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Abstract

How transcription factors (TFs) interpret cis-regulatory DNA sequence to control gene expression 

remains unclear, largely because past studies using native and engineered sequences had 

insufficient scale. Here, we measure the expression output of >100 million synthetic yeast 

promoter sequences that are fully random. These sequences yield diverse, reproducible expression 

levels that can be explained by their chance inclusion of functional TF binding sites. We use 

machine learning to build interpretable models of transcriptional regulation that predict ~94% of 

the expression driven from independent test promoters and ~89% of the expression driven from 

native yeast promoter fragments. These models allow us to characterize each TF’s specificity, 

activity, and interactions with chromatin. TF activity depends on binding-site strand, position, 

DNA helical face and chromatin context. Notably, expression level is influenced by weak 

regulatory interactions, which confound designed-sequence studies. Our analyses show that 

massive-throughput assays of fully random DNA can provide the big data necessary to develop 

complex, predictive models of gene regulation.

Editorial summary

Gene expression levels in yeast are predicted using a massive dataset on promoters with random 

sequences.
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Control of gene expression by DNA-binding regulatory proteins, known as cis-regulatory 

logic, is a fundamental determinant of cell phenotype and cell-state transitions. Constructing 

models of cis-regulatory logic generally requires a training set of sequences and associated 

expression levels. Analysis of the expression of natural regulatory sequences has shown 

some success1,2, but their limited diversity and homology mean that models are easily 

overfit2, even when the sequences are diversified by mutagenesis3. This is likely to be a 

problem in human cells as well, where there may be ~100,000 active regulatory elements in 

any given cell type4–6. Alternatively, measuring the expression of synthetic promoters, as in 

a Massively Parallel Reporter Assay (MPRA), using either designed sequences7 or randomly 

arranged designed elements8, allows arbitrary hypothesis testing, but DNA synthesis is both 

limited in scale and costly. Consequently, TF binding sites (TFBSs) are often tested only in 

select affinities, contexts, positions, and orientations, leading to uncertain generalizability 

and limiting the hypotheses that can be tested. Overall, the space of possible regulatory 

sequences far exceeds what has been explored to date. For example, testing all pairwise TF-

TF interaction spacings only once each would require ~107 sequences. Learning complex 

regulatory rules might require far more sequences than exist in the genome or have 

previously been assayed9. Given the limited scale of previous work, predictive models of 

expression level from sequence alone remain elusive.

We hypothesized that fully random DNA could be used to test regulatory sequences at a 

much larger scale than has been studied previously. Although many sequences in the full 

space of possibilities may not exist in any organism, the increased scale could allow us to 

learn complex models of gene regulation. Past experiments that have used random DNA to 

study gene regulation support our hypothesis. In vitro selection (or SELEX) can define the 

specificities10 and affinities11 of TFs by isolating the high-affinity TFBSs that are present by 

chance in a random DNA pool12. Random DNA has also been used to diversify regions of 

native promoters13, to explore translational regulation14, and to show that ~10% of random 

100 bp sequences could serve as bacterial promoters15.

Although TF motifs are expected to occur frequently by chance in random DNA16, it is often 

tacitly assumed that functional TFBSs are rare: most TF motif instances are neither 

evolutionarily conserved nor bound by experimental assays, and it remains unclear whether 

TFBSs require additional factors to function (e.g., site clustering or interactions with 

neighboring factors)17. Thus, it was unclear whether random DNA sequences could drive 

reproducible expression levels and span a sufficient dynamic range from which to uncover 

regulatory rules. Moreover, no in vivo experiments have been conducted on the massive 

scale required to learn the complexities of cis-regulatory logic that can both (1) predict 

expression given any arbitrary sequence; and (2) explain how that sequence generated the 

expression level with interpretable features reflecting mechanisms of gene regulation.

Here, we test our hypothesis, by developing the Gigantic Parallel Reporter Assay (GPRA) to 

measure the expression level associated with each of tens or hundreds of millions of random 
DNA sequences per experiment, and used these to learn models of cis-regulatory logic in the 

yeast, Saccharomyces cerevisiae, grown in each of three well-characterized carbon sources. 

We validate our findings in the context of a rich body of knowledge, and show that GPRA is 

a powerful new approach to decipher gene regulation.
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Results

Random DNA includes many TFBSs, yielding diverse expression

We first computationally predicted that random DNA sequences contain abundant yeast 

TFBSs. Consistent with previous models16, the information content (IC) of TF motifs can be 

used to quantify their expected frequency in DNA uniformly sampled from the four bases 

(“random DNA”), without the need to define a “match” (Fig. 1a, Methods). For example, of 

the 221 motifs from YeTFaSCo18 that we expect to represent true specificities of yeast TFs 

(Methods), 58% are expected on average to occur every 1,000 bp or less, and 92% to occur 

every 100,000 bp or less. Consequently, 80 bp of random DNA is expected to have, on 

average, ~138 partly overlapping TFBS instances, representing ~68 distinct factors. Thus, a 

library of 107 80 bp random promoter sequences (the minimum assayed per experiment; 

below) is expected to include >10,000 distinct examples of each TFBS for >90% of yeast 

TFs, with orders of magnitude more examples for most TFs (Fig. 1a).

