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ABSTRACT

The generalized likelihood ratio (GLR) technique has been
suggested for detecting failures in linear dynamical systems.
This thesis reports a study of this technique in an effort to
provide a framework in which one can systematically study the
various tradeoffs involved in the design of GLR failure detection
systems. Some performance indices are defined. Important ques-
tions related to the performance of the detection scheme such as
the detectability and distinguishability of failures are examined.
Possible modification of the original. scheme for improved per-
formance is also considered..
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CHAPTER 1

Introduction

1.1 Motivation

Many aspects of recent developments of systems theory are con-

cerned with the improvement of the performance of control systems. One

such concern is the detection of abrupt changes in dynamical systems.

Examples of abrupt changes are actuator or sensor failures in an air-

craft and sudden changes in the rhythm of cardiac activities as measured

on an electrocardiagram [6]. For simplicity, all such abrupt changes

will be termed as "failures" even though a physical failure may not be

the cause of the abrupt change. The detection of failures may be

viewed as consisting of three tasks: set off an alarm when a failure

develops, then isolate the failure type, and estimate the extent of the

failure.

Most of the failure detection analysis has been performed in the

context of a state space description of a linear dynamical system as

follows:

State Equation:

x(k+l) = D(k)x(k) + B(k)u(k) + w(k) (1-1)

Sensor Equation:

z(k) = H(k)x(k) + J(k)u(k) + v(k) (1-2)

where u is a known input, w and v are independent, zero mean, white
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gaussian random sequences with covariances:

E{x(j)w'(k)} = Q6jk ; E{v(j)v'(k)} = R6jk (1-3)

where 6jk is the Kronecker delta.

Abrupt changes of the system may appear in (1-1) ("actuator

failure") or in (1-2) ("sensor failures"). Actuator failures may take

the form of a shift in the control gain matrix B, a bias on the right

hand side (RHS) of (1-1) or a change in the process noise, correspond-

ing, for example, to the failure of the actuator or control surfaces on

an aircraft, a leak in the thruster of a space vehicle and a sudden

shift in wind conditions (in an aircraft control situation) respec-

tively. In these cases, an accurate knowledge of the failure is clearly

vital (assuming there is a re-organizational procedure to compensate

for the failure), as an undetected failure could easily lead to the

loss of the vehicle. Changes in sensor noise and the H and J matrices

are examples of sensor failures. These are the causes of erroneous

state estimates and produce very undesirable effects in a feedback

control system that utilizes these sensor outputs in the feedback loop.

Recent studies have provided different approaches to the problem

of detecting failures. The "failure sensitive" filter developed by

Beard [1] and Jones [2], the voting system studied by Broen [3] and

the multiple hypotheses filters employed by Gustafson, Willsky and

Wang in the classification of rhythms and detecting rhythm shifts in

electrocardiagram [6] are examples of some failure detection schemes.

Very often, the tradeoffs among the various approaches are detector
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complexity vs. detector sensitivity and detector sensitivity vs. detec-

tor false alarm rate. Hence the applicability of the different schemes-

depends on the particular situation and the performance criteria under

consideration. With the decreasing cost of digital hardward and in-

creasing availabiltiy of computers, many of these detection methods are

becoming feasible for on-line implementation.

In [4], [5], Willsky and Jones have suggested the generalized

likelihood ratio (GLR) approach to failure detection. As noted by

Willsky [9], the GLR approach can be applied to a wide range of actuator

and sensor failures. The method also provides an estimate of the

failure size which is useful in system reorganization after the failure

is determined to have occurred. The technique may be simplified in a

number of ways making it more attractive from an implementation point of

view. In addition, the tradeoff between complexity and performance may

be studied analytically. In this thesis research, the GLR approach to

failure detection is studied to obtain insights into its limitations

and to develop some guidelines in the design of GLR failure detection

systems.

1.2 Description of the GLR Technique

The GLR failure detection system assumes a linear system des-

cribed by (1-1), (1-2) and a Kalman Bucy filter (that assumes no failure)

characterized by the following:

x(k+ljk) = 0(k)x(kjk) + B(k)u(k) (1-4)



x(kfIk) -= ̂(klk-1) + K(k)y(k) (1-5)

y(k) = z(k) - H(k)I(kJk-1) - J(k)u(k) (1-6)

where x(ilj) is the mean of x(i) given z(0), z(l), ..., z(j) and P(iij)

is the associated error covariance. The quantity y is the zero mean,

white gaussian innovations process (or the residual) with covariance V.

K is the Kalman Bucy filter gain computed as follows:

P(k+ljk) = $(k)P(kIk)' (k) + Q (1-7)

V(k) = H(k)P(klk-l)H'(k) + R (1-8)

K(k) = P(klk-1)H' (k)V-1 (k) (1-9)

P(klk) = P(klk-l) - K(k)H(k)P(klk-l) (1-10)

The four basic failure types (modes) under consideration are

modeled as:

Type 1: state jump

x(k+l) = $(k)x(k) + B(k)u(k) + w(k) + vSk+li (1-11)

Type 2: state step

x(k+l) = $(k)x(k) + B(k)u(k) + w(k) + VSk+l;8 (1-12)

Type 3: sensor jump

z(k) = H(k)x(k) + J(k)u(k) + v(k) + VSdke (1-13)

Type 4: sensor step

z(k) = H(k)x(k) + J(k)u(k) + v(k) + Vk (1-14)

where

1 if k = 8
kCi~~~~~ e ~~~~~~~(1-15)

k; otherwse
0 otherwise



k 1 (1-16)
k >8e

Thus e has the meaning as the "failure time" and V is the failure vector

of appropriate dimension. We note that the original GLR method devised

by Willsky and Jones [4], [5] was developed for type 1 failures.

Due to the linearity of the system and filter, in the event of

a failure, the residual can be expressed as:

y(k) = Y(k) + Gi (k;e)V (1-17)1

where Y is the residual in the absence of any failure. G. is a matrix

(i=1,2,3,4, denoting the failure type). The equations that one can use

to compute the G. are given in Section 2.1. Then G. (k;O) is the effect

of the type i failure V that occurred at time 0 on the residual at

time k. We can establish two hypotheses:

H : no failure has occurred

Hi : a failure of type i (v and e unknown) has occurred.

Then the generalized likelihood ratio (GLR) is defined by

p(y(l),..., y(k) IH., e = 8(k), v = V(k))
L.(k) = .... (1-18)

1 p(y(l), .. , y(k)H 0 )

where p denotes probability density function; @(k) and V(k) are the

maximum likelihood estimates (MLE) of V and e assuming H. to be true

defined by:

i(k), V(k) = arg max p(y(l), ... y(k) Hi, e = 8, v = v) (1-19)

0,v
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Given H. is true, the residual is

y(k) = y(k) + G (k;O)v (1-20)
1

for some unknown e and V. When Ho is true, the residual becomes

y(k) = y(k) (1-21)

Using the fact that the y's are gaussian independent variables and

equations (1-20) and (1-21), the logarithm of (1-18) can be expressed

as

.i (k) = 2 Zn Li (k)

k

= _ y' (j)v-y(j)
j=l

k

E [Y(j)-Gi (k;O(k))V(k)vv (j) (j)y-G (k;e(k))V(k)]
j=l

(1-22)

To choose between H0 and Hi we use the decision rule:

H.

Zi(k) Z< (1-23)

H0

where £ is some predetermined threshold. Hence e(k) and V(k) also

maximize Zi(k). Also, v(k) can be solved as-an explicit function of

e(k):

v(k) C (k; e(k)) di (k; 6(k)) (1-24)
) is the matrix

where C i(k; 6) is the matrix
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k

Ci(k; 8) = Gi.'(j; ) V-(j)G(j; ^ (1-25)

and d (k; 8) is a linear combination of the residuals:

k

di (k; 8) = Gi'(j; 8) V- (j)Y(j) (1-26)
j=l

Then 8(k) is the value of 8 < k that maximizes Z. (k; 8):-

-1
.i(k; 8) = d.'(k; 8)Ci (k; 8) di(k; 8) (1-27)

Therefore, the GLR system (also known, for reasons that will become

clear, as full GLR) will declare a type i failure V occurring at 8 if

Zi(k; 8) > S and hi(k; 8) > i. (k; 8) for 1 < e < k. As time progresses,

the number of possible values of 8 increases. Hence, the implementation

of this scheme involves a growing bank of filters. (See Figure 1.)

When detectors for different failure types are implemented

simultaneously, one is confronted with the additional problem of

deciding among the failure types. A simple maximization of ,. (k; 8)

over V, 8 and i may not provide satisfactory isolation of the failure

type.- In the following, the subscript i is dropped for the sake of

simplifying the notation.

A number of simplifications of the approach have been suggested

by Willsky and Jones (5] such as the finite window assumption where 8

is restricted to a range, k-M < < k-N. The physical assumptions made

here are: 1) no decision can be made with less than N observations (an

observability constraint), 2) failures before time k-M should have been
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detected at an earlier time and compensated for already (a limitation

imposed by computational complexity). Both of these assumptions are

reasonable, and the resulting "sliding window" reduces the computational

burden imposed by the growing bank of filters described earlier (where

calculation of Z(k; 8) for 8 = 1, ..., k is required). When the system

under consideration is time invariant and the associated Kalman-Bucy

filter (KBF) has reached a steady state, the G and C matrices become

dependent on k-8 only. Thus, these matrices may be computed once and

stored, greatly simplifying the required calculations. To reduce

required calculations even further, one may wish to consider approxi-

mating G and C (by polynomials, for example). Of course this will

degrade the quality of the estimate of V.

Another simplification is the constrained GLR (CGLR) which in-

volves the assumption that V = afj (where a is a scalar and fj is one

of a finite set of directions). Thus, in computing v(k), we require

it to be along one of these directions and estimate its magnitude (a).

