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SUMMARY 29 

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new 30 

antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules 31 

with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a 32 

molecule from the Drug Repurposing Hub – halicin – that is structurally divergent from conventional 33 

antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens, including 34 

Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated 35 

Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, 36 

from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 37 

database, our model identified eight antibacterial compounds that are structurally distant from known 38 

antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal 39 

through the discovery of structurally distinct antibacterial molecules. 40 

 41 

INTRODUCTION 42 

 Since the discovery of penicillin, antibiotics have become the cornerstone of modern medicine. 43 

However, the continued efficacy of these essential drugs is uncertain due to the global dissemination of 44 

antibiotic-resistance determinants. Moreover, the decreasing development of new antibiotics in the private 45 

sector that has resulted from a lack of economic incentives is exacerbating this already dire problem (E. D. 46 

Brown and Wright, 2016; PEW, 2019). Indeed, without immediate action to discover and develop new 47 

antibiotics, it is projected that deaths attributable to resistant infections will reach 10 million per year by 2050 48 

(O’Neill, 2014). 49 

 Historically, antibiotics were discovered largely through screening soil-dwelling microbes for 50 

secondary metabolites that prevented the growth of pathogenic bacteria (Clardy et al., 2006; Wright, 2017). 51 

This approach resulted in the majority of clinically used classes of antibiotics, including E-lactams, 52 

aminoglycosides, polymyxins, and glycopeptides, among others. Semi-synthetic derivatives of these 53 

scaffolds have maintained a viable clinical arsenal of antibiotics by increasing potency, decreasing toxicity, 54 

and sidestepping resistance determinants. Entirely synthetic antibiotics of the pyrimidine, quinolone, 55 



oxazolidinone, and sulfa classes have also found prolonged clinical utility, and continue to be optimized for 56 

the same properties. 57 

Unfortunately, the discovery of new antibiotics is becoming increasingly difficult. Natural product 58 

discovery is now plagued by the dereplication problem, wherein the same molecules are being repeatedly 59 

discovered (Cox et al., 2017). Moreover, given the rapid expansion of chemical spaces that are accessible 60 

by the derivatization of complex scaffolds (Ortholand and Ganesan, 2004), engineering next-generation 61 

versions of existing antibiotics results in substantially more failures than leads. Therefore, many antibiotic 62 

discovery programs have turned to screening large synthetic chemical libraries (Tommasi et al., 2015). 63 

However, these libraries, which can contain hundreds of thousands to a few million molecules, are often 64 

prohibitively costly to curate, limited in chemical diversity, and fail to reflect the chemistry that is inherent to 65 

antibiotic molecules (D. G. Brown et al., 2014). Since the implementation of high-throughput screening in the 66 

1980s, no new clinical antibiotics have been discovered using this method. 67 

Novel approaches to antibiotic discovery are needed to increase the rate at which new antibiotics are 68 

identified and simultaneously decrease the associated cost of early lead discovery. Given recent 69 

advancements in machine learning (Camacho, et al., 2018), the field is now ripe for the application of 70 

algorithmic solutions for molecular property prediction to identify novel structural classes of antibiotics. 71 

Indeed, adopting methodologies that allow early drug discovery to be performed largely in silico enables the 72 

exploration of vast chemical spaces that is beyond the reach of current experimental approaches. 73 

The idea of analytical exploration in drug design is not new. Decades of prior work in 74 

chemoinformatics has developed models for molecular property prediction (Mayr et al., 2018; Wu et al., 75 

2017). However, the accuracy of these models has been insufficient to substantially change the traditional 76 

drug discovery pipeline. With recent algorithmic advancements in modelling neural network-based molecular 77 

representations, we are beginning to have the opportunity to influence the paradigm of drug discovery. An 78 

important development relates to how molecules are represented; traditionally, molecules were represented 79 

by their fingerprint vectors, which reflected the presence or absence of functional groups in the molecule, or 80 

by descriptors that include computable molecular properties and require expert knowledge to construct 81 

(Mauri et al., 2006; Moriwaki et al., 2018; Rogers and Hahn, 2010). Even though the mapping from these 82 

representations to properties was learned automatically, the fingerprints and descriptors themselves were 83 



designed manually. The innovation of neural network approaches lies in their ability to learn this 84 

representation automatically, mapping molecules into continuous vectors which are subsequently used to 85 

predict their properties. These designs result in molecular representations that are highly attuned to the 86 

desired property, yielding gains in property prediction accuracy over manually crafted representations (K. 87 

Yang et al., 2019). 88 

While neural network models narrowed the performance gap between analytical and experimental 89 

approaches, a difference still exists. Here, we demonstrate how the combination of in silico predictions and 90 

empirical investigations can lead to the discovery of new antibiotics (Figure 1). Our approach consists of 91 

three stages. First, we trained a deep neural network model to predict growth inhibition of Escherichia coli 92 

using a collection of 2,335 molecules. Second, we applied the resulting model to several discrete chemical 93 

libraries, comprising >107 million molecules, to identify potential lead compounds with activity against E. 94 

coli. After ranking the compounds according to the model’s predicted score, we lastly selected a list of 95 

candidates based on a pre-specified prediction score threshold, chemical structure, and availability. 96 

Through this approach, from the Drug Repurposing Hub we identified the c-Jun N-terminal kinase 97 

inhibitor SU3327 (De et al., 2009; Jang et al., 2015) (renamed halicin herein), which is structurally divergent 98 

from conventional antibiotics, as a potent inhibitor of E. coli growth. Further investigations revealed that 99 

halicin displays growth inhibitory properties against a wide phylogenetic spectrum of pathogens through 100 

selective dissipation of the bacterial transmembrane 'pH potential. Importantly, halicin shows efficacy 101 

against Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Of 102 

note, the World Health Organization has designated A. baumannii as one of the highest priority pathogens 103 

against which new antibiotics are urgently required (Lee et al., 2017; Perez et al., 2007). In addition to 104 

halicin, from a distinct set of 23 empirically tested predictions from >107 million molecules found in the 105 

ZINC15 database, we readily discovered eight additional antibacterial compounds that are structurally 106 

distant from known antibiotics. Remarkably, two of these molecules displayed potent broad-spectrum 107 

activity and could overcome an array of antibiotic-resistance determinants in E. coli. This work highlights the 108 

significant impact that machine learning can have on early antibiotic discovery efforts by simultaneously 109 

increasing the accuracy rate of lead compound identification and decreasing the cost of screening efforts. 110 

 111 



RESULTS 112 

Initial model training and the identification of halicin 113 

 Initially, we desired to obtain a training dataset de novo that was inexpensive, chemically diverse, 114 

and did not require sophisticated laboratory resources. This would allow for the development of a robust 115 

model with which new antibiotics could be predicted, without the practical hurdles that can be associated 116 

with large-scale antibiotic screening efforts. We screened for growth inhibition against E. coli BW25113 117 

(Zampieri et al., 2017) using a widely available FDA-approved drug library consisting of 1,760 molecules of 118 

diverse structure and function. To further increase chemical diversity, we included an additional 800 natural 119 

products isolated from plant, animal, and microbial sources, resulting in a primary training set of 2,560 120 

molecules (Figure 2A, Figure S1A, Table S1A) – 2,335 unique compounds when deduplicated (Figure S1B, 121 

Table S1B). Using 80% growth inhibition as a hit cut-off, this primary screen resulted in the identification of 122 

120 molecules with growth inhibitory activity against E. coli. 123 

Next, all 2,335 compounds from the primary training dataset were binarized as hit or non-hit. After 124 

binarization, we used these data to train a binary classification model that predicts the probability of whether 125 

a new compound will inhibit the growth of E. coli based on its structure. For this purpose, we utilized a 126 

directed-message passing deep neural network model (K. Yang et al., 2019), which translates the graph 127 

representation of a molecule into a continuous vector via a directed bond-based message passing 128 

approach. This builds a molecular representation by iteratively aggregating the features of individual atoms 129 

and bonds. The model operates by passing “messages” along bonds which encode information about 130 

neighboring atoms and bonds. By applying this message passing operation multiple times, the model 131 

constructs higher-level bond messages that contain information about larger chemical substructures. The 132 

highest-level bond messages are then combined into a single continuous vector representing the entire 133 

molecule. Given the limited amount of data available for training the model, it was important to ensure that 134 

the model could generalize without overfitting. Therefore, we augmented the learned representation with 135 

molecular features computed by RDKit (Landrum, 2006) (Table S2A), yielding a hybrid molecular 136 

representation. We further increased the algorithm’s robustness by utilizing an ensemble of classifiers and 137 

estimating hyperparameters with Bayesian optimization. The resulting model achieved a ROC-AUC of 0.896 138 

on the test data (Figure 2B).  139 



After model development and optimization using our training dataset of 2,335 molecules, we 140 

subsequently applied an ensemble of models trained on twenty folds to identify potential antibacterial 141 

molecules from the Drug Repurposing Hub (Corsello et al., 2017). This library consists of 6,111 molecules 142 

at various stages of investigation for human diseases. Here, prediction scores for each compound were 143 

determined, molecules were ranked based on their probability of displaying growth inhibition against E. coli, 144 

and compounds with molecular graphs common between the training dataset and the Drug Repurposing 145 

Hub were removed (Figure 2C; Table S2B). Notably, we compared the molecule prediction ranks from our 146 

model (Table S2B) to numerous others, including a learned model without RDKit feature augmentation 147 

(Table S2C); a model trained exclusively on RDKit features (Table S2D); a feed-forward deep neural 148 

network model using Morgan fingerprints as the molecular representation (Table S2E); a random forest 149 

classifier using Morgan fingerprints (Table S2F); and a support-vector machine model using Morgan 150 

fingerprints (Table S2G). 151 

Next, we curated the 99 molecules unique to the Drug Repurposing Hub that were most strongly 152 

predicted to display antibacterial properties by our model and empirically tested these for growth inhibition. 153 

We observed that 51 of the 99 predicted molecules displayed growth inhibition against E. coli, based on a 154 

cut-off of OD600 < 0.2 (Figure 2D). Importantly, higher prediction scores correlated with a greater probability 155 

of growth inhibition (Figure 2E). Furthermore, empirically testing the lowest predicted 63 molecules that 156 

were unique to the Drug Repurposing Hub revealed that only two of these compounds displayed growth 157 

inhibitory activity (Figure 2F). 158 

After identifying the 51 molecules that displayed growth inhibition against E. coli, we prioritized these 159 

based on clinical phase of investigation, structural similarity to molecules in the primary training dataset, and 160 

predicted toxicity using a deep neural network model trained on the ClinTox database (Gayvert et al., 2016; 161 