Next, we experimentally demonstrated that random DNA yields diverse expression levels in 

a yeast promoter library. To robustly quantify promoter activity, we used a previously 

described7 episomal dual reporter system expressing a constitutive red fluorescent protein 

(RFP) and a variable yellow fluorescent protein (YFP). Log(YFP/RFP) measured using flow 

cytometry (Methods) reports an expression signal that is integrated over several generations 

and normalized for extrinsic noise (e.g., plasmid copy number and cell size)3,19,20 (Fig. 1b, 

Methods). We created ten synthetic promoter scaffolds and one based on the native ANP1 
promoter sequence, each consisting of 50–80 bp of constant scaffold sequence flanking 80 

bp of random DNA (−170 to −90, relative to the presumed TSS; Fig. 1c and Supplementary 

Fig. 1a, Methods). In all instances, the random 80-mer libraries yielded diverse expression 

levels, up to a ~50 fold expression range, while individual promoter clones yielded distinct 

expression levels (Fig. 1c and Supplementary Fig. 1a, left). When we also randomized the 

scaffold sequences (from −289 to −25 relative to the TSS; Methods), ~83% of random 

promoter sequences yielded measurable expression (Supplementary Fig. 1b). Thus, random 

DNA frequently contains functional TFBSs and can modulate a range of gene expression.

A “gigantic” parallel reporter assay of random DNA

We implemented GPRA as a robust assay that quantifies the promoter activity of tens of 

millions of sequences per experiment. To facilitate validation, we tested rich media growth 

conditions with different carbon sources (glucose, galactose, and glycerol, Methods), where 

regulation is well studied. We created libraries of ~108 random promoters, transformed them 

into yeast, and sorted the cells by log(YFP/RFP) into 18 bins of equal intervals (Fig. 2a, 

Methods). We re-grew the yeast from each bin, and measured their expression distributions 

by flow cytometry, reproducing the original expression measurement (Fig. 2b, Methods). We 

sequenced the promoters in each bin and estimated each promoter’s expression level by its 

read distribution (Methods). Because the complexity of each promoter library (>108) was 

greater than the number of sorted cells (<108), 78% of promoter sequences appear in only 

one bin, often representing one observation (read) from one cell containing that promoter. 

While this leads to ~24% error in our promoter expression estimates, as assessed on held-out 

test data (Supplementary Fig. 2), the many more examples produced with this approach 
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outweigh this challenge, and yield highly informative data from which to learn rules of cis-

regulation, as we show below.

Altogether, across five experiments, we measured the expression output of 102,371,025 

promoter sequences with GPRA. These spanned two primary promoter libraries (each 

complexity > 108) containing a random 80-mer with either: (1) an upstream poly-T sequence 

and downstream poly-A sequence (pTpA; Fig. 1c); or (2) an upstream Abf1 site and a 

downstream TATA box (Abf1TATA; Supplementary Fig. 1a). We assayed both libraries with 

glucose as a carbon source, and the pTpA library also with either galactose or glycerol as 

alternate carbon sources. We sequenced 15–31 million unique promoter sequences per 

experiment (<30% of sorted cells; <21% of promoter sequences theoretically in each library) 

and 50–155 million reads per experiment, and did not reach saturation (Supplementary Fig. 

3).

TF-specific effects were captured well by GPRA. Even though each specific promoter 

sequence is typically associated with a single observed read, aggregating signal across the 

library revealed relationships between binding strength and observed expression. For each 

yeast TF, we used position weight matrices (PWMs)18 to predict its occupancy of each 

promoter sequence21. Some TFs had a strong effect on expression, but explained only a 

small percentage of overall expression variation (e.g., Abf1, a relatively rare motif in random 

DNA, Supplementary Fig. 4a, left, Pearson’s r = 0.10). Others, including many zinc cluster 

monomeric motifs, correlated very strongly with expression (e.g., Rsc30 r=0.57; 

Supplementary Fig. 4a, middle). Overall, the sum of the individual motif effects (348%) is 

much greater than what a simple linear model combining the motifs can explain (~47% of 

held-out training data; Pearson’s r2), suggesting that there is significant redundancy between 

motifs. Moreover, cases where related motifs have distinct behaviors (e.g., Rsc30 and Ume6; 

Supplementary Fig. 4a) further highlight the need to jointly analyze TFs.