The CGLR detector takes the form:

A

^Ak b(k; 8(k), j(k))a(k) = A^ (1-28)
a(k; 8(k), j(k))

where 8(k) and j (k) are the quantities that maximize

b 2 (k; 8, j)
Z(k; 8, j) = (k; 8, j) (1-29)

where

a(k; 8, j) = fjC(k; 8) f (1-30)



b(k; 8, j) = f' d(k; 8) (1-31)

and d(k; 8) is defined by (1-26). The decision rule is:

H.

A >

Z(k; e(k), j(k) < s (1-32)
Ho

If V is further restricted to be some constant vo, one has the

simplified GLR (SGLR). We note that SGLR does not require maximization

over v and hence 2(k; e) becomes

k
£(k; 8) = E [2y(j) - G(j; e)v 0] 'V

1 (j)G(j; ; 0 0 (1-33)

j=l

Both CGLR and SGLR require less computation than full GLR. How-

ever, they are directionalized, i.e., most sensitive to certain direc-

tions only. This limits their ability to detect failure of other

directions. Consequently, they may be suitable only for a certain class

of failure detection problems.

From the above discussion, it is clear that the GLR method offers

a range of implementations from the point of view of computational

complexity. In order to develop a useful detector design methodology,

one must study much more carefully the properties of the GLR method

and the tradeoffs involved in the design. The purpose of this research

is to study certain of these issues in order to provide some guidelines

for the use of the GLR technique. Our aim is to develop an analytic

framework in which one can systematically study the various tradeoffs



involved in the design of a GLR failure detection system.

1.3 Overview of the Research

The two aspects of the performance of the GLR detector most

closely examined in this research are the detector's sensitivity to

failures and its ability to isolate the types of the failures. Effec-

tively, the GLR detector concentrates failure information into the

variable, 2(k; 8) as the decision rule considers only these quantities.

Hence, a starting point in the analysis of the GLR detection scheme is

the study of this random variable.

In Chapter 2, we present the static analysis where we consider

the Z's as static variables, i.e. the correlation among them is not

considered. There, we derive expressions for probabilities such as the

probability of correct detection and the probability of false alarm.:

We also consider the questions of the detectability of failures by a

GLR detector and the ability of the detector to, in some way, dis-

tinguish among the different types of failure.

In Chapter 3, we study the correlation behavior of the Z's in an

attempt to obtain more precise performance indices, such as the pro-

bability of time to detection and to derive more information about the

failure from the temporal behavior of the likelihood ratios.

Finally, in Chapter 4, a summary of the study is presented along

with a numerical example (failure detection for a simplified aircraft

model) illustrating the performance of the GLR technique. We also

outline several directions in which we feel further work should be done.



CHAPTER 2

Static Analysis

2.1 Summary of the GLR Equations

The implementation of GLR detectors requires the G matrices

described in Section 1.2. In this section, we present the equations

necessary for computing these matrices for the four basic failure types

(state jump,. state step, sensor jump and sensor step) as modelled by

equations (1-1l), (1-12), (1-13), and (1-14). The unfailed dynamical

system is represented by equations (1-1) and (1-2) which are repeated

here for easy reference.

x(k+l) = W(k)x(k) + B(k)u(k) + w(k) (2-1)

z(k) = H(k)x(k) + J(k)u(k) + v(k) (2-2)

The associated KBF:

x(k+llk) = ~(k)x(klk) + B(k)u(k) (2-3)

x(kJk) = x(kik-l) + K(k)y(k) (2-4)

y(k) = Z(k) - H(k)x(klk-l) - J(k)u(k) (2-5)

where K is the filter gain computed from equations (1-7), (1-8), (1-9)

and (1-10).

Since the failures under consideration do not involve the known

control u, the control terms in the above equations may be omitted to

simplify the mathematics. However, the subsequent analysis is still

valid for cases where the control is present due to the following

reason. Since u is deterministic, its effects may be computed exactly;

-18-
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by linearity of the system and filter, the control effects may be

added directly to the uncontrolled system and filter to obtain the

controlled situation. Consequently, the analysis throughout this

report assumes the absence of controls without sacrificing the validity

of the results for systems with deterministic controls.

2.1.1 The General Case

The linearity of the system and the KBF enables us to mathemati-

cally decompose the residual y and the state estimate x(klk) into two

parts:

y(k) = yl(k) + Y2(k) (2-6)

x(klk) = xl(klk) + x2(klk) (2-7)

when the variables with subscript 1 denote the residual and state esti-

mate when no failure has occurred and the subscript 2 denote the "bias"

developed in the KBF due to failures. (Note that Y1 is the same as

y defined in 1.2.) Similar decomposition is also applicable to x and z.

In addition, we find that for the four failure types:

Y2(k) = G(k; 8)V (2-8)

x2 (klk) = F(k; e)v (2-9)

where G and F are matrices that are functions of the system and filter

matrices, K, e and failure type.

After some manipulation of equations (2-3), (2-4) and (2-5), we

obtain a recursive expression for x(klk):

kl) + k)Zk) 210)

x(klk) = S(k-l)x(k-llk-1) + K(k)Z(k) (2-10)
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where

(k-1) = [I - K(k)H(k) ] B(k-1) (2-11)

To simplify some of the notations, we define

O(k, j) = 0(k-1)O(k-2) ... O(j) (2-12)

i(k, j) = ~(k-1) ¢(k-2) ... ~(j) (2-13)

Now, we are ready to consider the effects of the four types of

failures.

State Step Failures

Consider a state step failure. Its effect on the system can

be described by

x2(k+1) = N(k+l, k) x2 (k) + ak+l,V , x2 (0) = 0 (2-14)

z2 (k) = H (k) x2 (k) (2-15)

Thus

z2 (k) = x2 (k) = 0 k < e (2-16)

k

x2 (k) = Z (k, i)v k > e (2-17)
i=8

k

2(k) = Z H(k) b(k, i)v k > e (2-18)
i=8

The effect on the filter:

x2(klk) = G(k, k-1) 2 (k-llk-1) + K(k) Z2(k), x2(010) =0 (2-19)

We then calculate
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2(ktk) = 0 k < 8 (2-20)

k

x2 (kk) = 2 0(k,j)K(j)Z2 (j) k > 

j=e

k j

= E (k,j)K(j) H(j)4(j,i)V
j=e i=e

k k

-= ~ X (k, j)K(j)H(j) I(j,i)V (2-21)
i=e j=i

Hence

x2 (kl k) = F(k; 6)v (2-22)

0 k < e

F(k; 8) = (2-23)

0(k,j)K(j)H(j)H (j, Z) k > e8
i-e j=i

From the definition of the residual (2-5), we have

Y2(k) = Z2 (k) - H(k)W(k, k-l)x 2(k-l|k-l) (2-24)

Y2 (k) = G(k; 8)V (2-25)

0 k<e

G(k; 0) =

H(k) [ E .(kj)-m(kk-l)Fk-i;6)] k > e

(2-26)

Following similar calculations, we obtain the expressions of

the F and G matrices for the other failure types [71.
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State Jump Failures

o0 Ik < e

F (k; 8) = (2-27)
k

FE= e(k,j)K(j)H(j) (j, 0) k > (
j=e

O k < 9

G(k; 0) = (2-28)
H(k) £[(k,e) -( (k,.k-1)F(K-1; 0) k > e

Sensor Step Failures

/ k < e

F (k; 0) = ) k (2-29)

i (k,j)K(j) k > 9

j=e

(~~~~~0 k > e

G(k; 0) I k = 8 (2-30)

I-H(k) (k,k-l) F(k-1; e) k > e

Sensor Jump Failures

[0 . k < e

F(k; 0) = (2-31)

O(k, 0)K(e) k > e

k<0

G(k; 0) = I k = e (2-32)

-H(k)~(k, k-I)F(k-1; ) > e
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We note that the matrix G is essentially the only quantity that

is needed in the implementation of the GLR detector. The matrix F is

important in the implementation of a mechanism for compensation follow-

ing detection. Examples of such a mechanism are discussed in [4] and

are not pursued here.

Due to the fact that G(K; 8) = 0 for k < 8 and for all types of

failures, the summation in the expression of C(k; 6) (1-25) need only

be performed from j = 8 to k instead of j = 1 to k.

k

C(k; ) = G'(j; 8)V G(j; 0) (2-33)
j=e

2.1.2 Steady-State, Time-Invariance Simplification

When the system (2-1) and (2-2), under consideration is time

invariant and the associated KBF has reached a steady state, D(k) and

O(k) become constant matrices D and 0 respectively. Then

G(k, j) = k-j (2-34)

D(k, j) = k-j (2-35)

Substituting (2-33) and (2-34) in the expressions of F and G, one

finds, after some simple manipulation, that these matrices become

dependent on the value k-e instead of k and 8 explicitly. Letting

r = k-0, we summarize the expressions under the steady-state time-

invariance assumption in the following.
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State Step' Failures

0 k < e

F.(r) = , (2-36)
r r

k > e
i=0 j=i

0 k < e

j=O

State Jump Failures

i0 k <9

F(r) = / r (2-38)

k > 8
j=0

0 k <
G(r) = (2-39)

H ) Te - ~F(r-1)] k > e

Sensor Step Failures

0 k< 0

F(r) = r (2-40)

)E OAK k >e
j=0

0 k< 8

G(r) = k = (2-41)

I - HF (r-1) k > e
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Sensor Jump Failures

0 k < e
F(r) = k >(2-42)

r
k 

k = 8 (2-43)

-HOF(r-1) k > e

as defined in 1.2 becomes dependent on r (r = k-a):

r

C(r) = E G;(j)V- G(j) (2-44)
j=0

where V is the steady state covariance of the residual under no failure.

