 exp

(
−nt2/2σ2

)
, we have

E
x,x′

exp

(
nλ2

2
〈x, x′〉2

)
=

∫ ∞

0
Pr

[
exp

(
nλ2

2
〈x, x′〉2

)
≥ u

]
du

=

∫ ∞

0
Pr

[
|〈x, x′〉| ≥

√
2 log u

nλ2

]
du

≤
∫ ∞

0
2u−1/σ2λ2

du

which is finite (uniformly in n) provided λ < 1/σ.

We next show that it is sufficient for the prior itself to be (multivariate)
subgaussian.

Proposition 3.9. Let Pn = GWign(0) and Qn = GWign(λ,X ). Sup-
pose Xn is (σ2/n)-subgaussian. If λ < 1/σ then Qn ⊳ Pn.

Proof. Let δ > 0. We use the conditional second moment method
(Lemma 2.4), taking X̃n to be the conditional distribution of Xn given the
(1 − o(1))-probability event ‖x‖ ≤ 1 + δ. With Q̃n = GWign(λ, X̃ ), the
conditional second moment EPn(dQ̃n/dPn)

2 is (by Proposition 3.4)

E
x,x′∼X̃

exp

(
nλ2

2
〈x, x′〉2

)
≤ (1 + o(1)) E

x∼X , x′∼X̃
exp

(
nλ2

2
〈x, x′〉2

)
.

imsart-aos ver. 2014/10/16 file: main.tex date: July 16, 2018



OPTIMALITY AND SUB-OPTIMALITY OF PCA 13

With x ∼ X and x′ ∼ X̃ , we have that 〈x, x′〉 is (σ2(1 + δ)2/n)-subgaussian
because for any v ∈ R,

E
x∼X , x′∼X̃

exp(v〈x, x′〉) ≤ E
x′∼X̃

exp(σ2v2‖x′‖2/2n) ≤ exp(σ2v2(1 + δ)2/2n).

Choosing δ small enough so that λ < 1/(σ(1 + δ)), the result now follows
from Proposition 3.8.

Specializing to i.i.d. priors, it is sufficient for the distribution of each entry
to be subgaussian. In this case we can also compute the limit value of the
(conditional) second moment.

Theorem 3.10 (subgaussian method for i.i.d. priors). Let π be a mean-
zero unit-variance distribution on R and let X = iid(π/

√
n). Let Pn =

GWign(0), Qn = GWign(λ,X ), and Q̃n as in the proof of Proposition 3.9.
Suppose π is σ2-subgaussian. If λ < 1

σ then limn→∞ EPn(dQ̃n/dPn)
2 =

(1− λ2)−1/2 < ∞ and so Qn ⊳ Pn.

Proof. Since π is σ2-subgaussian, it follows easily from the definition
that Xn is (σ2/n)-subgaussian and so contiguity follows from Proposition 3.9.
To compute the limit value, by the central limit theorem we have that
for x, x′ ∼ X ,

√
n〈x, x′〉 converges in distribution to N (0, 1). The same

holds for x, x′ ∼ X̃ . By the continuous mapping theorem applied to g(z) =

exp
(
λ2z2/2

)
, we also get convergence in distribution exp

(
nλ2〈x, x′〉2/2

) d−→
exp

(
λ2χ2

1/2
)
. The convergence in expectation Ex,x′∼X̃ exp

(
nλ2〈x, x′〉2/2

)
→

E exp
(
λ2χ2

1/2
)
= (1−λ2)−1/2 follows since the sequence exp

(
nλ2〈x, x′〉2/2

)

is uniformly integrable; this is clear from the final step of the proof of Propo-
sition 3.8 (which has no dependence on n).

Since Var[π] = 1, π cannot be σ2-subgaussian with σ < 1. If π is 1-
subgaussian (“strictly subgaussian”) then Theorem 3.10 gives a tight result,
matching the spectral threshold. For instance, the standard Gaussian distri-
bution is 1-subgaussian, so we have the following.

Corollary 3.11. If λ < 1 then GWig(λ, iid(N (0, 1/n))) ⊳GWig(0).

Note that the i.i.d. Gaussian prior is very similar to the spherical prior; in
Section 3.5 we show how to transfer the proof to the spherical prior.
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14 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

3.4. Application: the Rademacher prior. If π is a Rademacher random
variable (uniform on {±1}) then iid(π/

√
n) is the Rademacher prior, which

we abbreviate as iid(±1/
√
n). This case of the Gaussian Wigner model has

been studied by Deshpande, Abbe and Montanari (2016) and Javanmard,
Montanari and Ricci-Tersenghi (2016) as a Gaussian model for community
detection and Z/2 synchronization. The former proves that the spectral
threshold λ = 1 is precisely the threshold above which nontrivial recovery of
the signal is possible. We further show contiguity below this λ = 1 threshold
(which, recall, is not implied by non-recovery).

Corollary 3.12. If λ < 1 then GWig(λ, iid(±1/
√
n))⊳GWig(0).

Proof. The Rademacher distribution is 1-subgaussian by Hoeffding’s
lemma, so the proof follows from Theorem 3.10.

Perhaps it is surprising that the spectral threshold is optimal for the
Rademacher prior because it suggests that there is no way to exploit the ±1
structure. However, PCA is only optimal in terms of the threshold and not
in terms of error in recovering the spike once λ > 1. An efficient estimator
that asymptotically minimizes the mean squared error is the approximate
message passing algorithm of Deshpande, Abbe and Montanari (2016).

3.5. Comparison of similar priors. We show that two similar priors have
the same contiguity threshold, in the following sense.

Proposition 3.13. Let λ∗ ≥ 0. Let X and Y be spike priors. Suppose
that x ∼ Xn and y ∼ Yn can be coupled such that y = αx where α = αn is
a random variable with αn → 1 in probability as n → ∞. Suppose that for

each λ < λ∗, the second moment Ex,x′∼X exp
(
nλ2

2 〈x, x′〉2
)
remains bounded

as n → ∞. Then for any λ < λ∗, GWig(λ,Y) ⊳GWig(0).

Proof. Let λ < λ∗ and δ > 0. Let Ỹ be the conditional distribution of Y
given the (1 − o(1))-probability event α ≤ 1 + δ. Letting Q̃n = GWig(λ, Ỹ)
and Pn = GWig(0), we have

dQ̃n

dPn
= E

y,y′∼Ỹ
exp

(
nλ2

2
〈y, y′〉2

)

= (1 + o(1)) E
x,x′∼X

1α≤1+δ 1α′≤1+δ exp

(
nλ2

2
(αα′)2〈x, x′〉2

)

≤ (1 + o(1)) E
x,x′∼X

exp

(
nλ2

2
(1 + δ)4〈x, x′〉2

)
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OPTIMALITY AND SUB-OPTIMALITY OF PCA 15

which is bounded provided we choose δ small enough so that λ(1 + δ)2 <
λ∗. The result now follows from the conditional second moment method
(Lemma 2.4).

We can now show that the spectral threshold is optimal for the spherical
prior (uniform on the unit sphere) by comparison to the i.i.d. Gaussian prior;
this result was obtained previously by Montanari, Reichman and Zeitouni
(2015); Johnstone and Onatski (2015).

Corollary 3.14. If λ < 1 then GWig(λ,Xsph)⊳GWig(0).

Proof. We have shown that for any λ < 1, the second moment is
bounded for a conditioned version of the i.i.d. Gaussian prior (condition-
ing on ‖x‖ ≤ 1 + δ); see Corollary 3.11. This conditioned Gaussian prior
can be coupled to the spherical prior as required by Proposition 3.13, due to
Gaussian spherical symmetry. The result follows from Proposition 3.13.

A more direct proof for the spherical prior is possible using known properties
of the confluent hypergeometric function; see Appendix C.

Another corollary is that any prior X (with ‖x‖ → 1 in probability) and
for any λ < 1, contiguity holds on the level of spectra; this implies that no
test depending only on the eigenvalues can succeed below the λ = 1 thresh-
old, even though other tests can in some cases (e.g. the sparse Rademacher
prior of Section 3.7).

Corollary 3.15. Let X be any spike prior (with ‖x‖ → 1 in proba-
bility). Let Qn be the joint distribution of eigenvalues of GWign(λ,X ) and
let Pn be the joint distribution of eigenvalues of GWign(0). If λ < 1 then
Qn ⊳ Pn.

Proof. Due to Gaussian spherical symmetry, the distribution of eigen-
values of the spiked matrix depends only on the norm of the spike and not
its direction; thus without loss of generality, X is a mixture of spherical pri-
ors, over a norm distribution converging in probability to 1. The result now
follows from Proposition 3.13 and Corollary 3.14.

3.6. The conditioning method. In this section, we give an alternative to
the subgaussian method that can give tighter results in some cases. Here we
give an overview, with the full details deferred to Appendix D. Throughout
this section we require the prior to be X = iid(π/

√
n) where π has finite

support.
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16 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

The main idea is that the second moment takes a particular form involving
a multinomial random variable; it turns out that this exact form has been
studied by Banks et al. (2016) in the context of contiguity in the stochastic
block model. Following their work, we apply the conditional second moment
method (Lemma 2.4), conditioning on a high-probability ‘good’ event where
the empirical distribution of x is close to π/

√
n. Proposition 5 in Banks et al.

(2016) provides an exact condition (involving an optimization problem over
matrices) for boundedness of the conditional second moment. This method
improves upon the subgaussian method in some cases (see e.g. Section 3.7).

Let ∆s2(π) denote the set of nonnegative vectors α ∈ R
s2 with row- and

column-sums prescribed by π, i.e. treating α as an s × s matrix, we have
(for all i) that row i and column i of α each sum to πi. Let D(u, v) denote
the KL divergence between two vectors: D(u, v) =

∑
i ui log(ui/vi).

Theorem 3.16 (conditioning method). Let X = iid(π) where π has
mean zero, unit variance, and finite support Σ ⊆ R with |Σ| = s. Let Qn =
GWign(λ,X ) and Pn = GWign(0). Define the s × s matrix βab = ab for
a, b ∈ Σ. Identify π with the vector of probabilities π ∈ R

Σ, and define
α = ππ⊤. Let

λX =

[
sup

α∈∆
s2

(π)

〈α, β〉2
2D(α, α)

]−1/2

.

If λ < λX then Qn ⊳ Pn.

In Appendix D, we give the full proof and also compute that the limit value of
the conditional second moment is (1−λ2)−1/2 (the same as in Theorem 3.10).
We also explain the intuition behind the matrix optimization problem.

3.7. Application: the sparse Rademacher prior. Now consider the case
where π =

√
1/ρR(ρ) where R(ρ) is the sparse Rademacher distribution

with sparsity ρ ∈ (0, 1]: R(ρ) is 0 with probability 1 − ρ, and otherwise
uniform on {±1}. Here we give a summary of our results, with full details
deferred to Appendix E.

We know from Corollary 3.12 that when ρ = 1, detection is impossi-
ble below the spectral threshold. However, for sufficiently small ρ (roughly
0.054), an exhaustive search procedure is known to perform detection for
some range of λ values below the spectral threshold (Banks et al., 2017).
Towards a matching lower bound, we would like to find ρ∗ as small as pos-
sible such that PCA is optimal for all ρ ≥ ρ∗.

Using the subgaussian method (Theorem 3.10) it follows that PCA is opti-
mal for all ρ ≥ 1/3. The conditioning method (Theorem 3.16) improves this
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OPTIMALITY AND SUB-OPTIMALITY OF PCA 17

constant substantially, to roughly 0.184. Using a more sophisticated method
that conditions on an event depending jointly on the signal and noise, Perry,
Wein and Bandeira (2016) improve the constant further, to roughly 0.138.
Similar (but quantitatively weaker) results have been obtained by Banks
et al. (2017).

Based on heuristics from statistical physics, Lesieur, Krzakala and Zde-
borová (2015b) predicted that the exact ρ value at which PCA becomes
sub-optimal is given by the replica-symmetric (RS) formula, which yields
ρRS ≈ 0.09. It was later proven rigorously that ρRS is the exact threshold
for nontrivial recovery below λ = 1, and that if ρ < ρ∗ then detection below
λ = 1 is possible (by thresholding the free energy) (Krzakala, Xu and Zde-
borová, 2016; Barbier et al., 2016; Lelarge and Miolane, 2016). It remains
open to show that detection is impossible below λ = 1 for all ρ ≥ ρRS.
Lesieur, Krzakala and Zdeborová (2015b) also conjecture a computational
gap: when λ < 1, no polynomial-time algorithm can perform detection or
recovery (regardless of ρ).

4. Non-Gaussian Wigner models.

4.1. Main results. We first define the spiked non-GaussianWigner model.

Definition 4.1. In the general spiked Wigner model Wig(λ,P,Pd,X ),
one observes a matrix

Y = λxx⊤ +
1√
n
W,

with the spike x drawn from a spike prior X , and the entries of noise ma-
trix W drawn independently up to symmetry, with the off-diagonal entries
drawn from a distribution P and the diagonal entries drawn from a second
distribution Pd. For the sake of normalization, we assume that P has mean
0 and variance 1.

Recall that the prior X is required to obey the normalization ‖x‖ → 1 in
probability (see Definition 3.1).

The spectral behavior of this model is well understood5 (see e.g. Féral and
Péché (2007); Capitaine, Donati-Martin and Féral (2009); Pizzo, Renfrew
and Soshnikov (2013); Benaych-Georges and Nadakuditi (2011)). In fact it
exhibits universality (see e.g. Tao and Vu (2012)): regardless of the choice of
the noise distributions P,Pd (with sufficiently many finite moments), many

5Many of the results cited here assume ‖x‖ = 1 and show almost-sure convergence of
various quantities. Since we assume only ‖x‖ → 1 in probability, the same convergence is
true only in probability (which is enough for our purposes).
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18 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

properties of the spectrum behave the same as if P were a standard Gaussian
distribution. In particular, for λ ≤ 1, the spectrum bulk has a semicircular
distribution and the maximum eigenvalue converges almost surely to 2. For
λ > 1, an isolated eigenvalue emerges from the bulk with value converging to
λ+ 1/λ, and (under suitable assumptions) the top eigenvector has squared
correlation 1− 1/λ2 with the truth.

In stark contrast we will show that from a statistical standpoint, univer-
sality breaks down entirely: the detection problem becomes easier when the
noise is non-Gaussian. Let X be a spike prior, and suppose that through the
second moment method, we can establish contiguity between the Gaussian
spiked and unspiked models whenever λ lies below some critical value

λ∗
X , sup

{
λ
∣∣∣ Ex,x′∼X exp

(
nλ2

2
〈x, x′〉2

)
is bounded as n → ∞

}
.

The detection threshold for the non-Gaussian Wigner model depends on
λ∗
X as well as a parameter FP (defined below) that depends on the noise

distribution P.

