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ChainQueen: A Real-Time Differentiable Physical Simulator
for Soft Robotics

Yuanming Hu, Jiancheng Liu∗, Andrew Spielberg∗,
Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu, Daniela Rus, Wojciech Matusik1,2

Abstract— Physical simulators have been widely used in robot
planning and control. Among them, differentiable simulators
are particularly favored, as they can be incorporated into
gradient-based optimization algorithms that are efficient in
solving inverse problems such as optimal control and motion
planning. Simulating deformable objects is, however, more
challenging compared to rigid body dynamics. The underlying
physical laws of deformable objects are more complex, and the
resulting systems have orders of magnitude more degrees of
freedom and therefore they are significantly more computation-
ally expensive to simulate. Computing gradients with respect
to physical design or controller parameters is typically even
more computationally challenging. In this paper, we propose a
real-time, differentiable hybrid Lagrangian-Eulerian physical
simulator for deformable objects, ChainQueen, based on the
Moving Least Squares Material Point Method (MLS-MPM).
MLS-MPM can simulate deformable objects including contact
and can be seamlessly incorporated into inference, control and
co-design systems. We demonstrate that our simulator achieves
high precision in both forward simulation and backward
gradient computation. We have successfully employed it in a
diverse set of control tasks for soft robots, including problems
with nearly 3,000 decision variables.

I. INTRODUCTION

Robot planning and control algorithms often rely on
physical simulators for prediction and optimization [1], [2].
In particular, differentiable physical simulators enable the use
of gradient-based optimizers, significantly improving control
efficiency and precision. Motivated by this, there has been
extensive research on differentiable rigid body simulators,
using approximate [3], [4] and exact [5], [6], [7] methods.

Significant challenges remain for deformable objects. First,
simulating the motion of deformable objects is slow, because
they have much higher degrees of freedom (DoFs). Second,
contact detection and resolution is challenging for deformable
objects, due to their changing geometries and potential self-
collisions. Third, closed-form and efficient computation of
gradients is challenging in the presence of contact. As a
consequence, current simulation methods for soft objects
cannot be effectively used for solving inverse problems such
as optimal control and motion planning.

In this paper, we introduce a real-time, differentiable
physical simulator for deformable objects, building upon
the Moving Least Squares Material Point Method (MLS-
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W. Matusik are with Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, USA
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MPM) [8]. We name our simulator ChainQueen∗. The
Material Point Method (MPM) is a hybrid Lagrangian-
Eulerian method that uses both particles and grid nodes
for simulation [9]. MLS-MPM accelerates and simplifies
traditional MPM using a moving least squares force dis-
cretization. In ChainQueen, we introduce the first fully
differentiable MLS-MPM simulator with respect to both state
and model parameters, with both forward simulation and back-
propagation running efficiently on GPUs. We demonstrate
the ability to efficiently calculate gradients with respect to
the entire simulation. This enables many novel applications
for soft robotics including optimization-based closed-loop
controller design, trajectory optimization, and co-design of
robot geometry, materials, and control.

As a particle-grid-based hybrid simulator, MPM simulates
objects of various states, such as liquid (e.g., water), granular
materials (e.g., sand), and elastoplastic materials (e.g., snow
and human tissue). ChainQueen focuses on elastic materials
for soft robotics. It is fully differentiable and 4− 9× faster
than the current state-of-the-art. Numerical and experimental
validation suggest that ChainQueen achieves high precision in
both forward simulation and backward gradient computation.

ChainQueen’s differentiability allows it to support gradient-
based optimization for control and system identification. By
performing gradient descent on controller parameters, our
simulator is capable of solving these inverse problems on
a diverse set of complex tasks, such as optimizing a 3D
soft walker controller given an objective. Similarly, gradient
descent on physical design parameters, enables inference of
physical properties (e.g. mass, density and Young’s modulus)
of objects and optimizing design for a desired task.

In addition to benchmarking ChainQueen’s performance
and demonstrating its capabilities on a diverse set of inverse
problems, we have interfaced our simulator with high-level
python scripts to make ChainQueen user-friendly. Users at
all levels will be able to develop their own soft robotics
systems using our simulator, without the need to understand
its low-level details. We will open-source our code and data
and we hope they can benefit the robotics community.

II. RELATED WORK

A. Material Point Method

The material point method has been extensively developed
from both a solid mechanics [9] and computer graphics [10]
perspective. As a hybrid Eulerian-Langrangian method, MPM

∗Or 乾坤 , literally “everything between the sky and the earth.”
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has demonstrated its versatility in simulating snow [11],
[12], sand [13], [14], non-Newtonion fluids [15], cloth [16],
[17], solid-fluid coupling [18], [19], rigid body coupling, and
cutting [8]. [20] also proposed an adaptive MPM scheme to
concentrate computation resources in the regions of interest.