Wu et al., 2017) (Table S2B). Specifically, we prioritized predicted compounds in preclinical or Phase 1/2/3 162 

studies; those with low structural similarity to training set molecules; and those with low predicted toxicity. 163 

The compound that satisfied all of these criteria was the c-Jun N-terminal kinase inhibitor SU3327 (De et al., 164 

2009; Jang et al., 2015) (renamed halicin), a preclinical nitrothiazole under investigation as a treatment for 165 

diabetes. Excitingly, halicin, which is structurally most similar to a family of nitro-containing antiparasitic 166 

compounds (Tanimoto similarity ~ 0.37; Figure 2G, 2H, Table S2H) (Rogers and Hahn, 2010) and the 167 



antibiotic metronidazole (Tanimoto similarity ~ 0.21), displayed excellent growth inhibitory activity against E. 168 

coli, achieving a minimum inhibitory concentration (MIC) of 2 µg/ml (Figure 2I). 169 

Importantly, we observed that the prediction rank of halicin in our model (position 89) was greater 170 

than that in four of the other five models tested (positions ranging from 273 to 1987; Table S2D-S2G). 171 

Indeed, only the learned model without RDKit augmentation positioned halicin in a higher prediction rank 172 

(position 61; Table S2C). These data highlight the importance of using a directed-message passing deep 173 

neural network approach in the discovery of halicin. 174 

 175 

Halicin is a broad-spectrum bactericidal antibiotic 176 

 Given that halicin displayed potent growth inhibitory activity against E. coli, we next performed time- 177 

and concentration-dependent killing assays to determine whether this compound inhibited growth through a 178 

bactericidal or bacteriostatic mechanism. In rich growth conditions against an initial cell density of ~106 179 

CFU/ml, we observed bacterial cell killing in the presence of halicin (Figure 3A). The apparent potency of 180 

halicin decreased as initial cell density increased (Figure S2A, S2B), likely as a result of dilution of the 181 

molecule over a greater number of cells. Next, we considered whether halicin might induce bacterial cell 182 

death against E. coli in a metabolically repressed, antibiotic-tolerant state (Balaban et al., 2019; Stokes et 183 

al., 2019a; 2019b). Indeed, given that metronidazole is bactericidal against non-replicating cells (Tally et al., 184 

1978), we reasoned that halicin may similarly display this activity. Remarkably, by incubating E. coli in 185 

nutrient-free buffer supplemented with halicin, we observed that this molecule retained bactericidal activity 186 

(Figure 3B, Figure S2C, S2D). This is in stark contrast to the conventionally bactericidal antibiotic ampicillin, 187 

which was unable to eradicate E. coli existing in metabolically repressed states (Figure S2E-G), despite its 188 

efficacy against metabolically active cells (Figure S2H-J). Moreover, halicin was able to eradicate E. coli 189 

persister cells that remained after treatment with ampicillin (Figure 3C), consistent with its bactericidal 190 

activity against cells in nutrient-free buffer conditions. 191 

 The efficacy of halicin against antibiotic-tolerant cells represents a significant improvement over the 192 

majority of conventional antibiotics (Lobritz et al., 2015; Stokes et al., 2019b). This observation suggested 193 

that the molecule could function through an uncommon mechanism of action, and therefore overcome many 194 

common resistance determinants. We initially tested halicin against a selection of E. coli strains harboring 195 



plasmid-borne antibiotic-resistance genes conferring resistance to polymyxins (MCR-1), chloramphenicol 196 

(CAT), E-lactams (OXA-1), aminoglycosides [ant(2”)-Ia], and fluoroquinolones [aac(6’)-Ib-cr]. Here, we 197 

observed no change in halicin MIC in the presence of any resistance gene relative to the antibiotic-198 

susceptible parent strains (Figure 3D, Figure S2K). Similarly, the MIC of halicin did not change in E. coli 199 

displaying resistance to the nitrofuran antibiotic nitrofurantoin via deletion of nfsA and nfsB (Sandegren et 200 

al., 2008) (Figure S2L, S2M). 201 

To more comprehensively assess the ability of halicin to overcome antibiotic-resistance genes, as 202 

well as understand phylogenetic spectrum of bioactivity, we assayed for halicin-dependent growth inhibition 203 

against Mycobacterium tuberculosis, as well as 36 multidrug-resistant clinical isolates each of carbapenem-204 

resistant Enterobacteriaceae (CRE), A. baumannii, and Pseudomonas aeruginosa. These pathogens are 205 

regarded by the World Health Organization as the bacteria that most urgently require new treatments. 206 

Excitingly, we observed that halicin was rapidly bactericidal against M. tuberculosis (Figure 3E, 3F) and had 207 

strong growth inhibitory activity against CRE and A. baumannii clinical isolates (Figure 3G, Table S3). While 208 

it remains to be experimentally elucidated, the lack of efficacy against P. aeruginosa may be explained by 209 

insufficient permeability to the cell membrane (Angus et al., 1982; Yoshimura and Nikaido, 1982). 210 

 211 

Halicin dissipates the ∆pH component of the proton motive force 212 

 The observations that halicin retained bactericidal activity against antibiotic-tolerant E. coli and M. 213 

tuberculosis, as well as growth inhibitory properties against multidrug-resistant Gram-negative clinical 214 

isolates, suggested that this compound was antibacterial through an unconventional mechanism. Since our 215 

model was agnostic to the mechanism of action underlying growth inhibition, we initially attempted to 216 

elucidate mechanism through the evolution of halicin-resistant mutants. However, we were unable to isolate 217 

spontaneous suppressor mutants after 30 days of serial passaging in liquid media (Figure 4A) or after seven 218 

days of continuous halicin exposure on solid media (Figure S3A). As such, we applied RNA sequencing to 219 

understand the physiologic response of E. coli to halicin. Here, early-log phase cells were treated with a 220 

range of concentrations of compound, and whole-transcriptome sequencing was performed. We observed a 221 

rapid downregulation of genes involved in cell motility across all concentrations, as well as the upregulation 222 

of genes required for iron homeostasis at sub-lethal concentrations (Figure 4B, Figure S3B, S3C, Table 223 



S4A-S4C). Interestingly, previous work has shown that dissipation of the cytoplasmic transmembrane 224 

potential results in decreased bacterial locomotion and flagellar biosynthesis (Manson et al., 1977; Paul et 225 

al., 2008; Shioi et al., 1982). Moreover, given that cells must maintain an electrochemical transmembrane 226 

gradient for viability (Hurdle et al., 2011; Coates and Hu, 2008), dissipation of the proton motive force would 227 

result in the death of tolerant cells. 228 

 To test the hypothesis that halicin dissipated the proton motive force, we first assayed for changes in 229 

halicin MIC against E. coli as a function of media pH. In E. coli (Figure 4C), as well as Staphylococcus 230 

aureus (Figure S3D), we observed that halicin potency decreased as pH increased, providing evidence that 231 

this compound may be dissipating the ∆pH component of the proton motive force (Farha et al., 2013). 232 

Consistent with this observation, the addition of sodium bicarbonate to the growth medium (Farha et al., 233 

2018) antagonized the action of halicin against E. coli (Figure S3E). 234 

 To further ascertain that halicin dissipates the transmembrane ∆pH potential in bacteria, we applied 235 

the potentiometric fluorophore 3,3’-dipropylthiadicarbocyanine iodide [DiSC3(5)] (Wu et al., 1999). DiSC3(5) 236 

accumulates in the cytoplasmic membrane in response to the ∆\ component of the proton motive force, and 237 

self-quenches its own fluorescence. When ∆\ is disrupted or the membrane is permeabilized, the probe is 238 

released into the extracellular milieu resulting in increased fluorescence. Conversely, when ∆pH is 239 

disrupted, cells compensate by increasing ∆\, resulting in enhanced DiSC3(5) uptake into the cytoplasmic 240 

membrane and therefore decreased fluorescence. Here, early-log E. coli cells were washed in buffer and 241 

introduced to DiSC3(5) to allow fluorescence equilibration. Cells were then introduced to polymyxin B (Figure 242 

4D), which disrupts the cytoplasmic membrane, causing release of DiSC3(5) from the membrane and a 243 

corresponding increase in fluorescence. Next, we introduced cells to varying concentrations of halicin, and 244 

observed an immediate decrease in DiSC3(5) fluorescence in a dose-dependent manner (Figure 4D), 245 

suggesting that halicin selectively dissipated the ∆pH component of the proton motive force. Similar 246 

DiSC3(5) fluorescence changes were observed in S. aureus treated with halicin (Figure S3F, S3G). 247 

Moreover, halicin displayed antibiotic antagonism and synergy profiles consistent with ∆pH dissipation. Of 248 

note, halicin antagonized the activity of tetracycline in E. coli, and synergized with kanamycin (Figure 4E), 249 

consistent with previous work showing that the uptake of tetracyclines is dependent upon ∆pH (Yamaguchi 250 

et al., 1991), whereas aminoglycoside uptake is driven largely by ∆\ (Taber et al., 1987). 251 



Interestingly, our observations that halicin induced the expression of iron acquisition genes at sub-252 

lethal concentrations (Table S4A-S4C) suggested that this compound complexes with iron in solution, 253 

thereby dissipating transmembrane ∆pH potential similarly to other antibacterial ionophores, such as 254 

daptomycin (Farha et al., 2013). We note here that daptomycin resistance via deletion of dsp1 in S. aureus 255 

did not confer cross-resistance to halicin (Figure S3H). We observed enhanced potency of halicin against E. 256 

coli with increasing concentrations of environmental Fe3+ (Figure 4E). This is consistent with a mechanism 257 

of action wherein halicin may bind iron prior to membrane association and ∆pH dissipation. 258 

 259 

Halicin displays efficacy in murine models of infection 260 

 Given that halicin displays broad-spectrum bactericidal activity and is not highly susceptible to 261 

plasmid-borne antibiotic-resistance elements or de novo resistance mutations at high frequency, we next 262 

asked whether this compound might have utility as an antibiotic in vivo. We therefore tested the efficacy of 263 

halicin in a murine wound model of A. baumannii infection. On the dorsal surface of neutropenic Balb/c 264 

mice, we established a 2 cm2 wound and infected with ~2.5x105 CFU of A. baumannii strain 288 acquired 265 

from the Centers for Disease Control and Prevention (CDC). This strain is not susceptible to clinical 266 

antibiotics generally used for treatment of A. baumannii, and therefore represents a pan-resistant isolate. 267 

Importantly, halicin displayed potent growth inhibition against this strain in vitro (MIC = 1 µg/ml; Figure 5A) 268 

and was able to sterilize A. baumannii 288 cells residing in metabolically repressed conditions (Figure 5B, 269 

Figure S4A, S4B). After 1 hr of infection establishment, mice were treated with Glaxal Base Moisturizing 270 