Theorem (informal; see Theorems 4.4 and 4.8). Under suitable condi-
tions (see Assumptions 4.3 and 4.7), the spiked model is contiguous to the
unspiked model for all λ < λ∗

X /
√
FP ; but when λ > 1/

√
FP , there exists an

entrywise transformation f such that the spiked and unspiked models can be
consistently distinguished via the top eigenvalue of f(

√
nY ).

Recall that if we take the spike prior to be e.g. spherical or Rademacher, we
have λ∗

X = 1, implying that our upper and lower bounds match, and thus
our pre-transformed PCA procedure achieves the optimal threshold for any
noise distribution (subject to regularity assumptions). For reasons discussed
later (see Appendix G), we require P to be a continuous distribution with a
density function p(w). The parameter FP , which quantifies its difficulty, is
the Fisher information of P under translation:

FP = E
w∼P

[(
p′(w)
p(w)

)2
]
=

∫ ∞

−∞

p′(w)2

p(w)
dw.

Gaussian noise enjoys an extremal value of this Fisher information, qualify-
ing it as the unique hardest noise distribution (among a large class):

Proposition 4.2 (Pitman (1979) p. 37). Let P be a real distribution
with a C1, non-vanishing density function p(w). Suppose Var[P] = 1. Then
FP ≥ 1, with equality if and only if P is a standard Gaussian.
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OPTIMALITY AND SUB-OPTIMALITY OF PCA 19

This is effectively a form of the Cramér–Rao inequality, and can be exploited
for a proof of the central limit theorem (Brown, 1982; Barron, 1986).

Our upper bound proceeds by a pre-transformed PCA procedure. Define
f(w) = −p′(w)/p(w), where p is the probability density function of the noise
P. Given the observed matrix Y , we apply f entrywise to

√
nY , and examine

the largest eigenvalue. This entrywise transformation approximately yields
another spiked Wigner model, but with improved signal-to-noise ratio. One
can derive the transformation −p′(w)/p(w) by using calculus of variations
to optimize the signal-to-noise ratio of this new spiked Wigner model. This
phenomenon is illustrated in Figures 1 and 2:

-2 -1 0 1 2
0
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20

-2 -1 0 1 2
0

10

20

Fig 1: Spectrum of a spiked Wigner
matrix (λ = 0.9, n = 1200) with bi-
modal noise, before (above) and af-
ter (below) the entrywise transfor-
mation. An isolated eigenvalue is ev-
ident only in the latter.

-2 -1 0 1 2
-2

-1

0

1

2

Fig 2: The noise density p (dashed)
and entrywise transformation −p′/p
(solid). The bimodal noise is a con-
volution of Rademacher and Gaus-
sian random variables.

To intuitively understand why non-Gaussian noise makes the detection
problem easier, consider the extreme case where the noise distributions P,
Pd are uniform on {±1}, with mean 0 and variance 1. Since the noise con-
tribution 1√

n
W is entrywise exactly ±1/

√
n, it is very easy to detect and

identify the small signal perturbation λxx⊤, which is entrywise O(1/n). If
there is no spike, all the entries will be ±1/

√
n (exactly). If there is a spike,

each entry will be ±1/
√
n plus a much smaller offset. One can therefore sub-

tract off the noise and recover the signal exactly. In fact, if we let the noise be
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20 A. PERRY, A. S. WEIN, A. S. BANDEIRA AND A. MOITRA

a smoothed version of {±1} (so that the derivative p′ exists), the entrywise
transformation −p′(w)/p(w) is precisely implementing this noise-subtraction
procedure. This justifies the restriction to continuous noise distributions be-
cause any distribution with a point mass admits a similar trivial recovery
procedure and we will not have contiguity for any λ > 0; see Appendix G
for details.

The above results on non-Gaussian noise parallel a channel universality
phenomenon for mutual information, due to Krzakala, Xu and Zdeborová
(2016) (shown for finitely-supported i.i.d. priors). The pre-transformed PCA
procedure we use for our upper bound was previously suggested by Lesieur,
Krzakala and Zdeborová (2015b) based on linearizing an approximate mes-
sage passing algorithm, but to our knowledge, no rigorous results have been
previously established about its performance in general. Other entrywise pre-
transformations have been shown to improve spectral approaches to various
structured PCA problems (Deshpande and Montanari, 2014a; Kannan and
Vempala, 2016).

4.2. Lower bound. In this section, we state our main statistical lower
bound that establishes contiguity in the non-Gaussian Wigner setting. Given
a noise distribution P, define the translation function

τ(a, b) = logE
P

[
dTaP
dP

dTbP
dP

]
= log E

z∼P

[
p(z − a)

p(z)

p(z − b)

p(z)

]
,

where TaP denotes the translation of distribution P by a. For instance, the
translation function of standard Gaussian noise is τ(a, b) = ab.

Assumption 4.3. (i) The prior X satisfies (as usual) ‖x‖ → 1 in
probability, and furthermore X is (σ2/n)-subgaussian for some con-
stant σ2 (see Definition 3.7).

(ii) The prior X satisfies high-probability norm bounds: for q = 2, 4, 6, 8,
there exists a constant αq for which, with probability 1 − o(1) over

x ∼ X , we have ‖x‖q ≤ αqn
1

q
− 1

2 .
(iii) We assume the distributions P,Pd have non-vanishing density func-

tions p(w), pd(w), and translation functions τ, τd that are C
4 in a neigh-

borhood of (0, 0).

Our main lower bound result is the following.

Theorem 4.4. Under Assumption 4.3, Wig(λ,P,Pd,X ) is contiguous
to Wig(0,P,Pd) for all λ < λ∗

X /
√
FP .
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We defer the proof to Appendix F. In Appendix F we also show that the
assumptions on X are satisfied for the spherical prior and for reasonable
i.i.d. priors; see Propositions 4.5 and 4.6 below. The assumptions on P,Pd

are satisfied by any mixture of Gaussians of positive variance, for example.

Proposition 4.5. Conditions (i) and (ii) in Assumption 4.3 are satis-
fied for the spherical prior Xsph.

Proposition 4.6. Consider an i.i.d. prior X = iid(π/
√
n) where π is

zero-mean, unit-variance, and subgaussian with some constant σ2. Then con-
ditions (i) and (ii) in Assumption 4.3 are satisfied.

4.3. Pre-transformed PCA. In this section we analyze a pre-transformed
PCA procedure for the non-Gaussian spiked Wigner model. We need the
following regularity assumptions.

Assumption 4.7. Of the prior X we require (as usual) ‖x‖ → 1 in
probability, and we also assume that with probability 1 − o(1), all entries
of x are small: |xi| ≤ n−1/2+α for some fixed α < 1/8. Of the noise P, we
assume the following:

(i) P has a non-vanishing C3 density function p(w) > 0,
(ii) Letting f(w) = −p′(w)/p(w), we have that f and its first two deriva-

tives are polynomially-bounded: there exists C > 0 and an even integer
m ≥ 2 such that |f (ℓ)(w)| ≤ C + wm for all 0 ≤ ℓ ≤ 2.

(iii) With m as in (ii), P has finite moments up to 5m: E|P|k < ∞ for all
1 ≤ k ≤ 5m.

The main theorem of this section is the following.

Theorem 4.8. Let λ ≥ 0 and let X ,P satisfy Assumption 4.7. Let Ŷ =√
nY where Y is drawn from Wig(λ,P,Pd,X ). Let f(Ŷ ) denote entrywise

application of the function f(w) = −p′(w)/p(w) to Ŷ , except we define the
diagonal entries of f(Ŷ ) to be zero.

• If λ ≤ 1/
√
FP then 1√

n
λmax(f(Ŷ )) → 2

√
FP as n → ∞.

• If λ > 1/
√
FP then 1√

n
λmax(f(Ŷ )) → λFP + 1

λ > 2
√
FP as n → ∞ and

furthermore the top (unit-norm) eigenvector v of f(Ŷ ) correlates with the
spike: 〈v, x〉2 ≥ (λ− 1/

√
FP)2/λ2 − o(1) with probability 1− o(1).

Convergence is in probability. Here λmax(·) denotes the maximum eigenvalue.
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The proof is deferred to Appendix H, but the main idea is that the entrywise
transformation f approximately produces another spiked (non-Gaussian)
Wigner matrix with a different signal-to-noise ratio λ, and we can choose f
to optimize this.

We have set the diagonal entries to zero for convenience, but this is not
essential: so long as we define the diagonals of f(Ŷ ) so that the largest (in
absolute value) diagonal entry is o(

√
n), the diagonal entries can only change

the spectral norm of f(Ŷ ) by o(
√
n) and so the result still holds.

5. Spiked Wishart models.

5.1. Main results. We first formally define the spiked Wishart model:

Definition 5.1. Let γ > 0 and β ∈ [−1,∞). Let X = {Xn} be a
spike prior. The spiked (Gaussian) Wishart model Wish(γ, β,X ) on n × n
matrices is defined as follows: we first draw a hidden spike x ∼ Xn, and
then reveal Y = 1

NXX⊤, where X is an n × N matrix whose columns are
sampled independently from N (0, I +βxx⊤); the parameters N and n scale
proportionally with n/N → γ as n → ∞. If β < 0 and |β| · ‖x‖2 > 1 (so that
the covariance matrix is not positive semidefinite), output a failure event ⊥.

Recall that spike priors are required to satisfy ‖x‖ → 1 in probability (Def-
inition 3.1). Our contiguity results will apply even to the case when the
sample matrix X is revealed.

The spiked Wishart model admits the following spectral behavior. In
this high-dimensional setting, the spectrum bulk of Y converges to the
Marchenko–Pastur distribution with shape parameter γ. By results of Baik,
Ben Arous and Péché (2005) and Baik and Silverstein (2006), it is known
that the top eigenvalue consistently distinguishes the spiked and unspiked
models when β >

√
γ. In fact, matching lower bounds are known in the

absence of a prior (equivalently, for the spherical prior) due to Onatski,
Moreira and Hallin (2013): for 0 ≤ β <

√
γ, no hypothesis test distinguishes

this spiked model from the unspiked model with o(1) error. In the case of
−1 ≤ β < 0, a corresponding PCA threshold exists: the minimum eigenvalue
exits the bulk when β < −√

γ (Baik and Silverstein, 2006), but we are not
aware of lower bounds in the literature. The case of β < −1 is of course
invalid, as the covariance matrix must be positive semidefinite. As in the
Wigner model, consistent detection is possible in the critical case |β| = √

γ,
at least when β > 0; see Appendix A.

Our goal in this section will be to give lower and upper bounds on the
statistical threshold for γ (as a function of β) for various priors on the spike.
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We begin with a crude lower bound that allows us to transfer any lower
bound for the Gaussian Wigner model into a lower bound for the Wishart
model. Recall that λ∗

X denotes the threshold for boundedness of the Gaussian
Wigner second moment:

(1) λ∗
X , sup

{
λ
∣∣∣ E

x,x′∼X
exp

(
nλ2

2
〈x, x′〉2

)
is bounded as n → ∞

}
.

Proposition 5.2. Let X be a spike prior. If β2 < 1 − e−γ(λ∗
X )2 then

Wish(γ, β,X ) is contiguous to Wish(γ).

The proof can be found in Section 5.5.2. A consequence of the above is that
if λ∗

X = 1, so that the spectral method is optimal in the Wigner setting, it

follows that the ratio between the above Wishart lower bound (1−e−γ(λ∗
X )2)

and the spectral upper bound (γ) tends to 1 as γ → 0. This reflects the
fact that the Wigner model is a particular γ → 0 limit of the Wishart model
(Johnstone and Onatski, 2015). For β > 0, we will later give an even stronger
implication from Wigner to Wishart lower bounds (Corollary 5.9).

Although Proposition 5.2 is a strong bound for small γ, it is rather weak
for large γ (and in particular does not cover the case β ≥ 1). In Section 5.3 we
will remedy this by giving a much tighter lower bound (Theorem 5.7) which
depends on the rate function of the large deviations of the prior. The proof
involves an application of the conditional second moment method whereby
we condition away from certain ‘bad’ events depending on interactions be-
tween the signal and noise (similarly to Perry, Wein and Bandeira (2016)).
One consequence (Corollary 5.9) of our lower bound roughly states that if
detection is impossible below the spectral threshold (λ = 1) in the Wigner
model, then it is also impossible below the spectral threshold (|β| = √

γ) in
the Wishart model for all positive β. (This is not true for negative β.)

We complement our lower bounds with the following upper bound.

Theorem 5.3. Let β ∈ (−1,∞). Let Xn be a spike prior supported on
at most cn points, for some fixed c > 0. If

2γ log c < β − log(1 + β)

then there is a (inefficient) test that consistently distinguishes between the
spiked Wishart model Wish(γ, β,X ) and the unspiked model Wish(γ).

The test that gives this upper bound is based on the maximum likelihood
estimator (MLE), computed by exhaustive search over all possible spikes.
The proof, which can be found in Appendix I, is a simple application of
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the Chernoff bound and the union bound. For some priors (such as i.i.d.
sparse Rademacher) we can get the most mileage out of this theorem by
first conditioning on a (1 − o(1))-probability event (e.g. x has a typical
number of nonzeros) in order to decrease the value of c.

We will typically not consider the boundary case β = −1. Note, however,
that if β = −1 and the prior is finitely-supported (for each n), with ‖x‖ = 1
almost surely, then detection is possible for any γ: in the spiked model, the
spike is orthogonal to all of the samples; but in the unspiked model, with
probability 1 there will not exist a vector in the support of the prior that is
orthogonal to all of the samples.

We now summarize the implications of our lower and upper bounds for
some specific priors.

• Spherical: For the spherical prior (x is drawn uniformly from the unit
sphere), it was known previously that the PCA threshold |β| = √

γ
is optimal for all positive β (Onatski, Moreira and Hallin, 2013). We
show that the PCA threshold is also optimal for all −1 < β < 0.

• Rademacher: For the Rademacher prior iid(±1/
√
n), we show that

the PCA threshold is optimal for all β > 0. However, when β is neg-
ative and sufficiently close to −1, the MLE of Theorem 5.3 succeeds
below the PCA threshold.

• Sparse Rademacher (defined in Section 3.7): If the sparsity ρ is suffi-
ciently small, the MLE beats PCA in both the positive- and negative-β
regimes. However, for any fixed ρ, if β is sufficiently large (and positive)
then the PCA threshold is optimal.

See Appendix N for details on the above results, including how they follow
from our general upper and lower bounds (Theorems 5.3 and 5.7). Fig-
ure 3 depicts our upper and lower bounds for the Rademacher and sparse
Rademacher priors.

As in the Wigner model, our methods often yield the limit value of the
(conditional) second moment and thus imply asymptotic bounds on hypoth-
esis testing power via Proposition 2.5; see Appendix B for details.