There are many benefits of using MPM for soft robotics.
First, MPM is a well-founded and physically-accurate dis-
cretization method and can be derived through the weak form
of conservation laws. Such a physically-based approach makes
it easier to match simulation with real-world experiments.
Second, MPM is friendly to parallelization on modern
hardware architectures. Closely related to our work is a
high-performance GPU implementation [21] by Gao et al.,
from which we borrow many useful optimization practices.
Though efficient when solving forward simulation, their
simulator is not differentiable, making it inefficient for inverse
problems in robotics and learning. Third, MPM naturally
handles large deformation and (self-)collision, which are
common in soft robotics, but often not modeled in, e.g.,
mesh-based approaches due to computational expense. Finally,
the continuum dynamics (including soft object collision) are
governed by the smooth (and differentiable) potential energy,
making the whole system differentiable.

Our simulator, ChainQueen, is fully differentiable and the
first simulator that applies MPM to soft robotics.

B. Differentiable Simulation and Control

Recently, there has been an increasing interest in building
differentiable simulators for planning and control. For rigid
bodies, [22], [3] and [4] proposed to approximate object
interaction with neural nets; later, [23] explored their usage
in control. Approximate analytic differentiable rigid body
simulators have also been proposed [5], [24]. Such systems
have been deployed for manipulation and planning [25].

Differentiable simulators for deformable objects have been
less studied. Recently, [26] proposed SPNets for differen-
tiable simulation of position-based fluids [27]. The particle
interactions are coded as neural network operations and
differentiability is achieved via automatic differentiation in
PyTorch. A hierarchical particle-based object representation
using neural networks is also proposed in [4]. Instead of
approximating physics using neural networks, ChainQueen
differentiates MLS-MPM, a well physically founded dis-
cretization scheme derived from continuum mechanics. In
summary, our simulator can be used for a more diverse set
of objects; it is more physically plausible, and runs faster.

III. FORWARD SIMULATION AND BACK-PROPAGATION

We use the moving least squares material point method
(MLS-MPM) [8] to discretize continuum mechanics, which
is governed by the following two equations:

ρ
Dv

Dt
= ∇ · σ + ρg (momentum conservation), (1)

Dρ

Dt
+ ρ∇ · v = 0 (mass conservation). (2)

We briefly cover the basics of MLS-MPM and readers are
referred to [10] and [8] for a comprehensive introduction

TABLE I: List of notations for MLS-MPM.

Symbol Type Affiliation Meaning

∆t scalar time step size
∆x scalar grid cell size
xp vector particle position
V 0
p scalar particle initial volume

vp vector particle velocity
Cp matrix particle affine velocity field [28]
Pp matrix particle PK1 stress (∂ψp/∂Fp)
σpa matrix particle actuation Cauchy stress
Ap matrix particle actuation stress (material space)
Fp matrix particle deformation gradient
xi vector node position
mi scalar node mass
vi vector node velocity
pi vector node momentum, i.e. mivi

N scalar quadratic B-spline function

of MPM and MLS-MPM, respectively. The material point
method is a hybrid Eulerian-Lagrangian method, where
both particles and grid nodes are used. Simulation state
information is transferred back-and-forth between these two
representations. We summarize the notations we use in this
paper in Table IV. Subscripts are used to denote particle (p)
and grid nodes (i), while superscripts (n, n+ 1) are used to
distinguish quantities in different time steps. The MLS-MPM
simulation cycle has three steps:

1) Particle-to-grid transfer (P2G). Particles transfer mass
mp, momentum (mv)np , and stress-contributed impulse
to their neighbouring grid nodes, using the Affine
Particle-in-Cell method (APIC) [28] and moving least
squares force discretization [8], weighted by a compact
B-spline kernel N :

mn
i =

∑
p

N(xi − xn
p )mp, (3)

Gn
p = − 4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p , (4)

pn
i =

∑
p

N(xi − xn
p )
[
mpv

n
p + Gn

p (xi − xn
p )
]
. (5)

2) Grid operations. Grid momentum is normalized into
grid velocity after division by grid mass:

vni =
1

mn
i

pni . (6)

Note that neighbouring particles interact with each
other through their shared grid nodes, and collisions
are handled automatically. Here we omit boundary
conditions and gravity for simplicity.

