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Safe Reinforcement Learning with Model Uncertainty Estimates

Björn Lütjens, Michael Everett, Jonathan P. How

Abstract— Many current autonomous systems are being de-
signed with a strong reliance on black box predictions from
deep neural networks (DNNs). However, DNNs tend to be
overconfident in predictions on unseen data and can give
unpredictable results for far-from-distribution test data. The
importance of predictions that are robust to this distributional
shift is evident for safety-critical applications, such as collision
avoidance around pedestrians. Measures of model uncertainty
can be used to identify unseen data, but the state-of-the-
art extraction methods such as Bayesian neural networks
are mostly intractable to compute. This paper uses MC-
Dropout and Bootstrapping to give computationally tractable
and parallelizable uncertainty estimates. The methods are
embedded in a Safe Reinforcement Learning framework to form
uncertainty-aware navigation around pedestrians. The result is
a collision avoidance policy that knows what it does not know
and cautiously avoids pedestrians that exhibit unseen behavior.
The policy is demonstrated in simulation to be more robust to
novel observations and take safer actions than an uncertainty-
unaware baseline.

I. INTRODUCTION

Reinforcement learning (RL) is used to produce state-
of-the-art results in manipulation, motion planning and
behavior prediction. However, the underlying neural networks
often lack the capability to produce qualitative predictive
uncertainty estimates and tend to be overconfident on out-
of-distribution test data [1]–[3]. In safety-critical tasks, such
as collision avoidance of cars or pedestrians, incorrect but
confident predictions of unseen data can lead to fatal failure
[4]. We investigate methods for Safe RL that are robust to
unseen observations and know what they do not know to be
able to raise an alarm in unpredictable test cases; ultimately
leading to safer actions.

A particularly challenging safety-critical task is avoiding
pedestrians in a campus environment with an autonomous
shuttle bus or rover [5], [6]. Humans achieve mostly collision-
free navigation by understanding the hidden intentions of other
pedestrians and vehicles and interacting with them [7], [8].
Furthermore, most of the time this interaction is accomplished
without verbal communication. Our prior work uses RL to
capture the hidden intentions and achieve collaborative navi-
gation around pedestrians [9]–[11]. However, RL approaches
always face the problem of generalizability from simulation
to the real world and cannot guarantee performance on far-
from-training test data. An example policy that has only been
trained on collaborative pedestrians could fail to generalize
to uncollaborative pedestrians in the real world, as seen
in Section I. The trained policy would output a best guess
policy that might assume collaborative behavior and, without
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Fig. 1: An autonomous vehicle observes a novel dynamic obstacle
that has never appeared during training, for example, an uncollabo-
rative pedestrian on a personal vehicle. The proposed Reinforcement
Learning framework detects the novelty and takes an action that
cautiously avoids the pedestrian.

labeling the novel observation, fail ungracefully. To avoid such
failure cases, this paper develops a Safe RL framework for
dynamic collision avoidance that expresses novel observations
in the form of model uncertainty. The framework further
reasons about the uncertainty and cautiously avoids regions
of high uncertainty, as displayed in Fig. 6.

Much of the existing Safe RL research has focused on
using external novelty detectors or internal modifications to
identify environment or model uncertainty [12]. Note that
our work targets model uncertainty estimates because they
potentially reveal sections of the test data where training data
was sparse and a model could fail to generalize [13]. Work
in risk-sensitive RL (RSRL) often focuses on environment
uncertainty to detect and avoid high-risk events that are known
from training to have low probability but high cost [14]–[18].
Other work in RSRL targets model uncertainty in MDPs, but
does not readily apply to neural networks [15], [19]. Our
work is mainly orthogonal to risk-sensitive RL approaches
and could be combined into an RL policy that is robust to
unseen data and sensitive to high-risk events.

Extracting model uncertainty from discriminatively trained
neural networks is complex, as the model outcome for a
given observation is deterministic. Mostly, Bayesian neural
networks are used to extract model uncertainty but require
a significant restructuring of the network architecture [20].
Additionally, even approximate forms, such as Markov Chain
Monte Carlo [20] or variational methods [21]–[23], come with
extensive computational cost and have a sample-dependent
accuracy [2], [20], [24]. Our work uses Monte Carlo Dropout
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(MC-Dropout) [25] and bootstrapping [26] to give paralleliz-
able and computationally feasible uncertainty estimates of the
neural network without significantly restructuring the network
architecture [27], [28].

