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Abstract 
 
Dysregulation of the immune response to bacterial infection can lead to sepsis, a condition with high mortality. 
Multiple whole-blood gene expression studies have defined sepsis-associated molecular signatures but did not 
resolve changes in transcriptional states of specific cell types. Here, we used single-cell RNA sequencing to 
profile the blood of patients with sepsis (n = 29) across three clinical cohorts with corresponding controls (n = 
36). We profiled total peripheral blood mononuclear cells (PBMCs, 106,545 cells) and dendritic cells (19,806 
cells) across all patients and, based on clustering of their gene expression profiles, defined 16 immune cell 
states. We identified a unique CD14+ monocyte state that is expanded in septic patients and validated its power 
in discriminating septic patients from controls using public transcriptomic data from patients of different disease 
etiologies and multiple geographic locations (18 cohorts, n = 1,213 patients). We identified a panel of surface 
markers for isolation and quantification of the monocyte state, characterized its epigenomic and functional 
phenotypes, and propose a model for its induction from human bone marrow. This study demonstrates the utility 
of single cell genomics in discovering disease-associated cytologic signatures and provides insight into the 
cellular basis of immune dysregulation in bacterial sepsis. 
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MAIN TEXT 
 
Introduction 
 
Sepsis is a prevalent disease with high mortality that contributes to a large fraction of healthcare spending 
worldwide1. To date, no diagnostic biomarker nor targeted therapeutic agent for sepsis has proven useful or 
effective. This is likely attributable to substantial heterogeneity of disease due to multiple potential pathogens, 
sites of infection, individualized host immune responses and manifestations of organ dysfunction2–4. Equally, 
there is limited insight into the cellular and molecular basis of sepsis-induced systemic immune dysregulation5–

8. Prior host gene expression profiling studies relied on whole blood to characterize diagnostic or prognostic gene 
signatures9–12, an approach that aggregates transcriptomic signals from many different cell types, but may not 
detect signatures from rarer cells and does not identify cell type-specific disease signatures13. To overcome 
these limitations, we characterized the spectrum of immune cell states in the blood of septic patients using single-
cell-resolved gene expression profiling.  
 
scRNA-seq defines immune cell states in sepsis patients across multiple clinical cohorts 
 
We performed scRNA-seq on PBMCs from septic patients and controls to define the range of cell states present 
in these patients, identify differences in cell state composition between groups, and detect immune signatures 
that distinguish sepsis from the normal immune response to bacterial infection (Figure 1). Our primary cohorts 
targeted patients with urinary tract infection (UTI) early in their disease course, within 12 hours of presentation 
to the Emergency Department (ED) (Figure 1b-e, Supplementary Table 1). UTI was selected to minimize 
heterogeneity introduced by different infectious sites and maximize diagnostic clarity, since UTI can be reliably 
confirmed post hoc by urine culture. We included patients with UTI (clinical urinalysis with >20 WBCs per high-
power field) as the primary infection both with and without signs of sepsis, and subsequently adjudicated the 
enrolled patients into UTI with leukocytosis (blood WBC ≥ 12,000 per mm3) but no organ dysfunction (Leuk-UTI), 
UTI with mild or transient organ dysfunction (Int-URO), and UTI with clear or persistent organ dysfunction 
(Urosepsis, URO) (Methods); patients with simple UTI without leukocytosis or signs of organ dysfunction were 
not enrolled. Our schema distinguishes transient versus sustained sepsis-related organ dysfunction, although 
both meet established criteria (Sepsis-2 criteria) for sepsis14.   
 
We also profiled patients from two secondary cohorts from a different hospital: bacteremic patients with sepsis 
in hospital wards (Bac-SEP) and patients admitted to the medical intensive care unit (ICU) either with sepsis 
(ICU-SEP) or without sepsis (ICU-NoSEP). Inclusion criteria were the same for primary and secondary cohorts. 
These secondary cohorts included patients later in their disease course, enrolled at least 24 hours after initial 
hospital presentation and receipt of intravenous antibiotics. For comparison, we analyzed specimens from 
uninfected, healthy controls (Control). Our multi-cohort approach, spanning two hospitals and several clinical 
phenotypes, supports the generalizability of our results across different clinical contexts. 
 
We profiled total CD45+ PBMCs (1,000-1,500 cells per patient) and LIN-, CD14-, HLA-DR+ dendritic cells (300-
500 cells per patient) using a 3’ RNA tag sequencing approach. We multiplexed 6-8 samples per experiment 
using cell hashing, observing no major batch effects in our data (Methods, Extended Data Fig. 1). We identified 
immune cell states by clustering the cells in two steps: low-resolution clustering to identify the major immune cell 
types (Figure 1f, Extended Data Fig. 2a-b, Extended Data Fig. 3), then sub-clustering each major cell type 
separately in a robust manner (Extended Data Fig. 2c-d, Methods). This approach identified 16 cell states that 
are found across numerous patients (n=31-69 per state) in different cohorts and processing batches (Figure 2a, 
Extended Data Fig. 2e-f). Among these are transcriptional states of T, B, NK, and dendritic cells15–17, and 
importantly, four monocyte states (Extended Data Fig. 4,5). We found four distinct monocyte groups: MS1, 
CD14+ cells characterized by high expression of RETN, ALOX5AP, and IL1R2 (Figure 2b); MS2, characterized 
by high expression of class II MHC; MS3, similar to non-classical CD16hi monocytes; and MS4, which is 
composed of the remaining CD14+ cells that express low levels of both class II MHC and inflammatory cytokines. 
We noted that some marker genes characterizing the MS1 state (Supplementary Table 2) had been previously 
associated with sepsis in studies measuring either serum protein or whole blood mRNA levels18–21. 
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Expansion of a monocyte state, MS1, in the blood of sepsis patients 
 
We analyzed the differences in abundances of these cell states across different patient phenotypes (Figure 1f). 
We found that the fractional abundances of cell states in the blood are strongly associated with the disease 
status of an individual (Extended Data Fig. 6a-b), whereas absolute abundances are less so (Extended Data 
Fig. 6c). The fractions of classical cell types vary significantly among the Control, Leuk-UTI, and sepsis (Int-
URO, URO, Bac-SEP, and ICU-SEP) cohorts; however, this variation is less pronounced than that of cell states 
derived from our clustering (e.g., monocytes versus MS1, Figure 2c). Of note, MS1 cells constitute a significantly 
larger fraction of CD45+ cells in Int-URO and URO patients than in Control or Leuk-UTI patients and are also 
enriched in septic patients in our secondary cohorts (Bac-SEP and ICU-SEP vs. Control, FDR < 0.001). MS1 
cells are also present at a slightly higher fraction in septic patients (Int-URO, URO, Bac-SEP, and ICU-SEP) than 
severely ill patients without infection (ICU-NoSEP, FDR = 0.27).  
 