5.2. Rate functions. Our main lower bound will depend on the prior
through tail probabilities of the correlation 〈x, x′〉 of two spikes x, x′ drawn
independently from the prior X . These tail probabilities are encapsulated
by the rate function fX : [0, 1) → [0,∞) of the large deviations of X , which
is intuitively defined by Pr[|〈x, x′〉| ≥ t] ≈ exp(−nfX (t)). Formally we define
fX as follows.
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Fig 3: Upper and lower bounds for the spiked Wishart model with
Rademacher prior (left panel) and sparse Rademacher prior with ρ = 0.03
(right panel). PCA succeeds to the left of the dashed black curve β2 = γ. To
the right of the solid green curve, detection is impossible (by Theorem 5.7;
see Appendix N for details). To the left of the dashed red curve, detection is
possible via the inefficient MLE algorithm of Theorem 5.3. (The red curve
is not a tight analysis of the MLE and is sometimes weaker than the PCA
bound.) For the Rademacher prior, the lower bound matches PCA for all
β > −0.7, but the MLE succeeds below the PCA threshold for all β < −0.84.
For the sparse Rademacher prior with any ρ, the lower bound matches PCA
for sufficiently large positive β (not shown); see Proposition 5.10.

Definition 5.4. Let X = {Xn} be a spike prior. For x, x′ drawn inde-
pendently from Xn and t ∈ [0, 1), let

fn,X (t) = − 1

n
log Pr[|〈x, x′〉| ≥ t].

Suppose we have fn,X (t) ≥ bn,X (t) for some sequence of functions bn,X that
converges uniformly on [0, 1) to fX as n → ∞. Then we call such fX the
rate function of the prior X .

Without loss of generality, fX (0) = 0 and fX (t) is non-decreasing. Note that
a tail bound of the form Pr[|〈x, x′〉| ≥ t] ≤ poly(n) exp(−nfX (t)) is sufficient
to establish that fX is a rate function.

We now state the rate functions for some priors of interest. It is proven
by Perry, Wein and Bandeira (2016) that these indeed satisfy the definition
of rate function.

Proposition 5.5 (Perry, Wein and Bandeira (2016)). We have the fol-
lowing rate functions for the spherical, Rademacher, and sparse Rademacher
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priors.

• Spherical: fsph(t) = −1
2 log(1− t2).

• Rademacher: fRad(t) = log 2−H
(
1+t
2

)
.

• Sparse Rademacher6 with sparsity ρ:

fρ(t) = min
ζ∈[max(ρt,1−2ρ),ρ]

Gρ(ζ) + ζfRad

(
ρt

ζ

)

where

Gρ(ζ) = −H({ζ, ρ− ζ, ρ− ζ, 1− 2ρ+ ζ}) + 2H(ρ).

Here H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy, and
H({pi}) = −∑i pi log pi.

Note that rate functions for general i.i.d. priors can be easily derived from
large deviations theory (Cramér’s theorem) since 〈x, x′〉 is the sum of n
i.i.d. random variables; this is how the Rademacher rate function is derived.
However, to obtain stronger results in some cases, one may use a variant of
the prior that conditions on typical outcomes (similarly to our conditioning
method for the Wigner model (Section 3.6) or Appendix A of Banks et al.
(2016)); this is how the sparse Rademacher rate function is derived.

We will need the following strengthening of the notion of rate function.

Definition 5.6. We say that a rate function fX for a prior X admits a
local Chernoff bound if there exists T > 0 and C > 0 such that for any n,

Pr[|〈x, x′〉| ≥ t] ≤ C exp(−nfX (t)) ∀t ∈ [0, T ]

where x and x′ are drawn independently from Xn.

The Rademacher and sparse Rademacher rate functions in Proposition 5.5
each admit a local Chernoff bound; see Perry, Wein and Bandeira (2016).

5.3. Main lower bound result. We are now ready to state our main lower
bound result. Recall that λ∗

X denotes the Wigner threshold (1).

Theorem 5.7. Let X be a spike prior with rate function fX . Let β > −1
and γ∗ > 0. Suppose that either

(i) β2/γ∗ ≤ (λ∗
X )

2, or

6This is for a variant of the sparse Rademacher prior where the sparsity is exactly ρn.
See Appendix N for details on how this extends to our variant.
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(ii) fX admits a local Chernoff bound (Definition 5.6).

If

(2) γ∗fX (t) ≥ (1 + β)
t(w − t)

1− t2
+

1

2
log

(
1− w2

1− t2

)
∀t ∈ (0, 1)

where

w =
√

A2 + 1−A with A =
1− t2

2t(β + 1)
,

then Wish(γ, β,X ) is contiguous to Wish(γ) for all γ > γ∗.

We expect condition (ii) to hold for all reasonable priors; condition (i) yields
a weaker result in some cases but is sometimes more convenient. Some basic
properties of (2) are discussed in Appendix J. In Appendix M we establish
the following monotonicity:

Proposition 5.8. Let X be a spike prior. Fix λ > 0 and β ∈ (−1,∞)r

{0}. If (2) holds for β and γ∗ = β
2
/λ2 then it also holds for any β > β and

γ∗ = β2/λ2.

In particular, if λ = 1 (so that γ∗ = β2, corresponding to the spectral
threshold) we have that if Theorem 5.7 shows that the PCA threshold is
optimal for some β ∈ (−1,∞)r{0}, then the PCA threshold is also optimal
for all β > β.

The following connection to the Wigner model is also proved in Ap-
pendix M, corresponding to the β → 0 limit of the monotonicity property
above:

Corollary 5.9. Suppose 〈x, x′〉 is (σ2/n)-subgaussian (Definition 3.7),
where x and x′ are drawn independently from Xn. Then for any β > 0 and
any γ > β2σ2 we have Wish(γ, β,X ) ⊳Wish(γ).

Recall that the subgaussian condition above implies a Wigner lower bound
for all λ < 1/σ (Proposition 3.8). This means whenever Proposition 3.8
implies that the PCA threshold is optimal for the Wigner model, we also
have that the PCA threshold is optimal for the Wishart model for any
positive β. Conversely, if Theorem 5.7 shows that PCA is optimal for all
β > 0 then it is also optimal for the Wigner model (see Proposition M.2). In
light of the above monotonicity (Proposition 5.8), these results makes sense
because the Wigner model corresponds to the γ → 0 limit of the Wishart
model (Johnstone and Onatski, 2015).
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We also show (in Appendix M) that for a wide range of priors, the PCA
threshold becomes optimal for sufficiently large β:

Proposition 5.10. Suppose X = iid(π/
√
n) where π is a mean-zero

unit-variance distribution for which ππ′ (product of two independent copies
of π) has a moment-generating function M(θ) , E exp(θππ′) which is finite
on an open interval containing zero. Then there exists β such that for any
β ≥ β and any γ > β2 we have Wish(γ, β,X ) ⊳Wish(γ).

A final property of Theorem 5.7 is that it gives similar thresholds for
similar priors in the sense of Proposition 3.13 for the Wigner model; see
Proposition L.1 for details.

5.4. Lower bound proof summary. The full proof of Theorem 5.7 will
be completed in the next section, but we now describe the proof outline
and give some preliminary results. We approach contiguity for the spiked
Wishart model through the second moment method outlined in Section 2.
Note that detection can only become easier when given the original sample
matrix X (instead of 1

NXX⊤), so we establish the stronger statement that
the spiked distribution on X is contiguous to the unspiked distribution. We
first simplify the second moment in high generality.

Proposition 5.11. For any |β| < 1 there exists δ > 0 such that the
following holds. Let X be a spike prior supported on vectors x with 1− δ ≤
‖x‖ ≤ 1+ δ. In distribution Qn, let a hidden spike x be drawn from Xn, and
let N independent samples yi, 1 ≤ i ≤ N , be revealed from the normal dis-
tribution N (0, In×n+βxx⊤). In distribution Pn, let N independent samples
yi, 1 ≤ i ≤ N , be revealed from N (0, In×n). Then we have

E
Pn

[(
dQn

dPn

)2
]
= E

x,x′∼X

[(
1− β2〈x, x′〉2

)−N/2
]
.

This result has appeared in higher generality (Cai, Ma and Wu, 2015); for
completeness we give the proof in Section 5.5.1. The condition 1−δ ≤ ‖x‖ ≤
1 + δ will not be an issue because we can always consider a modified prior
that conditions on this (1 − o(1))-probability event (see Lemma 2.4). Note
that the above second moment has the curious property of symmetry under
replacing β with −β. In contrast, the original Wishart model does not, since
for instance β > 1 is allowed while β < −1 is not. As a result, the second
moment method gives good results for negative β but substantially sub-
optimal results for positive β. To remedy this, we will apply the conditional
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second moment method (Lemma 2.4), conditioning on an event that depends
jointly on the signal and noise (we previously only conditioned on the signal).

The proof of Theorem 5.7 has two parts. In Section 5.5.2 we control the
small deviations of the second moment, i.e. the contribution from 〈x, x′〉2
values at most some small ε > 0. Here we use either the Wigner lower
bound (i) or the local Chernoff bound (ii) (combined with (2)), whichever
is provided. This step uses the basic second moment of Proposition 5.11
without conditioning. In Section 5.6 we complete the proof by controlling
the remaining large deviations of the conditional second moment. Here we
use the condition (2) on the rate function of the prior.

We remark that conditions (i) and (ii) in Theorem 5.7 are related because
using the subgaussian method of Section 3.3, a Chernoff-type bound on
〈x, x′〉 implies a Wigner lower bound; note however that a local Chernoff
bound only needs to hold near t = 0.

5.5. Proof of lower bound. This section is devoted to proving Theo-
rem 5.7. Along the way we will also prove Propositions 5.11 and 5.2.

5.5.1. Second moment computation: proof of Proposition 5.11. We first
compute:

dQn

dPn
(y1, . . . , yN ) = E

x′∼X

[
n∏

i=1

exp(−1
2y

⊤
i (I + βx′x′⊤)−1yi)√

det(I + βx′x′⊤) exp(−1
2y

⊤
i yi)

]

= E
x′

[
det(I + βx′x′⊤)−N/2

N∏

i=1

exp

(
−1

2
y⊤i ((I + βx′x′⊤)−1 − I)yi

)]
.

Note that (I+βx′x′⊤)−1 has eigenvalue (1+β‖x′‖2)−1 on x′ and eigenvalue 1
on the orthogonal complement of x′. Thus (I+βx′x′⊤)−1−I = −β

1+β‖x′‖2x
′x′⊤,

and we have:

= E
x′

[
(1 + β‖x′‖2)−N/2

N∏

i=1

exp

(
1

2

β

1 + β‖x′‖2 〈yi, x
′〉2
)]

.

Passing to the second moment, we compute:

E
Pn

[(
dQn

dPn

)2
]
= E

Qn

[
dQn

dPn

]

= E
x,x′

[
(1 + β‖x′‖2)−N/2

N∏

i=1

E
yi∼N (0,I+βxx⊤)

exp

(
1

2

β

1 + β‖x′‖2 〈yi, x
′〉2
)]

.
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Over the randomness of yi, we have 〈yi, x′〉 ∼ N (0, ‖x′‖2 + β〈x, x′〉2), so
that the inner expectation can be simplified using the moment-generating
function (MGF) of the χ2

1 distribution:

= E
x,x′

[
(1 + β‖x′‖2)−N/2

N∏

i=1

(
1− β

1 + β‖x′‖2 (‖x
′‖2 + β〈x, x′〉2)

)−1/2
]

= E
x,x′

[(
1− β2〈x, x′〉2

)−N/2
]

as desired. Here the MGF step requires

(3)
β

1 + β‖x′‖2 (‖x
′‖2 + β〈x, x′〉2) < 1.

Provided that ‖x‖ and ‖x′‖ are sufficiently close to 1, this is true so long
as either |β| < 1 (as assumed by Proposition 5.11) or 〈x, x′〉2 is sufficiently
small (as in the small deviations of the next section).

5.5.2. Small deviations and proof of Proposition 5.2. We now show how
to bound the small deviations

S(ε) , E
x,x′∼X

(1− β2〈x, x′〉2)−N/2
1〈x,x′〉2≤ε

of the Wishart second moment in terms of the Wigner second moment.
(Assume ‖x‖, ‖x′‖ are sufficiently close to 1 and ε > 0 is a sufficiently small
constant so that (3) holds). Letting γ̂ = n/N so that γ̂ → γ, we have

S(ε) = E
x,x′∼X

exp

(−n

2γ̂
log(1− β2〈x, x′〉2)

)
1〈x,x′〉2≤ε

≤ E
x,x′∼X

exp

( −n

2γ̂ε2
log(1− ε2β2)〈x, x′〉2

)

using the convexity of t 7→ − log(1 − β2t). Note that this resembles the
Wigner second moment and so (by definition of λ∗

X ) it is bounded as n → ∞
so long as

(4)
−1

γε2
log(1− ε2β2) < (λ∗

X )
2.

Proposition 5.2 now follows by setting ε = 1 + δ for small δ > 0 and con-
ditioning the prior on ‖x‖2 ≤ 1 + δ. (See Section 3.5 for similar arguments;
note that the conditioning can only increase the Wigner second moment by
a 1+ o(1) factor.) Furthermore, using the bound log t ≥ 1− 1/t we have the
following fact that will be used in the proof of Theorem 5.7.
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Lemma 5.12. If β2/γ < (λ∗
X )

2 then there exists ε > 0 such that S(ε) is
bounded as n → ∞.

Note that β2/γ < (λ∗
X )

2 is precisely condition (i) in the statement of Theo-
rem 5.7. If instead condition (ii) holds, we can control the small deviations
using the following lemma, deferred to Appendix K:

Lemma 5.13. If (2) holds and fX admits a local Chernoff bound, then
there exists ε > 0 such that S(ε) is bounded as n → ∞.

5.6. Proof of Theorem 5.7. We now prove our main lower bound result
using the conditional second moment method. DefineQn and Pn as in Propo-
sition 5.11. For a vector x ∈ R

n and an n × n matrix Y , define the ‘good’
event Ω(x, Y ) by

x⊤Y x/‖x‖2 ∈ [(1 + β‖x‖2)(1− η), (1 + β‖x‖2)(1 + η)]

where η = logn√
n
. Note that under Qn (where x is the spike and Y is the

Wishart matrix: Y = 1
NXX⊤ where the columns of X are the samples yi),

x⊤Y x/‖x‖2 ∼ (1 + β‖x‖2)χ2
N/N and so Ω(x, Y ) occurs with probability

1− o(1). Let Q̃n be the conditional distribution of Qn given Ω(x, Y ).
For simplicity we now specialize to the case where X is supported on unit

vectors ‖x‖ = 1; see Appendix L for the general case. Similarly to the proof
of Proposition 5.11, we compute the conditional second moment as follows.

dQ̃n

dPn
= (1 + o(1)) E

x′∼X

[
1Ω(x′,Y ) (1 + β)−N/2

N∏

i=1

exp

(
1

2

β

1 + β
〈yi, x′〉2

)]

and so EPn

(
dQ̃n

dPn

)2
= (1 + o(1))Ex,x′∼X m(〈x, x′〉) where

m(〈x, x′〉) = E
Y∼Pn

(1 + β)−Nexp

(
N

2

β

1 + β
(x⊤Y x+ x′⊤Y x′)

)
1Ω(x,Y )1Ω(x′,Y )

= E
Y∼Pn

(1 + β)−N exp

(
Nβ

(
1 +

∆

2
+

∆′

2

))
1|∆|≤η1|∆′|≤η(5)

where ∆,∆′ are defined by x⊤Y x = (1+β)(1+∆) and x′⊤Y x′ = (1+β)(1+
∆′). We will see below that m is indeed only a function of 〈x, x′〉.