Cream supplemented with vehicle (0.5% DMSO) or halicin (0.5% w/v). Mice were then treated after 4 hr, 8 271 

hr, 12 hr, 20 hr, and 24 hr of infection, and sacrificed at 25 hr post-infection. We observed that wound-272 

carrying capacity had reached ~108 CFU/g in the vehicle control group, whereas 5 of the 6 mice treated with 273 

halicin contained <103 CFU/g (below the limit of detection) and one contained ~105 CFU/g (Figure 5C). 274 

 After showing that halicin displayed efficacy against A. baumannii in a murine wound model, we next 275 

sought to investigate whether this molecule may have utility against a phylogenetically divergent pathogen 276 

that is increasingly becoming burdensome to healthcare systems – namely, C. difficile. This spore-forming 277 

anaerobe causes pseudomembranous colitis, often as a result of dysbiosis following systemic antibiotic 278 

administration. Metronidazole or vancomycin are first-line treatments, with failure resulting from antibiotic 279 



resistance and/or the presence of metabolically dormant cells (Surawicz et al., 2013). In cases of recurrent 280 

infection, fecal bacteriotherapy is required to re-establish the normal colonic microbiota to outcompete C. 281 

difficile (Gough et al., 2011), which can be more invasive than antibiotic therapy. 282 

 We first assayed for the ability of this molecule to inhibit the growth of C. difficile strain 630 in vitro 283 

and observed an MIC of 0.5 µg/ml (Figure 5D). To establish the murine infection, C57BL/6 mice were 284 

administered intraperitoneal injections of ampicillin (200 mg/kg) every 24 hr for 72 hr. Mice were then given 285 

24 hr to recover, and subsequently administered 5x103 spores of C. difficile 630 via oral gavage. Beginning 286 

24 hr after C. difficile gavage, mice were gavaged with antibiotics (50 mg/kg metronidazole or 15 mg/kg 287 

halicin) or vehicle (10% PEG 300) every 24 hr for five days, and fecal samples were collected to quantify C. 288 

difficile load (Figure 5E). Excitingly, we observed that halicin resulted in C. difficile clearance at a greater 289 

rate than vehicle or the antibiotic metronidazole (Figure 5F), which is not only a first-line treatment for C. 290 

difficile infection, but also the antibiotic most similar to halicin based on Tanimoto score (Figure 2H, Table 291 

S2H). Indeed, halicin resulted in sterilization of 3 out of 4 mice after 72 hr of treatment, and 4 out of 4 mice 292 

after 96 hr of treatment. 293 

 294 

Predicting new antibiotic candidates from vast chemical libraries 295 

 After applying our deep neural network model to identify antibiotic candidates from the Drug 296 

Repurposing Hub, we subsequently explored two additional chemical libraries – the WuXi anti-tuberculosis 297 

library housed at the Broad Institute that contains 9,997 molecules, and the ZINC15 database, a virtual 298 

collection of ~1.5 billion molecules designed for in silico screening (Sterling and Irwin, 2015). The WuXi anti-299 

tuberculosis library served to test our model in chemical spaces that were highly divergent from the training 300 

dataset, prior to conducting large-scale predictions in the vast ZINC15 database. We applied our empirical 301 

data gathered from the Drug Repurposing Hub molecules to re-train the original model and then applied this 302 

new model to the WuXi anti-tuberculosis library. Interestingly, we observed an upper limit prediction score of 303 

just ~0.37 for the WuXi anti-tuberculosis library (Figure S5A), which was substantially lower than the highest 304 

prediction scores observed for the Drug Repurposing Hub (upper limit ~0.97; Figure 2C). Next, we curated 305 

and empirically assayed the 200 WuXi anti-tuberculosis library compounds with the highest prediction 306 



scores, and the 100 with the lowest. As expected, none of the 300 molecules that were assayed for growth 307 

inhibition against E. coli displayed antibacterial activity (Figure S5B, S5C, Table S5). 308 

 After again re-training our model with the empirical data gathered from these 300 WuXi anti-309 

tuberculosis library molecules, we performed predictions on a subset of the ZINC15 database. Here, rather 310 

than screening the entire ~1.5 billion-molecule database, we focused specifically on those tranches that 311 

contained molecules with physicochemical properties that are observed in antibiotic-like compounds (Figure 312 

6A). This more focused approach resulted in the in silico curation of 107,349,233 molecules; for perspective, 313 

this is two orders of magnitude larger than empirical screening permits (D. G. Brown et al., 2014), and our in 314 

silico screen of the library could be performed in four days. 315 

 After running predictions on the selected tranches of the ZINC15 database, compounds were binned 316 

based on prediction score. This resulted in 6,820 molecules with scores >0.7, 3,260 molecules with scores 317 

>0.8, and 1,070 molecules with scores >0.9 (Figure 6B, Table S6A). We compared the top 6,820 ZINC15 318 

prediction ranks from our model (Table S6A) to numerous others, including a learned model without RDKit 319 

feature augmentation (Table S6B); a model trained exclusively on RDKit features (Table S6C); a feed-320 

forward deep neural network model using Morgan fingerprints as the molecular representation (Table S6D); 321 

a random forest classifier using Morgan fingerprints (Table S6E); and a support-vector machine model using 322 

Morgan fingerprints (Table S6F). Next, all molecules were rank ordered based on prediction score using our 323 

model and assessed for Tanimoto similarity to all known antibiotics. Since we were interested in identifying 324 

antibacterial molecules that were structurally dissimilar from current antibiotics, we prioritized compounds for 325 

curation with prediction scores >0.8 and Tanimoto similarities to any known antibiotic <0.4. We were able to 326 

curate 23 compounds that met these criteria for empirical testing (Figure 6C, Table S7A). 327 

Next, we assayed these compounds for growth inhibition against E. coli, S. aureus, Klebsiella 328 

pneumoniae, A. baumannii, and P. aeruginosa. Indeed, even though our model was trained on growth 329 

inhibition against E. coli, since the majority of antibiotics display activity against numerous bacterial species, 330 

we reasoned that it could be possible that some of these predictions had bioactivity against diverse 331 

pathogens. Excitingly, we observed that eight of the 23 molecules displayed detectable growth inhibitory 332 

activity against at least one of the tested species (Figure 6C, 6D, Figure S5D-S5K, Table S7A, S7B). 333 



Of note, we observed two compounds that displayed potent broad-spectrum activity, 334 

ZINC000100032716 and ZINC000225434673 (Figure 6D), and overcame an array of common resistance 335 

determinants (Figure 6E, 6F). Interestingly, ZINC000100032716 has structural features found in both 336 

quinolones and sulfa drugs, yet remains highly divergent from known antibiotics (enrofloxacin nearest 337 

neighbour with Tanimoto similarity ~0.39) and was only weakly impacted by plasmid-borne fluoroquinolone 338 

resistance via aac(6’)-Ib-cr (Figure 6E) or chromosomal resistance via mutation of gyrA (Figure S5L, S5M). 339 

Moreover, both ZINC000100032716 and ZINC000225434673 displayed bactericidal activity against E. coli 340 

in rich medium (Figure 6G, 6H), with the latter resulting in complete sterilization after just 4 hours of 341 

treatment. Given its novel structure (nitromide nearest neighbour with Tanimoto similarity ~0.16) and low 342 

predicted toxicity in humans (Table S7A), we posit that ZINC000225434673 warrants further investigation. 343 

Lastly, upon determining the antibacterial properties of these 23 predicted molecules, we ventured to 344 

understand their chemical relationships to the training data. We therefore analyzed the structural 345 

relationships between these compounds, ZINC15 molecules with prediction scores >0.9, our primary 346 

training set, the Drug Repurposing Hub, and the WuXi anti-tuberculosis library (Figure 6I). Intriguingly, our 347 

analysis revealed that the WuXi anti-tuberculosis library contained molecules that largely occupied a distinct 348 

chemical space relative to compounds with antibacterial activity, consistent with our results showing that 349 

even the highest predicted of these were unable to inhibit the growth of E. coli. Moreover, this analysis 350 

emphasized the fact that the predicted compounds resided in varied chemical spaces, suggesting that our 351 

model was largely unbiased in enriching for specific chemical moieties – at least below our Tanimoto 352 

nearest neighbour threshold of 0.4. 353 

 354 

DISCUSSION 355 

 The prevalence of antibiotic resistance is rapidly increasing on a global scale. Concurrently, the 356 

steadily declining productivity in clinically implementing new antibiotics due to the high risk of early discovery 357 

and low return on investment is exacerbating this problem (E. D. Brown and Wright, 2016). Therefore, the 358 

development of new approaches that can substantially decrease the cost and increase the rate of antibiotic 359 

discovery is essential to reinfuse the pipeline with a steady stream of candidates that show promise as next-360 

generation therapeutics. The adoption of machine learning approaches is ideally suited to address these 361 



hurdles. Indeed, modern neural molecular representations have the potential to: (1) decrease the cost of 362 

lead molecule identification since screening is limited to gathering appropriate training data, (2) increase the 363 

true positive rate of identifying structurally novel compounds with the desired bioactivity, and (3) decrease 364 

the time and labor required to find these ideal compounds from months or years to weeks. 365 

 In this study, we applied neural molecular representations to predict antibacterial compounds in silico 366 

from a collection of >107 million compounds. We first trained a deep neural network model with empirical 367 

data analyzing E. coli growth inhibition by molecules from a widely available FDA-approved drug library 368 

supplemented with a modest natural product library, totalling 2,335 molecules. Next, we applied the 369 

resulting model to predict antibacterial compounds from the Drug Repurposing Hub. Excitingly, amongst the 370 

most highly predicted molecules, our model performed well (51.5% accuracy) and ultimately resulted in 371 

identifying halicin as a broad-spectrum bactericidal antibiotic with exceptional in vivo efficacy. The low 372 

structural similarity of halicin to its nearest neighbour antibiotic, metronidazole (Tanimoto similarity ~ 0.21), 373 

showed that our approach was capable of generalization, thus permitting access to new antibiotic chemistry. 374 

We subsequently expanded our prediction space to include the WuXi anti-tuberculosis library, as 375 

well as a subset of the ZINC15 database comprising 107,349,233 molecules, in order to identify additional 376 

candidate antibacterial molecules. We did not observe growth inhibition from any molecules empirically 377 

tested from the WuXi library, in agreement with the correspondingly low model prediction scores (upper limit 378 

~0.37). However, from amongst the 23 molecules from the ZINC15 database that we curated for empirical 379 

testing, we observed that eight of these validated as true positives in at least one of the tested pathogens. 380 

Importantly, these compounds were curated based on high prediction scores and low Tanimoto similarities 381 

to known antibiotics, providing further support that our model was able to generalize to new chemistries. 382 