Given the expansion of MS1 in septic patients, we reasoned that analysis of gene expression signatures within 
MS1 cells may reveal useful clinical markers for sepsis and further insight into biological mechanisms. To find 
signatures that discriminate sepsis from critical illness without bacterial infection not distinguished by cell state 
abundance alone, we performed differential expression analysis specifically on MS1 cells from ICU-SEP and 
ICU-NoSEP patients (Figure 2d) and found two genes, PLAC8 and CLU, that discriminate these two patient 
populations (Figure 2e, Extended Data Fig. 7c). Whereas PLAC8 expression has been associated with sepsis 
in studies analyzing the bulk expression of blood cells22, CLU expression has not, perhaps due to its specific up-
regulation in MS1 cells.  
 
We analyzed co-varying genes among MS1 cells using non-negative matrix factorization and found five gene 
modules that are detected in more than half of our sepsis patients (Extended Data Fig. 7d-f, Supplementary 
Table 3). Of note, the module in MS1 cells corresponding to mitochondrial respiration (MS1-A; MT-ND4, MT-
CO3, MT-ATP6) correlated significantly with disease severity in sepsis patients from our primary cohort (Int-URO 
and URO, FDR = 0.03; Figure 2f), supporting the link between alterations in energy metabolism and 
immunoparalysis in sepsis23. In addition, a module of genes in MS1 related to anti-inflammatory and pro-resolving 
responses (MS1-B; S100A8, RETN, ALOX5AP, FPR2)24–26 correlates negatively with severity (FDR = 0.04) 
(Figure 2g, Extended Data Fig. 7g), consistent with a current model of sepsis wherein patients early in their 
disease have a heightened inflammatory state, but subsequently switch to an immunosuppressive state27.  
 
Validation of MS1 signatures as markers for sepsis 
 
To compare the performance of our signatures against previously reported classifiers, we quantified the 
classification accuracy of the MS1 fraction, PLAC8+CLU expression in MS1 cells, and published gene-based 
signatures22,28 in our cohort (Figure 3a). When classifying all patients with sepsis (Int-URO, URO, Bac-SEP, and 
ICU-SEP) against Control and Leuk-UTI patients, the MS1 fraction outperforms two published gene set 
signatures (AUC: MS1 Fraction = 0.92, FAIM3-to-PLAC8 = 0.81, and SeptiCyte Lab = 0.74). In addition, 
PLAC8+CLU expression in MS1 cells has higher classification accuracy when comparing ICU-SEP to ICU-
NoSEP patients (AUC: MS1 PLAC8+CLU = 0.85, FAIM3-to-PLAC8 = 0.74, and SeptiCyte Lab = 0.82). These 
external gene signatures were derived from whole blood profiling in varying clinical contexts, which could impact 
their performance when applied to our PBMC-derived expression data. In addition, the performance of MS1 
PLAC8+CLU may be inflated when applied to a subset of patients from which MS1 was derived. Nevertheless, 
our approach provides biological context for these previously derived signature genes, as their expression in our 
data was specific to certain cell states (Extended Data Fig. 8). 
 
To validate our signatures in external datasets, we analyzed independent cohorts of patients with bacterial sepsis 
from published bulk expression studies of sepsis. First, we validated the use of bulk gene expression 
deconvolution29,30 on our data to infer the relative fraction of MS1 cells and cells in other states in the blood 
(Extended Data Fig. 9a-c, Methods). Upon extending this approach to bulk transcriptional data from 11 sepsis 
cohorts included in a recent meta-analysis4, we found the inferred abundance of the MS1 state higher in septic 
patients than in controls in each study, with a summary effect size of 1.9 across all cohorts (FDR = 1.75 x 10-30, 
Figure 3b, Supplementary Table 4). Furthermore, the inferred MS1 fraction alone for each patient can be used 
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as a classifier for sepsis in the same datasets with a summary AUC of 0.90 (range of 0.81-0.98) across all studies 
(Figure 3d), performing similarly to reported classifiers that were derived from bulk gene expression signatures9 
(Extended Data Fig. 9e). In a similar analysis of 7 datasets comparing septic patients with ICU controls (patients 
with non-infectious systemic inflammatory response syndrome)9 (Figure 3c), MS1 is expanded in sepsis albeit 
with a lower but notable effect size of 0.32 (FDR = 0.08), consistent with observations in our own cohorts. 
Whereas the MS1 fraction alone cannot be used as a sepsis classifier in this context, analyzing the co-expression 
of PLAC8, CLU, and MS1 marker genes (RETN, CD63, ALOX5AP, SEC61G, TXN, MT1X) in these datasets 
performs well in classifying sepsis patients against sterile inflammation (Figure 3e), with a summary AUC of 0.81 
(range of 0.63-1.00), performing similarly to published signatures (Extended Data Fig. 9d,f). This analysis of 
published transcriptional data implies that MS1 cells are present in septic patients across several geographic 
locations, genetic backgrounds, and clinical contexts, and demonstrates the potential utility of MS1-specific gene 
signatures for the discrimination of sepsis from sterile inflammation. 
 