5.6.1. Interval |α| ∈ [ε, 1 − ε]. Let α = 〈x, x′〉. Let ε > 0 be a small
constant (not depending on n), to be chosen later. First let us focus on the
contribution from |α| ∈ [ε, 1 − ε], i.e. we want to bound

M1 , E
α

[
1|α|∈[ε,1−ε]m(α)

]
.
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For Y ∼ Pn and with x, x′ fixed unit vectors, the matrix

(
Nx⊤Y x Nx⊤Y x′

Nx⊤Y x′ Nx′⊤Y x′

)

follows the 2× 2 Wishart distribution with N degrees of freedom and shape
matrix (

1 α
α 1

)
, α = 〈x, x′〉.

By integrating over c = x⊤Y x′ and using the PDF of the Wishart distri-
bution, we have

m(α) =

∫∫∫
(1 + β)2 exp

{
N
[
− log(1 + β) + β

(
1 +

∆

2
+

∆′

2

)

+

(
1

2
− 3

N

)
log((1 + β)2(1 + ∆)(1 + ∆′)− c2)

− 1

1− α2

(
(1 + β)

(
1 +

∆

2
+

∆′

2

)
− αc

)
− 1

2
log(1− α2)

+ log(N/2) − 1

N
log Γ2(N/2)

]}
dcd∆d∆′

where the integration is over the domain |∆| ≤ η, |∆′| ≤ η, and |c| ≤
(1 + β)

√
(1 + ∆)(1 + ∆′), and Γ2 denotes the multivariate gamma function.

Using η = o(1) and applying Stirling’s approximation to Γ2, we have for
|α| ∈ [ε, 1 − ε],

m(α) ≤ max
|c|≤1+β

(1 + β)2 exp
{
N
[
− log(1 + β) + β +

1

2
log((1 + β)2 − c2)

− 1 + β − αc

1− α2
− 1

2
log(1− α2) + 1 + o(1)

]}

where the o(1) is uniform in α. Letting w = c/(1 + β) and solving explicitly
for the optimal w,

m(α) ≤ m1(α) , (1 + β)2 exp
{
N
[
(1 + β)

α(w − α)

1− α2

+
1

2
log

(
1−w2

1− α2

)
+ o(1)

]}

where w = w(α) = ±
√

A2 + 1−A with A =
1− α2

2α(β + 1)

and ± has the same sign as α.
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We now show how to bound the contribution to M1 from positive α; the
proof for negative α is similar. We have

E
α

[
1α∈[ε,1−ε]m1(α)

]
=

∫ ∞

0
Pr
[
1α∈[ε,1−ε]m1(α) ≥ u

]
du

=

∫ ∞

0
Pr [α ∈ [ε, 1− ε] and m1(α) ≥ u] du

= m1(ε) Pr [α ∈ [ε, 1− ε]] +

∫ m1(1−ε)

m1(ε)
Pr [α ∈ [ε, 1 − ε] and m1(α) ≥ u] du.

Since m1(α) is strictly increasing on [0, 1] (see Appendix J), we can apply
the change of variables u = m1(t) to obtain

= m1(ε) Pr [α ∈ [ε, 1− ε]] +

∫ 1−ε

ε
Pr [α ∈ [ε, 1− ε] and α ≥ t]m1(t)O(N) dt

≤ m1(ε) Pr [α ≥ ε] +O(N)

∫ 1−ε

ε
Pr [α ≥ t]m1(t)dt.

Plugging in the rate function to bound Pr [α ≥ ε] and Pr[α ≥ t], we obtain
M1 = o(1) provided that (2) holds. The contribution from negative α yields
the same condition (2) due to the symmetry w(−α) = −w(α) andm1(−α) =
m1(α).

5.6.2. Interval |α| ∈ [0, ε). This case needs special consideration because
both sides of (2) approach 0 as t → 0 and so the last step above requires
α to be bounded away from 0. Since (up to a factor of 1 + o(1)) condi-
tioning Qn on Ω(x, Y ) only decreases the second moment (for each value
of α), we can revert back to the basic second moment: the contribution
M2 , Eα

[
1|α|∈[0,ε)m(α)

]
is bounded by the small deviations S(ε2) from

Section 5.5.2. It therefore follows from either Lemma 5.12 or Lemma 5.13
that provided ε is small enough, M2 is bounded as n → ∞.

5.6.3. Interval |α| ∈ (1 − ε, 1]. This case needs special consideration
because in the calculations for the [ε, 1 − ε] interval, certain terms in the
exponent blow up at |α| = 1 which prevents us from replacing ∆,∆′ by an
error term that is o(1) uniformly in α. To deal with this case we will bound
m(α) by its worst-case value m(1).

To see thatm(1) is the worst case, notice from (5) that up to an exp(o(N))
factor (which will turn out to be negligible), m(α) is proportional to Pr[|∆| ≤
η and |∆′| ≤ η]. Since Nx⊤Y x and Nx′⊤Y x′ each follow at χ2

N distribution
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(with correlation that increases with |α|), this probability is maximized when
they are perfectly correlated at |α| = 1.

We now proceed to bound m(1). Let Y ∼ Pn, and let x, x′ be fixed unit
vectors with |α| = 1. We have that Nx⊤Y x follows a χ2

N distribution, with
Nx′⊤Y x′ = Nx⊤Y x. Similarly to the computation for [ε, 1 − ε] we obtain

m(1) ≤ m3 , (1 + β) exp

{
N

[
−1

2
log(1 + β)− 1

2
(1− β) +

1

2
+ o(1)

]}

and
M3 , E

α

[
1|α|∈(1−ε,1]m(α)

]
≤ exp(o(N)) Pr[|α| ≥ 1− ε]m3.

Plugging in the rate function, M3 is o(1) provided that γfX (1 − ε) >
−1

2 log(1 + β)− 1
2(1− β) + 1

2 . This follows from (2) (near t = 1) provided ε
is small enough (since fX is an increasing function of t).
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SUPPLEMENTARY MATERIAL

Supplement A: Optimality and Sub-optimality of PCA in Spiked

Random Matrix Models: Supplementary Proofs

Included below as appendices. Contains proofs omitted from this paper for
the sake of length.
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APPENDIX A: BEHAVIOR NEAR CRITICALITY

In Gaussian Wigner settings where we have established contiguity for all
λ < 1, it is natural to ask whether the spiked and unspiked models remain
contiguous for a sequence λ = 1 + δn with δn → 0 (here δn may be positive
or negative). However, this is never the case; it is possible to consistently
distinguish the models in this critical case. By adding additional GOE noise,
we can reduce to the case λ = 1−ε for arbitrary fixed ε > 0 (perhaps taking
a tail of the sequence). It is known (Johnstone and Onatski, 2015) that
(regardless of the spike prior) the hypothesis testing error (sum of type I
and type II errors) in this case tends to 0 as ε → 0; thus the minimum
hypothesis testing error in the original problem cannot be bounded away
from zero.

A similar result for the positively-spiked (β > 0) Wishart model follows
from Onatski, Moreira and Hallin (2013): if γ is fixed and β =

√
γ + δn

with δn → 0 then it is possible to consistently distinguish the spiked and
unspiked models. (We expect the analogous result to hold for β < 0 but to
the best our knowledge this has not been proven.)

APPENDIX B: BOUNDS ON HYPOTHESIS TESTING

For both the Gaussian Wigner and Wishart models, for the spherical prior
(or equivalently, limited to spectral-based tests) the optimal tradeoff curve
(power envelope) between type I and type II error is known exactly in the
n → ∞ limit (Onatski, Moreira and Hallin, 2013; Johnstone and Onatski,
2015). For other priors, one can apply the optimal spectral-based test from
above to obtain an upper bound; however, better tests (which do not depend
only on the spectrum) may be possible.

In many cases we can use Proposition 2.5 to obtain lower bounds (which
do not match the upper bound above). First note that Proposition 2.5 is
still valid (in the n → ∞ limit) in cases when we have used the conditional
second moment. (This is because if Q̃n is obtained from Qn by conditioning
on a (1− o(1))-probability event, asymptotic hypothesis testing bounds for
Q̃n against Pn imply the same bounds for Qn against Pn.)

For the Gaussian Wigner model, Theorem 3.10 (subgaussian method for
i.i.d. priors) and Theorem D.2 (conditioning method) both give the limit
value (as n → ∞) of the (conditional) second moment, and in fact the
value is (1 − λ2)−1/2 in both of these cases. Therefore, any time we have
used one of those two methods, we obtain asymptotic hypothesis testing
bounds from Proposition 2.5. This applies to, for instance, the i.i.d. Gaus-
sian, Rademacher, and sparse Rademacher priors. The same bounds also
hold for the spherical prior (although the exact asymptotic power envelope
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is known in this case) because the comparison method of Proposition 3.13
preserves the value of the second moment.

For the Wishart model, suppose we have a prior for which we know the
Wigner second moment has limit value (1−λ2)−1/2 (as above). Furthermore,
suppose we have a Wishart lower bound for this prior via Theorem 5.7, using
the Wigner second moment to control the small deviations (i.e. condition (i)
of Theorem 5.7 holds). From the proof of Theorem 5.7, the limit value of the
Wishart (conditional) second moment is determined by the small deviations
of Section 5.5.2; the remaining large deviations contribute o(1). We see from
Section 5.5.2 that the asymptotic value of the small deviations is bounded
by the value of the Wigner second moment with λ2 = − log(1−ε2β2)/γε2 →
β2/γ as ε → 0. Therefore the limsup of the Wishart (conditional) second
moment is at most (1 − β2/γ)−1/2, which yields hypothesis testing bounds
via Proposition 2.5.

APPENDIX C: ALTERNATIVE PROOF FOR SPHERICALLY-SPIKED
WIGNER

Here we give an alternative proof of Corollary 3.14. The proof deals with
the second moment directly rather than comparing to the i.i.d. Gaussian
prior.

Corollary 3.14. Consider the spherical prior Xsph. If λ < 1 then
GWig(λ,Xsph) is contiguous to GWig(0).

Proof. By symmetry, we reduce the second moment to

E
x,x′

exp

(
nλ2

2
〈x, x′〉2

)
= E

x
exp

(
nλ2

2
〈x, e1〉2

)
= E

x1

exp

(
nλ2

2
x21

)
,

where e1 denotes the first standard basis vector. Note that the first coordi-
nate x1 of a point uniformly drawn from the unit sphere in R

n is distributed
proportionally to (1 − x21)

(n−3)/2, so that its square y is distributed pro-
portionally to (1 − y)(n−3)/2y−1/2. Hence y is distributed as Beta(12 ,

n−1
2 ).

The second moment is thus the moment generating function of Beta(12 ,
n−1
2 )

evaluated at nλ2/2, and as such, we have

(6) E
Pn

(
dQn

dPn

)2

= 1F1

(
1

2
;
n

2
;
λ2n

2

)
,

where 1F1 denotes the confluent hypergeometric function.
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Suppose λ < 1. Equation 13.8.4 from [NIST Digital Library of Mathe-
matical Functions] grants us that, as n → ∞,

1F1

(
1

2
;
n

2
;
λ2n

2

)
= (1 + o(1))

(n
2

)1/4
eζ

2n/8

(
λ2

√
ζ

1− λ2
U(0, ζ

√
n/2)

+

(
−λ2

√
ζ

1− λ2
+

√
ζ

1− λ2

)
U(−1, ζ

√
n/2)

ζ
√
n/2

)
,

where ζ =
√

2(λ2 − 1− 2 log λ) and U is the parabolic cylinder function,

= (1 + o(1))
(n
2

)1/4
eζ

2n/8

(
λ2

√
ζ

1− λ2
e−ζ2n/8(ζ

√
n/2)−1/2

+

(
−λ2

√
ζ

1− λ2
+

√
ζ

1− λ2

)
e−ζ2n/8(ζ

√
n/2)1/2

ζ
√
n/2

)
,

by Equation 12.9.1 from [NIST Digital Library of Mathematical Functions],

= (1 + o(1))(1 − λ2)−1/2,

which is bounded as n → ∞, for all λ < 1. The result follows from Lemma 2.3.

APPENDIX D: CONDITIONING METHOD FOR GAUSSIAN WIGNER
MODEL

In this section we give the full details of the conditioning method for the
Gaussian Wigner model. We assume that the prior is X = iid(π/

√
n) where

π is a finitely-supported distribution on R with mean zero and variance one.
The argument that we will use is based on Banks et al. (2016), in par-

ticular their Proposition 5. Suppose ωn is a set of ‘good’ x values so that
x ∈ ωn with probability 1 − o(1). Let Qn = GWign(λ,X ) and let Pn =
GWign(0). Let X̃n be the conditional distribution of Xn given ωn. Let
Q̃n = GWign(λ, X̃ ). Our goal is to show Q̃n ⊳ Pn, from which it follows
that Qn ⊳ Pn (see Lemma 2.4). If we let Ωn be the event that x and x′ are
both in ωn, our second moment becomes

E
Pn

(
dQ̃n

dPn

)2

= E
x̃,x̃′∼X̃

[
exp

(
nλ2

2
〈x̃, x̃′〉2

)]

= (1 + o(1)) E
x,x′∼X

[
1Ωn exp

(
nλ2

2
〈x, x′〉2

)]
.
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Let Σ ⊆ R (a finite set) be the support of π, and let s = |Σ|. We will index
Σ by [s] = {1, 2, . . . , s} and identify π with the vector of probabilities π ∈ R

s.
For a, b ∈ Σ, let Nab denote the number of indices i for which xi = a/

√
n

and x′i = b/
√
n (recall xi is drawn from π/

√
n). Note that N follows a

multinomial distribution with n trials, s2 outcomes, and with probabilities
given by α = ππ⊤ ∈ R

s×s. We have

nλ2

2
〈x, x′〉2 =

λ2

2n



∑

a,b∈Σ
abNab




2

=
λ2

2n

∑

a,b,a′,b′

aba′b′NabNa′b′ =
1

n
N⊤AN

where A is the s2 × s2 matrix Aab,a′b′ =
λ2

2 aba
′b′, and the quadratic form

N⊤AN is computed by treating N as a vector of length s2.
We are now in a position to apply Proposition 5 from Banks et al. (2016).