3) Grid-to-particle transfer (G2P). Particles gather up-
dated velocity vn+1

p , local velocity field gradients Cn+1
p

and position xn+1
p . The constitutive model properties

(e.g. deformation gradients Fn+1
p ) are updated.

vn+1
p =

∑
i

N(xi − xn
p )vn

i , (7)

Cn+1
p =

4

∆x2

∑
i

N(xi − xn
p )vn

i (xi − xn
p )T , (8)

Fn+1
p = (I + ∆tCn+1

p )Fn
p , (9)

xn+1
p = xn

p + ∆tvn+1
p . (10)
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particle states at grid momentum grid velocity particle states at tn tn+1

Fig. 1: One time step of MLS-MPM. Top arrows are for forward simulation and bottom ones are for back propagation. A
controller is embedded in the P2G process to generate actuation given particle configurations.

For soft robotics, we additionally introduce an actuation
model. Inspired by actuators such as [29], we designed
an actuation model that expands or stretches particle p
via an additional Cauchy stress Ap = FpσpaF

T
p , with

σpa = Diag(ax, ay, az) – the stress in the material space.
This framework supports the use of other differentiable
actuation models including pneumatic, hydraulic, and cable-
driven actuators. Fig. 1 illustrates forward simulation and
back propagation.

MLS-MPM is naturally differentiable. Though the forward
direction has been extensively used in computer graphics, the
backward direction (differentiation or back-propagation) is
largely unexplored.

Based on the gradients we have derived analytically,
we have designed a high-performance implementation that
resembles the traditional forward MPM cycle: backward
P2G (scatter particle gradients to grid), grid operations, and
backward G2P (gather grid gradients to particles). † Gradients
of state at the end of a time step with respect to states at the
starting of the time step can be computed using the chain
rule. With the single-step gradients computed, applying the
chain rule at a higher level from the final state all-the-way to
the initial state yields gradients of the final state with respect
to the initial state, as well as to the controller parameters
that are used in each state. We cache all the simulation states
in memory, using a “memo” object. Though the underlying
differentiation is complicated, we have designed a simple
high-level TensorFlow interface on which end-users can build
their applications (Fig. 2).

Our high-performance implementation‡ takes advantage of
the computational power of modern GPUs through CUDA. We
also implemented a reference implementation in TensorFlow.
Note that programming physical simulation as a “computation
graph” using high-level frameworks such as TensorFlow is
less inefficient. In fact, when all the overheads are gone, our
optimized CUDA solver is 132× faster than the TensorFlow
reference version. This is because TensorFlow is optimized
towards deep learning applications where data granularity is
much larger and memory access pattern is much more regular
than physical simulation, and limited CPU-GPU bandwidth.
In contrast, our CUDA implementation is tailored for MLS-

†Please see the supplemental document for the gradient derivations.
‡Based the Taichi [30] open source computer graphics library.

TABLE II: Performance comparisons on a NVIDIA GTX
1080 Ti GPU. F stands for forward simulation and B stands
for backward differentiation. TF indicates the TensorFlow
implementation. When benchmarking our simulator with
CUDA we use the C++ instead of python interface to avoid
the extra overhead due to the TensorFlow runtime library.

Approach Impl. # Particles Time per Frame

Flex (3D) CUDA 8,024 3.5 ms (286 FPS)
Ours (3D, F) CUDA 8,000 0.392 ms (2,551 FPS)
Ours (3D, B) CUDA 8,000 0.406 ms (2,463 FPS)

Flex (3D) CUDA 61,238 6 ms (167 FPS)
Ours (3D, F) CUDA 64,000 1.594 ms (628 FPS)
Ours (3D, B) CUDA 64,000 1.774 ms (563 FPS)

Ours (3D, F) CUDA 512,000 10.501 ms (92 FPS)
Ours (3D, B) CUDA 512,000 11.594 ms (86 FPS)

Ours (2D, F) TF 6,400 13.2 ms (76 FPS)
Ours (2D, B) TF 6,400 35.7 ms (28 FPS)
Ours (2D, F) CUDA 6,400 0.10 ms (10,000 FPS)
Ours (2D, B) CUDA 6,400 0.14 ms (7,162 FPS)

MPM and explicitly optimized for parallelism and locality,
thus delivering high-performance.

IV. EVALUATION

In this section, we conduct a comprehensive study of the
efficiency and accuracy of our system, in both 2D and 3D.