Surface markers for isolation of MS1 cells 
 
To improve its utility as a cytologic marker, we identified a panel of surface proteins that can be used to define 
the MS1 cell state by flow cytometry. Among the differentially expressed genes that distinguish it from other 
CD14+ monocytes, low HLA-DR and high IL1R2 expression can be used to quantify the fraction of MS1 cells 
(Figure 3f). Previous studies31,32 have shown that CD14+ monocytes from patients with sepsis have decreased 
HLA-DR expression; however, we found that monocytes from Leuk-UTI patients also have this phenotype, 
signifying that decreased HLA-DR expression alone is insufficient to distinguish patients with sepsis from those 
with uncomplicated infection. By contrast, HLA-DRlo, IL1R2hi CD14+ monocytes were at higher frequencies in 
Int-URO and URO patients than in Control or Leuk-UTI patients (Figure 3g), and their fractions measured by 
flow cytometry correlated significantly with fractions determined by scRNA-seq (Pearson r = 0.87) (Figure 3h). 
Cells sorted with this phenotype (7,098 cells from 5 URO patients) co-localize by expression profile with MS1 
cells in our original dataset when analyzed together and projected on the same t-distributed stochastic neighbor 
embedding (tSNE) plot (Figure 3i). This combination of cell surface markers could be used to purify the cell state 
for further molecular and functional characterization or could potentially be employed as a routine tool for rapid 
quantification of the MS1 fraction in patients at risk of developing sepsis. 
 
Generation of MS1-like cells from human bone marrow 
 
Low HLA-DR expression is associated with monocyte immaturity, resulting in decreased responsiveness to 
stimuli33,34. We hypothesized that MS1 cells might be derived from bone marrow mononuclear cells (BMMCs), 
which include hematopoietic precursors, rather than from mature immune cells in peripheral blood. We found 
that chronic stimulation of BMMCs with Pam3CSK4 (Pam3) or lipopolysaccharide (LPS) results in the emergence 
of a CD14+, HLA-DRlo, IL1R2hi population (Figure 4a). The abundance of this population, as a fraction of total 
CD14+ cells, increased significantly over time in treated BMMCs, but not in treated PBMCs (Figure 4b). 
Furthermore, scRNA-seq profiling of BMMCs treated with LPS or Pam3CSK4 revealed a cluster of cells scoring 
highly for MS1 signature genes that are absent in the untreated condition (Figure 4c-d, Extended Data Fig. 
10a-e). Trajectory analysis of the myeloid populations suggests that the MS1-like induced population (iMS1, 
Leiden cluster 14) proceeds initially through a differentiation pathway similar to that of cells from the non-
stimulated condition but that it subsequently deviates from this fate (Figure 4e, Extended Data Fig. 10f-g). 
Progenitor populations in the stimulated condition display several differentially expressed genes (Extended Data 
Fig. 10h); stimulated progenitor cells up-regulate several receptors previously associated with inflammation-
induced myelopoiesis (e.g. IL3R, IL10R, IFNAR1)35, suggesting that an MS1-like population may emerge in the 
bloodstream as a result of sepsis-induced myelopoiesis. These results demonstrate the potential of human bone 
marrow cells as a model for the expansion of the MS1 state in sepsis, and support the hypothesis that the 
emergence of reprogrammed myeloid cells in the blood stems from dysregulated differentiation of hematopoietic 
precursors36,37. 
 
Epigenomic landscape and transcriptional regulators of MS1 cells 
 
Principal components analysis of genome-wide ATAC-seq profiles of monocyte populations showed that 
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chromatin accessibility landscapes of monocytes from the peripheral blood of healthy controls (PB-Mono) and 
monocytes from healthy bone marrow (BM-Mono) co-localize, whereas MS1 cells sorted from sepsis patients 
(PB-MS1) and monocytes from BMMCs stimulated with LPS (BM-iMS1) form distinct clusters yet share similar 
loadings on PC2 (Figure 4f). Motif enrichment analysis on the differential peaks between PB-Mono and PB-MS1 
demonstrates enrichment of the FOS:Jun, PU.1, and CEBP motifs, all of which are families of transcription 
factors critical to monocyte development38 (Figure 4g-h, Supplementary Table 5). Given their important role in 
inflammation-induced myelopoiesis38,39, we analyzed the expression of the CEBP transcription factors. Bulk 
RNA-seq showed an increase in CEBPD and CEBPE and a decrease in CEBPG expression in PB-MS1 
compared with PB-Mono, and similarly in BM-iMS1 compared with BM-Mono (Figure 4i). Analysis of the 
differentiation trajectory of iMS1 cells from bone marrow progenitors also showed an increase in CEBPD 
expression after the transition from a GMP state (Figure 4j). Interestingly, CEBPD was among the top genes of 
the module comprised of transcription-related and housekeeping genes from our analysis of MS1 cells from 
sepsis patients (MS1-C, Extended Data Fig. 7e, Supplementary Table 3), suggesting its potential importance 
in the maintenance of the MS1 program. Altogether, these analyses show that MS1 cells have an epigenomic 
profile markedly different from normal CD14+ blood monocytes and that these differences are associated with 
transcription factors involved in monocyte differentiation. Although in vitro generated BM-iMS1 do not fully 
recapitulate the epigenomic landscape of MS1 cells, the two populations show significant overlap in accessible 
peaks and share the upregulation of similar transcriptional regulators. 
 
Functional response of MS1 cells to restimulation 
 
To compare the functional responses of MS1 cells to those of other CD14+ monocytes, we sorted the four 
monocyte populations and stimulated the cells with 100 ng/mL LPS after resting for 24 h. As expected, LPS 
stimulation results in upregulation of genes related to cytokine secretion and activation of the NFκB signalling 
pathway (Figure 4k, Supplementary Table 6). However, the magnitude of response is decreased in PB-MS1 
cells relative to PB-Mono, and in BM-iMS1 relative to BM-Mono, as evidenced by lower basal and induced 
expression of the TNF gene, and less secretion of the TNFα protein (Figure 4l-m). Analyzing the overlap in 
differentially expressed genes upon stimulation reveals a large number of genes that are uniquely up-regulated 
in PB-MS1 (Figure 4n). This includes CLU, one of the genes we propose as a marker for discriminating sepsis 
from non-infectious inflammation. BM-iMS1 also up-regulated a subset of the genes (12.4%) induced in PB-MS1. 
Of note, NFKBIA, a known inhibitor of inflammatory responses, was up-regulated in both PB-MS1 and BM-iMS1, 
perhaps explaining the blunted response in both populations. This analysis demonstrates that MS1 cells from 
sepsis patients and those induced from human bone marrow both have a dysregulated response to further 
bacterial stimulation, recapitulating known phenotypes of monocytes in sepsis patients. 
 