2.2 Static Probabilities

As some measures of performance of a detection system, the pro-

babilities of correct detection (PD) , false alarm (PF), cross detection

(PCD) , wrong time (PWT) and time to detection (PTD) are defined as

follows:

PD(k, a, 8, V) A Prob ((k;8) > E1 , 8, v) (2-45)

PF(k, a, ) = Prob (Z(k;e) > cla, 8) (2-46)

PTD(T, a, 8, v) = Prob (Z(k;8) > s for some k < Tja, 8, v)

(2-47)

PWT(k, C, 8, v, 8) A Prob (Z(k;8) > jac, 8, v) (2-48)WT~~~~~~~~~~~~~~~(-8



where ac is the actual type of the failure of size V and is. also the

failure type the GLR detector hypothesizes, e is the true time of

failure and e is the hypothesized time of failure. Also, we define:

PCD (k, a, S, , v) = Prob (Z(k;8) > sca,- a , 6, v) (2-49)

where a is the: failure mode the detector assumes, 8 is the actual

failure mode, 8 and v are the time of failure and the failure vector

respectively. We note that

PD a,8, 0 (k, , , ) (2-50)

PCD (k, at a, 8, v) = PD (k, a, 6, V) (2-51)

PWT (k, a, 8, V, 8) = (I a, 6, v) (2-52)

There are many aspects to the evaluation of a detection scheme

and a single index is not sufficient to indicate the quality of the

scheme. The above defined probabilities are some convenient quantities

defined to provide some insights into GLR detector performance. PD is

a measure of detector sensitivity, since it is the probability of

detecting a failure when a failure actually occurred. PF measures the

negative quality of the detector, as it is the probability that a

failure is signaled when none has developed. Both PCD and PWT are

more subtle measures of performance, since they pertain to the ability

of the detector to distinguish failures of different types and different

failure times respectively. PTD is the probability of the time delay

until detection and therefore is a measure of the speed of detection.

This quantity is of obvious importance in evaluating detector performance.
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Excepting PTD' these probabilities are defined at each point in

time assuming no knowledge of the Z(k; 8) at other times. It is evident

that the variable L(k; 8) is correlated with the values of 2(kl; El) for

kl k and 8 8 . Thus a better set of performance measures may take

this temporal correlation into consideration. PTD is an example of one

such measure. The correlation behavior of the Z's will be investigated

in Chapter 3.

In this chapter, we study the performance of the GLR detectors

as measured by the above defined probabilities. The probability density

of Z(k; 8) is shown in sections 2.2.1 and 2.2.2 to be chi squared (X2)

and gaussian for full GLR and SGLR respectively. As the density is

determined, the required probabilities may be computed relatively'

easily.

2.2.1 Full GLR: X Probabilities

Consider a detector that hypothesizes a type i failure with

failure time = e while an actual failure v of type j occurred at 8t . The

actual residuals and GLR outputs then are given by

y(k) . y(k) + Gj(k; et)v (2-53)

k

d(k; 8) = L G.'(s;8) -l(s)y(s)
s=8

k

=E Gi ';)V (s;)v(y l (s) (s)+G (s; 9 t)v] (2-54)
s=8 3

2(k; 8) = d'(k;8) Ci.i (k;818)d(k;8) (2-55)
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where

G. (k; 8) is the G matrix corresponding to & type fai.lure, y(k) is

the unbiased white part of the residual, and

k

C.1 .(k; |eC) e Gi' (s;v (siG.(5 8) (2-56)
m" G.r8 zv

Note that Cili(k; e8e) = Ci(k; 8) of a type i detector.

Since the sensor noise covariance, R, is symmetric and positive

definite, V (m) is a positive definite symmetric matrix. Therefore,

Cil i(k; 818) is positive semi-definite and symmetric. Then there exists

an orthonormal matrix T such that

Aii (k; 616) = T Cjii(k; 818)T (2-57)

where A.ili(k; 818) is a diagonal matrix and the diagonal elements are

the eigenvalues X1 X2 '..' Xn of Cili(k; 818) (n is the dimension of

Cili(k; 818)). Assuming C jili(k;e 88) exists (we will consider this

existence question later), define

Z(k; 8) = {d'(k; 8)T} {T-1Cii(k; 818 )T} {T-l d(k; )}

A -1
= v'(k; 8)A ili(k; 1) v'(k; 82) (2-58)

Then v(k; 8) is a gaussian random vector:

k

v(k; 8) = T' Gi'(s:; 8)V (s!- [Cy() + G.j(s; t)v (2-59)

k

E{v(k; 8)} = T' Gi'(s; 8)V (s)G j(; 8 t ) - T'CiCj(k; 818et)v

(2-60)
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E{v(k; 8)v'(k; 8)}

= T'Cili(k; 8el)T + T'VCilj(k; 8let)C'iji(k;e81 t)v'T

= Aili(k; 61e) + [E{v(k;8)} [E{v(k;e)}]' (2-61)

Hence Aili.(k; e18) is the covariance of v(k; 8). Since

Ai i(k; 818) is diagonal, elements of v(k; 8) are independent of one

another. Also, Z(k; 8) can be expressed as the summation:

n 2v (k; 8)
2(k; e) = E s (2-62)

s=1 s

where v (k; 8) is the sth component of v(k; 8). Then each term in the

above summation is the square of a gaussian random variable with unit
V (k; 8)

variance and mean of s (v (k;e) is the mean of v (k; 8)).
Xs ss2

Therefore, Z(k; 8) is a noncentral X random variable with n degrees

of freedom [10]. The noncentrality parameter (62) can be computed as

follows.

n -2
vs (k; 8)

62 A s
s=l S

= [E{v(k; 8)}]' Ail.(k; 01e) [E{v(k; 8)}]

= VC j.(k;- let) Cij.i(k; 818) Cilj(k; e81t)V (2-63)

The expected value of k(k; 8) is then simply n + 62.

Note that no assumption is made on i, j, 8 and et . The deriva-

tion includes the conditions defining PD' PF' PCD' and PWT as special

cases as well as others which are not considered presently. For
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instance, i may be different from j while 8 is: different from Et (but

the G"s are computed according to the same system and filter). This

corresponds to a case of wrong time cross detection. and it could be

of interest. The associated probability (of wrong time cross detection)"

may be greater than the probability of Correct time cross detection

implying that a mismatched failure is- more likely to be regarded as a

matched failure but at a failure- time different from the true one. In

any event, Z(k; 8) is a noncentral X random variable with n degrees

of freedom and a noncentrality parameter 62 dependent on the conditions

hypothesized..

Specializing to the four cases of current interest, we have,

Correct Detection

8 = 8, i = j

62 =V 'C. i(k; e08)v (2-64)

False alarm

i = j, V = 0

2
6 =0 (2-65)

Z(k; 8) becomes a central X random variable

Cross Detection

i j, e = 8t

62 = 'C lj(k; el1)C (k; i)Cj (k;8le )v (2-66)