The main contributions of this work are i) an algorithm
that identifies novel pedestrian observations and ii) avoids
them more cautiously and safer than an uncertainty-unaware
baseline, iii) an extension of an existing uncertainty-aware
reinforcement learning framework [29] to more complex
dynamic environments with exploration aiding methods, and
iv) a demonstration in a simulation environment.

II. RELATED WORK

This section investigates related work in Safe Reinforce-
ment Learning to develop a dynamic collision avoidance
policy that is robust to out-of-data observations.

A. External verification and novelty detection

Many related works use off-policy evaluation or external
novelty detection to verify the learned RL policy [12],
[30], [31]. Reachability analysis could verify the policy by
providing regional safety bounds, but the bounds would be too
conservative in a collaborative pedestrian environment [32]–
[35]. Novelty detection approaches place a threshold on the
detector’s novelty output and switch to a safety controller if
the threshold is exceeded [30]. However, switching to safety
controllers is often abrupt and can generate uncomfortable,
and unpredictable driving behavior. In our framework, the
vehicle stays away from uncertain regions, as seen in Fig. 3,
to predictively avoid interventions by an underlying safety
controller.

B. Environment and model uncertainty

This paper focuses on detecting novel observations via
model uncertainty, also known as parametric or epistemic
uncertainty [36]. The orthogonal concept of environment un-
certainty captures the uncertainty due to the imperfect nature
of partial observations [13]. For example, an observation of
a pedestrian trajectory will, even with infinite training in the
real-world, not fully capture the decision-making process of
pedestrians and thus be occasionally ambiguous; will she turn
left or right? The RL framework accounts for the unobservable
decision ambiguity by learning a mean outcome [13]. Model
uncertainty, in comparison, captures how well a model fits
all possible observations from the environment. It could be
explained away with infinite observations and is typically
high in applications with limited training data, or with test
data that is far from the training data [13]. Thus, the model
uncertainty captures cases in which a model fails to generalize
to novel test data and hints when one should not trust the
network predictions [13].

C. Measures of model uncertainty

A new research topic adapts neural networks to express
their model uncertainty [21], [25], [26]. Bootstrapping has
been explored to generate approximate uncertainty measures
to guide exploration [26]. By training an ensemble of networks

Fig. 2: System architecture. An agent observes the environment
and selects minimal cost motion primitives u∗ to reach a goal
while avoiding collisions. On each time step, an ensemble of LSTM
networks is sampled multiple times with different dropout masks to
acquire a sample mean and variance collision probability for each
motion primitive u.

on partially overlapping dataset samples they agree in areas of
common data and disagree, and have a large sample variance,
in regions of uncommon data [2], [26]. Dropout can be
interpreted similarly, if it is activated during test-time, and has
been shown to approximate Bayesian inference in Gaussian
processes [25], [27]. An alternative approach uses a Hypernet,
a network that learns the weights of another network to
directly give parameter uncertainty values, but was shown
to be computationally very expensive [37]. An innovative,
but controversial, approach retrieves Bayesian uncertainty
estimates via batch normalization [38]. This work uses MC-
Dropout and bootstrapping to give computationally tractable
uncertainty estimates.

D. Applications of model uncertainty in RL

Measures of model uncertainty have been used in RL
very recently to speed up training by guiding the exploration
into regions of high uncertainty [26], [39], [40]. Kahn et
al. used uncertainty estimates in model-based RL for static
obstacle collision avoidance [29]. Instead of a model-based RL
approach, one could argue to use model-free RL and draw the
uncertainty of an optimal policy output π∗ = argmaxπ(Q).
However, the uncertainty estimate would contain a mix from
the uncertainties of multiple objectives and would not focus
on the uncertain region of collision. Our work extends the
model-based framework by [29] to the highly complex domain
of pedestrian collision avoidance. [29] is further extended
by using the uncertainty estimates for guided exploration
to escape locally optimal policies, analyzing the regional
increase of uncertainty in novel dynamic scenarios, using
LSTMs, and acting goal-guided.

III. APPROACH

This work proposes an algorithm that uses uncertainty
information to cautiously avoid dynamic obstacles in novel
scenarios. As displayed in the system architecture in Fig. 2,
an agent observes a simulated obstacle’s position and velocity,
and the goal. A set of Long-Short-Term-Memory (LSTM) [41]



networks predicts collision probabilities for a set of motion
primitives u. MC-Dropout and bootstrapping are used to ac-
quire a distribution over the predictions. From the predictions,
a sample mean E(Pcoll) and variance Var(Pcoll) is drawn for
each motion primitive. In parallel, a simple model estimates
the time to goal tgoal at the end of each evaluated motion
primitive. In the next stage, the minimal cost motion primitive
u∗ is selected and executed for one step in the environment.
The environment returns the next observation and at the end
of an episode a collision label. After a set of episodes, the
network weights W are adapted and the training process
continues. Each section of the algorithm is explained in detail
below.