A highly predictive “Billboard” model of cis-regulation

As a more faithful joint model of TF activity, we pursued an interpretable “billboard 

model”22 that captures the independent actions of all TFs, but does not model their positions 

or pairwise interactions (Fig. 2c). This model linearly relates TF occupancy to 

expression23,24, as well as captures interactions between TFs and nucleosomes (Fig. 2c; 

Methods). Since nucleosomes can prevent TF binding25, the model aims to infer promoter 

accessibility, which is used to scale the predicted occupancy of each TF (e.g., a good TFBS 

will remain unbound if inaccessible). However, some TFs can displace nucleosomes, 

indirectly modulating the binding of other TFs. This potentiation can be learned from cases 

where a TFBS alters expression only in the presence of another binding site that 

“potentiates” the first. Since we assume potentiation is driven primarily by chromatin 

opening, we model potentiating TFs as contributing to a global “accessibility” value (Ω) for 

each promoter sequence. We scale TF binding with accessibility to reflect binding in the 

context of accessible chromatin, and calculate expression levels using these chromatin 

binding estimates and a linear model weighted by learned TF activities (Fig. 2c). To prevent 

TF functions from being apportioned amongst related motifs, we regularized the model to 

favor fewer and less information-rich motifs, and fewer potentiating and active TFs 
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(Methods). Once these parameters are learned, we also refine TF sequence specificities 

(Methods).

When trained on our GPRA data, these models explained up to 92.6% of expression 

variation in independent, high-quality test data (Fig. 2d). We learned a separate model for 

each of the four high-complexity promoter datasets: pTpA in glucose, galactose, and 

glycerol, and Abf1TATA in glucose. We tested each model’s ability to predict expression in 

an independent set of ~10,000 pTpA promoters, measured with high coverage in glucose. 

On these high-quality test data, the pTpA+glucose model predicted expression best (r2 = 

0.926, Fig. 2d), but the galactose- and glycerol-trained pTpA models performed nearly as 

well (r2 = 0.904 and 0.843, respectively). This indicates that the primary contributors to gene 

expression in the context of random DNA are not regulated by carbon source. As further 

validation, we generated 1,000 new random sequences that were in silico predicted by the 

pTpA+glucose model to have a range of expression levels, synthesized these sequences, and 

measured their expression, showing strong agreement between prediction and measurements 

across a ~50-fold range (r2 = 0.897; Supplementary Fig. 4b). Overall, a remarkably high 

proportion of the variation in random promoter expression is explained by a billboard model.

Moreover, our models trained on random DNA data from GPRA predicted over 85% of the 

variation in expression driven by sequence fragments derived from native yeast promoters 

(Fig. 2e). To this end, we segmented each yeast promoter into 80 bp fragments from −480 to 

the TSS, and assayed these in the pTpA promoter scaffold in glucose media. Surprisingly, 

random DNA included more high-expressing sequences than most of the native promoter 

fragments tested (Fig. 2d,e), except for sequences from the −120:−40 and −160:−80 regions 

(Supplementary Fig. 5). The pTpA+glucose billboard model, which was trained on random 

DNA, predicted the expression of these native yeast sequences with high correlation 

(Pearson r2=0.858, Fig. 2e). This shows the power of models trained on random DNA and 

indicates that non-billboard regulatory mechanisms are either not predominant in yeast 

promoters, or are context-dependent.

Billboard model correctly learns TF’s biochemical features

Because our models are biologically interpretable (“white box”), we could next assess 

mechanistic features, such as TF function or chromatin organization, that underlie their 

predictions. For example, our models, trained on expression levels of random DNA, also 

accurately predict chromatin accessibility in the libraries themselves and the yeast genome. 

First, the model predicted the experimentally-measured nucleosome occupancy in the 

libraries (MNase-seq; Methods; Spearman ρ = 0.54–0.55) comparably to the agreement 

between experimental replicates (Fig. 3a and Supplementary Fig. 6a,b). Moreover, the 

pattern of model-predicted accessibility when applied to the yeast genome sequence agrees 

well with previously measured in vivo nucleosome occupancy26,27 (Supplementary Fig. 6c). 