A. Efficiency

Instead of using complex geometries, a simple falling cube
is used for performance benchmarking, to ensure easy analysis
and reproducibility. We benchmark the performance of our
CUDA simulator against NVIDIA Flex [31], a popular PBD
physical simulator capable of simulating deformable objects.
Note that both PBD and MLS-MPM needs substepping
iterations to ensure high stiffness. To ensure fair comparison,
we set a Young’s modulus, Poisson’s ration and density so
that visually ChainQueen gives similar results to Flex. We
used two steps per frame and four iterations per step in Flex.
Note that setting exactly the same parameters is not possible
since in PBD there is no explicitly defined physical quantity
such as Young’s modulus.

We summarize the quantitative performance in Table II.
Our CUDA simulator provides higher speed than Flex, when
the number of particles are the same. It is also worth noting
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Fig. 2: Left: A “memo” object consists all information of a single simulation execution, including all the time step state
information (position, velocity, deformation gradients etc.), and parameters for the initial state p0, policy parameter θ.
Right: Code samples to get the symbolic differentiation (top) and memo, evaluate gradients out of the memo and symbolic
differentiation, and finally use them for gradient descent (bottom).

that the TensorFlow implementation is much slower, due to
excessive runtime overheads.

B. Accuracy

We design five test cases to evaluate the accuracy of both
forward simulation and backward gradient evaluation:

1) A1 (analytic, 3D, float32 precision): final position w.r.t.
initial velocity (with collision). This case tests conser-
vation of momentum, gradient accuracy and stability of
back-propagation.

2) A2 (analytic, 3D, float32 precision): same as A1 but
with one collision to a friction-less wall.

3) B (numeric, 2D, float64 precision): colliding billiards.
This case tests gradient accuracy and stability in more
complex cases where analytic solutions do not exist.
We used float64 precision for accurate finite difference
results.

4) C (numeric, 2D, float64 precision): finger controller. This
case tests gradient accuracy of controller parameters,
which are used repeatedly in the whole simulation
process.

5) D1 (experimental, pneumatic actuator, actuation) In order
to evaluate our simulator’s real-world accuracy, we com-
pared the deformation of a physical actuator to a virtual
one. The physical actuator has four pneumatic chambers
which can be inflated with an external pump, arranged
in a cross-shape. Inflating the individual chambers bends
the actuator away from that chamber. The actuator was

TABLE III: Relative error in simulation and gradient precision.
Empty values are because of too short time for collision to
happen.

Case 1 steps 10 steps 100 steps 1000 steps

A1 9.80 × 10−8 4.74 × 10−8 1.15 × 10−7 1.43 × 10−5

A2 - - - 2.69 × 10−5

B - - 2.39 × 10−8 2.83 × 10−8

C 5.63 × 10−6 2.24 × 10−7 6.97 × 10−7 1.76 × 10−6

cast using Smooth-On Dragon Skin 30.
6) D2 (experimental, pneumatic actuator, bouncing) In a

second test, we dropped the same actuator from a 15 cm
height, and compared its dynamic motion to a simulation.

In 3D analytic test cases, where gradients w.r.t. initial
velocity can be directly evaluated as in Table III. For the
experimental comparisons, the results are shown in Fig. 3. In
addition to our simulator’s high performance and accuracy,
it is worth noting that that the gradients remain stable in the
long term, within up to 1000 time steps.

V. INFERENCE, CONTROL AND CO-DESIGN

The most attractive feature of our simulator is the existence
of quickly computable gradients, which allows the use of
much more efficient gradient-based optimization algorithms.
In this section, we show the effectiveness of our differentiable
simulator on gradient-based optimization tasks, including
physical inference, control for soft robotics, and co-design
of robotic arms.



Fig. 3: Experiments on the pneumatic leg. Row (A, B)
Footage and simulator results of a bouncing experiment with
the leg dropping at 15 cm. Row (C, D) Actuation test.

A. Physical Parameter Inference

ChainQueen can be used to infer physical system properties
given its observed motion, e.g. perform gradient descent to
infer the relative densities of two colliding elastic balls (see
figure above, ball A moving to the right hitting ball B, and
ball B arrives the destination C). Gradient-based optimization
infers that relative density of ball A is 2.26, which constitutes
to the correct momentum to push B to C. Such capability
makes it useful for real-world robotic tasks such as system
identification.