A. Collision Prediction Network

A set of LSTM networks (ensemble) predicts the collision
probabilities of motion primitives. Each forward pass i of
a network returns the collision probability of an evaluated
motion primitive:

Picoll = Pi (1coll = 1|ot−l:t−1, ot, ut−l:t−1, ut:t+h)

where 1coll is a collision label; ot−l:t−1 is the history of
observations in the last l time steps; ot is the current
observation; ut−l:t−1 is a concatenation of past actions; and
ut:t+h is the evaluated motion primitive of length h. The RL
agent operates in a partially observable environment where it
can only observe the pedestrian’s position, velocity, and radius.
The observation further contains the relative goal position
of the RL agent. The motion primitive ut:t+h is element of
a precomputed set of motion primitives U . In this work, U
contains 11 discrete motion primitives of length h = 1 which
are described by a heading angle α ∈ [−π6 ,

π
6 ]. Regardless

of the length, the optimal motion primitive is taken for one
time step until the network is queried again.

LSTM networks are chosen for the dynamic obstacle
avoidance, because they are the state-of-the-art model in
predicting pedestrian paths by understanding the hidden
temporal intentions of pedestrians best [42], [43]. Based
on this success, the proposed work first applies LSTMs to
pedestrian avoidance in an RL setting. For safe avoidance,
LSTM predictions need to be accurate from the first time
step a pedestrian is observed in the robot’s field of view. To
handle the variable length observation input, masking [44] is
used during training and test to deactivate LSTM cells that
exceed the length of the observation history.

B. Uncertainty Estimates with MC-Dropout and Bootstrap-
ping

MC-Dropout [25] and bootstrapping [2], [26] are used
to compute stochastic estimates of the model uncertainty
Var(Pcoll). For bootstrapping, multiple networks are trained
and stored in an ensemble. Each network is randomly
initialized and trained on sample datasets that have been
drawn with replacement from a bigger experience dataset [26].
By being trained on different but overlapping sections
of the observation space, the network predictions differ
for uncommon observations and are similar for common

observations. As each network can be trained and tested
in parallel, bootstrapping does not come with significant
computational cost and can be run on a real robot.

Dropout [27] is traditionally used for regularizing networks.
It randomly deactivates network units in each forward pass
by multiplying the unit weights with a dropout mask. The
dropout mask is a set of Bernoulli random variables of value
[0, 1], each with a keeping probability p. Traditionally, dropout
is deactivated during test and each unit is multiplied with
p. However, [25] has shown that an activation of dropout
during test, named MC-Dropout, gives model uncertainty
estimates by approximating Bayesian inference in deep
Gaussian processes. To retrieve the model uncertainty with
dropout, our work executes multiple forward passes per
network in the bootstrapped ensemble with different dropout
masks (p = 0.7) and acquires a distribution over predictions.
For nd dropout samples in nb networks, a total of N = ndnb
forward passes are sampled. Although dropout has been seen
to be overconfident on novel observations [26], Table I shows
that the combination of bootstrapping and dropout reliably
detects novel scenarios.

From the parallelizable collision predictions from each
network and each dropout mask, the sample mean and
variance is drawn.

C. Selecting actions

A Model Predictive Controller (MPC) selects the safest
motion primitive with the minimal joint cost:

u?t:t+h = argmin
u∈U

(
λvVarN (Picoll)+ λcEN (Picoll) + λgtgoal

)
The chosen MPC that considers the second order moment
of probability [29], [45], [46] is able to select actions that
are more certainly safe. The first and second order moment
(E(·) and Var(·)) are computed over the N forward passes
per motion primitive. The MPC estimates the time-to-goal
tgoal from the end of each motion primitive by measuring
the straight line distance. Each cost term is weighted by
its own factor λ. Note that the soft constraint on collision
avoidance requires λg and λc to be chosen such that the
predicted collision cost λcEN (Picoll)(≤ λc) is greater than
the goal cost λgtgoal. In comparison to [29], this work does
not multiply the variance term with the selected velocity. The
reason being is that simply stopping or reducing one’s velocity
is not always safe, for example on a highway scenario or in
the presence of adversarial agents. The proposed work instead
focuses on identifying and avoiding uncertain observations
regionally in the ground plane.