Discussion 
 
Our work identified a specific monocyte state in the blood, MS1, as a signature of sepsis in patients with bacterial 
infection in multiple cohorts. This state is also expanded in ICU patients with sterile inflammation, but particular 
gene signatures within the MS1 cell state further distinguish these two patient populations. Associated surface 
markers can be used to purify the cell state, enabling routine monitoring in settings where patients are at risk for 
sepsis. Additional profiling of the granulocyte compartment, which we were not able to capture using the 
approach employed here, will be needed to comprehensively survey the host immune landscape in sepsis. 
Nevertheless, these findings highlight the utility of patient phenotyping based on underlying immune responses 
and provide a new level of resolution for patient stratification and therapeutic development in sepsis.  
 
By characterizing the epigenomic and functional phenotype of the MS1 state, our findings provide insight into its 
biology and support a model in which MS1-like cells can be induced from bone marrow precursors. Whereas the 
α and β members of the CEBP family of transcription factors are associated with steady-state and sepsis-induced 
myelopoiesis39,40, we identified a different paralog, CEBP , that may drive the MS1 state. These data suggest a 
novel mechanism through which hematopoietic adaptation plays a role in the pathophysiology of sepsis, although 
more studies are needed in hematopoietic precursors from septic patients. In addition, studies in vitro and in 
model organisms are needed to test whether MS1 cells and their transcriptional regulators play a direct role in 
the induction of sepsis and to determine their potential utility as targets for therapeutic manipulation. 
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METHODS 
 
Study samples and clinical adjudication 
 
Primary cohorts comprised subjects with UTI and urosepsis presenting to the Emergency Department at the 
Massachusetts General Hospital (MGH) and secondary cohorts were hospitalized subjects with and without 
sepsis on inpatient services at the Brigham and Women’s Hospital (BWH); both hospitals are located in Boston, 
MA, USA. Informed consent was obtained from patients or their surrogates. Blood samples from patients and 
healthy controls were drawn with EDTA Vacutainer tubes (BD Biosciences) and processed within 3 h of 
collection. De-identified bone marrow mononuclear cell samples were purchased from AllCells or Stemcell 
Technologies. This study was approved by the Institutional Review Boards at the Broad Institute of MIT and 
Harvard and at Partners HealthCare (MA, USA), under protocols 2017P001681/PHS, 2008P000495/PHS, and 
2017P000367/PHS. 
 
The primary cohorts were enrolled in the Emergency Department (ED) at the Massachusetts General Hospital 
(MGH) from 12/2017 to 11/2018. They consisted of patients with urinary tract infection (UTI), defined by urine 
WBC >20 per high-power field on clinical urinalysis. Study samples were collected within 12 hours of arrival to 
the Emergency Department. Initial enrollment of these patients with UTI was into two categories: 1) those with 
leukocytosis (blood WBC >=12,000 per mm3) without another cause, indicating systemic inflammation from the 
UTI, but without organ dysfunction (cohort Leuk-UTI), and 2) those with organ dysfunction, which defines 
urosepsis. For the urosepsis group, we recruited patients meeting UTI criteria in the presence of organ 
dysfunction as specified in national quality measure definitions41 that are adapted from Sepsis-2 consensus 
definitions14, specifically systolic blood pressure <90 mmHg, lactate >2.0 mg/dL, requirement for vasopressor 
medication, new Glascow Coma Score (GCS) <15 denoting altered mental status, new creatinine >2.0 mg/dL, 
or need for mechanical ventilation. Whereas SOFA scores were calculated, they were not a specific criterion for 
enrollment or adjudication. 
 
Once the results of initial diagnostics sent in the course of routine clinical care, including cultures, were available 
and the subsequent clinical course during hospitalization was known (i.e., at least 48 hours after initial 
presentation), clinical adjudication of each enrolled patient was independently performed by three investigators 
(M.R.F, R.P.B, M.B.G.), blinded to research analysis outcomes. Each enrolled patient that was found to meet 
criteria for the study was adjudicated to one of three clinical categories: Leuk-UTI, intermediate urosepsis (Int-
URO), and urosepsis (URO). Given the spectrum of organ dysfunction severity amongst enrolled patients, we 
differentiated mild or transient organ dysfunction (intermediate urosepsis, or Int-URO) from sustained infection-
related organ dysfunction (urosepsis, or URO). Int-URO includes patients with physiologic perturbations that 
qualify as sepsis in the setting of infection per national quality measure and Sepsis-2 consensus definitions14,41, 
but where observed organ dysfunction was isolated, relatively mild, and resolved quickly with initial therapies; 
examples include hypotension that resolved with fluid resuscitation, isolated mild elevation in creatinine that 
normalized within 24 hours, or elevated initial lactate or alteration in mental status that improved within 4-6 hours. 
Urosepsis (URO) includes patients with organ dysfunction that persisted or worsened despite initial therapy; 
examples include refractory hypotension requiring vasopressor support, persistent renal dysfunction >24 hours 
after enrollment, lactate increasing despite adequate volume resuscitation, or multiple organ system dysfunction. 
Discrepancies in adjudication among the three clinicians were resolved as a group.  
 
