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Abstract

A highly regio- and enantioselective synthesis of 1,2-diamine derivatives from γ-substituted allylic 

pivalamides using copper-catalyzed hydroamination is reported. The N-pivaloyl group is essential, 

both in facilitating the hydrocupration step and suppressing an unproductive β-elimination from 

the alkylcopper intermediate. This approach enables an efficient construction of chiral 

differentially protected vicinal diamines under mild conditions with broad functional group 

tolerance.

Graphical Abstract

Chiral 1,2-diamines are common structural elements in pharmaceuticals, natural products, 

and chiral ligands.[1] Due to their prevalence, a number of methods have been developed for 

their preparation (Figure 1a), including the addition of amines to aziridines,[2] nucleophilic 

addition to α-aminoimines,[3] Mannich[4] and nitro-Mannich reactions,[5] and alkene 

diamination.[6] Although many approaches exist,[7] each is associated with significant 

practical limitations. For example, aziridine-opening processes and nucleophilic addition to 

α-aminoimines require substrates containing preinstalled stereocenters. In Mannich and 

nitro-Mannich reactions, an electron-withdrawing group is necessary for stablizing the 

carbanion generated in situ. Finally, alkene diamination often only allows for the 

introduction of identical amine groups; the regioselective addition of two different amines 

remains difficult.[8]
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We sought to develop a complementary method that would (1) easily differentiate the two 

amine groups in the products and (2) tolerate a broad range of functional groups. To fulfill 

these requirements, the asymmetric hydroamination[9] of alkenes is an attractive strategy. 

Recently, Hull, Schultz, and coworkers reported the Rh-catalyzed hydroamination of 

allylamines. This pioneering work represented the first enantioselective variant of vicinal 

diamine synthesis by a metal-catalyzed hydroamination (Figure 1b).[10] Although this 

process tolerated a wide variety of amine nucleophiles, the alkene partner was limited to 

those bearing an unsubstituted allyl group. We considered whether our recent work on CuH-

catalyzed asymmetric hydroamination[11] could be extended to provide a complementary 

method for the synthesis of chiral 1,2-diamines from allylic amines (Figure 1c). We note that 

while we were preparing this manuscript, a related method for synthesis of 1,2-diamines via 

the CuH-catalyzed hydroamination of enamines was reported by Yu and Somfai.[12]

The mechanism proposed for the CuH-catalyzed hydroamination process is shown in Figure 

2.[13–15] First, the allylic amine undergoes hydrocupration to form a chiral alkylcopper 

species, II, which is then trapped by hydroxylamine benzoate, IV, to generate the 

corresponding chiral amine product, V, and copper(I) benzoate, III. The active catalyst, I, 

can be regenerated after σ-bond metathesis with a hydrosilane. A possible side reaction is 

the β-elimination of the amine group (i.e., NHPG) after hydrocupration (II → VI, Figure 

2), a process that would compete with the desired C–N bond forming process (II → V).[16] 

β-Elimination would produce the terminal alkene, VI, which could then undergo 

hydroamination to yield VII as a side product. In order to maximize the selectivity for the 

desired pathway (II + IV → III + V, Figure 2) over the undesired β-elimination (II → VI), 

we examined reactions of a series of γ-substituted allylic amines,[17] differing in the 

protecting group on the allylic amine nitrogen.

We began our investigation using N-protected derivatives of (E)-hex-2-en-1-amine as the 

substrate (Scheme 1). In the presence of Cu(OAc)2/(R)-DTBM-SEGPHOS/PPh3 (a mixture 

known as CuCatMix*[13a]), (MeO)2MeSiH, and 2a as the electrophilic amine source, the 

reactions of substrates bearing t-butoxycarbonyl (Boc, entry 1), tosyl (entry 2), and p-

methoxy benzyl (PMB, entry 3) groups afforded neither the desired product 3 nor the side 

product 4. The low reactivity of these substrates is consistent with the previous 

experimental[13, 14] and computational studies,[15] showing that hydrocupration is typically 

challenging for internal alkenes. When the protecting group was switched to an acetyl group 

(Ac, entry 4), no desired product was seen, but the formation of moderate amount of side 

product 4 was observed (41%). This indicated that through the use of an appropriate N-

protecting group, hydrocupration of the alkene could take place. Encouraged by this result, 

we investigated the use of related protecting groups including isobutyryl (entry 5) and 

pivaloyl (entry 6) groups. In the case of the N-pivaloyl[18] substrate, we obtained the desired 

1,2-diamine product in 82% yield with a high level of enantioselectivity (entry 6).