Wrong time

i= j 0 e fet

~~~-~~ ~~~ ~~ ~I~ ~~ ~~~~--------~---- ------ --·-··--~----t---
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Note that the different relationships among 0, 8t, k have different

physical interpretations, for instance,

k < it < a

k < e < 8t j not meaningful

t< k < e

8 < k < et false alarm

8 t
t > wrong time (2-67)

e < < k X

then under the wrong time assumption and (2-66),

2 = V'C (k; 010t)Ci i(k; el eci (k; 1eet)v (2-68)

The probabilities, PD', PF PCD and PWT can be computed by simply

integrating the chi squared densities with the appropriate degrees of

freedom and noncentrality parameters from Z = s to Z = +c. There are

computer subroutines for computing central X2 probability [13]. An

algorithm for computing noncentral X probabilities has been developed

and is described in the appendix.

2.2.2 SGLR: Gaussian Probabilities

Consider a simplified GLR detector set to detect a failure

V0 of type i with failing time e while a true failure V of type j

actually occured at t, The actual residuals and log likelihood ratios

are given by
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y(k) =y (k) + Gj(k; et)v (2-69)

k

Z(k;) - E [2Y(s)-Gi(s;8) O'V - (s)Gi(s;8) 0
s-e

k

=- 2y'(s) V (s) Gi (s;))O
s=6

k

+ 2 L V'Gjt(s;et)V (s)Gi(s;e)v0
s=8
k

-. VO G i ' (s;6)V- (s)Gi(s;)V 0
s=8

k

-C 2 V' G.'(s;O)v (s)y(s)
s=8

+ 2 V0' Cilj(k; -let) - Vo' Cili(k; I ) 0 (2-70)

Since y(s) are zero mean, independent gaussian random vectors, 2(k;e)

is a gaussian random variable with mean (m) and variance (a 2):

m = E{t(k;8)} = 2V'Cilj(k; 8It) - vO'Cii(k; I)v 0 (2-71)

2 2
a = E{([(k;O) - m] }

=4 ·O[ EF~ Gi'(m;e)V' (m)Gi(m;e)] V0

= 4 V0
1 Cili(k;G)V0 (2-72)

Note that the variance is the same for all cases whereas the

mean varies.. For the four cases of interest:
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Correct Detection

i = j, 8 S=etr , V0O

m = VO' Cili(k; 18 ) V0 (2-73)

False Alarm

i = j, V = O

m --V0' Cil i(k; 818) V0 (2-74)

Cross Detection

i ~ j, V j VO, 0 = et

m= 2 V0 ' Cilj(k; e6e)V -0VO' C1i(k; ele) 0 (2-75)

Wrong Time

i = j, V = VOl

8 < et < k or

et < < k

m= 2 V0' Cili(k; ejet)V - V C.iili(k; IOe)v0 (2-76)

Then the desired probabilities can be obtained by integrating

the appropriate gaussian densities. This involves the evaluation of

error functions.

2.2.3 Discussion

For chi squared densities, the probabilities PD, PD ' P are

increasing functions of the noncentrality parameter 62 for a fixed

threshold e (see Figure 15 ). For SGLR, a similar relation between

the probabilities and the mean of Z holds. The variance of the likeli-
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hood ratio of a SGLR. set to detect a particular failure is a constant

for all. different time failures. Only the mean m varies with the time

failures. Hence, both 62 and m are Calternative measures of GLR per-

formance..

When considering PD, 62 takes the form v'C(k;e)v, where V is the

true failure. Then for any threshold, the probability (P D) of detecting

2
this failure V is directly determined by the effect of V on- 6 . The

failure becomes more "detectable" as V results in a larger 62 and con-

sequently a higher PD. A zero 62 will make PD equal PF signifying that

the detector is unable to tell between. the- failure and the noise in the

system. Hence, a failure v that occurred at e is viewed as "undetec-

table" at time k if V'C(k;6)v (the 62 for computing PD) is zero.

Simplified GLR behaves in a similar manner.. In considering

PD for SGLR, a is 2 I, and thus _ = v (which represents effective
D ft GR . n h m 2

SGLR signal to noise ratio). Hence, an increase in m will give a

larger PD for any threshold. The only difference is as follows. Here,

the mean value (m) of the likelihood ratio takes the same form as 62

for full GLR. A failure V that causes a zero m will make a zero and

consequently Z(k;e) zero deterministically and independent of the

residuals. In this case, failure detection is clearly meaningless.

As the C matrix is closely related to the detectability of

failures, it is studied in section 2.3 to explore its significance and

behavior as functions of k and 6. In section 2.4, the C matrix is

examined to determine undetectable failure directions.
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After consideration of PCD and PWT similar to that of PD in the

above, we note that the d2 associated with these probabilities and con-

sequently the Cilj matrix are crucial factors of the detector's ability

to "distinguish" between different failures and failure times. This

issue is further explored in section 2.5.

2.3 The Information C Matrix

The C matrix is called the failure information matrix for reasons

that will become apparent. In addition to its- relation to the proba-

bility of correct detection, the C matrix has one other important

-i
property. In section 2.3.1, we will show that C (k; e) is the error

covariance of the MLE of the true failure assuming that the full GLR

detector has determined the true failure type and failure time.

The general time varying situation is too complex for initial

analysis. To obtain some basic understanding of the behavior of C(k;8)

as a function of k and e, we have turned to the time invariant, steady

state situation. In 2.3.2 we will discuss the asymtotic behavior of

C(k-e).

2.3.1 C (k;e): the. Error Covariance of v

Consider the situation where a full GLR detector has determined

the type of a true failure V and the true failure time e. Then the MLE

of V is V as described by equation (1-24).

vC= c (k; 0) d(k; 0) (2-77)
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For easy reference, we repeat the definition of C and d here.

k

C(k; e) .. G'(j; 0) V l(j)G(j; 0) (2-78)
j=e

k

d(k; ) = G'(j; )v-(j)y(j) (2-79)
j=0

where

y(j) = y(j) + G(j; e)v (2-80)

The actual residual y contain a zero mean white independent component y

with covariance V and a bias G(j; 0)v due to the actual failure. We

also define

k

d(k; 0) = G'(j; )V- (j)Y(j) (2-81)
j=0

The d is also zero mean, white independent with covariance:

E{d(k; 0)d'(k; 0)} = C(k; 8) (2-82)

Furthermore, we have

d(k; 0) - d(k; 8) + C(k; 0)v (2-83)

We can compute the error covariance of the MLE V as follows:

E{(v - V)(V - v)'} vv' - E{Vv'} - ECvv'} + E{vv'} (2-84)

Second term on the RHS of (2-82):

E{VV'} = E{C l(k;0)d(k;6)v'}

= E{C l(k;e) d(k;0)v' + C (k;0)C(k;0)vv'}

= Vv' (2-85)
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Third term:

E{VV'} =- E{VV'} = VV' (2-86)

Fourth term:

E{VV'} = Et{C (k;8)d(kdI(k;8)C (k;)d(k,)

= C-l(k;8)E{[d(k;e) + C(k;e)] [d(k;8) + C(k;)v]'}C -l(k;8)

=C 8) E(k;) E{ d(k;)'(k;) + d(k;8)v'C(k;e)

-1 -1= C (k;6) [C(k;8) + C(k;8)vv' C(k;8)] C (k;8)

= C 1 (k;8) +vv' (2-87)

Summing up the terms,

E{(V - v) (v - v) '} = C (k; 0) (2-88)

Under the assumption that the full GLR detector has decided on

the true failure type and failure time (0), we have shown that C l(k;0)

is the error covariance of the MLE of the true failure. From the

theory of linear algebra (16] we know that both C and C -1 have the same

eigenvectors and that these eigenvectors are orthogonal to one another

since the matrices C and C-1 are symmetric. Suppose a failure v lies

in the direction of an eigenvector xl of C corresponding to a large

eigenvalue X1 ( >»> 1). Then 62 ( = v'Cv) and PD for this failure is1 D

large. The error covariance of the MLE of V is -1 (= xC xl) which

is small. The failure direction xl is a detectable direction as it

can be detected easily as well as estimated accurately. If V lies in

the direction of an eigenvector x2 with small eigenvalues A2 (X2 << 1),
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the associated 62 is small andconsequently PD is close to PF, In

-1
addition, the error covariance of the MLE of V, X2 , is large. Hence,

the failure direction x2 is "less" detectable. Indeed, the matrix C

describes the directional sensitivity of GLR.

We will describe a failure direction as undetectable if it results

in a zero 62. Thus a direction is detectable if it produces a nonzero

62~ In order to gain insight into the detection problem, it is appro-

priate to study the subspace of undetectable directions (which is similar

to the concept of unobservable subspace in linear systems). By- under-

standing it one can provide an analytical foundation for questions

such as the distinguishability of various failure modes. Note that the

set of detectable directions is not a subspace and two directions are-

totally indistinguishable if they differ by an undetectable direction.

With this idea as a foundation, one may be in a position to define a

concept of distance between failure directions -- i.e., a measure of the

degree of distinguishabiliy (see section 2.5).

For full GLR, we have assumed the existence of C . (Otherwise,

a pseudo inverse may be used [5].) When C is noninvertible, it must have

some zero eigenvalues. If we allow some eigenvalues of an invertible C

to approach zero, the noninvertible situation is reached. By a limit

argument, the above discussion may be extended to a noninvertible C

matrix and hence leads to the notion of undetectable direction mentioned

earlier. The relationship between invertibility of C and detectable

failure directions is further examined in 2.4.
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2.3.2 Asymptotic Behavior of C(r)

In a time invariant system, C(k; 8) becomes dependent on the

difference between the true failure time and observation time (k-8).

For convenience, we let r = k-8. Furthermore, we assume the associated

Kalman filter has reached a steady state. The four different types of

detectors are considered separately.

State Jump Detector

r

F(r) = E r - j KiH j (2-89)
j=0

where e = (I - KH]J; K is the steady state Kalman gain, ~ is the system

matrix and H is the observation matrix.

Both the system and the filter are assumed to be stable. Then

the magnitude of the eigenvalues of ~ and 0 is strictly less than 1, i.e.

|Ii(D)I < 1 i = 1, 2, ... n (2-90)

Xi( l 1 i 1, 2, . n (2-91)

where Xi(Q) and Xi(0) denote the ith eigenvalues of d and 8 respectively

and n is the dimension of ~ and O. Consider the norm | j| of an nxm

matrix A, 1

AJi =!max (x'A.'Ax)2 (2-92)

where x is an m-vector.

For a square matrix A with all eigenvalues of magnitudes less

than 1, it can be shown that 11 AlI 1.



-40-

For a jump in the state,

r

F(r) = E: .rjm (2-93)

j=0

r r

j=0 j=0

= IIKHII (r+l)pr (2-94)11··11 il~p' (2-94)

where p = max' {|II|l , 11011)} Since p < 1, there exist an a > O0

such that p = e . Then

IIF(r) I < II KH|I (r+l)e (2-95)

The RHS goes to zero as r + -. Therefore

lim F(r) = 0 (2-96)
r -> oo

Similarly, for G(r),

|IG(r) | = | (Hr - ~F(r-1)]II

_1 1 1H 1 +I 1'1 1 IlF-11|
< IIHI t[pr + IIIII1 rPr] (2-97)

Hence G(r) also approaches zero as r + o. Now consider C(r). Define

AC(r,s) A C(r) - C(s) , r < s

-= G'(j)V G(j) (2-98)

j=r+l
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SI

Ilac(r,s)l| < ' lv- 11 EI1i [pj + ! 1H! ! jpjI
j=r+l

< I Iv- 11 IH112 [(c-r)pr + |IKHI! (s-r) rprlr