On average, the models accurately predict the promoter nucleosome-free region, and −1 and 

+1 nucleosomes (Fig. 3b; Methods). Thus, random sequences and expression measurements 

generated by GPRA are of sufficient quality to correctly infer how TFs regulate chromatin 

structure, without directly measuring chromatin.
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The models also accurately captured biochemical TF activities, including chromatin 

remodeling and activator vs. repressor function. The General Regulatory Factors (GRFs; 

Abf1, Reb1, and Rap1), which can displace nucleosomes28–31, were predicted to open 

chromatin (positive potentiation scores) in all conditions tested (Fig. 3c,d). Moreover, the 

galactose-specific regulator Gal4 was correctly32,33 predicted to open chromatin only in 

galactose (Fig. 3c). TFs predicted to open chromatin only in glycerol included Hap4, Stb4, 

Cat8, Tec1, and Tye7 (Fig. 3d). These molecular roles are new predictions, but with strong 

physiological support: both Hap4 and Cat8 are over-expressed in glycerol compared to 

glucose34; Hap4 is a global regulator of non-fermentative media like glycerol35; Cat8 

activates gluconeogenesis36,37 and Tye7 regulates glycolysis38, which are the two endpoints 

of glycerol metabolism39; Tec1 regulates pseudohyphal growth40,41, which is constitutive in 

glycerol42; and predicted Stb4 targets are enriched for having “oxidoreductase activity”18, 

consistent with non-fermentable carbon source metabolism. Furthermore, Hap4 and Tec1 

physically interact with the Swi/Snf chromatin remodeler43,44, supporting their putative 

chromatin remodeling role. For glucose-trained models, model-predicted TF activities 

weakly agreed with GO-annotated activator/repressor status (Supplementary Fig. 7a; one-

tailed hypergeometric P-values: 0.02 and 0.04), while there was no association for either 

galactose (P=0.34) or glycerol (P=0.79). The lack of distinction in GO annotations between 

activation by opening chromatin and activation by other means could explain this weak 

agreement. Consistent with open chromatin being more active, potentiation scores (model-

predicted chromatin opening and closing ability) significantly distinguished GO-annotated 

activators and repressors for all models (Methods; one-tailed hypergeometric P-values: 10−3 

to 2×10−5; Supplementary Fig. 7b). Thus, random sequences contain sufficient TFBSs to 

identify how TFs affect gene expression and chromatin, even for relatively rare motifs (e.g., 
GRF motifs).

Furthermore, we could learn the specificities and activities of TFs without any TFBS 

training data. By initializing with random PWMs and learning the motifs de novo, we 

trained a model (pTpA+glucose data) that was highly predictive (Pearson’s r2=94.6%; 

Methods). This model – with >120,000 parameters – learned many motifs that closely 

resemble those of known factors (e.g. the most potent chromatin-opening motifs closely 

resemble the GRFs; Supplementary Fig. 8a). However, it is more difficult to interpret this 

model, since the identity of the TFs recognizing each learned motif is unknown, and each TF 

may be represented by multiple motif variations or not at all.

Consequently, we allowed the models initialized with known motifs to optimize the TF 

motifs, yielding an improved model with refined motifs that better predict independent data. 

In particular, motif refinement (including adding more bases of specificity) improved the 

models’ predictive accuracy on the independent high-quality test data by 9–12 percentage 

points (e.g. from r2=80.3% to 92.2% for pTpA+glucose). The four models often modified 

the original motifs in similar ways, suggesting that the revised motifs more faithfully 

represent the TFs’ specificities (Supplementary Fig. 8b). Many of the refined motifs 

performed better than the originals in predicting, from DNA sequence alone, in vivo 
genomic binding of the cognate TF by ChIP45, and gene expression changes resulting from 

cognate TF perturbation46 (Fig. 3e, Supplementary Fig. 8c,d, Methods). Many motifs were 

indistinguishable from the originals, suggesting they maintained their cognate TFs. Of those 
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that differed, the vast majority were improved (Fig. 3e), including when predicting ChIP 

data, despite many of the original motifs being derived from this same ChIP data18. This 

suggests that the refined motifs often more closely represent their cognate TF specificities.

Binding position, strand and helical face alter TF activity

We next adapted the model to capture how transcriptional activity is altered by TFBS 

position. Motif position and orientation can affect TF function, for instance, by modifying 

the TF’s ability to contact its biochemical target. We thus extended the billboard model with 

localized activity bias terms (Methods), allowing TFs to have different activities for every 

binding position and orientation (Fig. 4a). To encourage parameter parsimony, we added a 

regularization term that favored no positional preferences (Methods). This model had up to 

~220 activity parameters per TF instead of one in the billboard model: ~110 locations 

(including flanking constant regions) and two DNA strands (Supplementary Fig. 9), adding 

~55,000 parameters overall. Fitting such complex models with data of more traditional scale 

would be unreliable, but the examples in our dataset still outnumber parameters ~360:1. 

Sub-sampling analysis suggests that we minimally require millions of random sequences to 

learn these parameters without over-fitting, and additional data improves performance 

(Supplementary Fig. 10).

Capturing positional preferences significantly increased performance. Adding positional 

activities to the pTpA+glucose model decreased the error by ~20% for both the high-quality 

test data (94.3% vs. 92.6%) and the 80 bp native promoter sequences (88.6% vs. 85.8%; 

P<10−21 and 10−107, respectively, Fisher’s r to z transformation; Supplementary Fig. 11a,b). 