For the category Leuk-UTI, we specifically targeted enrollment of patients with UTI with systemic response but 
without sepsis so as to provide the most appropriate comparison for our urosepsis cohorts, as a comparison to 
patients with simple UTI without evidence of a systemic response might highlight host signature differences 
attributable to a systemic response to localized infection rather than being specific to sepsis. To obtain as pure 
an immune signature for infection as possible, we excluded patients with immunodeficiencies, including HIV, 
concurrent immunomodulatory drug therapy (including prednisone or steroid equivalent, chemotherapy, or 
biologic immunomodulators), bone marrow or solid organ transplantation recipients, and individuals with 
autoimmune disease. Of note, two patients in the Leuk-UTI cohort were asplenic. For all these primary cohorts 
(Leuk-UTI, Int-URO, and URO), we excluded patients who had received their first intravenous antibiotic >12 
hours prior to enrollment. Of the 27 patients enrolled in these cohorts, 7 were enrolled prior to antibiotic initiation, 
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and 20 were enrolled within 7 hours of antibiotic initiation, with the median time to enrollment from antibiotic 
initiation for all enrolled patients 1.1 hours (IQR: 0.2-2.4 hours).  
 
Uninfected control samples for the primary cohorts were obtained from two sources. First, follow-up blood 
samples were obtained from four primary cohort patients at 2-3 months after index enrollment (2 Leuk-UTI and 
2 URO patients). For all other primary cohort patients, uninfected control samples consisted of blood samples 
from age, gender, and ethnicity-matched healthy controls obtained from Research Blood Components (MA, 
USA).  
 
Secondary cohorts consisted of hospitalized patients identified as having bacteremia and sepsis but not requiring 
ICU admission (Bac-SEP), patients with sepsis requiring ICU care (ICU-Sep), and patients in the ICU for 
conditions other than sepsis (ICU-NoSEP). These cohorts were enrolled in the Brigham and Women’s Hospital 
(BWH) as part of the Registry of Critical Illness; the criteria for patient recruitment for this cohort are described 
elsewhere42,43. The Bac-SEP patients were recruited between 12/2017 and 9/2018 from hospital inpatient floors 
(not ICU) and had positive blood cultures within 24 h of sample collection (excluding those blood cultures that 
grew coagulase-negative Staphylococcus species, which was considered likely to be a contaminant). The ICU-
SEP and ICU-NoSEP patients were enrolled in the BWH ICU between 11/2017 and 10/2018.  
 
In contrast to the primary cohorts enrolled in the MGH ED, most patients in the secondary cohorts were enrolled 
2-3 days after initial presentation of disease and initiation of therapy, with all patients enrolled >24 hours from 
hospital presentation; most had therefore received antibiotics for >24 hrs prior to enrollment (median 70 hrs for 
Bac-SEP, IQR 61-79 hrs; median 49 hrs for ICU-SEP, IQR 44-65 hrs). The sources of infection for secondary 
cohort patients included pulmonary, urinary, intraabdominal, and endovascular sites. To ensure consistency of 
adjudication among cohorts, secondary cohorts were adjudicated for the presence of sepsis by the three 
adjudicators who adjudicated the primary cohort (M.R.F, R.P.B, M.B.G.) and employing the same methods used 
for the primary cohorts. 
 
During the index illnesses and/or hospitalizations, there were no deaths among patients in the Leuk-UTI, Int-
URO, BAC-SEP, and ICU-NoSEP cohorts and one death each among patients in the URO and ICU-SEP cohorts. 
Given the small numbers of deaths, we did not specifically analyze their potential significance.  
 
Isolation and cryopreservation of PBMCs from whole blood 
 
Cells were isolated from whole blood samples using density gradient centrifugation, as described in a previous 
study13. Briefly, whole blood was diluted 1:1 with 1X PBS, layered on top of Ficoll-Paque Plus (GE Healthcare), 
and centrifuged at 1200 g for 20 min. The PBMC layer was resuspended in 10 mL RPMI-1640 (Gibco), and 
centrifuged again at 300 g for 10 min. The cells were counted, resuspended in Cryostor CS10 (StemCell 
Technologies), and aliquoted in 1.5 mL cryopreservation tubes at a concentration of 2x106 cells/mL. The tubes 
were kept at -80°C overnight, then transferred to liquid nitrogen for long-term storage. The plasma layer from 
density gradient separation was also collected, aliquoted in 1 mL tubes, and stored at -80°C. 
 
Staining, flow cytometry, and dendritic cell enrichment 
 
Samples were processed in batches of 6 or 8 for pooling in single-cell RNA sequencing runs. All cells were 
stained with a general panel: DAPI, CD3-APC (HIT3a), CD19-APC (HIB19), CD20-APC (2H7), CD56-APC 
(5.1H11), CD14-FITC (M5E2), CD16-AF700 (B73.1), CD45-PE-Cy7 (HI30), HLA-DR-PE (L243) (BioLegend). At 
the same time, 1 uL of cell hashing antibody (HTO) was added to each sample (BioLegend). Samples were run 
on a SH800 cell sorter (Sony) to obtain flow cytometry data and sort both live CD45+ cells and dendritic cells. 
For samples from subjects enrolled in the MGH ED, dendritic cells were enriched separately with a MACS human 
pan-DC enrichment kit (Miltenyi Biotec). For sorting MS1 cells, the following panel was used: DAPI, CD3-APC 
(HIT3a), CD19-APC (HIB19), CD20-APC (2H7), CD56-APC (5.1H11), CD14-FITC (M5E2), CD45-AF700 (HI30), 
HLA-DR-PE-Cy7 (L243) (BioLegend) and IL1R2-PE (34141, ThermoFisher Scientific). 
 
Single-cell RNA sequencing and analysis 
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Single-cell RNA sequencing was performed on the Chromium platform, using the single cell expression 3’ v2 
profiling chemistry (10X Genomics) combined with cell hashing44. HTO-labelled cells from 6-8 donors were 
pooled equally then washed twice with RPMI-1640 immediately before loading on the 10X controller. cDNA 
amplification and library construction were conducted following the manufacturer’s protocol, with additional steps 
for the amplification of HTO barcodes. Libraries were sequenced to a depth of ~50,000 reads per cell on a 
Novaseq S2 (Illumina). The data were aligned to the GRCh38 reference genome using cellranger v2.1 (10X 
Genomics), and the hashed cells were demultiplexed using the CITE-seq count tool 
(https://github.com/Hoohm/CITE-seq-Count). 
 