B. Control

We can optimize regression-based controllers for soft robots
and efficiently discover stable gaits. The controller takes
as input the state vector z, which includes target position,
the center of mass position, and velocity of each composed
soft component. In our examples, the actuation vector a for
up to 16 actuators is generated by the controller in each
time step. During optimization, we perform gradient descent
on variables W and b, where a = tanh (Wz + b) is the

Fig. 4: A soft 2D walker with controller optimized using
gradient descent, aiming to achieve a maximum distance
after 600 simulation steps. The walker has four actuators
(left, marked by letter ‘A’s) with each capable of stretching
or compressing in the vertical direction. The full walking
animation (middle and right) is available in the video.

actuation-generating controller.
We have designed a series of experiments including the 2D

biped runner (Fig. 4) and robotic finger, and 3D quadrupedal
runner (Fig. 6), crawler and robotic arm. Gradient-based
optimizers successfully compute desired controllers within
only tens or hundreds of iterations. Visual results are included
in the supplemental video.

To emphasize the merits of gradient-based approaches,
we compare our control method with proximal policy opti-
mization (PPO) [32], a state-of-the-art reinforcement learning
algorithm. PPO is an actor-critic method which relies on
sampled gradients of a reward function in order to optimize
a policy. This sampling-based approach is model-free; it
relies on gradients of the rewards with respect to controller
parameters, but not with respect to the physical model for
updates. For our comparison, we use velocity projected
onto the direction toward the goal as the reward. § We
use a simplified single link version (with only two adjacent
actuators) of Fig. 5 and the 2D runner Fig. 4 as a benchmark.
Quantitative results for the finger are shown in Fig. 7. We
performed a similar comparison on the 2D walker, the
controller optimized by ChainQueen for the 2D walker starts
functioning well within 20 minutes; by comparison the policy
recovered by PPO still chose nearly-random actions after
over 4 hours of training; demonstrating that for certain soft
locomotion tasks our gradient-based method can be more
efficient than model-free approaches.

C. Co-design

Our simulator is capable of not only providing gradients
with respect to dynamics and controller parameters, but also
with respect to structural design parameters, enabling co-
design of soft robots. To demonstrate this, we designed a
multi-link robot arm (two links, two joints each with two side-
by-side actuators; all parts deformable). Similar to shooting
method trajectory optimization, actuation for each time step
is solved for, along with the time-invariant Young’s modulus
of the system for each particle. In our task, we optimized
the end-effector of the arm to reach a goal ball with final 0
arm velocity, and minimized for actuation cost

∑N
i=0 u

T
i uidt,

where ui is the actuation vector at timestep i, and N is
the total number of timesteps. This is a dynamic task and

§Note that this is functionally extremely similar to a distance loss; the
cumulative reward

∫
t = 0T vgoaldt = D − ‖xT − xgoal‖, where D is

the initial distance and xT and xgoal represent world coordinates of the
robot at time T and of the goal, respectively. As velocity toward the goal
increases, final distance to the goal decreases.



(a) Actuation config (b) Resting pose (c) Final pose I (d) Final pose II (e) Final pose III

Fig. 5: Final poses of the arm swing task. Lighter colors refer to stiffer regions. (c) Final pose of the fixed-stiffness 300%
initial Young’s modulus arm. (d) Final pose of the fixed-stiffness 300% initial Young’s modulus arm. (e) Final pose of the
co-optimized arm. Actuation cost is 95.5% that of the fixed 100% initial Young’s modulus arm and converges. Only the
co-optimized arm is able to fully reach its target. The final optimized spatially varying stiffness of the arm has lower stiffness
on the outside of the bend, and higher stiffness inside, promoting more bend to the left. Qualitatively, this is similar in effect
to the pleating on soft robot fingers.

Fig. 6: A 3D quadrupedal runner. Please see the supplemental video for more results.
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Fig. 7: Gradient-free optimization using PPO and gradient-
descent based on ChainQueen, on the 2D finger task. Thanks
to the accurate gradient information, even the most vanilla
optimizer can beat state-of-the-art reinforcement learning
algorithms by one order of magnitude regarding optimization
speed. (Left) single, fixed target. (Middle) random targets.
(Right) random targets, larger range. Curves are smoothed
over 10, 100 and 100 iterations respectively. The x-axis is
simulation iterations and y-axis the loss.

the target pose cannot be reached in a static equilibrium.
NLOPT’s sequential least squares programming algorithm
was used for optimization [33]. We compared our co-design
solution to fixed designs. The designed stiffness distribution
is shown in Fig. 5, along with controls. The convergence for
the different tasks can be seen in Fig. 8. As can be seen,
only the co-design arm fully converges to the target goal, and
with lower actuation cost. Actuation for each chamber was
clamped, and rnges of 30% to 400% of a dimensionless initial
Young’s modulus were allowed and chosen large enough such
as to require a swing instead of a simple bend.