(2-99)

As r + a, the terms in the bracket approach 0. Hence

lim |JjC(r, s)jj = O r < s (2-100)

This showsthat {C(1), C(2), ... C(r) ...} is a Cauchy sequence and hence

converges to a finite constant matrix. This has the implication that

62 in the state jump case will approach a finite limit; as this limit

is reached, we are getting no more information about the jump from y.

Thus, waiting further will not improve PD nor the error in the failure

estimate. Therefore, the rate of convergence of C(r) to its limit may

be used in determining the length of the detector window (i.e., the

value of M for the window: k-M < e < k-N).

Step in the state

r r r j

F(r) E Or-j KH¢J-i = : Gr-1 E KHi
i=O j=i j=0 i=O

r

E 8r- j KH[I-_j+ l][I-]-
j=0

r r

= L er-j KH[I-_]- -_ 0 r-j KHBj+l [I_ ] -i
j=0 j=0
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= [ [Ir -]KHI -]1-[ i er-JKHJ Ir-- l (2-101)
j=-

As- r -+ , the first term becomes: [I-0e] KH[I-I- 1' and the second goes

to O following the reasoning for the state jump case.. [I-G 1 l and

[I-4]- 1 exist because I|i(@) 1< 1, IXi() I < 1 for i = 1, 2, ... n.

r

G(r) = H [ L r j _- F(r-l)]
j=0

= H[I-[r+l] [I] - 1
- HDF(r-l) (2-102)

-1
As r - a, the first term becomes H[I-]1 and the second,

HwU[I-0] iKH I-J 1- . Hence G(r) reaches a constant, H{I-fI-O]- 1 } [I-¢]- 1 -

as r - m. G' (j)V- G(j) is positive semi-definite and attains a steady

state value G' ()V iG(-). Thus at least some eigenvalues of C(r)

grow as r increases indicating that some failure vectors will cause a

growing 62. Therefore, an actual failure lying in the direction of an

eigenvector of G'!()V-G(-) with a nonzero eigenvalue will cause PD

to approach 1 as the waiting time (r) increases.

Jump in Sensor

lim PCr) = lim R = (2-103)
r r+ X r li X2

lim G(rl = lim -HPF iO1J = 0 (2-104)
r co r - o
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Hence sensor jump C Cr1 Behaves much like that of state jump failures:

C(r) approaches constant as r approaches a.

Step in Sensor

r

lir F(r) = lim E JK
r - r >X

J=0 (2-105)

= [I-1] K

Iim G(rl = lim [I-HOF(r-1)]
r += r +" 

(2-106)

= r-H ([F1]' K

Therefore, the sensor step C(r) behaves in a manner similar to that of

the state step C(r) as r approaches A.

2.4 Undetectable Failure Directions

One moment's reflection upon the physical meaning of an unde-

tectable failure leads us to believe that a failure is not detectable if

it cannot be observed by the system's sensors. Therefore, state failures

that lie in the unobservable subspace are not detectable and all sensor

failures are detectable as they have direct effects on the sensor outputs.

From the discussion in 2.3.1, all failure directions are detectable if

C is positive definite (i.e., invertible). Now we will determine the

condition for C to be invertible under the time invariant steady state

assumption.

The positive semi-definite synmetric matrix C(r) may be re-

written as
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GCrl =

IG" CO : G( C ..-: G, G (r: I" - [ - CO
0

V IG (1)

a " . r )
'V-' LGi i]

G; (r) VG (r (2-107)

Since V is positive definite, V is also positive definite. It is clear

that C(r) is positive definite if and only if the null space of G(r) is

{O}. We will examine G(r) for the four different failure types separately.

State Jumps,."

After some manipulation of the expression of G(r) (2-39), we can

w*ite G(rl as a product of two matrices:

G(rl =-

H
I 0o

=t rK HE)2K A r HBr)

- A (r) B(r) (2-108)
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AlCr) is a lower triangular matrix with identity blocks on the diagonal

and is thus of full rank.. On the other hand, the null space of B(r) is

the null space of G(rY. We note that BV(r) B(r) is the observability

gaussian.. Therefore, C(r) is positive definite if the system is observable

in r steps. Since the unobservable subspace in r steps is the null space

of B (r) and G(r), the observable subspace coincides with the "undetectable

subspace". One other property of system observability maybe applied here,

i.e., if an n dimensional constant system is not completely observable

in n-l steps, it will never be completely observable. Then if C(r) of

an n dimensional system is not invertible for r = n-l, it will not be

invertible for r > n-l. Hence, after waiting n-l steps (r = n-l), the

undetectable subspace becomes constant. However, C(r) may be noninvertible

for r < r0 but invertible for r > rO and r < n-l. These last two pro-

perties of state jump detection may be used to determine the value of N

in the window k-M < 0 < k-N. 

That is, if a jump V is in the nullspace of C(r-l) but C(r)V # 0,

we will certainly take N > r when looking for a jump of this type. In

SGLR and CGLR (where we prespecify failure direction), we will set different

window constraints for different jump directions, depending upon their

observability. In full GLR, the failure direction (as well as magnitude)

is determined on-line. One obvious design concept for full GLR is to

choose N large enough so that C(N) is invertible (assuming the system is

observable). If, because of a desire to detect certain failures more quickly,
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we choose N such that det C(N) = Q, we must take care in utilizing the

full GLR equations given earlier, That is, we must replace C ' by a

pseudo-inverse and should take- care in making sure that V lies in the

orthogonal complement of the nullspace of C (as it will if we use the

standard Penrose inverse).

State Steps

G(r) =

0I OK I p W0

I-HQDK HW

r-l r-2

I-H Z &K I-H5 G C2K I.. H

j=0 j=O

A2 (r) B(r) (2-109)

Ar(r) is of full rank. B(r) is identical with that of the state jump

cases. Therefore, similar comments applies here also.

Sensor Jumps and Steps

Upon examining the expressions of G(r) (2-40) and (2-41) of these

two failure types, we find that G(O') = I for both types. Consequently,

the null space of G(r) is {0} implying that C(r) is always invertible

for sensor failures. -
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The above discussion on state jump, senior jump and sensor step

failures maybe extended easily to the general time varying cases. It

is clear that in the state jump case, observability has to be considered

for a time varying system and the value of r for which C(k; k-r) is in-

vertible will generally vary with time k.

For state steps in an n dimensional time varying systems, the in-

vertibility of C(k; 8) is related to the observability of an augmented

system. An n dimensional system with state step failures (2-110Q (2-111)

can be represented by a 2n dimensional system with state jump failures

(2-112) (2-113).

An n dimensional system with state step failure

x(k+l) = ¢(k) x(k) + vk+le (2-110)

z(k) = H(k) x(k) (2-111)

An augmented system with state jump failure

x(k+lf _1 (k) IX x (k+), o
[lktlj LI , [x L l)J + [0] k+1 G-1 (2-112)

z(k) = [H(k) 0] x(kj (2-113)

Recall that in the state jump case, a failure direction is undetectable

if it lies in the null space of the corresponding C matrix, Then, jump

failures of the form as described in (2-112) i.e., [0, V]', are detectable
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if they do not lie in the null space of the state jump C matrix of the

augmented system, Therefore, we deduce that the state step C matrix of

the original system is invertible if the null space of the state jump C

matrix and hence the unobservable subspace of the augmented system does

not contain directions of the form t[0, V] .

Furthermore, we have made the following observation. Suppose all

state jumps in the original system are detectable. Then if some state

jumps in the augmented system are not detectable, we know either or both

of the following are true:

1. At least some state steps in the original system are
undetectable.

2. Certain state steps cannot be distinguished from jumps
in the original system, e.g., consider the 2 dimensional
system

x(k+l) = 1l 1 x(k) (2-114)

° 1

x(k) = [1 0] x(k) (2-115)

This system is observable hence all state jumps are detectable.

But a jump in the second state. is indistinguishable from a step in the

first. A check of the observability grammian of the augmented system

shows that the augmented system is not completely observable i.e., some

state jumps here are undetectable.
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2.5 Distinguishability of Failures

Recall that when the likelihood ratio crosses the threshold, a

failure is declared: in full GLR, a failure (size and direction unknown)

of the type hypothesized is declared while in SGLR, a failure of the

hypothesized type and direction (size unknown) is declared. However,

there are many possible causes of the likelihood ratio's exceeding the

threshold e.g., a noise spike, an actual failure of the hypothesized

type or another type of failure. Therefore, failures other than the

ones hypothesized by the detector can be mistaken as the hypothesized

failures. The sensitivity of a particular detector to other types of

failures makes it difficult to distinguish between various failure modes.

In this section, we will make a first attempt to consider this problem

analytically in order to provide basis for detector design and reliability

analysis.

Consider a SGLR detector that is set to detect a failure in the

direction fl of type i. Then the probability of detecting fl when it

occurs is PD' In the event that another failure in direction f2 of

type j occurs ,the probability that the SGLR declares a failure in the

direction fl of type i is PCD Clearly the quantity PCD provides a

measure of how distinguishable various failure modes and directions are.

If PCD < Pp' the modes are distinguishable. If PCD >-- the modes are

correlated and the size of PCD is a measure of the degree of the indis-

tinguishability between the failure modes.
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Since full GLR is sensitive to failures in all directions of the

specified type, we should only consider the distinguishability of dif-

ferent failure types. Suppose we have a type i full GLR and a type ....

failure of size f occurs. Since full GLR will choose the most likely

failure direction Let· us find the direction v of type i failure for

which SGLR has the highest PCD under the failure f. Then this highest

PCD is a measure of how distinguishable the type of failure of size f

is to full GLR of type i. To obtain this quantity, we need to maximize

PCD over all directions v. Thus it is clear that full GLR will have more

complicated distinguishability problems than SGLR. The analytical study

of these problems is beyond the scope of this thesis. But we will. con-

sider SGLR as it should provide insights into the problems in full GLR.

Although the foregoing discussion concerns the cross detection

situation, the same reasoning is applicable to wrong time detection

where PWT is the measure of distinguishability between true and

hypothesized failure times. A more general situation is the wrong time