Predicted accessibility, which cannot be impacted by TFBS location (Supplementary Fig. 9), 

remained a dominant factor, explaining 90.8% of expression variation (high-quality test data; 

Pearson’s r2; Supplementary Fig. 11c). Adding positional activities decreased the prediction 

error 2-fold more than non-positional activities (38% vs. 19.6%), highlighting their 

importance.

The parameters learned by our model indicated that many TFs have strong position, 

orientation, and helical-face preferences, and the similarity between different models 

suggested that they are robustly learned (Fig. 4b, Supplementary Fig. 12). Predicted 

activators are often stronger when located distally to the TSS (e.g., Abf1, Skn7, Mcm1; Fig. 

4b, Supplementary Fig. 12a,b), while many predicted repressors are most repressive when 

located proximally (e.g. Ume6, Mot3; Supplementary Fig. 12c,d). Many TFBSs are strand-

specific, often with a lower-than-expected distal activity for one motif orientation (e.g., 
Azf1, Mga1, Thi2; Fig. 4b, Supplementary Fig. 12e,f). Rarely, TFBSs can be both activating 

and repressing in different positions (e.g., Mga1 in minus vs. plus strand; Fig. 4b).

Some TFBSs showed strong periodicity along the promoter’s length (e.g., Mcm1, Thi2, 

poly-A, Azf1; Fig. 4b, Supplementary Fig. 12b,e,f), consistent with DNA helical face 

preferences. This was widespread: the correlations between a 10.5 bp sine wave and the 

learned positional biases were significantly higher than with randomized data for each model 

(rank sum p<10−120; AUROC=0.84–0.87; Fig. 4c, Supplementary Fig. 13a, Methods). 

Helical preferences tend to be strongest when TFBSs are proximal to the TSS (downstream 

of −150, relative the TSS). Since 150 bp is the approximate persistence length of dsDNA47, 
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this could reflect physical promoter constraints, where the rigidity of DNA prevents 

interactions between proximal TFs and the adjacent transcriptional machinery, but flexibility 

increases with distance, relieving this effect. Models trained on different scaffolds 

sometimes learned distinct positional parameters (e.g., Mga1, Skn7, poly-A, Mcm1; Fig. 4b, 

Supplementary Fig. 12b), suggesting that the surrounding context can modify positional 

preferences. Adding positional biases sometimes worsened the models’ ability to generalize 

between scaffolds, but always improved performance within a scaffold in another condition 

(Supplementary Fig. 13b). Overall, many TFs are predicted to have strong positional 

preferences (Fig. 4d).

Prevalent weak regulatory interactions explain expression

Finally, we leveraged our interpretable position-aware model to revisit an open question 

from previous studies that examined the impact of placing the same motif in different 

positions. A seminal study from Sharon et al.7 attempted to identify positional preferences 

of TFs by tiling each TFBS across one or few background sequences in an MPRA, but found 

that, with few exceptions, expression changes were largely inexplicable, depending on both 

the embedded motif and the background sequences7. We therefore replicated this by tiling 

each of six motifs with strong model-predicted positional preferences (Azf1, Mga1, Mot3, 

Skn7, Ume6, and the poly-A motif) at base-pair resolution in either orientation within three 

random sequences predicted to have intermediate expression levels, and measured 

expression as before (Fig. 5a).

Our model predicted the measured expression levels well (Pearson r2=0.919; positional 

pTpA+glucose model, all motifs and background sequences; Fig. 5b, Supplementary Fig. 

14), despite the fact that expression showed few obvious trends across embedding contexts, 

motifs, or motif positions (Fig. 5b, Supplementary Fig. 14), consistent with Sharon et al7. 

There was also no clear relationship between the expression level resulting from a motif’s 

embedded position (Fig. 5b) and the corresponding model-learned motif activity (Fig. 5a). 

Instead, deeper inspection revealed that, according to the model, most changes in expression 

result from the destruction and creation of many secondary TFBSs as each motif is tiled 

(Fig. 5d,e), with the effect of the tiled motif overwhelmed by these abundant secondarily 

perturbed TFBSs. This highlights how seemingly complex regulation can result from 

prevalent TFBSs and a simple cis-regulatory logic, rather than underlying complex 

mechanisms.

Following this observation, we queried our positional cis-regulatory model to assess how 

many TFs regulate a given native promoter. We quantified each TF’s contribution to the 

expression of each native promoter fragment by performing in silico TF “deletion” 

experiments, setting the concentration parameter for each TF to 0, and inspecting the 

predicted expression change (Fig. 6a). Although the number of regulators per promoter 

sequence varied, most were regulated by a surprisingly large number of factors. Strong 

regulatory interactions were rare: only 0.1% of possible regulatory interactions were 

predicted to alter expression by ≥2-fold (Fig. 6b,c – black; e.g., Supplementary Fig. 15a,b). 