Remarkably, two of these eight molecules, ZINC000100032716 and ZINC000225434673, displayed broad-383 

spectrum activity and maintained activity against E. coli harboring an array of resistance determinants. 384 

It is important to emphasize that machine learning is imperfect. Therefore, the success of deep 385 

neural network model-guided antibiotic discovery rests heavily on the coupling of these approaches to 386 

appropriate experimental designs. The first consideration should be the assay design for training: what is 387 

the biological outcome that is desired after cells are exposed to compounds? In the proof-of-concept 388 

described herein, we selected growth inhibition as the biological property on which we would gather training 389 



data, since this generally results in a reasonable proportion of active compounds relative to the size of the 390 

screening library, and quite easily generates reproducible data. However, the number of bacterial 391 

phenotypes that could theoretically result in efficacious antibiotics is expansive (Farha and E. D. Brown, 392 

2015; Kohanski et al., 2010), and so long as it is possible to gather a sufficient quantity of reproducible hit 393 

compounds from a primary screen, deep neural network approaches would be well-suited to predict 394 

additional molecules with the desired biological property. Indeed, where our screen was largely mechanism 395 

of action agnostic, future applications could incorporate phenotypic screening conditions that enrich for 396 

molecules against specific biological targets (Stokes and Brown, 2015; Stokes et al., 2016; 2017; J. H. Yang 397 

et al., 2019). 398 

The second consideration is the composition of the training data itself: on what chemistry should the 399 

model be trained? It is important to use training data that have sufficient chemical diversity in both active 400 

and inactive compounds, as well as appropriate pharmacology/ADME/toxicity properties for in vivo 401 

application. If all active molecules are structurally similar, the model will be unable to generalize to new 402 

scaffolds. Moreover, model accuracy deteriorates as the training set and prediction set diverge. As such, 403 

there exists a tension of sorts between prediction accuracy and chemical generalization, and it is 404 

advantageous to have the broadest structural variation possible in the training phase to maximize the 405 

probability of successful generalization in new chemical spaces. In our case, the desire to train on a 406 

supplemented FDA-approved drug library was to offer the capability of performing a small screen and 407 

simultaneously capturing substantial chemical diversity with desired pharmacology/ADME/toxicity 408 

properties. While mining pre-existing screening datasets could have been implemented, we reasoned that at 409 

this early stage in the application of machine learning for antibiotic discovery, a carefully controlled training 410 

set would allow for more tractable predictions that avoided potentially unfavorable molecules. Nevertheless, 411 

given the increasing volume of screening data that exists (Wang et al., 2017), carefully leveraging these 412 

resources could result in millions of molecular graph-biological property relationships, provided that the data 413 

are of adequate quality and methodological uniformity so that erroneous predictions could be minimized. 414 

The third consideration is in prediction prioritization: what is the most appropriate approach to 415 

selecting tens of molecules for follow-up investigation from thousands of strongly predicted compounds? 416 

Since we aimed to identify new antibacterial candidates, our prioritization scheme involved the selection of 417 



molecules that were (1) given a high prediction score, (2) structurally unique relative to clinical antibiotics 418 

based on Tanimoto nearest neighbour analyses, and in some cases (3) unlikely to display toxicity. Indeed, 419 

this approach allowed us to identify halicin, as well as numerous attractive compounds from the ZINC15 420 

database. It should be noted here, however, that investigators can encounter limitations in acquiring 421 

predicted compounds in quantities sufficient to perform experiments. This can be due to the inability to 422 

synthesize predicted molecules, prohibitive costs of synthesizing those that can, and/or compound instability 423 

in aqueous solution. However, emerging models in retrosynthesis and physicochemical property prediction 424 

may overcome these limitations in the near future (Coley et al., 2019; Gao et al., 2018). 425 

Where our deep neural network model was trained using a targeted dataset, future endeavors could 426 

aim to assemble chemical libraries designed for model training on a task-by-task basis, which may contain 427 

on the order of perhaps ~105 compounds of diverse structure. In the context of antibacterial discovery, these 428 

training libraries should contain molecules with physicochemical properties consistent with antibacterial 429 

drugs (Tommasi et al., 2015), yet sufficiently diverse such that the model can generalize to unconventional 430 

chemistry. Furthermore, with repeated training cycles across phylogenetically diverse species, it may be 431 

possible to predict molecules with antibacterial activity against a specified spectrum of pathogens. This has 432 

the promise to result in narrow-spectrum agents that can be administered systemically without damaging the 433 

host microbiota. Moreover, by training on multidrug-resistant pathogens, it may be possible to identify 434 

scaffolds that overcome pre-existing resistance determinants. Overall, our results suggest that the time is 435 

ripe for the application of modern machine learning approaches for antibiotic discovery � such efforts could 436 

increase the rate at which new molecular entities are discovered, decrease the resources required to 437 

identify these molecules, and decrease associated costs. Deep learning approaches could therefore enable 438 

us to expand our antibiotic arsenal and help outpace the dissemination of resistance. 439 
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 467 

FIGURE LEGENDS 468 

Figure 1. Machine learning in antibiotic discovery. Modern approaches to antibiotic discovery often 469 

include screening large chemical libraries for those that elicit a phenotype of interest. These screens, which 470 

are upper bound by hundreds of thousands to a few million molecules, are expensive, time consuming, and 471 

can fail to capture an expansive breadth of chemical space. In contrast, machine learning approaches afford 472 

the opportunity to rapidly and inexpensively explore vast chemical spaces in silico. Our deep neural network 473 



model works by building a molecular graph based on a specific property, in our case the inhibition of the 474 

growth of E. coli, using a directed message passing approach. We first trained our neural network model 475 

using a collection of 2,335 diverse molecules for those that inhibited the growth of E. coli, augmenting the 476 

model with a set of molecular features, hyperparameter optimization, and ensembling. Next, we applied the 477 

model to multiple chemical libraries, comprising >107 million molecules, to identify potential lead compounds 478 

with activity against E. coli. After ranking the candidates according to the model’s predicted score, we 479 

selected a list of promising candidates. 480 

 481 

Figure 2. Initial model training and the identification of halicin. (A) Primary screening data for growth 482 

inhibition of E. coli by 2,560 molecules within the FDA-approved drug library supplemented with a natural 483 

product collection. Shown is the mean of two biological replicates. Red are growth inhibitory molecules; blue 484 

are non-growth inhibitory molecules. (B) ROC-AUC plot evaluating model performance after training. Dark 485 

blue is the mean of six individual trials (cyan). (C) Rank-ordered prediction scores of Drug Repurposing Hub 486 

molecules that were not present in the training dataset. (D) The top 99 predictions from the data shown in 487 

(C) were curated for empirical testing for growth inhibition of E. coli. Fifty-one of 99 molecules were 488 

validated as true positives based on a cut-off of OD600 < 0.2. Shown is the mean of two biological replicates. 489 

Red are growth inhibitory molecules; blue are non-growth inhibitory molecules. (E) For all molecules shown 490 

in (D), ratios of OD600 to prediction score were calculated and these values were plotted based on prediction 491 

score for each corresponding molecule. These results show that a higher prediction score correlates with a 492 

greater probability of growth inhibition. (F) The bottom 63 predictions from the data shown in (C) were 493 

curated for empirical testing for growth inhibition of E. coli. Shown is the mean of two biological replicates. 494 

Red are growth inhibitory molecules; blue are non-growth inhibitory molecules. (G) t-SNE of all molecules 495 

from the training dataset (blue) and the Drug Repurposing Hub (red), revealing chemical relationships 496 

between these libraries. Halicin is shown as a black and yellow circle. (H) Tanimoto similarity between 497 

halicin (structure inset) and each molecule in the de-duplicated training dataset. The Tanimoto nearest 498 

neighbour is the antiprotozoal drug nithiamide (score ~0.37), with metronidazole being the nearest antibiotic 499 

(score ~0.21). (I) Growth inhibition of E. coli by halicin. Shown is the mean of two biological replicates. Bars 500 

denote absolute error. See also Figure S1, Table S1, S2. 501 



 502 

Figure 3. Halicin is a broad-spectrum bactericidal antibiotic. (A) Killing of E. coli in LB media in the 503 

presence of varying concentrations of halicin after 1 hr (blue), 2 hr (cyan), 3 hr (green), and 4 hr (red). The 504 

initial cell density is ~106 CFU/ml. Shown is the mean of two biological replicates. Bars denote absolute 505 

error. (B) Killing of E. coli in PBS in the presence of varying concentrations of halicin after 2 hr (blue), 4 hr 506 

(cyan), 6 hr (green), and 8 hr (red). The initial cell density is ~106 CFU/ml. Shown is the mean of two 507 

biological replicates. Bars denote absolute error. (C) Killing of E. coli persisters by halicin after treatment 508 

with 10 µg/ml (10x MIC) of ampicillin. Light blue is no halicin. Green is 5x MIC halicin. Blue is 10x MIC 509 

halicin. Red is 20x MIC halicin. Shown is the mean of two biological replicates. Bars denote absolute error. 510 

(D) MIC of halicin against E. coli strains harboring a range of antibiotic-resistance determinants. The mcr-1 511 

gene was expressed in E. coli BW25113. All other resistance genes were expressed in E. coli BW25113 512 

∆bamB∆tolC. Experiments were conducted with two biological replicates. (E) Growth inhibition of M. 513 

tuberculosis by halicin. Shown is the mean of three biological replicates. Bars denote standard deviation. (F) 514 

Killing of M. tuberculosis by halicin in 7H9 media at 16 µg/ml (1x MIC). Shown is the mean of three 515 

biological replicates. Bars denote standard deviation. (G) MIC of halicin against 36-strain panels of CRE 516 

isolates (green), A. baumannii isolates (red), and P. aeruginosa isolates (blue). Experiments were 517 

conducted with two biological replicates. See also Figure S2, Table S3. 518 

 519 

Figure 4. Halicin dissipates the ∆pH component of the proton motive force. (A) Evolution of resistance 520 

to halicin (blue) or ciprofloxacin (red) in E. coli after 30 days of passaging in liquid LB media. Cells were 521 

passaged every 24 hours. (B) Whole transcriptome hierarchical clustering of relative gene expression of E. 522 

coli treated with halicin at 4x MIC for 1 hr, 2 hr, 3 hr, and 4 hr. Shown is the mean transcript abundance of 523 

two biological replicates of halicin-treated cells relative to untreated control cells on a log2-fold scale. Genes 524 

enriched in cluster b are involved in locomotion (p~10-20); genes enriched in cluster c are involved in 525 

ribosome structure/function (p~10-30); and genes enriched in cluster d are involved in membrane protein 526 

complexes (p~10-15). Clusters a, e, and f are not highly enriched for specific biological functions. In the 527 

growth curve, blue represents untreated cells; red represents halicin-treated cells. (C) Growth inhibition by 528 

halicin against E. coli in pH-adjusted media. Shown is the mean of two biological replicates. Bars denote 529 



absolute error. (D) DiSC3(5) fluorescence in E. coli upon exposure to polymyxin B (PMB), halicin, or DMSO. 530 