D. Adaptive variance

Note that during training an overly uncertainty-averse
model would discourage exploration and rarely find the
optimal policy. Additionally, the averaging over multiple
forward passes during prediction reduces the ensemble’s
diversity, which additionally hinders explorative actions. The
proposed approach increases the penalty on highly uncertain
actions λv over time to overcome this effect. Thus, the policy
efficiently explores in directions of high model uncertainty



during early training phases; λv is brought to convergence to
act uncertainty-averse during execution. This work linearly
increases λv in [−50000, 200] and has λg = 2, and λc = 25.

E. Collecting the dataset

The selected action is executed in the learning environment.
At the end of each episode tend, the environment returns a
collision label 1coll. The collision label is one if a collision
occured during the episode and zero otherwise. The history
of observations otstart:tend and actions utstart:tend from start
to end of an episode is associated with the collision label
and stored in an experience dataset. After running several
episodes, random subsets from the full experience set are
drawn to train the ensemble of networks for the next observe-
act-train cycle. The policy roll-out cycle is necessary to
learn how dynamic obstacles will react to the agent’s learned
policy. A supervised learning approach, as taken in [30] for
static obstacle avoidance, would not learn the reactions of
environment agents on the trained policy.

IV. RESULTS

We show that our algorithm uses uncertainty information
to regionally detect novel obstacle observations and causes
fewer collisions than an uncertainty-unaware baseline. First, a
simple 1D case illustrates how the model regionally identifies
novel obstacle observations. In a scaled up environment with
novel multi-dimensional observations, the proposed model
continues to exhibit regionally increased uncertainty values.
The model is compared with an uncertainty-unaware baseline
in a variety of novel scenarios; the proposed model performs
more robust to novel data and causes fewer collisions.

A. Regional novelty detection in 1D

First, we show that model uncertainty estimates are able to
detect novel one-dimensional observations regionally, as seen
in Fig. 3. For the 1D test-case, a two-layer fully-connected
network with MC-Dropout and Bootstrapping is trained to
predict collision labels. To generate the dataset, an agent
randomly chose heading actions, independent of the obstacle
observations, and the environment reported the collision label.
The network input is the agent heading angle and obstacle
heading. Importantly, the training set only contains obstacles
that are on the right-hand side of the agent (top plot:x > 0).

After training, the network accurately predicts collision
and no-collision labels with low uncertainty for obstacle
observations from the training distribution, as seen in Fig. 3a.
For out-of-training obstacle observations on the agent’s left
(bottom plot: x < 0), the neural network fails to generalize
and predicts collision (red) as well as non-collision (green)
labels for actions (straight lines) that would collide with the
obstacle (blue). However, the agent identifies regions of high
model uncertainty (left: y-axis, right: light colors) for actions
in the direction of the unseen obstacle. The high uncertainty
values suggest that the network predictions are false-positives
and should not to be trusted. Based on the left-right difference
in uncertainty estimates, the MPC would prefer a conservative
action that is certainly safe (bottom-right: dark green lines)

(a) Known obstacle: low uncertainty

(b) Novel obstacle: high uncertainty

Fig. 3: Regional novelty detection in 1D. A simple network
predicts collision (red) and no-collision (green) labels, given the
agent’s (orange) heading (left plot: x-axis) and a one-dimensional
observation of an obstacle (blue) heading. The network accurately
predicts labels with low uncertainty, when tested on the training
dataset (a) . When tested on a novel observation set (b), the networks
fails to predict accurate decision labels, but identifies them with
a high regional uncertainty (bottom-left: green points with high
values, bottom-right: light green lines). Rather than believing in the
false-positive collision predictions, Figure 4 depicts how an agent
would take a certainly safe action (dark green) to cautiously avoid
the novel obstacle.

(a) Known obstacle, confident (b) Novel obstacle, cautious

Fig. 4: Cautious avoidance after regional novelty detection. An agent
(orange) in Fig. 4a uses the uncertainty estimates from Fig. 3a to
avoid a known obstacle (blue) confidently close. In Fig. 4b, an agent
recognizes a novel obstacle appearance, as seen in Fig. 3b, and
cautiously avoids the obstacle.

over a false-positive action that is predicted to be safe but
uncertain (bottom-right: light green lines). Figure 4 illustrates
how the MPC chooses a conservative action to avoid a novel
obstacle and confident actions to avoid known obstacles.