Although these rare strong regulatory interactions explained a disproportionate amount of 
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expression, 94% of expression was attributed to the much more prevalent weak (< 2-fold) 

regulatory interactions (Fig. 6b,c – red; Supplementary Fig. 15c).

Discussion

We showed that measuring the expression output of random DNA sequences can provide 

data at a radically larger scale, surpassing the complexity of the human genome. This scale 

allows us to learn complex interpretable models with remarkable predictive power and 

determine the roles played by the cell’s entire complement of TFs with a simple and 

inexpensive experiment. Using these data, we refined models of TF specificities, and 

identified activators, repressors, chromatin remodeling TFs, and condition-specific 

regulators. Most TFs have strand, location, and helical face preferences (Fig. 4d), which can 

be modified by the surrounding sequence/chromatin context (Fig. 4b), demonstrating that 

cis-regulatory logic can be highly complex.

Transferring the rules learned from such reporter assays to arbitrary contexts will be a 

subject of future studies. We expect that more will be learned from our data: for example, a 

deep convolutional neural net trained on GPRA data explained ~96% of expression variation 

of our high-quality test data (E.D.V., unpublished results), a 30% reduction in error.

Using random DNA to study cis-regulatory logic in vivo is a highly accessible approach, 

which facilitates assaying massive libraries at unprecedented scale, and learning complex 

models with many parameters. While designed sequences can be used to test specific 

hypotheses, random DNA is useful for analyzing anything that occurs reasonably often by 

chance, even if uncommon in the genome or not anticipated in advance. For instance, one 

could ask how G-quadruplex motifs affect expression (we saw no effect; data not shown). 

Further, learning an element’s effect from thousands of examples with diverse affinities, 

positions, orientations, and surrounding sequence contexts is likely to be more generalizable 

than the “designed” approach, where a few elements are introduced into several locations.

In particular, we show that the common “controlled” experiment of modifying one particular 

cis-regulatory parameter (e.g., TFBS location) is inadvertently confounded by introducing or 

destroying many secondary elements whose combined effect can mask the element being 

studied (Fig. 5). Furthermore, any trend observed with this designed strategy could be 

explained by the action of another TF with a related specificity. Such inadvertently included 

TFBSs may also confound sequences designed for engineering purposes. In contrast, 

random DNA provides the diverse examples needed to learn complex regulatory logic: 

jointly modeling the many variables that simultaneously affect expression can separate each 

variable’s effect, and selecting a random DNA sequence with the desired predicted 

expression level provides an alternative for promoter design.

Our results suggest that regulatory networks are more interconnected than previously 

assumed (Fig. 6). We showed that random DNA has diverse expression levels (Fig. 1) that 

can be explained by TF binding (Fig. 2), which regulate expression primarily through weak 

interactions (Fig. 6) that, in turn, can easily be perturbed when tiling a motif across a 

sequence (Fig. 5). Although low-affinity TFBSs have been shown in aggregate to alter 
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expression48 and the prevalence of TFBSs was predicted by biochemistry and information 

theory16, weak regulatory interactions have largely been ignored. Most studies focus on the 

strongest interactions that explain most gene expression variation. To explain expression 

levels we must also account for these abundant weak effects, which, individually, are likely 

easily masked by experimental noise and secondary effects when studying endogenous gene 

regulation. Regulatory variants may contribute to phenotype by cascades of regulatory 

changes through highly interconnected networks49,50, and abundant weak regulatory 

interactions suggest a mechanism for this interconnectedness. Although a highly-predictive 

yeast model underlies our results, the human genome encodes more similarly low 

information content TFs and has more regulatory DNA (promoters and enhancers), 

providing more opportunity for weak interactions.

The prevalence of functional TFBSs in random DNA and its demonstrated ability to 

modulate expression has evolutionary implications. In some cases when genes are created, 

the DNA-encoded regulatory program must arise de novo. Random sequences have been 

shown to yield functioning bacterial promoters ~10% of the time15. In yeast, we found 

~83% of promoter sequences with both random scaffold and insert expressed. Therefore, 

evolving regulatory sequences from previously non-regulatory DNA may be comparatively 

straightforward. Creating new mammalian enhancers may be similarly likely since 

mammalian TFs have, on average, even less specificity than in yeast16. Over evolutionary 

time, further mutations can optimize the specificity and effect of these novel regulatory 

sequences.