(E) Growth inhibition checkerboards of halicin in combination with tetracycline (left), kanamycin (center), and 531 

FeCl3 (right). Dark blue represents greater growth. See also Figure S3, Table S4. 532 

 533 

Figure 5. Halicin displays efficacy in murine models of infection. (A) Growth inhibition of pan-resistant 534 

A. baumannii CDC 288 by halicin. Shown is the mean of two biological replicates. Bars denote absolute 535 

error. (B) Killing of A. baumannii CDC 288 in PBS in the presence of varying concentrations of halicin after 2 536 

hr (blue), 4 hr (cyan), 6 hr (green), and 8 hr (red). The initial cell density is ~108 CFU/ml. Shown is the mean 537 

of two biological replicates. Bars denote absolute error. (C) In a wound infection model, mice were infected 538 

with A. baumannii CDC 288 for 1 hr and treated with either vehicle (green; 0.5% DMSO; n=6) or halicin 539 

(blue; 0.5% w/v; n=6) over 24 hr. Bacterial load from wound tissue after treatment was determined by 540 

selective plating. Black lines represent geometric mean of the bacterial load for each treatment group. (D) 541 

Growth inhibition of C. difficile 630 by halicin. Shown is the mean of two biological replicates. Bars denote 542 

absolute error. (E) Experimental design for C. difficile infection and treatment. (F) Bacterial load of C. difficile 543 

630 in feces of infected mice. Metronidazole (red; 50 mg/kg; n=6) did not result in enhanced rates of 544 

clearance relative to vehicle controls (green; 10% PEG 300; n=7). Halicin-treated mice (blue; 15 mg/kg; 545 

n=4) displayed sterilization beginning at 72 hr after treatment, with 100% of mice being free of infection at 96 546 

hr after treatment. Lines represent geometric mean of the bacterial load for each treatment group. See also 547 

Figure S4. 548 

 549 

Figure 6. Predicting new antibiotic candidates from unprecedented chemical libraries. (A) Tranches of 550 

the ZINC15 database colored based on the proportion of hits from the original training dataset of 2,335 551 

molecules within each tranche. Darker blue tranches have a higher proportion of molecules that are growth 552 

inhibitory against E. coli. Yellow tranches are those selected for predictions. (B) Histogram showing the 553 

number of ZINC15 molecules from selected tranches within a corresponding prediction score range. (C) 554 

Prediction scores and Tanimoto nearest neighbour antibiotic scores of the 23 predictions that were 555 

empirically tested for growth inhibition. Yellow circles represent those molecules that displayed detectable 556 

growth inhibition of at least one pathogen. Grey circles represent inactive molecules. ZINC numbers of 557 



active molecules are shown on the right. (D) MIC values (µg/ml) of the eight active predictions from the 558 

ZINC15 database against E. coli (EC), S. aureus (SA), K. pneumoniae (KP), A. baumannii (AB), and P. 559 

aeruginosa (PA). Blank regions represent no detectable growth inhibition at 128 µg/ml. Structures are 560 

shown in the same order (top to bottom) as their corresponding ZINC numbers in (C). (E) MIC of 561 

ZINC000100032716 against E. coli strains harboring a range of antibiotic-resistance determinants. The mcr-562 

1 gene was expressed in E. coli BW25113. All other resistance genes were expressed in E. coli BW25113 563 

∆bamB∆tolC. Experiments were conducted with two biological replicates. Note the minor increase in MIC in 564 

the presence of aac(6’)-Ib-cr. (F) Same as (E) except using ZINC000225434673. (G) Killing of E. coli in LB 565 

media in the presence of varying concentrations of ZINC000100032716 after 0 hr (blue) and 4 hr (red). The 566 

initial cell density is ~106 CFU/ml. Shown is the mean of two biological replicates. Bars denote absolute 567 

error. (H) Same as (G) except using ZINC000225434673. (I) t-SNE of all molecules from the primary training 568 

dataset (blue), the Drug Repurposing Hub (red), the WuXi anti-tuberculosis library (green), the ZINC15 569 

molecules with prediction scores >0.9 (pink), false positive predictions (grey), and true positive predictions 570 

(yellow). See also Figure S5, Table S5-S7. 571 

 572 

SUPPLEMENTAL FIGURE LEGENDS 573 

Figure S1. Related to Figure 2. Primary screening and initial model training. (A) Primary screening 574 

data for growth inhibition of E. coli by 2,560 molecules within the FDA-approved drug library supplemented 575 

with a natural product collection. Red are growth inhibitory molecules; blue are non-growth inhibitory 576 

molecules. (B) Rank-ordered de-duplicated screening data containing 2,335 molecules. Shown is the mean 577 

of two biological replicates. Red are growth inhibitory molecules; blue are non-growth inhibitory molecules. 578 

 579 

Figure S2. Related to Figure 3. Activity of halicin. (A) Killing of E. coli in LB media in the presence of 580 

varying concentrations of halicin after 1 hr (blue), 2 hr (cyan), 3 hr (green), and 4 hr (red). The initial cell 581 

density is ~108 CFU/ml. Shown is the mean of two biological replicates. Bars denote absolute error. (B) 582 

Same as (A), with initial cell density ~107 CFU/ml. (C) Killing of E. coli in PBS in the presence of varying 583 

concentrations of halicin after 2 hr (blue), 4 hr (cyan), 6 hr (green), and 8 hr (red). The initial cell density is 584 

~108 CFU/ml. Shown is the mean of two biological replicates. Bars denote absolute error. (D) Same as (C), 585 



with initial cell density ~107 CFU/ml. (E) Killing of E. coli in PBS in the presence of varying concentrations of 586 

ampicillin after 2 hr (blue), 4 hr (cyan), 6 hr (green), and 8 hr (red). The initial cell density is ~108 CFU/ml. 587 

Shown is the mean of two biological replicates. Bars denote absolute error. (F) Same as (E), with initial cell 588 

density ~107 CFU/ml. (G) Same as (E), with initial cell density ~106 CFU/ml. (H) Killing of E. coli in LB media 589 

in the presence of varying concentrations of ampicillin after 1hr (blue), 2 hr (cyan), 3 hr (green), and 4 hr 590 

(red). The initial cell density is ~108 CFU/ml. Shown is the mean of two biological replicates. Bars denote 591 

absolute error. (I) Same as (H), except with initial cell density ~107 CFU/ml. (J) Same as (H), except with 592 

initial cell density ~106 CFU/ml. (K) MIC of various antibiotics against E. coli strains harboring a range of 593 

plasmid-borne, functionally diverse, antibiotic-resistance determinants. The mcr-1 gene was expressed in E. 594 

coli BW25113. All other resistance genes were expressed in E. coli BW25113 ∆bamB∆tolC. WT is wildtype 595 

E. coli. R is E. coli harboring a resistance plasmid. Chlor is chloramphenicol. Amp is ampicillin. Gent is 596 

gentamicin. Levo is levofloxacin. Experiments were conducted with two biological replicates. (L) Growth 597 

inhibition of wildtype E. coli (blue) and ∆nfsA∆nfsB E. coli (green) by halicin. Shown is the mean of two 598 

biological replicates. Bars denote absolute error. (M) Growth inhibition of wildtype E. coli (blue) and 599 

∆nfsA∆nfsB E. coli (green) by nitrofurantoin. Shown is the mean of two biological replicates. Bars denote 600 

absolute error. 601 

 602 

Figure S3. Related to Figure 4. Mechanistic investigations into halicin. (A) Evolution of spontaneous 603 

resistance against halicin (top) or ciprofloxacin (bottom). E. coli BW25113 (~109 CFU) was plated onto non-604 

selective or selective media and incubated for 7 days prior to imaging, and re-streaking of colonies onto 605 

fresh non-selective or selective media. 20 µg/ml halicin and 20 ng/ml ciprofloxacin, respectively, were used 606 

for suppressor mutant evolution. Note that the colonies that emerged at the edge of halicin-supplemented 607 

plates after 7 days grew well on LB non-selective media but did not re-streak onto halicin-supplemented 608 

media. All seven selected ciprofloxacin-resistant colonies grew on both non-selective and ciprofloxacin-609 

supplemented media. (B) Whole transcriptome hierarchical clustering of E. coli treated with halicin at 0.25x 610 

MIC for 1hr, 2 hr, 3 hr, and 4 hr. Shown is the mean transcript abundance of two biological replicates of 611 

halicin-treated cells relative to untreated control cells on a log2-fold scale. In the growth curve, blue 612 

represents untreated cells; red represents halicin-treated cells. (C) Same as (B), except cells were treated 613 



with 1x MIC halicin. (D) Growth inhibition by halicin against S. aureus USA300 in pH-adjusted media. Shown 614 

is the mean of two biological replicates. Bars denote absolute error. (E) Growth inhibition by halicin against 615 

E. coli in LB (blue) or LB supplemented with 25 mM sodium bicarbonate (red), which dissipates the ∆pH 616 

component of the proton motive force. Shown is the mean of two biological replicates. Bars denote absolute 617 

error. (F) DiSC3(5) fluorescence in S. aureus upon exposure to valinomycin (64 µg/ml; dissipates ∆\), 618 

nigericin (16 µg/ml; dissipates ∆pH), halicin (4 µg/ml), or DMSO. Halicin induced fluorescence changes 619 

more similar to nigericin relative to valinomycin, suggesting that halicin dissipates the ∆pH component of the 620 

proton motive force. The right panel is a magnified image of the drug-induced decrease in fluorescence 621 

shown in the left. (G) DiSC3(5) fluorescence in S. aureus upon exposure to valinomycin, nigericin, halicin, or 622 

DMSO after 4 hr of exposure. (H) Growth inhibition by daptomycin (left) and halicin (right) against S. aureus 623 

RN4220 (blue) or a daptomycin-resistant RN4220 strain (∆dsp1; red) in LB media. Shown is the mean of 624 

two biological replicates. Bars denote absolute error. 625 

 626 

Figure S4. Related to Figure 5. Activity of halicin against A. baumannii CDC 288. (A) Killing of A. 627 

baumannii in PBS in the presence of varying concentrations of halicin after 2 hr (blue), 4 hr (cyan), 6 hr 628 