Single cell data analysis was performed using scanpy45. Count matrices from the cellranger output were pre-
processed by filtering for cells and genes (minimum cells per gene = 10; minimum unique molecular identifiers 
[UMI] per cell = 100). Before clustering, the full dataset or a subset thereof was filtered for highly variable genes 
(minimum mean = 0.0125 and dispersion = 0.5 per gene) and scaled. Clustering was performed on the top 50 
principal components of the data using the Leiden algorithm with varying resolution. To quantify the robustness 
of each clustering solution, the data were subsampled without replacement (90% of cells, 20 iterations), re-
clustered, and an adjusted Rand index was then computed between the solutions for the original and subsampled 
data. The highest resolution at which the robustness began to decrease was chosen for further analysis. To 
ensure that no patient- or batch-specific clusters were included in the data, small clusters (< 500 cells) were 
combined with the next closest cluster based on their similarity in gene expression profiles. Differentially 
expressed genes were determined for each state by a Wilcoxon rank-sum test, with an FDR cutoff of 0.01. For 
visualization, tSNE projections were computed on the top 10 PCs of the dataset or subsets thereof. To 
specifically find genes that discriminate ICU-SEP and ICU-NoSEP populations, differentially expressed genes 
were filtered for those that have an in-group fraction >0.4 and out-group fraction <0.6. Consensus non-negative 
matrix factorization analysis was performed as detailed in a previous publication46. To ensure that no patient- or 
batch-specific modules were analyzed, only gene programs with mean usage >50 across all patients were 
included for further analysis. 
 
Patient classification and comparison with published predictors 
 
All comparison of abundances were tested for significance by a Wilcoxon rank-sum test. Benjamini-Hochberg 
FDR correction was applied to the calculated p-values for multiple testing of either cell types or states. To 
compare against published gene-based predictors, we summed UMI counts for each gene from all cells for each 
patient, scaled to the total number of UMI counts per patient, and calculated the FAIM-to-PLAC8 ratio28, 
SeptiCyte Lab22, and Sepsis Metascore12, as published. Receiver operating characteristic (ROC) curves were 
plotted based on these absolute scores, as well as the fraction of MS1 for each patient. To examine the effect of 
monocyte-specific analysis of bulk signatures, we conducted the same calculations on 1,000 subsampled cells 
(either total PBMC or monocytes only) from each individual 30 times. These were then used to plot a distribution 
of the area under the ROC curves (AUROCs) for each condition. 
 
Bulk data deconvolution, gene signature mapping, and meta-analysis 
 
We constructed a reference signature matrix for our cell states by generating bulk profiles from single cell 
references, and ranking the genes based on effect size47. We first optimized the number of genes in the signature 
matrix by finding the minimum number of genes where the reduction in prediction error is saturated. We found 
this value to be at >50 genes and selected 100 genes per state and lineage (1,201 total, union of all genes) in 
the final matrix. To construct the signature matrix, we summed UMI counts for each state, normalized to the 
number of total UMIs per state, and quantile-normalized the resulting matrix.  
 
Datasets comparing sepsis and healthy controls were obtained as outlined in two published studies4,9. Datasets 
whose gene expression matrices were not publicly available were not included in our analysis. Gene expression 
deconvolution was performed using CIBERSORT29. Noting that our state signatures only capture PBMC states 
and exclude high-density cells in whole blood, the data were deconvolved with a no-sum-to-one constraint and 
absolute scoring. The resulting score matrix was then used as an input to MetaIntegrator48. The effect size of 
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each state was visualized using forest plots, and the classification performance of MS1 cells (or combinations 
with other cell types) was quantified by generating a summary ROC plot. Scores for combinations of states were 
calculated by taking the geometric mean of scores for positive states minus the geometric mean of scores for 
negative states. 
 
Bone marrow and peripheral blood cell stimulation 
 
For MS1-induction experiments, bone marrow or peripheral mononuclear cells were cultured in SFEM II 
supplemented with 1X CC110 (StemCell Technologies) with or without the presence of 100 ng/mL LPS or 
Pam3CSK4 (Invivogen) for up to 4 days. For re-stimulation experiments, sorted monocytes were rested for 24 
hours in RPMI-1640 supplemented with 10% heat-inactivated FBS and 1X Pen-Strep (Gibco), before adding 100 
ng/mL LPS (Invivogen). 
 
ATAC-seq processing and data analysis 
 
Assay for transposase-accessible chromatin using sequencing (ATAC-seq) was performed on 25,000 sorted 
cells as described in a published protocol49. Libraries were sequenced on a NextSeq (Illumina) with 38 x 38 
paired-end reads and at least 10 million reads per sample. Sequencing data were aligned using the ENCODE 
Project ATAC-seq pipeline (https://www.encodeproject.org/pages/pipelines/), and further analyzed using custom 
scripts. To generate a peak count matrix, we first identified a consensus peak set using the multiinter function, 
and then analyzed the number of counts for each sample using the function coverageBed from bedtools v2. 
Differential peak analysis was performed using edgeR, using the peak count matrix as input. Peak motifs were 
analyzed using the findMotifsGenome function in Homer v4.1 with a window size of 200 bp. 
 
Bulk RNA-seq processing and data analysis 
 
Bulk RNA-seq was performed using Smart-Seq250 with minor modifications, as described in a previous study13. 
Briefly, 5,000 sorted or cultured cells were resuspended in 15 μl of TCL (Qiagen), and their RNA was purified by 
a 2.2x SPRI cleanup with RNAClean XP magnetic beads (Agencourt). After reverse transcription, amplification 
and cleanup, libraries were quantified using a Qubit fluorometer (Invitrogen), and their size distributions were 
determined using an Agilent Bioanalyzer 2100. Amplicon concentrations to 0.1 ng/ml and sequencing libraries 
were constructed using a Nextera XT DNA Library Prep Kit (Illumina), following the manufacturer’s protocol. All 
RNA-seq libraries were sequenced with 38 x 38 paired-end reads using a NextSeq (Illumina). RNA-seq libraries 
were sequenced to a depth of >2 million reads per sample. STAR was used to align sequencing reads to the 
UCSC hg19 transcriptome and RSEM was used to generate an expression matrix for all samples. Both raw 
count and transcripts per million data were analyzed using edgeR and custom python scripts. The list of identified 
receptor-ligand pairs were obtained from a previous publication51. 
 