Define Y = (N − nα)/
√
n. Let Ωn be the event defined in Appendix A of

Banks et al. (2016), which enforces that the empirical distributions of
√
nx

and
√
nx′ are close to π; namely,

max
j

∣∣∣∣∣
∑

i

Nij − nπj

∣∣∣∣∣ ≤ ηn and max
i

∣∣∣∣∣∣

∑

j

Nij − nπi

∣∣∣∣∣∣
≤ ηn

where (for concreteness) ηn =
√
n log n.

Note that α (treated as a vector of length s2) is in the kernel of A because
π is mean-zero: the inner product between α and the (a, b) row of A is

∑

a′,b′

Aab,a′b′αa′b′ =
λ2

2

∑

a′,b′

aba′b′πa′πb′ =
λ2

2
ab

(
∑

a′

a′πa′

)(
∑

b′

b′πb′

)
= 0.

Therefore we have 1
nN

⊤AN = Y ⊤AY and so we can write our second mo-
ment as (1 + o(1))E[1Ωn exp(Y

⊤AY )].
Let ∆s2(π) denote the set of nonnegative vectors α ∈ R

s2 with row- and
column-sums prescribed by π, i.e. treating α as an s×s matrix, we have (for
all i) that row i and column i of α each sum to πi. Let D(u, v) denote the KL
divergence between two vectors: D(u, v) =

∑
i ui log(ui/vi). For convenience,

we restate Proposition 5 in Banks et al. (2016).

Proposition D.1 (Banks et al. (2016), Proposition 5). Let π ∈ R
s be

any vector of probabilities. Let A be any s2 × s2 matrix. Define N , Y , α,
and Ωn as above (depending on π). Let

m = sup
α∈∆

s2
(π)

(α− α)⊤A(α− α)

D(α,α)
.
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If m < 1 then limn→∞ E[1Ωn exp(Y
⊤AY )] = E[exp(Z⊤AZ)] < ∞, where

Z ∼ N (0,diag(α)− αα⊤). If m > 1 then limn→∞ E[1Ωn exp(Y
⊤AY )] = ∞.

We apply Proposition D.1 to our specific choice of π and A:

Theorem D.2 (conditioning method). Let X = iid(π) where π has mean
zero, unit variance, and finite support Σ ⊆ R with |Σ| = s. Let Qn =
GWign(λ,X ), Q̃n = GWign(λ, X̃ ), and Pn = GWign(0). Define the s × s
matrix βab = ab for a, b ∈ Σ. Let

λX =

[
sup

α∈∆
s2

(π)

〈α, β〉2
2D(α, α)

]−1/2

.

If λ < λX then limn→∞ EPn(dQ̃n/dPn)
2 = (1−λ2)−1/2 < ∞ and so Qn⊳Pn.

Conversely, if λ > λX then limn→∞ EPn

(
dQ̃n/dPn

)2
= ∞.

Note that this is a tight characterization of when the conditional second
moment is bounded, but not necessarily of when contiguity holds.

The intuition behind this matrix optimization problem is the following.
The matrix α represents the ‘type’ of a pair of spikes (x, x′) in the sense that
for any a, b ∈ Σ, αab is the fraction of entries i for which xi = a and x′i = b.

A pair (x, x′) of type α contributes the value exp(nλ
2

2 〈α, β〉2) to the second

moment Ex,x′ exp
(
nλ2

2 〈x, x′〉2
)
. The probability (when x, x′ ∼ iid(π/

√
n))

that a particular type α occurs is asymptotically exp(−nD(α,α)). Due to
the exponential scaling, the second moment is dominated by the worst
α value: the second moment is unbounded if there is some α such that
λ2

2 〈α, β〉2 > D(α, α). (This idea is often referred to as Laplace’s method or
the saddle point method.) Rearranging this yields the optimization problem
in the theorem. The fact that we are conditioning on ‘good’ values of x (that
have close-to-typical proportions of entries) allows us to add the constraint
α ∈ ∆s2(π). If we were not conditioning, we would have the same optimiza-
tion problem over α ∈ ∆s2 (the simplex of dimension s2), which in some
cases gives a worse threshold.

Unfortunately we do not have a good general technique to understand
the value of the matrix optimization problem. However, in certain special
cases we do. Namely, in Appendix E we show, for the sparse Rademacher
prior, how to use symmetry to reduce the problem to only two variables so
that it can be easily solved numerically. In other applications, closed form
solutions to related optimization problems have been found (Achlioptas and
Naor, 2004; Banks et al., 2016).
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Above we have computed the limit value of the second moment in the
case λ < λX as follows. Defining Z as in Proposition D.1 we have 〈Z, β〉 ∼
N (0, σ2) where

σ2 = β⊤(diag(α)− αα⊤)β =
∑

ab

β2
abαab +

(
∑

ab

βabαab

)2

=

(
∑

a

a2πa

)(
∑

b

b2πb

)
+

(
∑

a

aπa
∑

b

bπb

)2

= 1,

since π is mean-zero and unit-variance, and so

E[exp(Z⊤AZ)] = E

[
exp

(
λ2

2
〈Z, β〉2

)]
= E

[
exp

(
λ2

2
χ2
1

)]
= (1− λ2)−1/2.

APPENDIX E: SPARSE RADEMACHER PRIOR

In this section we give details for our results on the spiked Gaussian
Wigner model with the i.i.d. sparse Rademacher prior: iid(π/

√
n) where

π =
√

1/ρR(ρ) where R(ρ) is the sparse Rademacher distribution with
sparsity ρ ∈ (0, 1]:

R(ρ) =





0 w.p. 1− ρ
+1 w.p. ρ/2
−1 w.p. ρ/2

.

First we apply the subgaussian method (Theorem 3.10). The subgaussian
constant σ2 for π needs to satisfy

(7) exp

(
1

2
σ2t2

)
≥ E exp(tπ) = 1− ρ+ ρ cosh(t/

√
ρ)

for all t ∈ R so the best (smallest) choice for σ2 is

(σ∗)2 , sup
t∈R

2

t2
log [1− ρ+ ρ cosh(t/

√
ρ)] .

Recall that Theorem 3.10 (subgaussian method) gives contiguity for all λ <
1/σ∗. We now show that for sufficiently large ρ, we have σ∗ = 1, implying
that PCA is tight:

Proposition E.1. When ρ ≥ 1/3, we have σ∗ = 1, yielding contiguity
for all λ < 1. On the other hand, if ρ < 1/3, then σ∗ > 1.
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Proof. We equivalently consider the following reformulation of (7):

(8)
1

2
σ2t2

?
≥ log (1− ρ+ ρ cosh(t/

√
ρ)) , kρ(t).

Both sides of the inequality are even functions of t, agreeing in value at t = 0.
When σ2 < 1, the inequality fails, by comparing their second-order behavior
about t = 0. When σ2 = 1 but ρ < 1/3, the inequality fails, as the two sides

have matching behavior up to third order, but k
(4)
ρ (0) = 3− 1/ρ < 0.

It remains to show that the inequality (8) does hold for ρ > 1/3 and
σ2 = 1. As the left and right sides agree to first order at t = 0, and are both
even functions, it suffices to show that for all t ≥ 0,

1
?
≥ k′′ρ(t) =

ρ+ (1− ρ) cosh(t/
√
ρ)

(1− ρ+ ρ cosh(t/
√
ρ))2

.

Completing the square for cosh, we have the equivalent inequality:

0
?
≤ 1− 3ρ+ ρ2 +

(
ρ cosh(t/

√
ρ) +

(2ρ− 1)(1 − ρ)

2ρ︸ ︷︷ ︸
(∗)

)2
− (2ρ− 1)2(1− ρ)2

4ρ2
.

Note that cosh is bounded below by 1; thus for ρ > 1/3, the underbraced
term (∗) is nonnegative, and hence minimized in absolute value when t = 0.
It then suffices to show the above inequality in the case t = 0, so that
cosh(t/

√
ρ) = 1; but here the inequality is an equality, by simple algebra.

Using the conditioning method of Section 3.6, we will now improve the
range of ρ for which PCA is optimal, although our argument here relies on
numerical optimization.

Example E.2. Let X be the sparse Rademacher prior iid(
√

1/ρR(ρ)).
There exists a critical value ρ∗ ≈ 0.184 (numerically computed) such that
if ρ ≥ ρ∗ and λ < 1 then GWig(λ,X ) is contiguous to GWig(0,X ). When
ρ < ρ∗ we are only able to show contiguity when λ < λ∗

ρ for some λ∗
ρ < 1.

Details. Consider the optimization problem of Theorem 3.16 (condition-
ing method). We will first use symmetry to argue that the optimal α must
take a simple form. Abbreviate the support of π as {0,+,−}. For a given α
matrix, define its complement by swapping + and −, e.g. swap α0+ with α0−
and swap α−+ with α+−. Note that if we average α with its complement,
the numerator 〈α, β〉2 remains unchanged, the denominator D(α, α) can
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only decrease, and the row- and column-sum constraints remain satisfied;
this means the new solution is at least as good as the original α. Therefore
we only need to consider α values satisfying α++ = α−− and α+− = α−+.
Note that the remaining entries of α are uniquely determined by the row-
and column-sum constraints, and so we have reduced the problem to only
two variables. It is now easy to solve the optimization problem numerically,
say by grid search.

APPENDIX F: PROOF OF NON-GAUSSIAN WIGNER LOWER
BOUND

In this section we prove Theorem 4.4, and verify its hypotheses for spher-
ical and i.i.d. priors.

Theorem 4.4. Under Assumption 4.3, Wig(λ,P,Pd,X ) is contiguous
to Wig(0,P,Pd) for all λ < λ∗

X /
√
FP .

Proof. We begin by conditioning the prior X on the high-probability

events that ‖x‖qq ≤ αqn
1

q
− 1

2 for q = 2, 4, 6, 8, and on the event that no entry
of x exceeds 5

√
log n/n, which is true with high probability by the subgaus-

sian hypothesis; let X̃ be this conditioned prior. Hence if Wig(λ,P, X̃ ) is con-
tiguous to Wig(0,P) then so is Wig(λ,P,Pd,X ). LetQn = Wign(λ,P,Pd,X ),
Q̃n = Wign(λ,P,Pd, X̃ ), and Pn = Wign(0,P,Pd).

For convenience, let pij denote p if i 6= j and pd if i = j, the density of
the noise on the ij entry. Likewise let τij denote τ or τd as appropriate. We
proceed from the second moment:

E
Pn

(
dQ̃n

dPn

)2

= E
Y∼Pn


 E
x,x′∼X̃

∏

i≤j

pij(
√
nYij − λ

√
nxixj)

pij(
√
nYij)

pij(
√
nYij − λ

√
nx′ix

′
j)

pij(
√
nYij)




= E
x,x′∼X̃



∏

i≤j

E√
nYij∼P

pij(
√
nYij − λ

√
nxixj)

pij(
√
nYij)

pij(
√
nYij − λ

√
nx′ix

′
j)

pij(
√
nYij)




= E
x,x′∼X̃


exp


∑

i≤j

τij(λ
√
nxixj, λ

√
nx′ix

′
j)




 .
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We will expand τ and τd using Taylor’s theorem, using the C4 assumption:

τ(a, b) =
∑

0≤k+ℓ≤3

1

(k + ℓ)!

∂k+ℓτ

∂ak∂bℓ
(0, 0) akbℓ

+
∑

k+ℓ=4

1

4!

(
∂4τ

∂ak∂bℓ
(0, 0) + hk,ℓ(a, b)

)
akbℓ

τd(a, b) =
∑

0≤k+ℓ≤1

1

(k + ℓ)!

∂k+ℓτ

∂ak∂bℓ
(0, 0) akbℓ

+
∑

k+ℓ=2

1

2!

(
∂2τ

∂ak∂bℓ
(0, 0) + hd;k,ℓ(a, b)

)
akbℓ

for some remainder function hk,ℓ(a, b) tending to 0 as (a, b) → (0, 0). As x
and x′ are entrywiseO(

√
log n/n), these remainder terms hk,ℓ(λ

√
nxixj, λ

√
nx′ix

′
j)

are o(1) as n → ∞. Note that τ(a, 0) = 0 = τ(0, b), so that the non-mixed

partials of τ vanish, and likewise for τd. We note also that ∂2τ
∂a∂b (0, 0) = FP ,

the Fisher information defined above. Thus,

E
Pn

(
dQ̃n

dPn

)2

= E
x,x′∼X̃

[
exp

(
FPλ

2n
∑

i<j

xixjx
′
ix

′
j

+
∑

k+ℓ=3
k,ℓ>0

∂3τ

∂ak∂bℓ
(0, 0)

λ3n3/2

k!ℓ!

∑

i<j

xki x
k
j (x

′
i)
ℓ(x′j)

ℓ

+
∑

k+ℓ=4

(
∂4τ

∂ak∂bℓ
(0, 0) + o(1)

)
λ4n2

k!ℓ!

∑

i<j

xki x
k
j (x

′
i)
ℓ(x′j)

ℓ

+

(
∂2τd
∂a∂b

(0, 0) + o(1)

)
λ2n

∑

i

x2i (x
′
i)
2

)]
.

We can separate these four terms using a weighted AM–GM inequality. For
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all ε > 0:

E
Pn

(
dQ̃n

dPn

)2

≤ E
x,x′∼X̃

exp


(1− ε)−1FPλ

2n
∑

i<j

xixjx
′
ix

′
j




(9)

+
∑

k+ℓ=3
k,ℓ>0

E
x,x′∼X̃

exp


8

ε

∂3τ

∂ak∂bℓ
(0, 0)

λ3n3/2

k!ℓ!

∑

i<j

xki x
k
j (x

′
i)
ℓ(x′j)

ℓ




(10)

+
∑

k+ℓ=4

E
x,x′∼X̃

exp


8

ε

(
∂4τ

∂ak∂bℓ
(0, 0) + o(1)

)
λ4n2

k!ℓ!

∑

i<j

xki x
k
j (x

′
i)
ℓ(x′j)

ℓ




(11)

+ E
x,x′∼X̃

exp

(
8

ε

(
∂2τd
∂a∂b

(0, 0) + o(1)

)
λ2n

∑

i

x2i (x
′
i)
2

)(12)

so it suffices to control terms (9–12) individually.
By hypothesis, λ < λ∗

X /
√
FP , implying that we can choose ε > 0 such that

(1 − ε)−1FPλ2 < (λ∗
X )

2. But X̃ is dominated as a measure by (1 + o(1))X ;
it follows that λX ≤ λX̃ , and the first term (9) is bounded.

We bound the second term (10) using the subgaussian assumption:

(10) ≤ 2 E
x,x′∼X̃

exp

(
2λ3n3/2

ε

∂3τ

∂a2∂b
(0, 0)〈x2, x′〉2

)

= 2Ex∼X̃Ex′∼X̃ exp(〈v, x′〉2)
= 2Ex∼X̃ (1 + o(1))Ex′∼X exp(〈v, x′〉2)

where v =
√

2/ελ3/2n3/4
√

∂3τ
∂a2∂b

(0, 0) x2. We thus have

‖v‖22 =
2λ3n3/2

ε

∂3τ

∂a2∂b
(0, 0)‖x‖44 = O(n1/2).