cross detection. This is also an important case. The physical in-

terpretation of the situation is that a particular failure mode may

not look much like another one occurring at the same time, but it

may be highly correlated with the other mode started at a different

time (e.g. ,sin(w.t+8e)is uncorrelated with cos wi.t for 0=0 but they are

highly correlated for e8--/2). In the following, this general case is

considered and the wrong time and cross detection cases may be regarded

as specialized results of this general one.

----------- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ------- ·- ·- ···---·- ·· 1--- ··--- ··-- ·- --·- ··- ·· --·



Now consider the situation where a SGLR (Dl) is set to detect

a type i failure V1 From equations (2-71) and (2-72), the mean (m-ll1)

2and variance (a1) of · L(k;e ) of Dl when Vl occurs at 81 are given byml/1 = VL Ci/i(kEl/0l)vl (2 116)a, 4 ml/l (2-117)

In the event that another failure V2 of type j occurring at

82' the variance of t(k;8 1) of DI is still a1 while the mean is ml12-

m1/2 = 21' Ci/j (k;81/82)V2 _m. (2-118)

We define

m1,2 =I Ci/jik;el/e2) 2 (2-119)

Then it follows that

m 1 = m2 ,1 (2-120)

mljl i n, 1 (2-121)

For a fixed threshold, PCD is an increasing function of ml/2,

or equivalently, m1,2 (as m/11 is fixed for D1). Therefore, ml,2 is

a key (wrong time) cross detection parameter and a measure of dis-

tinguishability.

From (2-60), we have
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k

Ci/j (k; 8 1 / 2 ) = E Gi (s;) V(s) Gj(s; 2 (2-122)

Since for k < 8 and i = 1,2,3,4,

G. (k;e) = 0 (2-i23)

equation (2-122) may be expressed as

k

Ci/j (k;0/2) = G i.(s; 1) V-l(s) G (s;0 (2-124)

s=8

where

e = max {l, 82} (2-125)

Then we can express im, 2 as

r 1 ,2 = V'[G '(;0 1 ).Gi (0+; ). ' (k; V (e)

V-1 (e+1) x

V_-1 (k) -

G (e;82)

G. (e+1;02) V2

G (k;82)

'Gt (k;8;8 1)V(k;e) Gj(k;e;82) V2 (2-126)

1 i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~···--- ···-r·-··-----·-·-·- -- ---
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Since V(k;e) is a positive definite matrix, ml,2 is in fact an inner

product:

ml,2 G <Gi(k;6;1))V 1 , G(k;;8 2)v > V(k;e) (2-127)

To simplify notations, the explicit arguments of Gi and Gj are suppressed

in the following. Hence

mln2 < GiV 1 Gjv 2 > V(k;e) (2-128)
m1,2 = i ' j

Now suppose that a second SGLR (D2) is set up to detect the failure

V2. When v2 occurs at 82 the mean (m2/2) and variance (a2) of t(k;82)

of D2 are:

i2/2 V '2'Cj/j(k;82/82) v2 (2-129)

2
2 = 4 m2/2 (2-130)
~2 = 4 m2/2

If in reality V1 occurs at 6, instead of v2 at e2, the variance of

t(k;82) of D2 is still a2 but the mean is m2/1:

m2/1 = 2v2 Cj/i(k;821 1)V 1 -m 2 / 2 (2-131)

If we assume that we design the magnitude of the assumed failures

V1 and V2 so that

ml/1 = m2/2 (2-132)
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we than have equivalently set the P 's of both SGLR (D1 and D2) to be

equal. Physically, this means that at time k, D1 is as sensitive to

V1 that occurred at 81 as .D2 is sensitive to V2 that occurred at 82.

From the Schwartz inequality, we have

(2-133)
2 Gv

<i i 2Z V (k;cce)<G 1 Gi 1 > V(k;) < Gjv 2 ' j2 > V(k;0)

A closer examination of ml/1 is appropriate here, By equations (2-121)

and (2-127), we have

ml/1 = Gil' Gil> V(k;0) 2-34

If 81 = e, then

ml/i = <Gi1' Gini> V(k;8) (2135)

Suppose 81 < 8, then

(2.136)
0-1 k

ml/l = vl 1 Gi (s;01 )V(s) G. (s;e1 ) + Gi (S;0 1)V(s) Gi(s;0)l]V

s=e s=8

The second term in the bracket is actually <G.vl, GiV1>(k. Since

the first ferm in the bracket is a positive semi-definite matrix,-

nml/ > <Giv1 , Givl> V(k;6) (2-137)
Both 2135 and 2137 su arized in (2-137(k;)

Both (2-135) and (2-137) ~re summarized in (2-137).
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Then we have

ml,2 <ml/l (2-138)

(2-139)
1,2 m2/2 (2-139)

Now we have arrived at the following result. For a fixed thres-

hold e that is common to both Dl and D2, the failures V1 at 81 and

V2 at e2 resulting in the same mean value for the t of their matched

detectors (dl and D2 respectively) will give the same PD' Furthermore,

the wrong-time, cross-detection probabilities of both detectors (with

respect to the above failures) are not greater than PD. From another

point of view, this result -- i.e., the cross correlation (2-127)

provides a measure of the degree of indistinguishability between failures

(and failure times) under the assumption (2-134). This result may be

extended to include cases of more than two detectors and provides a

first step for the development of method for designing "mutually dis-

tinguishable" detectors.

It is desirable for the mutually distinguishable detectors to

have the same PD and PF for all times. This means that we can detect

smaller failures in the "more sensitive" directions as well as we can

detect larger failures of "less sensitive" types and directions. We

note that the sensitivity of SGLR to different type and size failures

varies with time (depending upon the shape of the GV 's). In order to

maintain the constancy of PD and PF over a period of time, we may have
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to scale the V's of the SGLR detectors in a time-varying manner. This

can be done by normalizing the G's appropriately. This problem is an

interesting one for future research.. In addition, once mutually

distinguishable directions are dtermined, one will probably find it

more useful to use constrained GLR tan full GLR. This question is also

of interest for the future.



CHIAPTER 3

Correlation Studies

In the previous chapter, we have derived some properties of the

GLR failure detection system by studying the statistical properties of

Z(k; 6). The likelihood ratio Z(k; 8) was treated as a static variable,

i.e. it was regarded as a function of the fixed time parameters k and 8.

The Z's at different k's and 6's are clearly correlated. Hence the

study of the correlation is important in the understanding of the

behavior of the i's with respect to k and 6. This will clearly be

important in the development of a reliable detection rule. In full GLR,

Z(k; 8) is a X2 random variable and the correlation study of such vari-

ables is difficult. However, SGLR provides a very manageable situation

as the Z's are gaussian random variables. Thus we will focus mainly

on the correlation of the Z's in SGLR. In section 3.1, we will derive

the covariance function. Some additional probabilities such as PTD and

their computations are discussed in 3.2. As the behavior of the Z's as

functions of k and e are known, possible modified decision rules for

GLR failure detection systems are discussed in section 3.3.

3.1 The Covariance of Z(k; 8)

Consider two likelihood ratios of a SGLR detector at different

k's and 6's under a certain failure condition. By equation (2-69),

these Z's have the following expressions:

-57-
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kI

2l(k; 81) 2 G! (s; 8V1 '(s)y(s) + ml(kl,el,t,V,j)

k2 (3-1)

Z2 (k 2 62) 2 V E G!(t;06)V (ty(et) + m2 (k 2 1t Q e j) 
t=2

(3-2)'

where y is the zero mean, independent, white gaussian sequence, et is

the true failure time of the type j failure v, and the m's are the

expected values of the Z's as given by (2-71).

The cross covariance (R12) of Z1 and k2 can be simply computed as:

R12 =E{(Zi1 - ml)9(2 - m2)'}

kl k2

=4V;6E G!'(s;i (s) ,(S) -1(t) V (t) i(t;O2) VO
s=61 t=82

k

4vE G!(s;e)V' ()G.i(s]Vo

= 4V6Cii(k; e1j)v 0 (3-3)

where

k = min {kl, k (3-4){ 1' 2} (3-4)

9 = max {01, 82} (3-5)

The third equality in (3-3) is a result of the whiteness of y and the

fact that G(s; 0) = 0 for s < 0. Note that R12 = R21 and 2 >0

R2 is zero if v0 lies in the null space of Cili(k; 018), i.e. if V0

- -- - ---------~~I~
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is not observable on the interval [k; 8i. Therefore, Zl(kl; 81) and

92(k2; 02) are not correlated if v0 is not observable on the common

interval [k; 8] with k and e defined by (3-4) and (3-5).

Since the density function of a gaussian random vector is deter-

mined by its mean and covariance, the joint density function of the

likelihood ratios at different k's and 0's under the same failure

condition may be constructed as in the following. We define

L = [l(k2; 2) (kn; n)' (3-6)

m - E{L} (3-7)

R E (L-m)(L-m)' (3-8)

The elements of m can be computed using (2-71). The matrix R is

symmetric with the diagonal elements as the variance (a ) of the Z's

and the off diagonal elements as the cross covariances of the Z's. The

variances and cross covariances can be determined using (2-72) and (3-3).

Then the probability density function of L is

n 1
_ -

p(L) = (2X) (det R) expE- 1 (L-m)'R (L-m)] (3-9)

An assumption on the failure determines the expected values of

the Z's. Therefore, under such an assumption, the statistical pro-

perties of the likelihood ratios of a SGLR detector are determined by

their joint density (3-9).
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3.2 Some Additional Probabilities

With the joint density function of the likelihood ratios, we are

now able to compute probabilities such as PTD' Recall the definitions

of PD and PTD'

PD(k, a, 8, v) = Prob (Z(k; 8) > EaL, 8, v) (3-10)

PTD(T, a, 8, v) - Prob (Z(k;8) > s for some k < Tla, 8, V)

(3-11)

where a denotes the failure type the GLR detector hypothesizes (which is.

the actual failure type here where we are considering delay in correct

detection), v is the true failure, and e is the true failure time. To

simplify notations, we will suppress the dependence of the probabilities

on a and v. Thus we have

PD(k, 8) = PD(k, a, 8, v) (3-12)

PTD(T,8) = PTD(T, c, e, v) (3-13)

In the case where the parameter N of the detector window,

k-M < 8 < k-N, is nonzero, decision concerning whether a failure has

occurred at the hypothesized failure time 8 cannot be made until time

8 + N has been reached. With this observation and definitions (3-10)

and (3-11), we find that

PTD(8+N, 8) = PD(e+N, 8) (3-14)

PTD(T+i, 8) = PTD(T,8) + APTD(T,8) T > 8+N (3-15)

where



APTD(T,G) = Prob (Z(k;e). < e for e < k < T

and Z(T+1; 0) > A) (3-16})

The computation of PD has, already been discussed in section Z.2.

The quantity APTD(T,6) is the integral of the joint density of

Z0 (e+N,e), z(8+N+1, 8), ... , (T, 0), Z r+(T+l,8) as follows (r = T-N):

rE '0 ''' r rllAPT (T,0) =JL J J L 0 .. ttrtr+2) 0 1 r r(l

(3-17)

The joint density p for SGLR can be derived using the method described

in the last section. Hence the probability of time to detection (PTD)

for SGLR can be computed using equations (3-14), (3-15), and (3-17).

The expression (3-17) is generally very difficult to evaluate

even for the simplest nontrivial case:

APTD (6+N, 0) = f (40 Z, (3-18)TD 0£ J axe ° 1 0 1 (3-18)

However, intuition may be developed by examining the behavior of the

integral. In this case, we define

p(z1 > i0) A p(11 Z0) d1 (3-19)

Then (3-18) can be written as

APTD (e+N,e) =ff p(0 ) P(ZIt 0) dld10

= J p(Za)P(%l > s 420 )ddZ (3-20)
3-2 0)
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Note that the conditional density p(L 112,) has a constant variance and.