(green), and 8 hr (red). The initial cell density is ~107 CFU/ml. Shown is the mean of two biological 629 

replicates. Bars denote absolute error. (B) Same as (A), with initial cell density ~106 CFU/ml. 630 

 631 

Figure S5. Related to Figure 6. Model predictions from the WuXi anti-tuberculosis library and the 632 

ZINC15 database. (A) Rank-ordered prediction scores of WuXi anti-tuberculosis library molecules. Note the 633 

overall low prediction scores. (B) The top 200 predictions from the data shown in (A) were curated for 634 

empirical testing for growth inhibition of E. coli. None were growth inhibitory, in agreement with their low 635 

prediction scores. Shown is the mean of two biological replicates. (C) The bottom 100 predictions from the 636 

data shown in (A) were curated for empirical testing for growth inhibition of E. coli. None were growth 637 

inhibitory, in agreement with their low prediction scores. Shown is the mean of two biological replicates. (D-638 

K) Growth inhibition by eight empirically validated ZINC15 predictions against E. coli (blue), S. aureus 639 

(green), K. pneumoniae (purple), A. baumannii (pink), and P. aeruginosa (red) in LB media. Shown is the 640 

mean of two biological replicates. Bars denote absolute error. (L) Growth inhibition by ZINC000100032716 641 



against E. coli BW25113 (blue) or a ciprofloxacin-resistant gyrA S83A mutant of BW25113 (red). Shown is 642 

the mean of two biological replicates. Bars denote absolute error. (M) Same as (L) except using 643 

ciprofloxacin. Note the 4-fold smaller change in MIC with ZINC000100032716 between the gyrA mutant and 644 

wildtype E. coli relative to ciprofloxacin. 645 

 646 

STAR METHODS 647 

LEAD CONTACT AND MATERIALS AVAILABILITY 648 

Further information and requests for resources and reagents should be directed to James J. Collins 649 

(jimjc@mit.edu). All unique/stable reagents generated in this study are available from the Lead Contact with 650 

a completed Materials Transfer Agreement. 651 

 652 

METHODS DETAILS 653 

Model training and predictions. A directed-message passing neural network (Chemprop), like other 654 

message passing neural networks, learns to predict molecular properties directly from the graph structure of 655 

the molecule, where atoms are represented as nodes and bonds are represented as edges. For every 656 

molecule, we reconstructed the molecular graph corresponding to each compound’s SMILES string and 657 

determined the set of atoms and bonds using the open-source package RDKit (Landrum, 2006). Next, we 658 

initialized a feature vector, as described in Yang et al. (K. Yang et al., 2019), for each atom and bond based 659 

on computable features: 660 

1. Atom features: atomic number, number of bonds for each atom, formal charge, chirality, number of 661 

bonded hydrogens, hybridization, aromaticity, atomic mass. 662 

2. Bond features: bond type (single/double/triple/aromatic), conjugation, ring membership, 663 

stereochemistry. 664 

The model applies a series of message passing steps where it aggregates information from 665 

neighboring atoms and bonds to build an understanding of local chemistry. In Chemprop, on each step of 666 

message passing, each bond’s featurization is updated by summing the featurization of neighbouring bonds, 667 

concatenating the current bond’s featurization with the sum, and then applying a single neural network layer 668 

with non-linear activation. After a fixed number of message-passing steps, the learned featurizations across 669 



the molecule are summed to produce a single featurization for the whole molecule. Finally, this featurization 670 

is fed through a feed-forward neural network that outputs a prediction of the property of interest. Since the 671 

property of interest in our application was the binary classification of whether a molecule inhibits the growth 672 

of E. coli, the model is trained to output a number between 0 and 1, which represents its prediction about 673 

whether the input molecule is growth inhibitory. 674 

In addition to the basic D-MPNN architecture described above, we employed three model 675 

optimizations (K. Yang et al., 2019):  676 

Additional molecule-level features: While the message passing paradigm is excellent for 677 

extracting features that depend on local chemistry, it can struggle to extract global molecular features. This 678 

is especially true for large molecules, where the longest path through the molecule may be longer than the 679 

number of message-passing iterations performed, meaning information from one side of the molecule does 680 

not inform the features on the other side of the molecule. For this reason, we chose to concatenate the 681 

molecular representation that is learned via message passing with 200 additional molecule-level features 682 

computed with RDKit. 683 

Hyperparameter optimization: The performance of machine learning models is known to depend 684 

critically on the choice of hyperparameters, such as the size of the neural network layers, which control how 685 

and what the model is able to learn. We used the Bayesian hyperparameter optimization scheme, with 20 686 

iterations of optimization to improve the hyperparameters of our model (see table below). Baysian 687 

hyperparameter optimization learns to select optimal hyperparameters based on performance using prior 688 

hyperparameter settings, allowing for rapid identification of the best set of hyperparameters for any model. 689 

Hyperparameter Range Value 
Number of message-passing steps [2, 6] 5 

Neural network hidden size [300, 2400] 1600 
Number of feed-forward layers [1, 3] 1 

Dropout probability [0, 0.4] 0.35 
 690 

Ensembling: Another standard machine learning technique used to improve performance is 691 

ensembling, where several copies of the same model architecture with different random initial weights are 692 

trained and their predictions are averaged. We used an ensemble of 20 models, with each model trained on 693 

a different random split of the data (Dietterich, 2000). 694 



Our initial training dataset consisted of 2,335 molecules, with 120 compounds (5.14%) showing 695 

growth inhibitory activity against E. coli, as defined by endpoint OD600 < 0.2. We performed predictions on 696 

the Drug Repurposing Hub, consisting of 6,111 unique molecules; the WuXi anti-tuberculosis library, 697 

consisting of 9,997 unique molecules; and tranches of the ZINC15 database. The ZINC15 tranches that we 698 

used for molecular predictions were selected based on their likelihood to contain antibiotic-like molecules; 699 

these tranches included: 'AA', 'AB', 'BA', 'BB', 'CA', 'CB', 'CD', 'DA', 'DB', 'EA', 'EB', 'FA', 'FB', 'GA', 'GB', 700 

'HA', 'HB', 'IA', 'IB', 'JA', 'JB', 'JC', 'JD', 'KA', 'KB', 'KC', 'KD', 'KE', 'KF', 'KG', 'KH', 'KI', 'KJ', and 'KK', 701 

constituting a dataset of 107,349,233 unique molecules. 702 

Our experimental procedure consisted of four phases: (1a) a training phase to evaluate the 703 

optimized but non-ensembled model and (1b) training the ensemble of optimized models; (2) a prediction 704 

phase; (3) a retraining phase; and (4) a final prediction phase. We began by evaluating our model on the 705 

training set of 2,335 molecules using all optimizations except for ensembling, in order to determine the best 706 

performance of a single model. Here, we randomly split the dataset into 80% training data, 10% validation 707 

data, and 10% test data. We trained our model on the training data for 30 epochs, where an epoch is 708 

defined as a single pass through all of the training data, and we evaluated it on the validation data at the 709 

end of each epoch. After training was complete, we used the model parameters that performed best on the 710 

validation data and tested the model with those parameters on the test data. We repeated this procedure 711 

with 20 different random splits of the data and averaged the results. After we were satisfied with model 712 

performance, we conducted predictions on new datasets. Since we wanted to maximize the amount of 713 

training data and were no longer interested in measuring performance on the test set, we trained new 714 

models on the training data from each of 20 random splits, each with 90% training data, 10% validation 715 

data, and no test data.  716 

The ensemble consisting of these 20 models is the model that was applied first to the Drug 717 

Repurposing Hub, and then the WuXi anti-tuberculosis library. After empirically testing the highest and 718 

lowest predicted molecules from these libraries for growth inhibition against E. coli, we included all these 719 

data into our original training sets to create a new training set. The updated training set contained 2,911 720 

unique molecules, with 232 (7.97%) showing growth inhibitory activity. We next used our retrained model to 721 

make predictions on the aforementioned subset of the ZINC15 database. We selected all molecules with a 722 



prediction score >0.7, which resulted in 6,820 compounds. All molecules selected for curation were 723 

subsequently cross-referenced with SciFinder to ensure that these were not clinical antibiotics.  724 

We lastly compared the prediction outputs of our augmented D-MPNN with a D-MPNN without RDKit 725 

features; a feedforward DNN model with the same depth as our D-MPNN model with hyperparameter 726 

optimization using RDKit features only; the same DNN instead using Morgan fingerprints (radius 2) as the 727 

molecular representation; and RF and SVM models using the same Morgan fingerprint representations. We 728 

used the scikit-learn implementation of a random forest classifier with all of the default parameters except 729 

for the number of trees, where we used 500 instead of 10. When making predictions, we output the growth 730 

inhibition probability for each molecule according to the random forest, which is the proportion of trees in the 731 

model that predict a 1 for that molecule. Similarly, we used the scikit-learn implementation of a support 732 

vector machine with all of the default parameters. When making predictions, we output the signed distance 733 

between the Morgan fingerprint of the molecule and the separating hyperplane that is learned by the SVM. 734 

This number represents how much the model predicts a molecule is antibacterial, with large positive 735 

distances meaning most likely antibacterial and large negative distances meaning most likely not. Although 736 

the signed distance is not a probability, it can still be used to rank the molecules according to how likely they 737 

are to be antibacterial. 738 

To predict the toxicity of molecules for possible in vivo applications, we trained a Chemprop model 739 

on the ClinTox dataset. This dataset consisted of 1,478 molecules, each with two binary properties: (a) 740 

clinical trial toxicity and (b) FDA-approval status. Of these 1,478 molecules, 94 (6.36%) had clinical toxicity 741 

and 1,366 (92.42%) were FDA approved. Using the same methodology as described in phase (1) of our 742 

experimental procedure, the Chemprop model was trained on both properties simultaneously and learned a 743 

single molecular representation that was used by the feed-forward neural network layers to predict toxicity. 744 

We utilized the same RDKit features as in our other models, except for that the ClinTox model was an 745 

ensemble of five models and used the following optimal hyperparameters: message-passing steps = 6; 746 

neural network hidden size = 2200; number of feed-forward layers = 3; and dropout probability = 0.15. 747 

This ensemble of models was subsequently used to make toxicity predictions on our candidate molecules. 748 

Chemical analyses. We utilized Tanimoto similarity to quantify the chemical relationship between 749 

molecules predicted in our study. The Tanimoto similarity of two molecules is a measure of the proportion of 750 



shared chemical substructures in the molecules. To compute Tanimoto similarity, we first determined 751 

Morgan fingerprints (computed using RDKit) for each molecule using a radius of 2 and 2048-bit fingerprint 752 

vectors. Tanimoto similarity was then computed as the number of chemical substructures contained in both 753 

molecules divided by the total number of unique chemical substructures in either molecule. The Tanimoto 754 

similarity is thus a number between 0 and 1, with 0 indicating least similar (no substructures are shared) and 755 