By subgaussian hypothesis on X , the inner expectation over x′ is O(1), so
that the overall term (10) is bounded.
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We bound the third term (11) using Cauchy–Schwarz:

(11) ≤
∑

k+ℓ=4

E
x,x′∼X̃

exp

((
∂4τ

∂ak∂bℓ
(0, 0) + o(1)

)
8λ4n2

2εk!ℓ!
〈xk, (x′)ℓ〉2

)

≤
∑

k+ℓ=4

E
x,x′∼X̃

exp

((
∂4τ

∂ak∂bℓ
(0, 0) + o(1)

)
8λ4n2

2εk!ℓ!
‖xk‖22 ‖(x′)ℓ‖22

)

=
∑

k+ℓ=4

E
x,x′∼X̃

exp

((
∂4τ

∂ak∂bℓ
(0, 0) + o(1)

)
8λ4n2

2εk!ℓ!
‖x‖2k2k ‖x′‖2ℓ2ℓ

)

≤
∑

k+ℓ=4

E
x,x′∼X̃

exp

((
∂4τ

∂ak∂bℓ
(0, 0) + o(1)

)
8λ4n2

2εk!ℓ!
α2k
2kn

1−kα2ℓ
2ℓn

1−ℓ

)

=
∑

k+ℓ=4

exp

((
∂4τ

∂ak∂bℓ
(0, 0) + o(1)

)
8λ4

2εk!ℓ!
α2k
2kα

2ℓ
2ℓ

)
,

due to the norm restrictions on prior X̃ . This evidently remains bounded as
n → ∞.

The fourth term proceeds similarly:

(12) ≤ E
x,x′∼X̃

exp

(
8λ2n

ε

(
∂2τd
∂a∂b

(0, 0) + o(1)

)
〈x2, (x′)2〉

)

≤ E
x,x′∼X̃

exp

(
8λ2n

ε

(
∂2τd
∂a∂b

(0, 0) + o(1)

)
‖x‖24‖x′‖24〉

)

≤ E
x,x′∼X̃

exp

(
8λ2n

ε

(
∂2τd
∂a∂b

(0, 0) + o(1)

)
α4
4n

−1

)

which likewise remains bounded.

With the overall second moment EPn

(
dQ̃n

dPn

)2
bounded as n → ∞, the

result follows from Lemma 2.4.

Proposition 4.5. Conditions (i) and (ii) in Assumption 4.3 are satis-
fied for the spherical prior Xsph.

Proof. Note that one can sample x ∼ Xsph by first sampling y ∼
N (0, In) and then taking x = y/‖y‖2. By Chebyshev,

∣∣‖y‖22 − n
∣∣ < n3/4

with probability 1 − o(1). For q ∈ {4, 6, 8}, ‖y‖qq has expectation n(q − 1)!!
and variance

n[(2q − 1)!! − ((q − 1)!!)2].
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Supposing that ‖y‖22 > n − n3/4 > n/2, which occurs with probability 1 −
o(1), we have for any αq that

Pr[‖xq‖ > αqn
1

q
− 1

2 ] = Pr[‖x‖qq > αq
qn

1− q
2 ]

= Pr[‖y‖qq > αq
qn

1− q

2 ‖y‖q2]
≤ Pr[‖y‖qq > αq

q2
−q/2n]

≤ n((2q − 1)!! − ((q − 1)!!)2)

n2(2−qα2q
q − (q − 1)!!)2

,

by Chebyshev. This probability is o(1) so long as we take α2q
q > 2q(q − 1)!!.

The spherical prior is appropriately subgaussian: the inner product 〈x, v〉
is distributed as 2z − 1 with z ∼ Beta(n/2, n/2), which is known to be
O(1/n)-subgaussian (see e.g. Elder (2016)).

Proposition 4.6. Consider an i.i.d. prior X = iid(π/
√
n) where π

is zero-mean, unit-variance, and subgaussian with some constant σ2. Then
conditions (i) and (ii) in Assumption 4.3 are satisfied.

Proof. We have xi =
1√
n
πi where πi are independent copies of π. For

q ∈ {2, 4, 6, 8},

Pr[‖x‖q > αqn
1

q
− 1

2 ] = Pr[‖x‖qq > αq
qn

1− q
2 ]

= Pr

[
∑

i

xqi > αq
qn

1− q

2

]

= Pr

[
∑

i

πq
i > αq

qn

]

= Pr

[
∑

i

πq
i − nE[πq] > (αq

q − E[πq])n

]
.

Choose αq so that C ≡ αq
q − E[πq] > 0, and apply Chebyshev’s inequality:

≤ Var[
∑

i π
q
i ]

C2n2
=

nVar[πq]

C2n2
= O(1/n).

Here we needed E[π2q] < ∞ (which follows from subgaussianity) so that
Var[πq] < ∞.
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APPENDIX G: NON-GAUSSIAN WIGNER WITH DISCRETE NOISE

In this section we show that in the non-Gaussian Wigner model, if the
noise distribution has a point mass then the detection problem becomes easy
for any λ > 0.

Theorem G.1. Let P be a (mean-zero, unit-variance) distribution on R

with a point mass: Prw∼P [w = c] = m for some c and some m > 0. Let Pd

be any distribution on R. Let X be a spike prior such that for some δ > 0
and α > 0, with probability 1 − o(1), x ∼ Xn satisfies both (i) ‖x‖0 ≥ δn
and (ii) |xi| ≤ n−1/4−α ∀i. Then for any λ > 0, there exists a test that
consistently distinguishes Wig(λ,P,Pd,X ) from Wig(0,P,Pd).

Here, ‖x‖0 denotes the ℓ0 norm, i.e. the number of nonzero entries.

Proof. Let the test statistic T (Y ) be the fraction of entries of Y that
are exactly equal to c/

√
n. Under the unspiked model Y ∼ Wig(0,P,Pd),

we have T (Y ) → m in probability. Let ε > 0. Under the spiked model
Y ∼ GWig(λ,P,Pd,X ) we have with probability 1 − o(1) that at least
(δ2 − ε)n2 entries of xx⊤ lie in the set [−n−1/2−2α, n−1/2−2α] r {0}. With
probability 1− o(1), at most εn2 of the corresponding entries of Y take the
value (exactly) c/

√
n because by continuity of measure,

lim
d→0+

Prw∼P [w ∈ [c− d, c+ d]r {c}] = 0.

Therefore, taking ε sufficiently small, we have T (Y ) ≤ m− ε with probabil-
ity 1 − o(1) and thus T consistently distinguishes the spiked and unspiked
models.

APPENDIX H: PROOF OF PRE-TRANSFORMED PCA

In this section we prove our upper bound for the non-Gaussian Wigner
model via pre-transformed PCA. We make the following assumptions on the
spike prior X and the entrywise noise distribution P.

Assumption 4.7. Of the prior X we require (as usual) ‖x‖ → 1 in
probability, and we also assume that with probability 1− o(1), all entries of
x are small: |xi| ≤ n−1/2+α for some fixed α < 1/8. Of the noise P, we
assume the following:

(i) P has a non-vanishing C3 density function p(w) > 0,
(ii) Letting f(w) = −p′(w)/p(w), we have that f and its first two deriva-

tives are polynomially-bounded: there exists C > 0 and an even integer
m ≥ 2 such that |f (ℓ)(w)| ≤ C + wm for all 0 ≤ ℓ ≤ 2.
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(iii) With m as in (ii), P has finite moments up to 5m: E|P|k < ∞ for all
1 ≤ k ≤ 5m.

An important consequence of assumptions (ii) and (iii) is the following.

Lemma H.1. E|f (ℓ)(P)|q < ∞ for all 0 ≤ ℓ ≤ 2 and 1 ≤ q ≤ 5. Likewise
E|f (ℓ)(Pd)|q < ∞ for all 0 ≤ ℓ ≤ 2 and 1 ≤ q ≤ 3.

Proof. We demonstrate P; then Pd follows identically. Using |a+ b|q ≤
|2a|q + |2b|q = 2q(|a|q + |b|q) we have

E|f (ℓ)(P)|q ≤ E|C + Pm|q ≤ 2q(Cq + E|P|mq) < ∞.

The main theorem of this section is the following.

Theorem 4.8. Let λ ≥ 0 and let X ,P satisfy Assumption 4.7. Let Ŷ =√
nY where Y is drawn from Wig(λ,P,Pd,X ). Let f(Ŷ ) denote entrywise

application of the function f(w) = −p′(w)/p(w) to Ŷ , except we define the
diagonal entries of f(Ŷ ) to be zero.

• If λ ≤ 1/
√
FP then 1√

n
λmax(f(Ŷ )) → 2

√
FP as n → ∞.

• If λ > 1/
√
FP then 1√

n
λmax(f(Ŷ )) → λFP + 1

λ > 2
√
FP as n → ∞ and

furthermore the top (unit-norm) eigenvector v of f(Ŷ ) correlates with the
spike: 〈v, x〉2 ≥ (λ− 1/

√
FP)2/λ2 − o(1) with probability 1− o(1).

Convergence is in probability. Here λmax(·) denotes the maximum eigenvalue.

Note that Lemma H.1 implies that the expectation defining FP is finite.

Proof. First we justify a local linear approximation of f(Ŷij). For i 6= j,
define the error term Eij by

f(Ŷij) = f(Wij) + λ
√
nxixjf

′(Wij) + Eij.

(Define Eii = 0.) We will show that the operator norm of E is small: ‖E‖ =
o(
√
n) with probability 1 − o(1). Apply the mean-value form of the Taylor

approximation remainder: Eij = 1
2f

′′(Wij + eij)λ
2nx2ix

2
j for some |eij | ≤

|λ√nxixj |. Bound the operator norm by the Frobenius norm:

‖E‖2 ≤ ‖E‖2F =
λ4n2

4

∑

i 6=j

x4i x
4
jf

′′(Wij + eij)
2 ≤ λ4

4
n8α−2

∑

i 6=j

f ′′(Wij + eij)
2.
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Using the polynomial bound on f ′′ and the fact |a+ b|k ≤ 2k(|a|k + |b|k), we
have

f ′′(Wij + eij)
2 ≤ (C + (Wij + eij)

m)2 ≤ 4C2 + 4(Wij + eij)
2m

≤ 4C2 + 4 · 22m(W 2m
ij + e2mij )

≤ 4C2 + 22m+2(W 2m
ij + λ2mn(4α−1)m)

= 4C2 + 22m+2W 2m
ij + o(1).

Using finite moments of Wij ∼ P, it follows that E
[∑

i 6=j f
′′(Wij + eij)

2
]
=

O(n2), and so E‖E‖2 = O(n8α). Since α < 1/8, Markov’s inequality now
gives the desired result: with probability 1−o(1), ‖E‖2 = o(n) and so ‖E‖ =
o(
√
n).

Our goal will be to show that f(Ŷ ) is, up to small error terms, another
spiked Wigner matrix. Toward this goal we define another error term: for
i 6= j, let ∆ij = λ

√
nxixj (f

′(Wij)− E[f ′(Wij)]), so that

(13) f(Ŷij) = f(Wij) + λ
√
nxixjE[f

′(Wij)] + Eij +∆ij .

(Define ∆ii = 0.) We will show that the operator norm of ∆ is small: ‖∆‖ =
o(
√
n) with probability 1 − o(1). Let Aij = f ′(Wij) − E[f ′(Wij)] so that

∆ij = λ
√
nxixjAij . (Define Aii = 0.) We have ‖∆‖ ≤ λn−1/2+2α‖A‖ because

for any unit vector y,

y⊤∆y =
∑

i,j

λ
√
nxixjAijyiyj ≤

∑

i,j

λ
√
nziAijzj where zi = xiyi

≤ λ
√
n ‖A‖ · ‖z‖2 ≤ λn−1/2+2α‖A‖ · ‖y‖ = λn−1/2+2α‖A‖.

Note that A is a Wigner matrix (i.e. a symmetric matrix with off-diagonal
entries i.i.d.) and so ‖A‖ = O(

√
n) with probability 1 − o(1). This follows

from Pizzo, Renfrew and Soshnikov (2013) Theorem 1.1, provided we can
check that each entry of A has finite fifth moment. But this follows from
Lemma H.1:

E|Aij |5 ≤ 25
(
E|f ′(Wij)|5 + |E[f ′(Wij)]|5

)
< ∞.

Now we have ‖∆‖ = O(n2α) = o(
√
n) with probability 1− o(1) as desired.

From (13) we now have that, up to small error terms, f(Ŷ ) is another
spiked Wigner matrix:

f(Ŷ ) = f(W ) + λ
√
nE[f ′(P)]xx⊤ + E +∆− δ
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where (to take care of the diagonal) we define f(W )ii = 0, δij = 0, and
δii = λ

√
nE[f ′(P)]x2i . Note that the final error term δ is also small: ‖δ‖ ≤

‖δ‖F = O(n2α) = o(
√
n). We now have

1√
n
λmax(f(Ŷ )) = λmax

(
1√
n
f(W ) + λE[f ′(P)]xx⊤

)
+ o(1)

and so the theorem follows from known results on the spectrum of spiked
Wigner matrices, namely Theorem 1.1 from Pizzo, Renfrew and Soshnikov
(2013). We need to check the following details. First note that the Wigner
matrix f(W ) has off-diagonal i.i.d. entries that are centered:

E[f(Wij)] =

∫ ∞

−∞

−p′(w)
p(w)

p(w)dw = p(−∞)− p(∞) = 0.

Each off-diagonal entry of f(W ) has variance E[f(Wij)
2] = FP . The rank-1

deformation λE[f ′(P)]xx⊤ has top eigenvalue λE[f ′(P)] · ‖x‖2. Recall that
‖x‖2 → 1 in probability. Also,

f ′(w) =
d

dw

−p′(w)
p(w)

= −p′′(w)p(w) − p′(w)2

p(w)2

and so

E[f ′(P)] =

∫ ∞

−∞

[
−p′′(w) +

p′(w)2

p(w)

]
dw =

∫ ∞

−∞

p′(w)2

p(w)
dw = FP .

Therefore the top eigenvalue of the rank-1 deformation converges in proba-
bility to λFP . By Lemma H.1, the entries of f(W ) have finite fifth moment.