B. Novelty detection in multi-dimensional observations

The following experiments show that our model contin-
ues to regionally identify uncertainty in multi-dimensional
observations and choose safer actions.

1) Experiment setup: A one-layer 16-unit LSTM model has
been trained in a gym [47] based simulation environment with
one agent and one dynamic obstacle. The dynamic obstacle
in the environment is capable of following a collaborative
RVO [48], GA3C-CADRL [11], or non-cooperative or static
policy. For the analyzed scenarios, the agent was trained



Fig. 5: Regional identification of uncertainty. An uncertainty-aware
agent (orange) avoids a dynamic obstacle (blue) that is observed
with noise. At one time step, collision predictions for actions in the
direction of the obstacle (light green lines) are assigned a higher
uncertainty than for actions in free space (dark green lines). The
agent selects an action with low uncertainty to cautiously avoid the
obstacle.

with obstacles that follow an RVO policy and are observed
as described in Section III. The training process took 20
minutes on a low-compute amazon AWS c5.large Intel Xeon
Platinum 8124M with 2vCPUs and 4GiB memory. Each of
the used five networks in the ensemble is sampled twenty
times by stochastic MC-Dropout forward passes. Drawing in
total one hundred samples per step takes in average 32ms.
The train and execution time could be further decreased by
parallelizing the computation on GPUs.

In the test setup, observations of obstacles are manipulated
to create scenarios with novel observations that could break
the trained model. In one scenario, sensor noise is simulated
by adding Gaussian noise ∼N(µ = 0, σ = .5) on the obser-
vation of position in m and velocity in m

s . In another scenario,
observations are randomly dropped with a probability of 20%.
In a third and fourth scenario that simulate sensor failure, the
obstacle position and velocity is masked, respectively. None
of the manipulations were applied at training time.

2) Regional novelty detection: Figure 5 shows that the
proposed model continues to regionally identify novel obstacle
observations in a higher dimensional observation space. In
the displayed experiment, an uncertainty-aware agent (orange)
observes a dynamic obstacle (blue) with newly added noise
and evaluates actions to avoid it. The collision predictions
for actions in the direction of the obstacle (light green lines)
have higher uncertainty than for actions into free-space (dark
green lines). The difference in the predictive uncertainties
from left to right, although being stochastic and not perfectly
smooth, is used by the MPC to steer the agent away from
the noisy obstacle and cautiously avoid it without a collision
(orange/yellow line). Figure 6b shows the full trajectory of
the uncertainty-aware agent and illustrates how an uncertainty-
unaware agent in Fig. 6a with same speed and radius fails to
generalize to the novel noise and collides with the obstacle
after five time steps.

3) Novel scenario identification with uncertainty: Table I
shows that overall model uncertainty is high in every of the
tested novel scenarios, including the illustrated case of added
noise. The measured uncertainty is the sum of variance of
the collision predictions for each action at one time step. The

(a) uncertainty-unaware (b) uncertainty-aware

Fig. 6: Cautious avoidance in novel scenarios. An agent (orange)
is trained to avoid dynamic RVO agents (blue) that are observed
without noise. On test, Gaussian noise is added to the observation
and an uncertainty-unaware model in Fig. 6a fails to generalize and
causes a collision. The proposed uncertainty-aware agent in Fig. 6b
acts more cautiously on novel observations and avoids the obstacle
successfully.

Fig. 7: Fewer collisions in novel cases. The proposed uncertainty-
aware model (red) causes fewer collisions than the uncertainty-
unaware baseline (blue) in novel cases. Through the regional increase
of uncertainty in the obstacle’s direction, the model prefers actions
that more cautiously avoids the obstacle than the baseline.

uncertainty values have been averaged over 20 sessions with
random initialization, 50 episodes and all time steps until the
end of each episode. As seen in Table I the uncertainty in a
test set of the training distribution is relatively low. All other
scenarios cause higher uncertainty values and the relative
magnitude of the uncertainty values can be interpreted as how
novel the set of observations is for the model, in comparison
to the training case.

4) Fewer collisions in novel scenarios: The proposed
model uses the uncertainty information to act more cautiously
and be more robust to novel scenarios. Figure 7 shows
that this behavior causes fewer collisions during the novel
scenarios than an uncertainty-unaware baseline. The proposed
model (red) and the baseline (blue) perform similarly well on
samples from the training distribution. In the test scenarios
of added noise, masked position and masked velocity infor-
mation, the proposed model causes fewer collisions and is
more robust to the novel class of observations. In the case of
dropped observations, both models perform similarly well, in
terms of collisions, but the uncertainty-unaware model was
seen to take longer to reach the goal. The baseline model has
been trained with the same hyperparameters and environment
except that the variance penalty λv is set to zero.