Z0 and Z1 have fixed means. Therefore, for a fixed S, the probability

P(ZI > s i(z) is an increasing function of the conditional expectation

of z1' i.e. E( 1Iz0). Since Q0 and Z1 are always nonnegatively corre-

lated (R0 1 > 0), E(Z 11 0) increases with 0 and we have

APTD(8+N,8) < P( 1 > < P( > = ) (3-21)

In the case of the correct detection of the same failure, we would

indeed expect a !1 that has a larger 0Z to be greater than the Z1 that

has a smaller Z0.

Thus, in order to use this correlation analysis for detailed

system analysis, one will need to develop approximation methods.

Arguments such as those above should be useful in obtaining bounds.

Specifically, the shape of E( L~0 ) as a function of 20 and the more

complex version E(sij 0 ,..., 2 i-l) should be the crucial factor in this

analysis.

From the definition (3-11), P TD(T,8) is the probability of

declaring a failure before or at time T when a failure V of the hypo-

thesized type occurred at 8. This probability becomes a measure of

false alarm rate if we allow V = 0. Under this assumption, the quantity

PTD is the probability of a false alarm being signalled before or at T.

We call this the probability of false alarm in an interval (PFI) and it

is defined by

PFI(k, ct, 8) = PTD(k, a, 8, 0) (3-22)
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Note that for SGLR, the covariance of the Z's under no failure is the

same as under a failure. Only their means are different and these can

be computed via (2-70).

From (3-15), it is clear that the probability of declaring a

failure when one actually occurred (PTD) increases as the observation

is continued. By the same token, in the case of no failure, the

probability of declaring a false alarm (PFI) also increases as more

observations are made. Hence, PTD and PFI represent a pair of tradeoff

factors in GLR design, especially in choosing the threshold s and the

window size.

Similar to PTD' another useful probability can be defined - the

probability of detection over the window PDW:

PDW(k, M, N, ,e 8, v) - Prob(s(k;- ) > c for some e

s.t. k-M < e < k-Nla, 6 < k, v)

(3-23)

where c, 8 and v denote the same quantities as in the definition of

PTD (3-11). Where PTD dealt with fixed e and variable k, PDW deals

with fixed k and variable 8, reflecting the fact that signals at times

other than 8 may be important. Here M and N are the parameters defining

the data window: k-M < e < k-N of the GLR detector. Recall the

definition of PWT:

PWT(k, c, 0, v, 0) = Prob (Z(k;e) > s(a, 0, v) (3-24)

We will suppress the arguments a, 8, V and N of the probabilities.
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Hence,

PDW(k, M = PDW(k, M, N, Ca, 6, V) (3-25)

PWT(k, 8) = PWk, = , 8, v, 8) (3-26)

Then PDW can be computed in a manner similar to that of PTD as follows.

PDW(k, k-N) = PwT(k, k-N) (3-27)

PDw(k, T-1) = PDW(k, T) + APDW(k, T) k-M < T < k-N (3-28)

PWT(k, k-N) can be calculated using methods described in section 2.2.

The quantity APDW(k, T) is the integral of the joint density of

Q0(k, k-N), Ql(k, k-N-l) ..., r(k, T), 9r+l(k, T-1)

APDW(kT) = I ''I' P(f--(0' '*Zr'Zr+l)di 0 d I' 'di r r+l

(3-29)

where r = k - T - N.

For a nonzero failure V, PDW is the probability that the detector

will declare a failure in the window and therefore, is a measure of the

detector's sensitivity to failures. A more interesting situation is

when no failure has occurred and, in this case, we define the pro-

bability of false alarm over the window (PFW):

PF (k, M, N, a) A PDW(k, M, N, A, 0, 0) (3-30)

Then PFW is a measure of false alarm rate over the window. Since (3-26)

implies that both PDW and PFW increase with larger windows, the size of

PFW is an additional consideration in setting a detector window size.



3.3 Other Possible Decision Rules

The decision rule used so far in GLR design is the comparison

of a single likelihood ratio with a constant threshold. As we have

studied the Z's and have a better understanding of their behavior, we

are able to exploit this knowledge to construct other decision rules

that improve certain performance criteria such as the reduction of

false alarm rate. Depending on the system and failures under considera-

tion, many different decision rules are possible. To illustrate the

idea, one such possibility is discussed here.

Consider a GLR detector and the associated Z's with the same 8.

Suppose a matched detectable failure occurred at 8. These Z's (i.e.,

Z(k;e) for k > 6) are now expected to be larger than in the case of no

failure as the mean values of these V's are larger. But in the case

of a noise disturbance at 6 without a failure, z(8;8) may be large while

subsequent I's will become small again as their mean values are indeed

small, i.e. the effect of a burst of noise will be localized in time,

while the effect of a failure will persist in time. With this qualita-

tive insight, we can devise the following "interval decision" rule. A

failure is declared if K1 (K1 < T) or more of the Z's of the set

{((k 0 ;6) 1e is fixed, k-T < ko < k} exceed the threshold. This decision

rule will specify a set of possible failure times (8's). The failure

time is determined by the e in the set of 8's that has the largest value

of Z(k0; 6) (k-T < k < k).

By implementing the interval decision rule, we hopefully have
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reduced the. false alarm rate. However, the speed of detection is

decreased as the detector must wait at least K1 observations after the

occurrence of the failure before it can detect it..

Associated with this decision rule, the probability of correct

detection (PD ) and false alarm (PFI) can be defined as measures of the

performance of the modified GLR detection scheme.

PD I(k, T, K1l' ' a, t, v)

- Prob (KL of the L's in {Z(k ;e)18 fixed, k-T < ko < k}

exceeds ElK1 <T, aC, t' V) (3-31)

I Žp I
PF (k, T, K1, 8, a) P (k, T, K1l e, a, Et, 0) (3-32)

where it is the true failing time, and a and V denote quantities as

defined in section 3.2.

It is clear that the calculation of these probabilities require

integrating the joint density of the Z's. The actual computations

involved are very complex. A general formula for such computations is

impractical and is not pursued here. Intuitively, one would expect PF

to fall off rather rapidly as a function of K1, while the effect of a

persistent failure (G(k;6) not decaying too rapidly) will probably only

make PD a modestly decreasing function of K1.

Similar to the interval decision, a window decision rule could

be devised - here we consider the Z's in a window at one given time k

in the same manner as we consider the Z's in an interval (k-T < k0 c k)

for fixed 0. Therefore, the window decision will declare a failure if
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K2 of the Q's in the window at time k exceed the threshold. The failure

time might then be chosen as that value of e in the window with the

largest Z. The performance of the detection system using this rule can

also be evaluated by computing the corresponding probabilities of

correct detection and false alarm.

It is clear that many modifications of the decision rule are now

possible. The resulting performance may be evaluated with the correspon-

ding probabilities of correct detection, false alarm, cross detection,

etc. as in the original detection system. The probability computations

generally require the joint density of the V's. Such a density is

difficult to obtain for full GLR. But in SGLR, the joint density can

be obtained via the method discussed in section 3.1.



CHAPTER 4

A Numerical Example and Conclusions

4.1 A Simplified Aircraft Model

In order to gain some practical insights into the nature of the

GLR detection scheme, we proceed to examine GLR failure detections for

a second order dynamical system. The simplified longitudinal dynamics

of an aircraft as examined in [8] is the subject of the numerical

studies. The pitch rate (q, in radians/sec) and angle of attack (a, in

radians) are considered to be the two states constituting the linearized

longitudinal dynamics. Furthermore, we assume a sensor for each state

and the dynamics and sensor outputs are assumed to be affected by

additive white noise. After appropriate discretization (sampling period

of 1/32 second), we have obtained the following model.

q(k+l)l r0.9826 -0.14651 .q(k)1 0.0226 0 

=I I+ w(k)
La(k+l) L0.0306 0.9179J lc(k) j Lo.0043 0.0002 J

(4-1)

Z(k)] 1.000 0 q(k) [0.0087 0
= + v(k)

Z2 (k) 0 16. 15 a(k) 0 0.06I

(4-2)

where w and v are zero mean, independent, white gaussian sequences with

unit covariance. The steady state gain (K) and the inverse of the

-68-
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residual covariance (V- ) of the associated KBF have been computed to

be:

.753 0.0463
rK = | 13 | 4 (4-3)
0.1353 0.012 8 J

- 3234.6 -607.0
V = (4-4)

- 607.0 220.6

The system (4-1) has eigenvalues of 0.977 + 0.0667 and hence is stable.

To facilitate the numerical studies, we have developed a Fortran

computer package consisting of the Multiple Detector Simulation Program

(MDSP) and routines for computing different types of probabilities

(e.g., PD' PF' etc.). The MDSP is used to compute all the detector

matrices (G's, C's, etc.) and to simulate the full GLR detection

mechanism for all four basic types of failures in a time-invariant

system with KBF at steady state. (MDSP is fully documented in [8]. The

documentation of the remaining routines will appear in an Electronic

Systems Laboratory research report in the near future.) This computer

package is, therefore, capable of providing analytical data (e.g., the

probabilities) as well as simulation results.

To illustrate some of the issues brought forth in this thesis,

we will discuss the analytical data generated for the simplified air-

craft model. This data is presented here in graphical form in Figures

2 to 14.

In Figures 2 to 9, the elements of the G and C-1 matrices of each

type of failure are plotted against the elapsed time r (r = k-8). It is
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evident that all elements of the G's of jump failures tend to zero while

at least some elements of the G's of step failures are non-diminishing.

This is in agreement with intuition and the arguments in Section 2.3.2.

Since both the system and the associated KBF are stable, the effect of

a jump (either in state or in sensor) on the residual is expected to

decay to zero as the elapsed time increases. The fact that the system

and KBF behave like low pass filters enables them to track certain

types of steps. Consequently, the effect of steps (in state or sensor)

of at least some directions on the residual is non-diminishing. The

problem of finding out precisely which directions lead to nonvanishing

G's can be solved by examining the figures or by evaluating the steady-

state G as described in Section 2.3.2.

As the effect of jump failures on the residuals decreases with