Cytokine measurements 
 
Culture supernatants were diluted 2x in PBS and frozen at -80°C before processing. Samples from multiple 
experiments were thawed and analyzed in parallel using the Legendplex Human Inflammation Panel, TNFα 
(BioLegend). Flow cytometry data were acquired on a Cytoflex LX (Beckman Coulter) and analyzed using FlowJo 
v10.1. 
 
Reporting summary 
 
Further information on research design is available in the Nature Research Reporting Summary accompanying 
this article.	  
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MAIN FIGURES 
 

  
 
Figure 1. Cohort definition and analysis strategy. (a) Processing pipeline for blood samples used in this 
study. Total CD45+ PBMCs and enriched dendritic cells for groups of patients were labelled with cell hashing 
antibodies and loaded on a droplet-based scRNA-seq platform. Cells were demultiplexed and multiplets were 
removed based on calls for each barcoding antibody. (b) Schematic and number of patients for each cohort 
profiled in this study. (c) Age distribution of patients and controls analyzed in this study. (d) Time to enrollment 
from hospital presentation for each patient across all cohorts. Boxes show the mean and interquartile range 
(IQR) for each patient cohort, with whiskers extending to 1.5 IQR in either direction from the top or bottom 
quartile. (e) Barplots showing fractions of Gram-positive and Gram-negative pathogens for each cohort. (f) 
Analysis pipeline: cell states were identified via two-step clustering, and fractional abundances thereof were 
compared to find sepsis-specific states. Further signatures were derived from these states using differential gene 
expression and gene module analysis. These signatures were validated in external sepsis datasets via a 
combination of bulk gene expression deconvolution, direct mapping of gene signatures, and meta-analysis. 
Experiments were performed to identify surface markers, develop a model system for induction, analyze the 
epigenomic profile, and characterize the functional phenotype of the identified cell state. 
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Figure 2. scRNA-seq identifies sepsis-specific immune cell states and gene signatures. (a) t-distributed 
stochastic neighbor embedding (tSNE) plots for each cell type (n = 32341, 7970, 9390, 58557, and 14299, cells 
for T, B, NK, Mono, and DC, respectively) colored by embedding density of cells from sepsis patients (Int-URO, 
URO, Bac-SEP and ICU-SEP; left) and cell state (right). (b) Select marker genes that are differentially expressed 
(false discovery rate [FDR] < 0.05, two-tailed Wilcoxon rank-sum test) in each cell state, when compared with 
other cell states within the same cell type. Color scale corresponds to z-scored, log-transformed mean gene 
expression counts for each cell state. TS, T cell states; BS, B cell states; NS, NK cell states; MS, monocyte 
states; DS, dendritic cell states; MK, megakaryocytes. (c) Fraction of total CD45+ cells across each patient type 
for total monocytes (left) and MS1 cells (right). In Control group, points for healthy controls that were follow-up 
samples from enrolled Leuk-UTI, Int-URO, and URO patients are indicated as black symbols and those for 
matched healthy control samples from an outside source are indicated as aqua symbols. FDR values are shown 
when comparing each disease state with healthy controls (two-tailed Wilcoxon rank-sum test, corrected for 
testing of multiple states). Boxes show the median and IQR for each patient cohort, with whiskers extending to 
1.5 IQR in either direction from the top or bottom quartile. Sample size (n) for each cohort is indicated in Figure 
1b. (d) Volcano plot showing differential expression analysis results (two-sided Wilcoxon rank-sum test) between 
MS1 cells from ICU-SEP and MS1 cells from ICU-NoSEP patients. Genes with log2FC (fold-change) > 1 are 
highlighted in red, and the top 5 genes with the highest positive fold-changes are labeled. n = 2,153 and 1,442 
cells from the 8 ICU-SEP and 7 ICU-NoSEP patients, respectively. (e) Box and swarm plots showing the mean 
expression (log2 unique molecular identifier [UMI] counts) of PLAC8 and CLU in MS1 cells for each patient from 
the ICU-SEP and ICU-NoSEP cohorts. Boxes show the median and IQR for each patient cohort, with whiskers 
extending to 1.5 IQR in either direction from the top or bottom quartile. (f-g) Scatterplots showing correlation 
between mean gene module usage in MS1 cells and SOFA scores for Int-URO and URO patients. Line and 
shadow indicate linear regression fit and 95% confidence interval, respectively. Significance of the correlations 
(Pearson r) were calculated with a two-sided permutation test, corrected for testing of multiple modules. SOFA, 
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sequential organ failure assessment.  
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Figure 3. Analysis of the MS1 cell state as a sepsis marker. (a) Receiver-operating characteristic (ROC) 
curve for sepsis patient classification based on MS1 abundance (top) or mean PLAC8 and CLU expression in 
MS1 cells (bottom), and gene expression score-based classifiers (FAIM3-to-PLAC8, SeptiCyte Lab). MS1 is 
taken as the fraction of total CD45+ cells per patient as defined by scRNA-seq. Gene-set scores were calculated, 
as detailed in each corresponding publication, on the pseudo-bulk gene expression matrix obtained by summing 
read counts from all cells of each patient. SEP indicates all sepsis patients analyzed in this study (Int-URO, URO, 
Bac-SEP, ICU-SEP). (b-c) Forest plots showing the effect size (log2 standardized mean difference between 
indicated patient phenotypes) of inferred MS1 abundance in each dataset from bulk gene expression 
deconvolution. Accession numbers of the data from each study are listed on the left. Boxes indicate the effect 
size in an individual study, with whiskers extending to the 95% confidence interval. Size of the box is proportional 
to the relative sample size of the study. Diamonds represent the summary effect size among the patient groups, 
determined by integrating the standardized mean differences across all studies. The width of the diamond 