The desired convergence of the top eigenvalue now follows. It remains to
show that when λ > 1/

√
FP , the top eigenvalue of f(Ŷ ) correlates with the

planted vector x. Let v be the top eigenvector of f(Ŷ ) with ‖v‖ = 1. From
above we have

v⊤
(

1√
n
f(Ŷ )

)
v = v⊤

(
1√
n
f(W )

)
v + λFP 〈v, x〉2 + o(1).

We know 1√
n
f(Ŷ ) has top eigenvalue λFP + 1/λ + o(1) and 1√

n
f(W ) has

top eigenvalue 2
√
FP + o(1), which yields

〈v, x〉2 ≥ 1

λFP
(λFP + 1/λ− 2

√
FP )− o(1) =

(λ− 1/
√
FP )2

λ2
− o(1).
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APPENDIX I: PROOF OF THEOREM 5.3: MLE FOR WISHART
WITH FINITE PRIOR

Note the following well-known Chernoff bound for the χ2
k distribution:

Lemma I.1. For all 0 < z < 1,

1

k
log Pr

[
χ2
k < zk

]
≤ 1

2
(1− z + log z).

Similarly, for all z > 1,

1

k
log Pr

[
χ2
k > zk

]
≤ 1

2
(1− z + log z).

We now prove the following theorem:

Theorem 5.3. Let β ∈ (−1,∞). Let Xn be a spike prior supported on
at most cn points, for some fixed c > 0. If

2γ log c < β − log(1 + β)

then there is a (computationally inefficient) procedure that distinguishes
between the spiked Wishart model Wish(γ, β,X ) and the unspiked model
Wish(γ), with o(1) probability of error.

Proof. First consider the case β < 0. Given a matrix Y , consider the
test statistic

T = min
v∈supp(Xn)

v⊤Y v

‖v‖2
where supp(Xn) denotes the support of Xn. Under Y ∼ Wish(γ, β,X ) with
true spike x, we have that x⊤Y x/‖x‖2 ∼ 1

N (1+β‖x‖2)χ2
N , which converges

in probability to 1+ β (since ‖x‖ → 1 in probability). Hence, for any ε > 0,
we have that T < 1+β+ε with probability 1−o(1) under the spiked model
Wish(γ, β,X ).

Let γ̂ = n/N so that γ̂ → γ. Under the unspiked model, we have

Pr[T ≤ 1 + β + ε] ≤
∑

v∈supp(X )

Pr[v⊤Y v/‖v‖2 ≤ 1 + β + ε]

≤ cn Pr
[
χ2
N ≤ (1 + β + ε)N

]

= exp

[
N

(
γ̂ log c+

1

N
log Pr

[
χ2
N ≤ (1 + β + ε)N

])]

≤ exp

[
N

(
γ̂ log c+

1

2
(1− (1 + β + ε) + log(1 + β + ε))

)]
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by Lemma I.1. This is o(1) so long as

2γ log c− β − ε+ log(1 + β + ε) < 0.

We can choose such ε > 0 precisely under the hypothesis of this theorem.
Hence, by thresholding the statistic T at 1 + β + ε, we obtain a hypoth-

esis test that distinguishes Y ∼ Wish(γ, β,X ) from Y ∼ Wish(γ), with
probability o(1) of error of either type.

The proof for the case β > 0 is similar, using instead the test statistic
T = maxv∈supp(Xn) v

⊤Y v/‖v‖2 along with the upper tail bound for χ2
k.

APPENDIX J: BASIC PROPERTIES OF WISHART LOWER BOUND

In this section we give basic properties of the condition on γ, β required
by Theorem 5.7. Recall that this condition is γ > γ∗ where

(14) γ∗fX (t) ≥ F (β, t) ∀t ∈ (0, 1)

where

F (β, t) , (1 + β)
t(w − t)

1− t2
+

1

2
log

(
1− w2

1− t2

)

and

w =
√

A2 + 1−A with A =
1− t2

2t(β + 1)
.

We have the following properties of F (β, t), which can be shown using
basic calculus.

• The t → 0+ and t → 1− limits of F (β, t) exist and so F (β, t) is defined
and continuous in both variables on the domain β ∈ (−1,∞), t ∈ [0, 1].
The boundary values are F (β, 0) = 0 and F (β, 1) = 1

2(β− log(1+β)).
• For any β ∈ (−1,∞) r {0}, F (β, t) is a strictly increasing function of

t. In particular, F (β, t) ≥ 0 with equality only at t = 0.

• For any β ∈ (−1,∞), limt→0+
∂
∂tF (β, t) = 0 and limt→0+

∂2

∂t2
F (β, t) =

β2.

We now give some lemmas that allow for a tradeoff between certain vari-
ables while keeping (14) true. The first allows the rate function to be weak-
ened slightly at the expense of increasing γ∗ slightly.

Lemma J.1. Let γ∗ > 0, β ∈ (−1,∞) r {0}, and ε > 0. Let f(t) be a
function on (0, 1). If γ∗f(t) ≥ F (β, t) ∀t ∈ (0, 1) then there exists δ > 0
such that (γ∗ + ε)f(t(1− δ)2) ≥ F (β, t) ∀t ∈ (0, 1).
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Proof. We have

(γ∗ + ε)f(t(1− δ)2)) ≥ γ∗ + ε

γ∗
F (β, t(1 − δ)2)

so it is sufficient to show

(15)
F (β, t)

F (β, t(1 − δ)2)
≤ γ∗ + ε

γ∗
∀t ∈ (0, 1].

For each t ∈ (0, 1] there exists a maximal δ = δ(t) > 0 such that (15) holds,
and δ(t) is a continuous function of t. We want to show that δ(t) is bounded
above 0, so we only need to check the limit t → 0.

Since limt→0 F (β, t) = limt→0
∂
∂tF (β, t) = 0 and limt→0

∂2

∂t2
F (β, t) = β2 >

0 we have, using L’Hôpital’s rule,

lim
t→0

F (β, t)

F (β, t(1 − δ)2)
=

1

(1− δ)4

which can be made smaller than (γ∗ + ε)/γ∗ by taking δ > 0 small enough.

The next lemma allows β to be increased slightly at the expense of in-
creasing γ∗ slightly.

Lemma J.2. Let γ∗ > 0, β ∈ (−1,∞) r {0}, and ε > 0. Let f(t) be a
function on (0, 1). If γ∗f(t) ≥ F (β, t) ∀t ∈ (0, 1) then there exists δ > 0
such that (γ∗ + ε)f(t) ≥ F (β(1 + δ)2, t) ∀t ∈ (0, 1).

Proof. We have

(γ∗ + ε)f(t) ≥ γ∗ + ε

γ∗
F (β, t)

so it is sufficient to show

F (β(1 + δ)2, t)

F (β, t)
≤ γ∗ + ε

γ∗
∀t ∈ (0, 1],

or equivalently,

logF (β(1 + δ)2, t)− log F (β, t) ≤ log

(
γ∗ + ε

γ∗

)
.

It is sufficient to have, for any fixed compact interval I ⊆ (−1,∞) not
containing zero, that | ∂

∂β log F (β, t)| is bounded by a constant, uniformly

over all t ∈ (0, 1] and β ∈ I. Since ∂
∂β log F (β, t) is defined and continuous

in both variables (on the domain t ∈ (0, 1] and β > −1), we only need to
check the limit t → 0. We have limt→0

∂
∂β logF (β, t) = 2/β.
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APPENDIX K: PROOF OF LEMMA 5.13

Here we show how to use the local Chernoff bound to bound the small
deviations of the Wishart second moment. Letting γ̂ = n/N so that γ̂ → γ
we have

S(ε) = E
x,x′∼X

exp

(−n

2γ̂
log(1− β2〈x, x′〉2)

)
1〈x,x′〉2≤ε

≤ E
x,x′∼X

exp

( −n

2γ̂ε2
log(1− ε2β2)〈x, x′〉2

)
1〈x,x′〉2≤ε

where we used the convexity of t 7→ − log(1− β2t)

=

∫ ∞

0
Pr

[
exp

( −n

2γ̂ε2
log(1− ε2β2)〈x, x′〉2

)
1〈x,x′〉2≤ε ≥ u

]
du

=

∫ ∞

0
Pr

[
〈x, x′〉2 ≤ ε and exp

( −n

2γ̂ε2
log(1− ε2β2)〈x, x′〉2

)
≥ u

]
du

=

∫ ∞

0
Pr
[
〈x, x′〉2 ≤ ε and 〈x, x′〉2 ≥ t

] −n

2γ̂ε2
log(1− ε2β2) exp

(
− n

2γ̂ε2
log(1− ε2β2)t

)
dt

=

∫ ε

0
Pr
[
〈x, x′〉2 ≥ t

] −n

2γ̂ε2
log(1− ε2β2) exp

(
− n

2γ̂ε2
log(1− ε2β2)t

)
dt

where t is defined by exp(− n
2γ̂ε2

log(1− ε2β2)t) = u. If ε is sufficiently small
we can apply the local Chernoff bound:

≤
∫ ε

0

−Cn

2γ̂ε2
log(1− ε2β2) exp

(
−nfX (

√
t)− n

2γ̂ε2
log(1− ε2β2)t

)
dt.

Using the identity
∫∞
0 n exp(−nαt) dt = 1/α (for α > 0), the above is

bounded provided we have ε > 0 and α > 0 such that

fX (
√
t) ≥ − 1

2γε2
log(1− ε2β2)t+ αt ∀t ∈ [0, ε).

Using the bound log t ≥ 1−1/t we have − 1
ε2

log(1−ε2β2) ≤ β2

1−ε2β2 and so it

is sufficient to show fX (
√
t) ≥

(
β2

2γ + η
)
t for all t ≤ ε, for some η > 0. But

this can be derived from (14) as follows. With γ > γ∗ we have γ∗fX (t) ≥
F (β, t) for all t ∈ (1, 0). Rewrite this as fX (

√
t) ≥ F (β,

√
t)/γ∗ and compute

limt→0
∂
∂tF (β,

√
t)/γ∗ = β2/2γ∗ > β2/2γ.
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APPENDIX L: COMPARISON OF PRIORS AND GENERAL CASE OF
WISHART LOWER BOUND

In the main text we have proven Theorem 5.7 in the special case that X
is supported on unit vectors. Here we extend the proof to the general case
where ‖x‖ → 1 in probability. The same argument also yields a result for
comparison of priors (Proposition L.1), similar to Proposition 3.13 for the
Gaussian Wigner model.

Suppose that X , β, γ∗ satisfy the assumptions of Theorem 5.7 and let
γ > γ∗. Our goal is to show Wish(γ, β,X ) ⊳ Wish(γ). Let δ > 0 and let
X̃ be the conditional distribution of x ∼ X given 1 − δ ≤ ‖x‖ ≤ 1 + δ.
Let M(γ, β, X̃ ) denote the conditional Wishart second moment defined in
Section 5.6. We will show that for δ small enough, M(γ, β, X̃ ) is bounded,
implying the desired result (via Lemma 2.4).

Let X be the distribution of x , x̃/‖x̃‖ with x̃ ∼ X̃ . The idea of the proof
is to show that the assumptions of Theorem 5.7 are satisfied for X so that
we can apply the basic (‖x‖ = 1) version of the theorem (which we have
already proven). Note that fX (t) , fX (t(1− δ)2) is a valid rate function for
X . This follows from

Pr[|〈x, x′〉| ≥ t] ≤ Pr[|〈x̃, x̃′〉| ≥ t(1− δ)2] ≤ c · Pr[|〈x, x′〉| ≥ t(1− δ)2]

where c = 1 + o(1). We can take the lower bound (in Definition 5.4) to
be bn,X = − 1

n log c + bn,X (t(1 − δ)2). If fX admits a local Chernoff bound
(condition (ii) of Theorem 5.7) then so does fX .

As in the proof for the ‖x‖ = 1 case, we treat the small and large de-
viations separately. The parameter α that separates the small (|α| ∈ [0, ε])
and large (|α| ∈ (ε, 1]) deviations is now defined with normalization: α ,

〈x, x′〉/(‖x‖ · ‖x′‖).

L.1. Small deviations. We have

E
x̃,x̃′∼X̃

(1−β2〈x̃, x̃′〉2)−N/2
1〈x̃,x̃′〉2/(‖x̃‖·‖x̃′‖)2≤ε ≤ E

x,x′∼X
(1−β2(1+δ)4〈x, x′〉2)−N/2

1〈x,x′〉2≤ε,

i.e. the small deviations of M(γ, β, X̃ ) are bounded by the small deviations
of M(γ, β(1 + δ)2,X ). Therefore it is sufficient to verify the conditions of
Theorem 5.7 for γ, β(1 + δ)2,X .

First we show that if condition (i) (β2/γ∗ ≤ (λ∗
X )

2) in Theorem 5.7 was
satisfied for γ, β,X then it is still satisfied for γ, β(1 + δ)2,X (provided we
allow an arbitrarily-small increase in γ∗). Since conditioning on a (1−o(1))-
probability event can only increase the Wigner second moment by a (1+o(1))
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factor, we have λ∗
X̃ ≥ λ∗

X . We also have

E
x,x′∼X

exp

(
nλ2

2
〈x, x′〉2

)
≤ E

x̃,x̃′∼X̃
exp

(
nλ2

2(1 − δ)2
〈x̃, x̃′〉2

)

and so λ∗
X ≥ (1− δ)λ∗

X̃ ≥ (1− δ)λ∗
X . Therefore by choosing δ small enough

we can find γ∗ with γ∗ < γ∗ < γ such that β2(1+δ)4/γ∗ ≤ (λ∗
X )

2 as desired.

Now we check that (14) is satisfied for γ, β(1+ δ)2,X . We are guaranteed
γ > γ∗ with

(16) γ∗fX (t) ≥ F (β, t) ∀t ∈ (0, 1).

Our goal is to show (for sufficiently small δ) γ > γ∗ with

(17) γ∗fX (t) ≥ F (β(1 + δ)2, t) ∀t ∈ (0, 1).

The proof of (17) follows from (16) by Lemmas J.1 and J.2. The first allows
us to replace fX by fX and the second allows us to increase β to β(1 + δ)2.
Each of these changes comes at the expensive of increasing γ∗ (to γ∗) by an
arbitrarily-small amount (which can be done such that γ > γ∗).