VI. DISCUSSION

We have presented ChainQueen, a differentiable simulator
for soft robotics, and demonstrated how it can be deployed
for inference, control, and co-design. ChainQueen has the
potential to accelerate the development of soft robots. We
have also developed a high-performance GPU implementation
for ChainQueen, which we plan to open source.
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Fig. 8: Convergence of the arm reaching task for co-design vs.
fixed arm designs. The fixed designs can make progress but
not complete the task, while with co-design, the task can be
completed and the actuation cost is lower. Constraint violation
is the norm of two constraints: distance of end-effector to
goal and mean squared velocity of the particles.

One interesting future direction is to couple our soft object
simulation with rigid body simulation, as done in [8]. As
derived in [34], the ∆t limit for explicit time integration
is C∆x

√
ρ
E , where C is a constant close to one, ρ is the

density, and E is the Young’s modulus. That means for very
stiff materials (e.g., rigid bodies), only a very restrictive ∆t
can be used. However, a rigid body simulator should probably
be employed in the realm of nearly-rigid objects and coupled
with our deformable body simulator. Combining our simulator
with existing rigid-body simulators using Compatible Particle-
in-Cell [8] can be an interesting direction.
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Supplemental Document

In this document, we discuss the detailed steps for backward gradient computation in ChainQueen, i.e. the differentiable
Moving Least Squares Material Point Method (MLS-MPM) [8]. Again, we summarize the notations in Table IV. We assume
fixed particle mass mp, volume V 0

p , hyperelastic constitutive model (with potential energy ψp or Young’s modulus Ep and
Poisson’s ratio νp) for simplicity.

TABLE IV: List of notations for MLS-MPM.

Symbol Type Affiliation Meaning

∆t scalar time step size
∆x scalar grid cell size
xp vector particle position
V 0
p scalar particle initial volume

vp vector particle velocity
Cp matrix particle affine velocity field [28]
Pp matrix particle PK1 stress (∂ψp/∂Fp)
σpa matrix particle actuation Cauchy stress
Ap matrix particle actuation stress (material space)
Fp matrix particle deformation gradient
xi vector node position
mi scalar node mass
vi vector node velocity
pi vector node momentum, i.e. mivi

N scalar quadratic B-spline function

VII. VARIABLE DEPENDENCIES

The MLS-MPM time stepping is defined as follows:

Pnp = Pnp (Fnp ) + Fpσ
n
pa (11)

mn
i =

∑
p

N(xi − xnp )mp (12)

pni =
∑
p

N(xi − xnp )

[
mpv

n
p +

(
− 4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)
(xi − xnp )

]
(13)

vni =
1

mn
i

pni (14)

vn+1
p =

∑
i

N(xi − xnp )vni (15)

Cn+1
p =

4

∆x2

∑
i

N(xi − xnp )vni (xi − xnp )T (16)

Fn+1
p = (I + ∆tCn+1

p )Fnp , (17)

xn+1
p = xnp + ∆tvn+1

p (18)
(19)



The forward variable dependency is as follows:

xn+1
p ← xnp ,v

n+1
p (20)

vn+1
p ← xnp ,v

n
i (21)

Cn+1
p ← xnp ,v

n
i (22)

Fn+1
p ← Fnp ,C

n+1
p (23)

pni ← xnp ,C
n
p ,v

n
p ,P

n
p ,F

n
p (24)

vni ← pni ,m
n
i (25)

Pnp ← Fnp ,σ
n
pa (26)

mn
i ← xnp (27)

(28)

During back-propagation, we have the following reversed variable dependency:

xn+1
p ,vn+1

p ,Cn+1
p ,pn+1

i ,mi ← xnp (29)
pni ← vnp (30)

xn+1
p ← vn+1

p (31)

vn+1
p ,Cn+1

p ← vni (32)

Fn+1
p ,Pnp ,p

n
i ← Fnp (33)

Fn+1
p ← Cn+1

p (34)
pni ← Cn

p (35)
vni ← pni (36)
vni ← mn

i (37)
pni ← Pnp (38)
Pnp ← σnpa (39)

(40)

We reverse swap two sides of the equations for easier differentiation derivation:

xnp → xn+1
p ,vn+1

p ,Cn+1
p ,pn+1

i ,mi (41)
vnp → pnp (42)

vn+1
p → xn+1

p (43)

vni → vn+1
p ,Cn+1

p (44)

Fnp → Fn+1
p ,Pnp ,p

n
i (45)

Cn+1
p → Fn+1

p (46)
Cn
p → pni (47)

pni → vni (48)
mn
i → vni (49)

Pnp → pni (50)
σnpa → Pnp (51)

(52)

In the following sections, we derive detailed gradient relationships, in the order of actual gradient computation. The
frictional boundary condition gradients are postponed to the end since it is less central, though during computation it belongs
to grid operations. Back-propagation in ChainQueen is essentially a reversed process of forward simulation. The computation
has three steps, backward particle to grid (P2G), backward grid operations, and backward grid to particle (G2P).