When using GPRA, researchers will have to consider the scale needed for their question of 

interest. Since TFBSs occur with different frequencies (Fig. 1a), more data are needed for 

rare TFBSs. The activity and potentiation parameters for each TF converged with ~100,000 

promoter examples (Supplementary Fig. 10). Conversely, millions of promoter examples 

were required for refining or learning new motifs, and for finding position and orientation-

specific activities (Supplementary Fig. 10). Since arbitrary pairs of specific TFBSs are 

inherently rare in random DNA, learning all possible TF-TF interactions with GPRA, 

especially when considering competition (where both binding sites must be high-affinity), 

may require much larger datasets. Although mammalian gene regulation is more complex, 

GPRA could provide the “big data” that would allow learning models to explain how genetic 

variation affects gene expression and disease risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. GPRA.
(a) TFBSs are common in random DNA. Cumulative distribution function (CDF; black) and 

density (purple) of the expected frequency of yeast TF motifs in random DNA. The expected 

number of TFBSs in a library of 107 random 80 bp promoters corresponding to each 

frequency is also indicated on the x axis. For instance, the relatively high information 

content (IC=14.59) yeast Reb1 motif is expected to occur on average once every ~12,000 bp 

in random DNA, while Rsc3 (IC=7.78) should occur every ~110 bp. (b) GPRA overview. 

From top: A library of random DNA sequences (N80 here, blue) is inserted within a 

promoter scaffold (orange) in front of a reporter (yellow arrow). By chance, the random 

sequences include many TFBSs (purple). When grown in yeast, the library would yield a 

broad distribution of expression levels (grey, bottom) as measured by flow cytometry, where 

each promoter clone would have a distinctive expression distribution (red, orange, yellow). 

(c) Random DNA yields diverse expression levels. For each promoter scaffold (right) shown 
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are the expression distributions measured by flow cytometry (left) for the entire library (gray 

filled curves) and for a few selected clones, each from a different single promoter from each 

library (colored line curves).
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Figure 2. Expression models learned from a GPRA of 108 random promoters are highly 
predictive.
(a) Experimental strategy. Yeast GPRA library is sorted into 18 bins by the YFP/RFP ratio 

of the reporter (top) and the GPRA promoters in each bin are sequenced (bottom). (b) 

Reproducibility of expression levels. Expression distributions (log2(YFP/RFP)) for cells 

from each bin (color code, top), after sorting as in (a), which were regrown and re-assayed 

by flow cytometry. Expression distribution maintains the initial bin ranking. (c) 

Computational “billboard” model. Shown is a real example of the pTpA+glucose model 

predicting expression on a real DNA sequence (binding sites are smoothed over 8 bp for 

visualization purposes). Left: The model first scans each promoter DNA sequence with each 

PWM motif (1) to estimate a Kd for each TF at each strand and position (Kdxsi) and, 

through Michaelis-Menten binding using a learned concentration parameter (Cx), it 

estimates TF occupancy for every position and DNA strand. Next (2), it sums across 

positions and strands to estimate a single DNA binding amount per TF. Middle: The model 
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learns a potentiation value for each TF (3), which, by pairwise multiplication with the 

estimated DNA binding and addition of a bias term (cp), is used to infer the accessibility of 

each DNA sequence (Ω). The DNA binding vector is re-scaled (4) by the accessibility to 

estimate TF binding in chromatin. Right: Chromatin binding is pairwise multiplied by 

learned activity parameters (5), capturing how the binding of each TF alters expression, and 

summed, including a bias term (ce), to yield an estimated expression level for the promoter. 

(d,e) Accurate prediction of expression from new random DNA and native yeast promoter 

sequences. Model-predicted expression (EL; pTpA+Glu; x axis) vs. actual expression level 

(y axis; log(YFP/RFP) sorting bins) for (d) high-quality random 80 bp test data in the pTpA 

promoter scaffold, grown in glucose, and (e) native yeast promoter sequences, divided into 

80 bp fragments and tested in the pTpA promoter scaffold, grown in glucose. (n = 9,982 and 

70,924 promoters for (d) and (e), respectively). Pearson’s r2 shown at bottom right. Red 

lines: Generalized Additive Model lines of best fit.
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Figure 3. Billboard models learn biochemical activities of TFs.
(a,b) Model correctly predicts chromatin accessibility. (a) Pairwise Spearman correlations 

(color) between model-predicted nucleosome occupancy (1 - Ω) and in vivo nucleosome 

occupancy measured by MNase-Seq (n = 4 biological replicates of n = 2 independent library 

subsets). (b) Average in vivo nucleosome occupancy (Zhang), DNase I hypersensitivity 

(representing accessibility; Hesselberth), and model-predicted accessibility (1 - Ω) for each 

of the four billboard models surrounding the TSS. Each dataset is scaled. +1 and −1 

nucleosome positions, and promoter Nucleosome Free Region (NFR) are indicated. (c,d) 

TFs with predicted chromatin-opening ability. Shown is the predicted chromatin opening 

(potentiation) ability for each TF (dot) for pTpA models trained in glucose (x axes) vs. 