1 indicating most similar (all substructures are shared). Morgan fingerprints with radius R and B bits are 756 

generated by looking at each atom and determining all of the substructures centered at that atom that 757 

include atoms up to R bonds away from the central atom. The presence or absence of these substructures 758 

is encoded as 1 and 0 in a vector of length B, which represents the fingerprint. For t-SNE analyses, plots 759 

were created using scikit-learn’s implementation of t-Distributed Stochastic Neighbor Embedding. Here, we 760 

first used RDKit to compute Morgan fingerprints for each molecule using a radius of 2 and 2048-bit 761 

fingerprint vectors. We then used t-SNE with the Jaccard distance metric to reduce the data points from 762 

2048 dimensions to the two dimensions that are plotted. Note that Jaccard distance is another name for 763 

Tanimoto distance, and Tanimoto distance is defined as: Tanimoto distance = 1 - Tanimoto similarity. Thus, 764 

the distance between points in the t-SNE plots is an indication of the Tanimoto similarity of the 765 

corresponding molecules, with greater distance between molecules indicating lower Tanimoto similarity. We 766 

used scikit-learn’s default values for all t-SNE parameters besides the distance metric. 767 

Chemical screening. E. coli BW25113 was grown overnight in 3 ml Luria-Bertani (LB) medium and diluted 768 

1/10,000 into fresh LB. 99 µl of cells was added to each well of a 96-well flat-bottom plate (Corning) using a 769 

multichannel pipette. Next, 1 µl of a 5 mM stock of each molecule from an FDA-approved drug library 770 

supplemented with a natural product library (2,560 molecules total; MicroSource Discovery Systems) was 771 

added, in duplicate, using an Agilent Bravo liquid handler. The final screening concentration was 50 µM. 772 

Plates were then incubated in sealed plastic bags at 37°C without shaking for 16 hr, and subsequently read 773 

at 600 nm using a SpectraMax M3 plate reader (Molecular Devices) to quantify cell growth. Plate data were 774 

normalized based on the interquartile mean of each plate. 775 

Growth inhibition assays. Cells were grown overnight in 3 ml LB medium and diluted 1/10,000 into fresh 776 

LB. In 96-well flat-bottom plates (Corning), cells were then introduced to compound at a final concentration 777 

of 50 µM, or to compound at two-fold serial dilutions, in final volumes of 100 μl. Plates were then incubated 778 



at 37°C without shaking until untreated control cultures reached stationary phase, at which time they were 779 

read at 600 nm using a SpectraMax M3 plate reader. We note here that the incubation time required to 780 

reach stationary phase differed between species but was generally between 12 hr and 18 hr. For ZINC15 781 

compound validation, the strains were E. coli BW25113, S. aureus USA 300, K. pneumoniae ATCC 700721, 782 

A. baumannii ATCC 17978, and P. aeruginosa PA01. C. difficile 630 growth inhibition was performed as 783 

described above, except cells were grown in BHI + 0.1% taurocholate for 18 hr in an anaerobic chamber 784 

(Coy Laboratory Products). M. tuberculosis H37Rv was grown at 37°C in Middlebrook 7H9 broth 785 

supplemented with 10% OADC (oleic acid-albumin-dextrose complex, vol/vol), 0.2% glycerol, and 0.05% 786 

Tween-80, or on Middlebrook 7H10 plates supplemented with 10% OADC and 0.5% glycerol. Cells were 787 

grown to mid-log phase, then added to 96-well plates at OD600 = 0.0025, in a total of 50 µl of 7H9 medium. 788 

In addition, each well contained 45 µl of 7H9 medium and varying compound concentrations diluted in a 789 

total of 5 µl of medium. Plates were incubated at 37°C in a humidified container for 14 days. OD600 was 790 

measured using a SpectraMax M5 plate reader. 791 

Bacterial cell killing assays. Cells were grown overnight in 3 ml LB medium and diluted 1/10,000 into fresh 792 

LB. In 96-well flat-bottom plates (Corning), cells were grown to the required density, at which time antibiotic 793 

was added at the indicated concentration and cultures were incubated for the required duration. Cells were 794 

then pelleted in plates by centrifugation at 4000 x g for 15 min at 4°C and washed in ice cold PBS. After 795 

washing, cells were 10-fold serially diluted in PBS and plated on LB to quantify cell viability. In experiments 796 

where cells were incubated with antibiotic in nutrient-deplete conditions, cells were grown to the required 797 

density in LB media, washed in PBS, and subsequently resuspended in PBS prior to the addition of 798 

antibiotic. After cultures were incubated for the required duration, cells were pelleted in plates by 799 

centrifugation at 4000 x g for 15 min at 4°C and washed in ice cold PBS. After washing, cells were 10-fold 800 

serially diluted in PBS and plated on LB to quantify cell viability. M. tuberculosis M37Rv was grown to mid-801 

log phase, then 30,000 cells were added to a 24 well plate in 1 ml of 7H9 medium. A sample from each well 802 

was taken as time=0, prior to halicin addition, then halicin was added to each well at the 16 µg/ml (1x MIC). 803 

At the indicated time points, samples were taken from each well and plated on 7H10. Control wells 804 

contained the relevant DMSO concentration without halicin. Plates were incubated at 37°C and counted 805 

twice after 4 and 6 weeks. 806 



Mutant generation. For serial passage evolution, E. coli BW25113 was grown overnight in 3 ml LB medium 807 

and diluted 1/10,000 into fresh LB. Cells were grown in 96-well flat-bottom plates (Corning), in the presence 808 

of varying concentrations of halicin (or ciprofloxacin) at two-fold serial dilutions, in final volumes of 100 μl. 809 

Plates were incubated at 37°C without shaking for 24 hr, at which time they were read at 600 nm using a 810 

SpectraMax M3 plate reader. After 24 hr, cells that grew in the presence of the highest concentration of 811 

halicin (or ciprofloxacin) were diluted 1/10,000 into fresh LB, and once again introduced to varying 812 

concentrations of halicin at two-fold serial dilutions. This procedure was performed every 24 hr over the 813 

course of 30 days. For spontaneous suppressor generation, ~109 CFU of E. coli BW25113 grown in LB 814 

media was spread onto LB agar in 10 cm petri dishes, either without antibiotics or supplemented with 815 

ciprofloxacin (Millipore Sigma) or halicin (TCI Chemicals) at the indicated concentrations. Plates were 816 

subsequently incubated at 37°C for seven days, at which time colonies from each plate were re-streaked 817 

onto LB and LB supplemented with antibiotics at the same concentration on which the colonies were 818 

originally grown. These plates were grown at 37°C overnight to monitor re-growth. For strain engineering, E. 819 

coli BW25113 ∆nsfA::kan ∆nfsB::cat was derived from BW25113 ∆nsfA::kan via introduction of a cat gene to 820 

disrupt the nfsB ORF using the Lambda Red method (Datsenko and Wanner, 2000). Briefly, 2 ml 2x YT 821 

media with BW25113 ∆nsfA::kan carrying the temperature-sensitive plasmid pKD46 at 30°C was induced 822 

with 20 mM arabinose. Upon reaching mid-log phase (OD600~0.5), cells were pelleted at 6000 x g for 2 min, 823 

then washed three times with 1 ml 15% glycerol. The final pellet was resuspended in 200 µl of 15% glycerol, 824 

and 50 µl was mixed with 300 ng of disruption fragment (generated using primers AB5044 and AB5045 on 825 

pKD32 to amplify the FRT-flanked cat cassette). Cells were electroporated at 1800 kV, then allowed to 826 

recover overnight in 5 ml 2x YT at 30°C. Cells were then pelleted at 6000 x g for 2 min, resuspended in 200 827 

µl deionized water and plated on 2x YT agar plates with 15 µg/ml kanamycin (Millipore Sigma) and 20 µg/ml 828 

chloramphenicol (Millipore Sigma). Plates were incubated at 37°C for 24-48 hr. Single colonies were PCR 829 

checked (primers AB5046, AB5047) for loss of the nfsB gene (1069 bp) and appearance of the cat gene 830 

insertion (1472 bp). Finally, positive colonies were assayed for loss of pKD46 at 37°C by replica plating on 831 

15 µg/ml kanamycin and 20 µg/ml chloramphenicol with or without 50 µg/ml carbenicillin (Millipore Sigma). 832 

AB5044 833 

TAGCCGGGCAGATGCCCGGCAAGAGAGAATTACACTTCGGTTAAGGTGATATTCCGGGGATCCGTCGACC 834 



AB5045 835 

ACCTTGTAATCTGCTGGCACGCAAAATTACTTTCACATGGAGTCTTTATGTGTAGGCTGGAGCTGCTTCG 836 

AB5046 837 

tgcaaaataatatgcaccacgacggcggtcagaaaaataa 838 

AB5047 839 

gaagcgttacttcgcgatctgatcaacgattcgtggaatc 840 

RNA sequencing. Cells were grown overnight in 3 ml LB medium and diluted 1/10,000 into 50 ml fresh LB. 841 

When cultures reached ~107 CFU/ml, halicin was added at 0.25x MIC (0.5 µg/ml), 1x MIC (2 µg/ml), or 4x 842 

MIC (8 µg/ml) and cells were incubated for the noted durations. After incubation, cells were harvested via 843 

centrifugation at 15,000 x g for 3 min at 4°C, and RNA was purified using the Zymo Direct-zol 96-well RNA 844 

purification kit (R2056). Briefly, ~107-108 CFU pellets were lysed in 500 µl hot Trizol reagent (Life 845 

Technologies). 200 µl chloroform (Millipore Sigma) was added, and samples were centrifuged at 15,000 x g 846 

for 3 min at 4°C. 200 µl of the aqueous phase was added to 200 µl anhydrous ethanol (Millipore Sigma), 847 

and RNA was purified using a Zymo-spin plate as per the manufacturer’s instructions. After purification, 848 

Illumina cDNA libraries were generated using a modified version of the RNAtag-seq protocol (Shishkin et al., 849 

2015). Briefly, 500 ng – 1 μg of total RNA was fragmented, depleted of genomic DNA, dephosphorylated, 850 

and ligated to DNA adapters carrying 5’-AN8-3’ barcodes of known sequence with a 5’ phosphate and a 3’ 851 

blocking group. Barcoded RNAs were pooled and depleted of rRNA using the RiboZero rRNA depletion kit 852 