We next explored the substrate scope of this asymmetric hydroamination process (Scheme 

2). Allylic amines bearing primary (3a), secondary (3b and 3c), and tertiary alkyl 

substituents (3d) on the γ-carbon afforded the corresponding products in good to moderate 

yields with excellent levels of regio- and enantioselectivity. In addition, a benzothiazole-

containing product (3e) could be prepared using this protocol. The relatively lower 
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regioisomeric ratio of 3e (3:1 rr), compared to the other examples, reflects more facile 

formation of the minor regioisomer during hydrocupration. This is possibly due to the 

coordination of the sp2 nitrogen of the benzothiazole to L*CuH.

We also investigated the scope of the reaction with respect to the amine electrophile 

component (Scheme 3). Amine electrophiles bearing a variety of heterocycles, including 

pyrimidine (4b), carbazole (4c), pyridine (4d), and pyrazole (4e) were all compatible 

substrates. Other functional groups such as a thioether (4f) and an acetal (4g) were also 

accommodated under the reaction conditions.

To evaluate the scalability and practicality of this method, we performed a gram-scale 

reaction using (E)-N-(hex-2-en-1-yl)pivalamide (Scheme 4). We obtained 1.32 g of the 

desired vicinal diamine product with high levels of both regio- and enantioselectivity (64% 

yield, 10:1 rr, and 98:2 er).

In conclusion, we have developed a method for the copper-catalyzed hydroamination of γ-

substituted allylic amines for the synthesis of enantioenriched 1,2-diamines. Two major 

challenges in this transformation were (1) slow hydrocupration of γ-substituted allylic 

amines and (2) unproductive β-elimination after the hydrocupration. By utilizing a pivaloyl 

protecting group for the allylic amine nitrogen, the asymmetric hydroamination proceeded 

with high levels of regio- and enantioselectivity. Various functional groups, including 

heterocycles, were well tolerated in this protocol. Finally, a gram-scale reaction was 

conducted to demonstrate the scalability and practicality of this method.
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Figure 1. 
Strategies for the Asymmetric Synthesis of 1,2-Diamine Derivatives.
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Figure 2. 
Possible Catalytic Cycle and Unproductive β-Elimination. R1 = alkyl groups.
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Scheme 1. 
Protecting Group Screening to Facilitate Hydrocupration and Suppress β-Elimination.[a, b, c]

[a] Reaction conditions: 0.1 mmol 1 (1.0 equiv), 2a (1.2 equiv), (R)-CuCatMix* 

(Cu(OAc)2/(R)-DTBM-SEGPHOS/PPh3 = 1/1.1/1.1, 5.0 mol % [Cu]), (MeO)2MeSiH (4.0 

equiv) in THF (0.25 mL, 0.4 M) at 40 °C; see the Supporting Information for details. [b] The 

yield was determined by 1H NMR spectroscopy of the crude reaction mixture, using 1,1,2,2-

tetrachloroethane as an internal standard. [c] The enantiomeric ratio was determined by 

chiral SFC analysis on commercial chiral columns.
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Scheme 2. 
Scope of γ-Substituted Allylic Amines.[a, b, c]

[a] Reaction conditions: 0.5 mmol 1a–1e (1.0 equiv), 2a (1.2 equiv), (R)-CuCatMix* 

(Cu(OAc)2/(R)-DTBM-SEGPHOS/PPh3 = 1/1.1/1.1, 5.0 mol % [Cu]), (MeO)2MeSiH (4.0 

equiv) in THF (1.25 mL, 0.4 M) at 40 °C; see the Supporting Information for details. [b] The 

regioisomeric ratio of 3a was determined by GC analysis of the crude reaction mixture, 

using n-dodecane as an internal standard. The regioisomeric ratios of 3b–3e were 

determined by 1H NMR spectroscopy of the crude reaction mixture, using 1,1,2,2-

tetrachloroethane as an internal standard. [c] 10 mol % of (R)-CuCatMix* was used.
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Scheme 3. 
Scope of Amine Electrophiles.[a, b, c]

[a] Reaction conditions: 0.5 mmol 1 (1.0 equiv), 2b–2g (1.2 equiv), (R)-CuCatMix* 

(Cu(OAc)2/(R)-DTBM-SEGPHOS/PPh3 = 1/1.1/1.1, 5.0 mol % [Cu]), (MeO)2MeSiH (4.0 

equiv) in THF (1.25 mL, 0.4 M) at 40 °C; see the Supporting Information for details. [b] The 

regioisomeric ratio was determined by 1H NMR spectroscopy of the crude mixture, using 

1,1,2,2-tetrachloroethane as an internal standard. [c] 10 mol % of (R)-CuCatMix* was used.
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Scheme 4. 
Gram-Scale Reaction.
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