Training Added noise Dropped observations Masked vel. info. Masked pos. info.

E(Var(Pcoll)) 0.363 0.820 1.93 1.37 2.41
σ(Var(Pcoll)) 0.0330 0.0915 0.134 0.0693 0.0643

TABLE I: Increased uncertainty in novel scenarios. In each of four novel test scenarios, the uncertainty of collision predictions V ar(Pcoll)
is higher than on samples from the seen training distribution.

5) Generalization to other novel scenarios: In all demon-
strated cases one could have found a model that generalizes
to noise, masked position observations, etc. However, one
cannot design a simulation that captures all novel scenarios
that could occur in real life. A significantly novel event should
be recognized with a high model uncertainty. In the pedestrian
avoidance task, novel observations might be uncommon
pedestrian behavior, e.g. an uncollaborative pedestrian on a
personal vehicle. But really all forms of observations that are
novel to the deployed model should be identified and reacted
upon by driving more cautiously. The shown results suggest
that model uncertainty is able to identify such observations
and that the MPC selects actions with extra buffer space to
avoid these pedestrians cautiously.

C. Using uncertainty to escape local minima

This work increases the variance penalty λv to avoid
getting stuck in local minima of the MPC optimization
during the training process. Figure 8 shows that the proposed
algorithm with increasing λv can escape a local minimum
by encouraging explorative actions in the early stages of
training. For the experiment, an agent (orange) was trained
to reach a goal (star) that is blocked by a static obstacle
(blue) by continuously selecting an action (left plot). In an
easy avoidance case, the obstacle is placed further away from
the agent’s start position (in dark orange); in a challenging
case closer to the agent. A close obstacle is challenging, as
the agent is initially headed into the obstacle direction and
needs to explore avoiding actions. The collision estimates
of the randomly initialized networks are uninformative in
early training stages and the goal cost drives the agent into
the obstacle. A negative variance penalty λv in early stages
forces the agent to explore actions away from the goal and
avoid getting stuck in a local minimum.

Figure 8 displays that, in the challenging training case, the
agent with a constant λv fails to explore and the algorithm
gets stuck in a bad local minimum (bottom-right plot: blue),
where 80% of the runs end in a collision. The policy with an
increasing λv, and the same hyperparameters (bottom-right
plot: red), is more explorative in early stages and converges
to a lower minimum in an average of five sessions. In the
easy test case, both algorithms perform similarly well and
converge to a policy with near-zero collisions (top-right plot).

V. DISCUSSION AND FUTURE WORK

A. Accurately calibrated model uncertainty estimates

In another novel scenario, an agent was trained to avoid
collaborative RVO agents and tested on uncollaborative agents.
The uncertainty values did not significantly increase, which

Fig. 8: Escaping local minima. The training process of two policies
with a constant penalty on uncertain actions λv(blue) and with
an increasing λv(red) are compared. In an easy avoidance case
(right-top), both policies find a good policy that leads to near-zero
collisions (y-axis). In a more challenging avoidance case (right-
bottom), the proposed increasing λv policy, that explores in early
stages, finds a better minimum than with a constant λv .

can be explained by two reasons. First, uncollaborative agents
could not be seen as novel for the model; possibly, because
RVO agents, further away from the agent also act in a straight
line. The fact that humans think that uncollaborative agents
might be novel for a model that has only been trained on
collaborative agents, does not change the fact that the model
might be generalizable enough to not see it as novel. Another
explanation is the observed overconfidence of dropout as
an uncertainty estimate. Future work will find unrevealed
estimates of model uncertainty for neural networks that
provide stronger guarantees on the true model uncertainty.

VI. CONCLUSION

This work has developed a Safe RL framework with model
uncertainty estimates to cautiously avoid dynamic obstacles
in novel scenarios. An ensemble of LSTM networks was
trained with dropout and bootstrapping to estimate collision
probabilities and gain predictive uncertainty estimates. The
magnitude of the uncertainty estimates was shown to reveal
novelties in a variety of scenarios, indicating that the model
knows what it does not know. The regional uncertainty
increase in the direction of novel obstacle observations is
used by an MPC to act more cautious in novel scenarios.
The cautious behavior made the uncertainty-aware framework
more robust to novelties and safer than an uncertainty-unaware
baseline. This work is another step towards opening up the
vast capabilities of deep neural networks for the application
in safety-critical tasks.
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