(Epicentre). Pools of barcoded RNAs were converted to Illumina cDNA libraries in two main steps: (1) 853 

reverse transcription of the RNA using a primer designed to the constant region of the barcoded adaptor 854 

with addition of an adapter to the 3’ end of the cDNA by template switching using SMARTScribe (Clontech), 855 

as previously described (Zhu et al., 2018); and (2) PCR amplification using primers whose 5’ ends target the 856 

constant regions of the 3’ or 5’ adaptors and whose 3’ ends contain the full Illumina P5 or P7 sequences. 857 

cDNA libraries were sequenced on the Illumina NextSeq 500 platform to generate paired end reads. 858 

Following sequencing, reads from each sample in a pool were demultiplexed based on their associated 859 

barcode sequence. Up to one mismatch in the barcode was allowed, provided it did not make assignment of 860 

the read to a different barcode possible. Barcode sequences were removed from the first read, as were 861 

terminal G’s from the second read that may have been added by SMARTScribe during template switching. 862 



Next, reads were aligned to the E. coli MG1655 genome (NC_000913.3) using BWA (Li et al., 2009) and 863 

read counts were assigned to genes and other genomic features. Differential expression analysis was 864 

conducted with DESeq2 (Love et al., 2014) and/or edgeR (Robinson et al., 2010). To verify coverage, 865 

visualization of raw sequencing data and coverage plots in the context of genome sequences and gene 866 

annotations was conducted using GenomeView (Abeel et al., 2012). To determine biological response of 867 

cells as a function of halicin exposure, we performed hierarchical clustering of the gene expression profiles 868 

using the clustergram function in Matlab 2016a. We selected the Euclidean distance as the metric to define 869 

the pairwise distance between observations, which measures a straight-line distance between two points. 870 

The use of Euclidian distance has been considered as the most appropriate to cluster log-ratio data 871 

(D'haeseleer, 2005). With a metric defined, we next selected the average linkage as the clustering method. 872 

The average linkage uses the algorithm called unweighted pair group method with arithmetic mean 873 

(UPGMA), which is the most popular and preferred algorithm for hierarchical data clustering (Jaskowiak et 874 

al., 2014; Loewenstein et al., 2008). UPGMA uses the mean similarity across all cluster data points to 875 

combine the nearest two clusters into a higher-level cluster. UPGMA assumes there is a constant rate of 876 

change among species (genes) analyzed. We tested all alternative clustering metrics available (i.e., 877 

Spearman, Hamming, cosine, etc.) in the pdist function within the clustergram function in Matlab and 878 

concluded that the Euclidean metric together with the average linkage allow the clearest and probably most 879 

meaningful definition of clusters for our data set. Transcript cluster enrichment was performed using EcoCyc 880 

Pathway Tools (Karp, 2001; Karp et al., 2016; Keseler et al., 2013). P values were calculated using Fisher’s 881 

exact test. 882 

DiSC3(5) assays. S. aureus USA300 and E. coli MC1061 were streaked onto LB agar and grown overnight 883 

at 37°C. Single colonies were picked and used to inoculate 50 ml LB in 250 ml baffled flasks, which were 884 

incubated for 3.5 hr in a 37°C incubator shaking at 250 rpm. Cultures were pelleted at 4000 x g for 15 min 885 

and washed three times in buffer. For E. coli, the buffer was 5 mM HEPES with 20 mM glucose (pH 7.2). 886 

For S. aureus, the buffer was 50 mM HEPES with 300 mM KCl and 0.1% glucose (pH 7.2). Both cell 887 

densities were normalized to OD600~0.1, loaded with 1 µM DiSC3(5) dye (3,3'-dipropylthiadicarbocyanine 888 

iodide), and left to rest for 10 min in the dark for probe fluorescence to stabilize. Fluorescence was 889 

measured in a cuvette-based fluorometer with stirring (Photon Technology International) at 620 nm 890 



excitation and 670 nm emission wavelengths. A time-course acquisition was performed, with compounds 891 

injected after 60 sec of equilibration to measure increases or decreases in fluorescence. For E. coli, 892 

polymyxin B was used as a control to monitor ∆\ dissipation. For S. aureus, valinomycin was used as a ∆\ 893 

control and nigiricin was used as a ∆pH control. Upon addition of antibiotic, fluorescence was read 894 

continuously for 3 min and at an endpoint of 4 hr. 895 

 896 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 897 

A. baumannii mouse infection model. Experiments were conducted according to guidelines set by the 898 

Canadian Council on Animal Care, using protocols approved by the Animal Review Ethics Board at 899 

McMaster University under Animal Use Protocol #17-03-10. Before infection, mice were relocated at random 900 

from a housing cage to treatment or control cages. No animals were excluded from analyses, and blinding 901 

was considered unnecessary. Six- to eight-week old Balb/c mice were pretreated with 150 mg/kg (day -4) 902 

and 100 mg/kg (day -1) of cyclophosphamide to render mice neutropenic. Mice were then anesthetized 903 

using isofluorane and administered the analgesic buprenorphine (0.1 mg/kg) intraperitoneally. A 2 cm2 904 

abrasion on the dorsal surface of the mouse was inflicted through tape-stripping to the basal layer of 905 

epidermis using approximately 25-30 pieces of autoclave tape. Mice were infected with ~2.5x105 CFU A. 906 

baumannii CDC 288 directly pipetted on the wounded skin. The infection was established for 1 hr prior to 907 

treatment with Glaxal Base supplemented with vehicle (0.5% DMSO) or halicin (0.5% w/v). Groups of mice 908 

were treated 1 hr, 4 hr, 8 hr, 12 hr, 20 hr, and 24 hr post-infection. Mice were euthanized at the experimental 909 

endpoint of 25 hr and the wounded tissue collected, homogenized, and plated onto LB to quantify bacterial 910 

load. 911 

C. difficile mouse infection model. Experiments were conducted according to protocol IS00000852-3, 912 

approved by Harvard Medical School Institutional Animal Care and Use Committee and the Committee on 913 

Microbiological Safety. C. difficile 630 spores were prepared from a single batch and stored long term at 914 

4°C, as previously reported (Edwards and McBride, 2016). To disrupt colonization resistance and enable 915 

infection with C. difficile, four colonies (n=20) of six- to eight-week-old C57BL/6 mice were administered 200 916 

mg/kg ampicillin every 24 hr for 72 hr via intraperitoneal injection. Antibiotic-treated mice were given 24 hr to 917 

recover prior to infection with C. difficile. A total of 5x103 spores of C. difficile strain 630 was delivered via 918 



oral gavage and mice were randomly assigned to three treatment groups: 50mg/kg metronidazole (n=7), 15 919 

mg/kg halicin (n=7) and 10% PEG 300 vehicle (n=6). We note here that three mice from the halicin 920 

treatment group failed to display C. difficile colonization. Beginning at 24 hr after C. difficile challenge, mice 921 

were gavaged with antibiotics or vehicle control every 24 hr for five days. To monitor C. difficile colonization, 922 

fecal samples were collected, weighed and diluted under anaerobic conditions with anaerobic PBS. CFUs 923 

were quantified using TCCFA plates supplemented with 50 μg/ml erythromycin at 37°C under anaerobic 924 

conditions, as previously described (Winston et al., 2016). 925 

 926 

DATA AND CODE AVAILABILITY 927 

Code availability. Chemprop code is available at: https://github.com/swansonk14/chemprop. 928 

RNA sequencing data. RNA sequencing data is available at the NCBI Sequence Read Archive under 929 

accession PRJNA598708. 930 

 931 

ADDITIONAL RESOURCES 932 

Online model availability. A web-based version of the antibiotic prediction model described herein is 933 

available at: http://chemprop.csail.mit.edu/. 934 

 935 

SUPPLEMENTAL EXCEL TABLES 936 

Table S1A. Related to Figure 2. Primary screening data of the 2,560-molecule training library. 937 

Table S1B. Related to Figure 2. Rank-ordered de-duplicated primary screening dataset. 938 

Table S2A. Related to Figure 2. List of RDKit molecular features used to augment the D-MPNN. 939 

Table S2B. Related to Figure 2. Prediction scores of molecules from the Drug Repurposing Hub that were 940 

not found in the training dataset. 941 

Table S2C. Related to Figure 2. Prediction scores of molecules from the Drug Repurposing Hub that were 942 

not found in the training dataset (learned features only). 943 

Table S2D. Related to Figure 2. Prediction scores of molecules from the Drug Repurposing Hub that were 944 

not found in the training dataset (RDKit features only). 945 



Table S2E. Related to Figure 2. Prediction scores of molecules from the Drug Repurposing Hub that were 946 

not found in the training dataset (feed forward DNN using Morgan fingerprints). 947 

Table S2F. Related to Figure 2. Prediction scores of molecules from the Drug Repurposing Hub that were 948 

not found in the training dataset (random forest classifier using Morgan fingerprints). 949 

Table S2G. Related to Figure 2. Prediction scores of molecules from the Drug Repurposing Hub that were 950 

not found in the training dataset (SVM model using Morgan fingerprints). 951 

Table S2H. Related to Figure 2. Tanimoto similarity of training dataset molecules to halicin. 952 

Table S3. Related to Figure 3. Antibiotic-resistant CDC strains used for halicin efficacy assays. 953 

Table S4A. Related to Figure 4. Whole transcriptome sequencing of E. coli treated with halicin at 0.25x MIC. 954 

Table S4B. Related to Figure 4. Whole transcriptome sequencing of E. coli treated with halicin at 1x MIC. 955 

Table S4C. Related to Figure 4. Whole transcriptome sequencing of E. coli treated with halicin at 4x MIC. 956 

Table S5. Related to Figure 6. Prediction scores and optical density values of the top 200 (yellow) and 957 

bottom 100 (blue) WuXi molecules against E. coli. 958 

Table S6A. Related to Figure 6. ZINC15 molecules with prediction score >0.7. 959 

Table S6B. Related to Figure 6. Prediction scores of the top 6,820 molecules from the ZINC15 database 960 

(learned features only). 961 

Table S6C. Related to Figure 6. Prediction scores of the top 6,820 molecules from the ZINC15 database 962 

(RDKit features only). 963 

Table S6D. Related to Figure 6. Prediction scores of the top 6,820 molecules from the ZINC15 database 964 

(feed forward DNN using Morgan fingerprints). 965 

Table S6E. Related to Figure 6. Prediction scores of the top 6,820 molecules from the ZINC15 database 966 

(random forest classifier using Morgan fingerprints). 967 

Table S6F. Related to Figure 6. Prediction scores of the top 6,820 molecules from the ZINC15 database 968 

(SVM model using Morgan fingerprints). 969 

Table S7A. Related to Figure 6. ZINC15 predictions used for empirical validation. 970 

Table S7B. Related to Figure 6. Ranks of the 8 correctly predicted ZINC15 molecules across different 971 

models. 972 
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Software and Algorithms 
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org/packages/releas
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