the elapsed time, less information about the failure is available to

the detector. As a result, one would expect the estimate of the failure

to improve very little after some initial period. In fact, the

accuracy of the estimate reaches a limit as shown in Section 2.3.2.

Figures 6 and 7 display such behavior for the C-1 matrices (error

covariance matrix of the failure estimate).

Since some step failures have non-diminishing effect on the

residual, the detector is provided with more information about these

failures as time progresses. Therefore, an improvement of the failure

estimates as the elapsed time increases is possible. Indeed, the error

covariances of the estimates of failures in these directions do go to
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zero as time progresses. The fact that some elements of C- 1 of both

sensor and state step failures in Figures 8 and 9 tend to zero is

evidence of this behavior.

Figures 10 to 13 are plots of 62 (of the correct detection cases)

and PD of full GLR versus r for the four failure types. The PD's are

computed for a threshold s of 5. With this threshold, we have a PF of

0.082. For each failure type, a failure in a alone, (0, 2)' and a

failure in q alone, (vl, 0)' are separately considered in the computation

of 62 and PD. For jumps, we have set the failure to take on the size

of 5 a's (5 standard deviations) of the noise affecting that component

of state or output vector and the step failure sizes are of 1T. The

following is a summary of the failures considered.

a jump in q state V = (.1129, 0)'

a jump in a state v = (0, 0.0217)'

a jump in q sensor v = (0.0437, 0)'

a jump in a sensor v = (0, 0.3)'

a step in q state V = (0.0226, 0)'

a step in a state v = (0, 0.0043)'

a step in q sensor V = (0.0087, 0)'

a step in a sensor v = (0, 0.06)'

With a threshold of 5, all jump failures considered yield a high

PD immediately after the failure has occurred. If we only consider the

PD's, the different detectors seem to be equally "sensitive" to their

-D--------- -



matched failures. However, an examination of the 62 reveals a different

fact. Sensor jump 6 's reach steady state values almost immediately

and have smaller values than the 62 of state jumps of the same "size"

(i.e., Sa of the corresponding noise). State jump 62's actually grow

with r, at least in the range of r considered, reflecting the different

nature of state jumps and sensor jumps and hence the difference in sen-

sitivity between state jump and sensor jump detectors. Due to the

growing nature of 62 within the range of elapsed time (0, 10), a state

jump failure that causes a small initial 62 (and PD) will probably have

a larger PD as r increases implying that if this failure is not de-

tected immediately, the probability of its being detected increases as

one waits. But the same does not apply in the sensor jump situation

because 62 practically stays at a constant value.

All step failures considered here have growing 62's except the

step failure in the a sensor. Let us consider this exception. As a

first order approximation, the angle of attack (a) is the integral of

the pitch rate (q). Hence, a jump in the q state and a step in the

a sensor produce similar effects on the residual. Therefore, the infor-

mation about the failure in the residual diminishes with time for both

failures, and we should anticipate the 62 due to a step in the a sensor

to reach a steady state value (Figure 13) in a way similar to the jump

in the q state situation.

Finally, in Figure 14, we present a plot of the wrong time cross

detection 62 and probabilities of two full GLR detectors having the same



window and threshold (s = 5). The detectors considered are a state

step detector and a sensor step detector. In this figure, the ordinate

represents the noncentrality parameter and probability. The abscissa

represents the hypothesized failure times (e) of the detector window

which is taken to be k-40 < e < k (here k is fixed). A 0.1a q state

step failure is assumed to have occurred at e = k-30.

The 62 profile of both detectors over the window are very much

alike, signifying a strong correlation between sensor step failure

and the q state step failure and, therefore, the indistinguishability

between them. We note that full GLR may often have severe cross-

detection problems. Suppose an actual failure v of type i occurs. If

any failure V of type j is correlated with the true failure, we will have

cross-detection problems since full GLR is designed to choose the most

likely direction. Thus, CGLR may be useful in avoiding the cross detec-

tion problem and this idea should be investigated in the future.

We also note that the 62 of the state step detector across the

window peaked at the true failure time while the sensor step detector

does not have a distinct peak in 62 . This indicates that the sensor

step detector will have more difficulty in determining the true failure

time (of the q state failure).

In Figure 14, k is fixed. As k varies,, the 62 for both detectors

will vary accordingly (and the matched (state step detector) 62 profile

will probably remain very peaked). Thus, examining the 6 behavior as

a function of k and 6 may lead to some rules for distinguishability
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(essentially hypothesis testing on the Q's). For instance, the 62

profiles mentioned above are indications of correlation of the failures

over a window and in turn may be used to determine the type of the true

failure by distinguishing between the shapes of the likelihood ratio

profiles.

4.2 Conclusions and Suggestions for Future Research

Having recognized that the likelihood ratio Z(k; 8) is a crucial

quantity in the GLR detection scheme, we have studied its properties in

this research. In Chapter 2 where the Z's were treated as static random

variables, we have considered probabilities such as PD as performance

measures of the GLR system. As a result, we were able to determine

some guidelines for setting detector window sizes and threshold. We

were also able to gain some insights into two important questions re-

lated to the performance of the detection system, namely, the detecta-

bility and distinguishability of failures. A relationship between the

detectability and observability of failures has been determined. But

we were only able to make an initial study of the distinguishability

issue and further investigation of this subject is necessary to achieve

an "optimal" performance GLR detection system.

In Chapter 3 where the Z's were regarded as a random sequence,

we have studied the correlation behavior of the Z's at different obser-

vation time (k) and hypothesized failure time (e) in SGLR. As a result

of this study, we were able to consider more "precise" performance



measures such as the probability of time to detection (PTD). We have

also developed a framework in which we can consider modified and im-

proved decision rules that involves the temporal characteristics of the

V's. But we have only laid out some groundwork and much remains to be

done (in particular we need algorithms for approximating certain inte-

grals of Gaussian random variables).

As we have gained some understanding of the GLR technique, we

are also confronted with questions that require additional studies. In

concluding this report, we now outline the areas that we feel require

further investigation.

The first major area of future research is the indistinguish-

ability problem. A better understanding of the nature of this problem

is desirable to fully utilize the GLR technique. Insights may be

obtained by following research directions similar to the approach dis-

cussed in Section 2.5 and by the study of the correlation behavior of

the L's and 62 for the wrong time cross detection situation. Such a

study will provide information about the degree of correlation between

different failures. This information may be used to distinguish

different failure modes, for instance, in an interval decision rule

detector scheme.

As pointed out in Section 2.5, once the mutually distinguishable

failure directions are determined, it is more appropriate to use CGLR.

As this thesis research did not consider this scheme, an analysis of

CGLR similar to the one performed for full GLR and SGLR is desirable (and
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the present work provides all the tools needed for such a study).

There, we can develop similar performance measures and modified decision

rules. As CGLR has an indistinguishability problem of its own, we will

have to consider it also, and, in fact, the choice of detector assumed

failure directions will be governed by distinguishability considerations.

Lastly, the joint density functions of the 2's in full GLR is a

valuable piece of information to obtain. As the Z's here are X 2, we

expect the joint densities to be complicated and, therefore, approxima-

tions are necessary. After these densities have been determined, modi-

fied decision rules as discussed in Section 3.3 may be developed for full

GLR performance.



APPENDIX

The Chi Squared (X2) Random Variable

The central X random variable u with n degrees of freedom is

the sum of squares of n independent, zero mean, unit variance gaussian

random variables or more precisely,

n

U _ X i

i=l

where xi - N(O, 1) and E{xixj} = 0 for i Z j. Then the density func-

tion of u is (10]:

u n

e u u>0
fn) 2n/2 r(l n) 

0 u < 0

where r (.) is the gamma function.

There is a FORTRAN subroutine (CDTR) in the IBM Scientific

Subroutine Package that can be readily used to compute the integral of

the above density, i.e. the quantity

pn(U <. ) = fn (u)du = fn (u)dua -u u

Then the false alarm probability (PF) of a detector set to detect

a n dimensional-failure is

Pr = 1 - p<(u < S).

-u --
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The noncentral X2 random variable w with n degrees of freedom is

the sum of squares of n independent, nonzero mean, unit variance gaussian

random variables with the noncentrality parameter defined as

n

62 = [E(x i ) ]
i=l

With 62 = o, m is central X2 . The density for w is [10]:

| 1 (2+) n-2 ) (2ir(j)

fn 6(W) =iF n/2 e 0
2)= l n2 2j=O (2j) !r( - n)

IW, ~~~~~~~~~+2

0 <<0

Recall

Then

12 co n _1 -=. -+ j-1 
fn ) = e 2 E (Z2)jw2 e 2 X

m,52 ~j=0

2- j (2j-1) (2j-3) ... (3) (l)r(2)

n
2 1 12 (2j) (2j-1) (2j-2) ... (2) (1) r (.) rP(j+y n)

-1 2 2) 1 2j -1 
= e (6 ) - e

j=0 n + 2j
2 1

1 2 c 

= e a 2 (6) ( +2j (
j=0 2 j! 
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Hence

n ( <) = e E pn2 (u < 2)

X 2 j= u -

Therefore, Pn (w < s) can be easily calculated by summing the above
w,2

series. We note that Pn (u < £) = n 2 = 0 ( < £).

In Figure 15, we have plotted P versus s for various values
x

of 82 and P is defined as

A n
P = -' 2 ( < )

wc

Note that

lim P = 1 fixed E
2 X

lim P =0 fixed 62

Figure 15 may be used to determine the various probabilities defined in

section 2.2 once the noncentrality parameters are determined.
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