corresponds to its 95% confidence interval. (d) Individual ROC curves for sepsis vs. uninfected healthy controls; 
analysis includes each study in (b) for which the number of sepsis patients and controls were both greater than 
5 (n = 751 total patients from 9 cohorts). (e) ROC curves for classifying sepsis vs. sterile inflammation (n = 696 
total patients from 7 cohorts) based on the mean expression of PLAC8, CLU, and the top 6 MS1 marker genes 
(RETN, CD63, ALOX5AP, SEC61G, TXN, MT1X). Black curves in (d, e) indicate the summary ROCs. (f) Flow 
cytometry density plots of LIN-, CD14+ monocytes gated on surface expression of IL1R2 and HLA-DR. 
Percentage of the population over total CD14+ monocytes in each quadrant is indicated. Each density plot shows 
PBMCs from a single patient analyzed in one experiment. (g) Fractional abundance of CD14+, HLA-DRlo, 
IL1R2hi monocytes by flow cytometry in Control, Leuk-UTI, Int-URO, and URO patients (n = 6, 4, and 6, 
respectively). Samples used for this analysis were from the primary cohort (Control, Leuk-UTI, Int-URO, URO). 
Boxes show the median and IQR for each patient cohort, with whiskers extending to 1.5 IQR in either direction 
from the top or bottom quartile. (h) Correlation of MS1 fractions defined by scRNA-seq (y-axis) and CD14+, HLA-
DRlo, IL1R2hi monocyte fractions of CD45+ cells (x-axis) from n = 4 Leuk-UTI and n = 6 URO patients from (g). 
Significance of the correlation (Pearson r) was calculated with a two-sided permutation test. (i) scRNA-seq of 
sorted CD14+, HLA-DRlo, IL1R2hi, monocytes and original MS1 cells visualized with tSNE projection. Top 
scatterplot (n = 15,021 cells) shows original classification of cells from the patient cohorts, bottom shows 
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embedding density of sorted cells in the same projection. 
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Figure 4. Induction and characterization of MS1 monocytes. (a) Flow cytometry contour plots showing IL1R2 
and HLA-DR of cells gated on the CD14+ fraction from either bone marrow (BM, top row) or peripheral blood 
(PB, bottom row) mononuclear cells. Cells are either freshly thawed (left column) or stimulated with 100 ng/mL 
LPS for 3 days in Hematopoietic Stem Cell (HSC) cytokine-rich media (right column). Each density plot shows 
cells from a single donor analyzed in one experiment. (b) Fractional abundance of HLA-DRlo, IL1R2hi cells 
among CD14+ monocytes in PB or BM mononuclear cells stimulated with either 100 ng/mL LPS (top) or 
Pam3CSK4 (bottom) over time (0 to 4 days). Different symbols indicate cells obtained from different healthy 
donors. P-values are calculated from a two-sided Wilcoxon rank-sum test between day 0 and day 4. (c-d) scRNA-
seq of BM mononuclear cells (n = 8,702 cells) incubated in HSC cytokine-rich media with no treatment or 100 
ng/mL LPS or Pam3CSK4 for 4 days. Cells are visualized on uniform manifold approximation and projection 
(UMAP) plots colored by treatment (c) or MS1 score (d). MS1 scores are given as the ratio of the average 
expression of the top 15 MS1 marker genes to the average expression of a randomly sampled set of 50 reference 
genes. In each plot, the cluster with the highest MS1 score is circled. Dotted circles indicate monocyte clusters. 
Inset in (d) shows the mean fractional abundance of the iMS1 cluster among monocytes across each donor and 
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treatment condition; each individual point is calculated by randomly sampling the data and clustering the 
subsampled dataset (n = 20 iterations). (e) UMAP projections (n = 901 cells) of Pam3CSK4 and LPS stimulated 
BM myeloid and progenitor cells (HSC/MPP, CMP, GMP, Mono, and iMS1) colored by celltype (top) and diffusion 
pseudotime (bottom). (f) Principal component analysis (PCA) plots of assay for transposase-accessible 
chromatin using sequencing (ATAC-seq) peak accessibility profiles for four different sorted monocyte 
populations: PB-Mono, PB-MS1, BM-Mono (CD14+ monocytes from freshly thawed BM cells), and BM-iMS1 
(CD14+ monocytes from BM cells stimulated for 4 days with 100 ng/mL LPS in HSC cytokine-rich media). 
Experiments were performed on two donors with two technical replicates each. (g) Venn diagram showing 
overlap of differentially accessible peaks (FDR < 0.1, edgeR exact test) from monocyte populations in PB and 
BM. (h) Sequence logos showing the top 3 enriched motifs in the differentially accessible peaks when comparing 
PB-Mono and PB-MS1. Percentages indicate the number of differential peaks that contain the motif for PB and 
BM (n.d. indicates that motif was not detected in the enrichment analysis). (i) Relative expression (normalized 
log2 transcripts per kilobase million [TPM]) of the CEBP family of transcription factors across the four monocyte 
populations. (j) Scaled expression (normalized log counts) of the CEBP family of transcription factors along the 
pseudotime trajectory in (e). (k) Top 10 enriched pathways in the differentially accessible genes (FDR < 0.1, 
edgeR exact test) when PB-MS1 cells are rested for 24 h and subsequently stimulated with 100 ng/mL LPS. 
RNA-seq experiments were performed on 2 donors with 3 technical replicates each. Sizes of circles are 
proportional to the number of gene hits in a set, whereas color represents the enrichment score of each gene 
set. (l) TNF expression and (m) TNFα protein levels in the supernatant of the indicated four sorted monocyte 
populations after LPS stimulation. P-values are calculated from a two-sided Wilcoxon rank-sum test between 
LPS-stimulated Mono and iMS1 cells. Protein measurements were performed on 2 donors with 2 technical 
replicates each. (n) Venn diagram showing overlap of differentially accessible genes (FDR < 0.1, edgeR exact 
test) from the indicated sorted monocyte populations after LPS stimulation. Top 10 genes with highest 
significance are indicated in red for the PB-MS1-exclusive set of genes and the overlap between BM-iMS1 and 
PB-MS1. HSC/MPP, hematopoietic stem cells and multipotent progenitors; CMP, common myeloid progenitors; 
GMP, granulocyte-macrophage progenitor. 
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