either (c) galactose or (d) glycerol (y axes). Blue: GRFs with known chromatin opening 

ability in all conditions; red: known and putative carbon source-specific regulators. (e) 

Models improve TF motifs. The number of TFBS motifs (y axis) for which the model-

refined motif predicted gene expression changes (TF mutant, left) or TF binding (ChIP, 
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right) are better (dark gray), worse (white), or equal (light gray) to the original motifs, for 

each of the four models (x axis), where “better” and “worse” motifs are reproducibly so in at 

least 95% of random subsamples of the data (Methods).
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Figure 4. Position, orientation, and helical face preferences among yeast TFs.
(a) Model with position and orientation-specific activities. For each TF (x), the model learns 

parameters for how much binding site position (i) and strand (s) within the promoter affect 

transcriptional activity (Actxis). The total effect of a TF (Effectxp) is thus the sum of 

products of the position-specific activities (Actxis) and TF occupancies (Bindingxpis) at the 

promoter (p), across all positions and both strands. For example, this could reflect the TF’s 

ability to contact the transcriptional pre-initiation complex (PIC). (b) Motif position and 

orientation effects on expression. Left: Each plot shows the learned activity parameter values 

(y axis) for motifs in each position (x axis) and strand orientation (upper and lower panels) 

for each model (colors). Right: Position-specific activity biases (color) for each TF (rows) at 

each position (columns) for minus (left half) and plus (right half) strand orientations for each 

of the four models (four subpanels). Only TFs for which all models retained the motif are 

shown. (c) Helical face preferences. Distribution of Spearman ρ between a 10.5 bp sine 

wave and the learned position-specific activity weights (as in Supplementary Fig. 13a) for 

plus strand (pink line) and minus strand (blue line) or with corresponding randomized data 
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(pink and blue shaded areas) for all four models. (d) Model of cis-regulatory logic. TFs 

display a variety of activity types. Some TFs potentiate the activity of other TFs by 

modulating nucleosome occupancy (upper left). Activators tend to have a greater effect on 

transcription when bound distally within the promoter (upper right), while repressors have 

the greatest effect when bound proximally (lower right). Many TFs show differential activity 

depending on the helical face or orientation of the TFBS, presumably through interaction 

with other factors bound nearby (lower left).
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Figure 5. Inadvertent perturbation of abundant secondary TFBSs confounds TFBS tiling 
experiments.
(a–e) Mga1 motifs were inserted into a common background sequence at every possible 

position (common x axis) for both the - strand (left) or + strand (right). (a) Position-specific 

activity parameters (y axis) learned for the Mga1 motif by the pTpA+glucose model (i.e., 
how the Mga1 motif alters expression based on the location of its binding site). (b) Model 

correctly predicts expression despite little correspondence to the position-specific activity of 

the Mga1 motif. Measured (black) and predicted (red) expression levels for Mga1 motif-

tiling sequences. (c) Most expression differences between sequences are attributed to 

changes in accessibility. Predicted accessibility (Ω; y axis) for Mga1 motif-tiling sequences. 

(d,e) Expression changes are explained by perturbation of prevalent TFBSs when tiling the 

motif. Changes in potentiation score (d) and expression (e) attributable to perturbed TF 

binding for numerous diverse factors (rows) when tiling the Mga1 motif at each position (x 
axis). The dissimilarity between the rows indicates minimal redundancy between factors.
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Figure 6. Abundant weak regulatory interactions explain most of expression level.
(a) Analysis overview. A computational “TF knock-out experiment” is performed with the 

learned cis-regulatory model for each TF: we use the complete model (pTpA+Glu 

positional; top) and that model with that TF “deleted” (setting its concentration parameter to 

0; middle) to predict expression for each 80 bp fragment of native yeast promoter DNA. 

Bottom: The resulting difference in predicted expression is used to define a regulatory 

interaction strength (edge) between that TF and DNA sequence; these are used to build 

regulatory networks for all sequences and TFs. (b,c) Aggregation of weak regulatory effects 

contributes more to expression than strong interactions. (b) Cumulative distributions (y axis) 

of the number of regulatory interactions (black) and fraction of regulation explained (i.e. 
fraction of the cumulative sum of all interaction strengths; red) for each regulatory 

interaction strength (x axis). The magnitude (and not the sign) of the interaction strength is 

considered. Because the y axis is scaled to 1, this is equivalent to the average distribution 

across all native sequence fragments. (c) Regulatory interaction network summary for an 

“average” sequence. Regulatory interactions were grouped by the strength of the regulatory 

interaction (thickness of black edges) into different strength classes (purple nodes), with the 

average number of TFs in that class indicated in the circle. The overall effect on expression, 

accounting for all TFs in each regulatory interaction strength class, is indicated in red 

(thickness of red edges). Although there are >2-fold regulatory interactions, these are too 

rare to be shown here (<1 per sequence).
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