L.2. Large deviations. We now consider the contribution toM(γ, β, X̃ )
from |α| ∈ [ε, 1 − ε]. The contribution from |α| ∈ (1 − ε, 1] can be handled
similarly. We have

E
x̃,x̃′∼X̃

[1|α|∈[ε,1−ε] m̃(x̃, x̃′)]

where

m̃(x̃, x̃′) , E
Y∼Pn

(1 + β‖x̃‖2)−N/2(1 + β‖x̃′‖2)−N/2

exp

(
N

2

(
β

1 + β‖x̃‖2 x̃
⊤Y x̃+

β

1 + β‖x̃′‖2 x̃
′⊤Y x̃′

))
1Ω(x̃,Y )1Ω(x̃′,Y )

≤ E
Y∼Pn

(1 + β(1− δ)2)−N

exp

(
N

2

(
β‖x̃‖2

1 + β‖x̃‖2x
⊤Y x+

β‖x̃′‖2
1 + β‖x̃′‖2x

′⊤Y x′
))

1Ω(x̃,Y )1Ω(x̃′,Y )

where x = x̃/‖x̃‖ and x′ = x̃′/‖x̃′‖. Note that Ω(x̃, Y ) can be written as
x⊤Y x ∈ [(1 + β‖x̃‖2)(1 − δ), (1 + β‖x̃‖2)(1 + δ)]. We can upper bound the
resulting expression by replacing each instance of ‖x̃‖2 by either 1 + δ or
1 − δ. Since only x, x′ (and not x̃, x̃′) now appear, we have reduced to the
original case of the proof (since ‖x‖ = ‖x′‖ = 1) but with the β’s replaced
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by slightly different constants; carrying through the proof as before yields
the sufficient condition γ > γ∗ with γ∗fX (t) ≥ Fδ(β, t) ∀t ∈ [ε, 1 − ε] where
for each t, Fδ(β, t) → F (β, t) as δ → 0+. Since F,Fδ are continuous and
[ε, 1 − ε] is compact, the convergence Fδ(β, t) → F (β, t) is uniform over
t ∈ [ε, 1−ε]. Let γ∗ < γ̂∗ < γ∗ < γ. F (β, t) is positive and increasing in t for
t ∈ [ε, 1− ε] (see Appendix J), so provided δ is small enough, it is sufficient
to show γ̂∗fX (t) ≥ F (β, t) ∀t ∈ [ε, 1 − ε]. This follows from the assumption
γ∗fX (t) ≥ F (β, t) along with Lemma J.1. The proof of Theorem 5.7 in full
generality is now complete.

L.3. Comparison of similar priors. The same argument used above
implies the following which may be of independent interest.

Proposition L.1. Let X and Y be spike priors. Suppose that x ∼ Xn

and y ∼ Yn can be coupled such that y = αx where α = αn is a random
variable with αn → 1 in probability as n → ∞. Suppose that the conditions of
Theorem 5.7 are satisfied for X , β, γ∗. Then for any γ > γ∗, Wish(β, γ,Y)⊳
Wish(0).

Proof. The proof is similar to the arguments above so we only give a
sketch. We define modified priors X̃ , Ỹ ,X ,Y as above and note that X and
Y are the same. Since the conditions of Theorem 5.7 are satisfied for X , they
are also satisfied for X at the expense of an arbitrarily-small increase in γ∗.
We can then control the Wishart conditional second moment M(γ, β, Ỹ) by
comparison to X (i.e. Y).

APPENDIX M: MONOTONICITY OF WISHART LOWER BOUND

In this section we prove various properties of the condition (14), implying
certain monotonicity properties of the Wishart lower bound (Theorem 5.7).
Informally speaking, we will show the following.

• If the PCA threshold is optimal for some β ∈ (−1,∞)r {0}, it is also
optimal for all β > β (Proposition 5.8).

• If the PCA threshold is optimal for the Wigner model, it is also opti-
mal for the positively-spiked (β > 0) Wishart model (Corollary 5.9).
Conversely, if PCA is optimal for Wishart for all β > 0 then it is
optimal for Wigner (Proposition M.2).

• For any reasonable i.i.d. prior, if β is sufficiently large then the PCA
threshold is optimal (Proposition 5.10).

The statements above are informal; the true results we prove are of the
form e.g. “if our methods show a Wigner lower bound then they also show
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a Wishart lower bound.”

Proposition 5.8. Let X be a spike prior. Fix λ > 0 and β ∈ (−1,∞)r

{0}. If (14) holds for β and γ∗ = β
2
/λ2 then it also holds for any β > β

and γ∗ = β2/λ2.

Proof. The condition (14) takes the form γ∗fX (t) ≥ F (β, t) ∀t ∈ (0, 1).
With λ fixed and γ∗ = β2/λ2, this is equivalent to fX (t) ≥ λ2F (β, t)/β2 ∀t ∈
(0, 1). It is therefore sufficient to show the following lemma.

Lemma M.1. For any fixed t ∈ (0, 1), F (β, t)/β2 is a decreasing function
of β on the domain β ∈ (−1,∞). (When β = 0 we define F (β, t)/β2 by its
limit value.)

Proof. We wish to show that d
dβ

F (β,t)
β2 < 0. One computes that limt→0

d
dβ

F (β,t)
β2 =

0, so it suffices to show that ∂2

∂β ∂t
F (β,t)
β2 ≤ 0 for 0 < t < 1. We compute:

∂2

∂β ∂t

F (β, t)

β2
=

U1 − U2

β3 S t(1− t2)2
, where

S =
√

1 + t2(2 + 8β + 4β2) + t4, U1 = S(1 + 2(1 + β)t2 + t4) ≥ 0,

U2 = (1 + t2)(1 + t2(2 + 6β + 2β2) + t4) ≥ 0.

The denominator evidently has sign matching β, so it suffices to see that
the numerator has sign matching −β. As U1 ≥ 0 and U2 ≥ 0, the sign of
U1 − U2 will match that of U2

1 − U2
2 , and we compute:

U2
1 − U2

2 = −4β3(2 + β)t4(1− t2)2

which has sign matching that of −β, as desired.

Corollary 5.9. Suppose 〈x, x′〉 is (σ2/n)-subgaussian, where x and x′

are drawn independently from Xn. Then for any β > 0 and any γ > β2σ2

we have Wish(γ, β,X ) ⊳Wish(γ).

This connects the Wigner model to the Wishart model because the sub-
gaussian condition above implies a Wigner lower bound for all λ < 1/σ
(Proposition 3.8).

Proof. The subgaussian tail bound Pr[|〈x, x′〉| ≥ t] ≤ 2 exp(−nt2/2σ2)
implies that we have the rate function fX (t) = t2/2σ2.
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Let F (β, t) be defined as in (14). For any fixed t ∈ (0, 1), we have

(18) lim
β→0

F (β, t)

β2
=

t2

2(1 + t2)
.

This can be shown by computing the Taylor series of F (β, t) at β = 0. From
Lemma M.1 above, we know that F (β, t)/β2 is a decreasing function of β.
Therefore, for any t ∈ (0, 1) and any β > 0 we have

F (β, t)

β2
≤ t2

2(1 + t2)
≤ t2

2
.

By combining the above results it follows that (14) holds with γ∗ = β2σ2.
Proposition 3.8 implies that the Wigner threshold is λ∗

X ≥ 1/σ and so condi-
tion (i) of Theorem 5.7 is satisfied. The result now follows from Theorem 5.7.

We remark that (14) would follow from the weaker condition fX (t) ≥
t2

2σ2(1+t2)
(instead of fX (t) ≥ t2

2σ2 ). This is exactly the condition for the

Wigner lower bound of Perry, Wein and Bandeira (2016) with λ∗ = 1/σ.

Proposition M.2. Fix λ∗ > 0. Suppose that for each β > 0, the as-
sumptions of Theorem 5.7 are satisfied for X and γ∗ = β2/(λ∗)2. Then
GWig(λ,X ) ⊳GWig(0) for any λ < λ∗.

Proof. If condition (i) of Theorem 5.7 is satisfied for some β then we are
done immediately, so assume condition (ii) holds for all β > 0. For all β > 0
and all t ∈ (0, 1) we have γ∗fX (t) ≥ F (β, t), i.e. fX (t) ≥ (λ∗)2F (β, t)/β2. Us-

ing (18) this implies fX (t) ≥ (λ∗)2

2
t2

1+t2
and so the result follows from Perry,

Wein and Bandeira (2016). (Although Perry, Wein and Bandeira (2016) as-
sume that the spike has exactly unit norm, arguments similar to Appendix L
can be used.)

Proposition 5.10. Suppose X = iid(π/
√
n) where π is a mean-zero

unit-variance distribution for which ππ′ (product of two independent copies
of π) has a moment-generating function M(θ) , E exp(θππ′) which is finite
on an open interval containing zero. Then there exists β such that for any
β ≥ β and any γ > β2 we have Wish(γ, β,X ) ⊳Wish(γ).

In other words, for sufficiently large β, detection is impossible below the
spectral threshold.

Proof. We will show that for sufficiently large β, the assumptions of
Theorem 5.7 hold with γ∗ = β2 so that the result follows. The usual Chernoff
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bound yields

Pr[〈x, x′〉 ≥ t] ≤ exp[−n(tθ − logM(θ))] ∀θ ∈ R

and so, letting θ = t,

Pr[〈x, x′〉 ≥ t] ≤ exp[−n(t2 − logM(t))].

Similarly,
Pr[〈x, x′〉 ≤ −t] ≤ exp[−n(t2 − logM(−t))].

Therefore, fX (t) , min{f1(t), f2(t)} is a valid rate function for X with a
local Chernoff bound, where f1(t) , t2−logM(t) and f2(t) , t2−logM(−t).
It remains to show that for sufficiently large β, (14) holds with γ∗ = β2, i.e.
fX (t) ≥ F (β, t)/β2 ∀t ∈ (0, 1). We will show

(19) f1(t) ≥ F (β, t)/β2 ∀t ∈ (0, 1)

but the proof for f2 is similar.
First we show that (19) holds for t ∈ (0, ε] for some ε > 0. Using the well-

known identity dk

dθk
M(θ)|θ=0 = E[(ππ′)k] we have derivatives M(0) = 0,

M ′(0) = 0, M ′′(0) = 1, |M ′′′(0)| < ∞, |M ′′′′(0)| < ∞. We can use these to
compute f1(0) = 0, limt→0+ f ′

1(t) = 0, limt→0+ f ′′
1 (t) = 1, limt→0+ f ′′′

1 (t) = 0,
| limt→0+ f ′′′′

1 (t)| < ∞. We can also compute F (β, 0)/β2 = 0, limt→0+
∂
∂tF (β, t)/β2 =

0, limt→0+
∂2

∂t2
F (β, t)/β2 = 1, limt→0+

∂3

∂t3
F (β, t)/β2 = 0, limt→0+

∂4

∂t4
F (β, t)/β2 =

−6(b2 + 4b + 2). Note that f1(t) and F (β, t)/β2 have matching derivatives
(at t = 0) up to third order and that the fourth derivative of F (β, t)/β2

goes to −∞ as β → ∞. Therefore we can find β and ε > 0 such that
f1(t) ≥ F (β, t)/β2 for all t ∈ (0, ε]. Since F (β, t)/β2 is a decreasing function
of β (Lemma M.1), this remains true for any larger β.

Now we show that (19) holds for t ∈ (ε, 1). For any t ∈ (ε, 1) we have
f1(t) ≥ f1(ε) > 0 (using the derivatives above and the fact that rate func-
tions are increasing). Also, for any t ∈ [0, 1] we have limβ→∞ F (β, t)/β2 = 0
and by compactness this convergence is uniform over t. Therefore if β is
sufficiently large, (19) holds for t ∈ (ε, 1), completing the proof.

APPENDIX N: WISHART RESULTS FOR SPECIFIC PRIORS

N.1. Spherical prior. Our lower bound for the spherical prior is ob-
tained by combining Theorem 5.7 with the rate function of Proposition 5.5,
along with the fact that λ∗

X = 1 for the spherical prior (Corollary 3.14).
The result is that the PCA threshold is optimal (i.e. we have contiguity for
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all γ > β2) for all β ∈ (−1,∞). To show this, we need to check (14) with
γ∗ = β2. This follows from limβ→−1+ F (β, t)/β2 = −1

2 log(1 − t2) (which is
precisely the spherical rate function of Proposition 5.5) along with the fact
that F (β, t)/β2 is a decreasing function of β (Lemma M.1).

N.2. Rademacher prior. Our lower bound for the Rademacher prior
is obtained by combining Theorem 5.7 with the rate function of Proposi-
tion 5.5, along with the fact that λ∗

X = 1 for the Rademacher prior (Corol-
lary 3.12). We also obtain an upper bound from Theorem 5.3, taking c = 2.

N.3. Sparse Rademacher prior. First consider the variant of the
sparse Rademacher prior where the spike has exactly ρn nonzero entries,
which are i.i.d. ±1/

√
ρn (and we restrict to n for which ρn is an integer).

In this case the rate function fρ stated in Proposition 5.5 has been proven
to be valid, and furthermore to admit a local Chernoff bound (Perry, Wein
and Bandeira, 2016). This yields a lower bound via Theorem 5.7. We show
that the same lower bound holds for the i.i.d. sparse Rademacher prior:

Proposition N.1. Let Xρ be the i.i.d. sparse Rademacher prior with
sparsity ρ (as defined in Section 3.7). Let fρ be the rate function defined in
Proposition 5.5. Let F (β, t) be defined as in (14). If

(20) γ∗fρ(t) ≥ F (β, t) ∀t ∈ (0, 1)

then Wish(γ, β,Xρ)⊳Wish(γ) for all γ > γ∗

In proving this we will not quite show that fρ is a rate function for Xρ (but
we will show that something arbitrarily-close is).

Proof. First we prove the result for the variant X ρ of the sparse Rademacher
prior where the number K of nonzeros satisfies K/n → ρ in probability,
and the nonzero entries are i.i.d. ±1/

√
K. Suppose we have some γ∗, β, ρ for

which (20) holds. At the expense of increasing γ∗ by an arbitrarily-small con-
stant, we can find a small compact interval [ρ1, ρ2] with ρ in its interior such
that (20) holds on the entire interval. Condition on the (1−o(1))-probability
event that K/n lies in this interval. The function f(t) = minρ̂∈[ρ1,ρ2] fρ̂(t) is a
valid rate function for X ρ and furthermore has a local Chernoff bound. This
follows from the sparse Rademacher tail bounds of Perry, Wein and Ban-
deira (2016) (Propositions 4.8 and 4.9 of Perry, Wein and Bandeira (2016)).
The proof for X now follows from Theorem 5.7 because f satisfies (14). The
same lower bound holds for Xρ by Proposition L.1 (comparison of priors).
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For the upper bound, we will apply Theorem 5.3. However, instead of
Xρ we consider the conditional distribution X̃ρ of Xρ given the (1 − o(1))-
probability event that the number K of nonzero entries of x satisfies ρn −√
n log n < K < ρn+

√
n log n. The support size of X̃ρ is at most

2
√
n log n · 2(ρ+o(1))n

(
n

(ρ± o(1))n

)
.

By Stirling’s approximation, log
(
n
ρn

)
= nH(ρ)+o(n) whereH(ρ) = −ρ log ρ−

(1− ρ) log(1− ρ) is the binary entropy. We can therefore apply Theorem 5.3
with any c > 2ρ exp(H(ρ)).
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