VIII. BACKWARD PARTICLE TO GRID (P2G)

(A, P2G) For vn+1
p , we have

xn+1
p = xnp + ∆tvn+1

p (53)

=⇒ ∂L

∂vn+1
pα

=

[
∂L

∂xn+1
p

∂xn+1
p

∂vn+1
p

]
α

(54)

= ∆t
∂L

∂xn+1
pα

. (55)

(B, P2G) For Cn+1
p , we have

Fn+1
p = (I + ∆tCn+1

p )Fnp (56)

=⇒ ∂L

∂Cn+1
pαβ

=

[
∂L

∂Fn+1
p

∂Fn+1
p

∂Cn+1
p

]
αβ

(57)

= ∆t
∑
γ

∂L

∂Fn+1
pαγ

Fnpβγ . (58)

Note, the above two gradients should also include the contributions of ∂L
∂vnp

and ∂L
∂Cnp

respectively, with n being the next
time step.

(C, P2G) For vni , we have

vn+1
p =

∑
i

N(xi − xnp )vni (59)

Cn+1
p =

4

∆x2

∑
i

N(xi − xnp )vni (xi − xnp )T (60)

=⇒ ∂L

∂vniα
=

[∑
p

∂L

∂vn+1
p

∂vn+1
p

∂vni
+
∑
p

∂L

∂Cn+1
p

∂Cn+1
p

∂vni

]
α

(61)

=
∑
p

 ∂L

∂vn+1
pα

N(xi − xnp ) +
4

∆x2
N(xi − xnp )

∑
β

∂L

∂Cn+1
pαβ

(xiβ − xpβ)

 . (62)

IX. BACKWARD GRID OPERATIONS

(D, grid) For pni , we have

vni =
1

mn
i

pni (63)

=⇒ ∂L

∂pniα
=

[
∂L

∂vni

∂vni
∂pni

]
α

(64)

=
∂L

∂vniα

1

mn
i

. (65)

(E, grid) For mn
i , we have

vni =
1

mn
i

pni (66)

=⇒ ∂L

∂mn
i

=
∂L

∂vni

∂vni
∂mn

i

(67)

= − 1

(mn
i )2

∑
α

pniα
∂L

∂vniα
(68)

= − 1

mn
i

∑
α

vniα
∂L

∂vniα
. (69)



X. BACKWARD GRID TO PARTICLE (G2P)

(F, G2P) For vnp , we have

pni =
∑
p

N(xi − xnp )

[
mpv

n
p +

(
− 4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)
(xi − xnp )

]
(70)

=⇒ ∂L

∂vnpα
=

[∑
i

∂L

∂pnp

∂pnp
∂vnp

]
α

(71)

=
∑
i

N(xi − xnp )mp
∂L

∂pniα
. (72)

(G, G2P) For Pnp , we have

pni =
∑
p

N(xi − xnp )

[
mpv

n
p +

(
− 4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)
(xi − xnp )

]
(73)

=⇒ ∂L

∂Pnpαβ
=

[
∂L

∂pni

∂pni
∂Pnp

]
αβ

(74)

= −
∑
i

N(xi − xnp )
4

∆x2
∆tV 0

p

∑
γ

∂L

∂pniα
Fnpγβ(xiγ − xnpγ). (75)

(H, G2P) For Fnp , we have

Fn+1
p = (I + ∆tCn+1

p )Fnp (76)
Pnp = Pnp (Fnp ) + Fpσ

n
pa (77)

pni =
∑
p

N(xi − xnp )

[
mpv

n
p +

(
− 4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)
(xi − xnp )

]
(78)

=⇒ ∂L

∂Fnpαβ
=

[
∂L

∂Fn+1
p

∂Fn+1
p

∂Fnp
+

∂L

∂Pnp

∂Pnp
∂Fnp

+
∂L

∂pni

∂pni
∂Fnp

]
αβ

(79)

=
∑
γ

∂L

∂Fn+1
pγβ

(Iγα + ∆tCn+1
pγα ) +

∑
γ

∑
η

∂L

∂Ppγη

∂2Ψp

∂Fnpγη∂F
n
pαβ

+
∑
γ

∂L

∂Pnpαγ
σpaβγ (80)

+
∑
i

−N(xi − xnp )
∑
γ

∂L

∂pniγ

4

∆x2
∆tV 0

p P
n
pγβ(xiα − xnpα). (81)

(I, G2P) For Cn
p , we have

pni =
∑
p

N(xi − xnp )

[
mpv

n
p +

(
− 4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)
(xi − xnp )

]
(82)

=⇒ ∂L

∂Cn
pαβ

=

[∑
i

∂L

∂pni

∂pni
∂Cn

p

]
αβ

(83)

=
∑
i

N(xi − xnp )
∂L

∂pniα
mp(xiβ − xnpβ). (84)



(J, G2P) For xnp , we have

xn+1
p = xnp + ∆tvn+1

p (85)

vn+1
p =

∑
i

N(xi − xnp )vni (86)

Cn+1
p =

4

∆x2

∑
i

N(xi − xnp )vni (xi − xnp )T (87)

pni =
∑
p

N(xi − xnp )

[
mpv

n
p +

(
− 4

∆x2
∆tV 0

p P
n
pF

nT
p +mpC

n
p

)
(xi − xnp )

]
(88)

mn
i =

∑
p

N(xi − xnp )mp (89)

Gp :=

(
− 4

∆x2
V 0
p ∆tPnpF

nT
p +mpC

n
p

)
(90)

=⇒ (91)

∂L

∂xnpα
=

[
∂L

∂xn+1
p

∂xn+1
p

∂xnp
+

∂L

∂vn+1
p

∂vn+1
p

∂xnp
+

∂L

∂Cn+1
p

∂Cn+1
p

∂xnp
+

∂L

∂pni

∂pni
∂xnp

+
∂L

∂mn
i

∂mn
i

∂xnp

]
α

(92)

=
∂L

∂xn+1
pα

(93)

+
∑
i

∑
β

∂L

∂vn+1
pβ

∂N(xi − xnp )

∂xiα
vniβ (94)

+
∑
i

∑
β

4

∆x2

{
− ∂L

∂Cn+1
pβα

N(xi − xnp )viβ +
∑
γ

∂L

∂Cn+1
pβγ

∂N(xi − xnp )

∂xiα
viβ(xiγ − xpγ)

}
(95)

+
∑
i

∑
β

∂L

∂pniβ

[
∂N(xi − xnp )

∂xiα

(
mpv

n
pβ + [Gp(xi − xnp )]β

)
−N(xi − xnp )Gpβα

]
(96)

+mp

∑
i

∂L

∂mn
i

∂N(xi − xnp )

∂xiα
(97)

(98)

(K, G2P) For σnpa, we have

Pnp = Pnp (Fnp ) + Fpσ
n
pa (99)

=⇒ ∂L

∂σnpaαβ
=

[
∂L

∂Pnp

∂Pnp
∂σnpα

]
αβ

(100)

=
∑
γ

∂L

∂Pn+1
pγβ

Fnpγα. (101)



XI. FRICTION PROJECTION GRADIENTS

When there are boundary conditions:
(L, grid) For vni , we have

lin =
∑
α

viαniα (102)

vit = vi − linni (103)

lit =

√∑
α

v2
itα + ε (104)

v̂it =
1

lit
vit (105)

l∗it = max{lit + ci min{lin, 0}, 0} (106)
v∗i = l∗itv̂it + max{lin, 0}ni (107)

H(x) := [x ≥ 0] (108)
R := lit + ci min{lin,0} (109)

=⇒ ∂L

∂l∗it
=

∑
α

∂L

∂v∗iα
v̂itα (110)

∂L

∂v̂it
=

∂L

∂v∗iα
l∗it (111)

∂L

∂lit
= − 1

l2it

∑
α

vitα
∂L

∂v̂itα
+
∂L

∂l∗it
H(R) (112)

∂L

∂vitα
=

vitα
lit

∂L

∂lit
+

1

lit

∂L

∂v̂itα
(113)

=
1

lit

[
∂L

∂lit
vitα +

∂L

∂v̂itα

]
(114)

∂L

∂lin
= −

[∑
α

∂L

∂vitα
niα

]
+
∂L

∂l∗it
H(R)ciH(−lin) +

∑
α

H(lin)niα
∂L

∂v∗iα
(115)

∂L

∂viα
=

∂L

∂lin
niα +

∂L

∂vitα
(116)

(117)
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