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Uncoupled isotonic regression via
minimum Wasserstein deconvolution
Philippe Rigollet∗ and Jonathan Weed†

Massachusetts Institute of Technology

Abstract. Isotonic regression is a standard problem in shape-constrained
estimation where the goal is to estimate an unknown nondecreasing
regression function f from independent pairs (xi, yi) where E[yi] =
f(xi), i = 1, . . . n. While this problem is well understood both statis-
tically and computationally, much less is known about its uncoupled
counterpart where one is given only the unordered sets {x1, . . . , xn}
and {y1, . . . , yn}. In this work, we leverage tools from optimal trans-
port theory to derive minimax rates under weak moments conditions
on yi and to give an efficient algorithm achieving optimal rates. Both
upper and lower bounds employ moment-matching arguments that are
also pertinent to learning mixtures of distributions and deconvolution.

AMS 2000 subject classifications: 62G08.
Key words and phrases: Isotonic regression, Coupling, Moment match-
ing, Deconvolution, Minimum Kantorovich distance estimation.

1. INTRODUCTION

Optimal transport distances have proven valuable for varied tasks in machine learning, computer
vision, computer graphics, computational biology, and other disciplines; these recent developments
have been supported by breakneck advances in computational optimal transport in the last few
years [Cut13, AWR17, PC18, ABRW18]. This increasing popularity in applied fields has led to a
corresponding increase in attention to optimal transport as a tool for theoretical statistics [FHN+19,
RW18, ZP18]. In this paper, we show how to leverage techniques from optimal transport to solve
the problem of uncoupled isotonic regression, defined as follows.

Let f be an unknown nondecreasing regression function from [0, 1] to R, and for i = 1, . . . , n, let

yi = f(xi) + ξi ,

where ξi ∼ D are i.i.d. from some known distribution D and xi are fixed (deterministic) design
points. We note that the location of the design points is immaterial as long as x1 < · · · < xn. Given
p ≥ 1, the goal of isotonic regression is to produce an estimator f̂n that is close to f in the sense
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2 RIGOLLET AND WEED

that E‖f̂n − f‖pp is small, where for any g from [0, 1] to R we define

‖g‖pp :=
1

n

n∑
i=1

|g(xi)|p . (1)

The key novelty in uncoupled isotonic regression is that the data at hand to construct f̂n is
given by the unordered sets {y1, . . . , yn} and {x1, . . . , xn}. Informally, one does not know “which
x corresponds to which y.” In contrast, for standard isotonic regression, estimation is performed
on the basis of the coupled data {(x1, y1), . . . , (xn, yn)}. To our best knowledge, uncoupled isotonic
regression was introduced in [CS16] as a natural model for situations arising in the social sciences
where uncoupled data is a common occurrence. For instance, the authors of [CS16] give the ex-
ample of analyzing data collected by two different organizations, such as wage data collected by a
governmental agency and housing price data collected by a bank. The relationship between wages
and housing prices can naturally be assumed to be monotonic. Though these data sets involve the
same individuals, the data is uncoupled, and no paired information exists. Our results indicate that
despite the lack of paired data, a relationship between the data sets can be learned. In addition
to raising obvious privacy issues, this result also has drastic implications for sample sizes, since it
suggests that it is possible to integrate extremely large datasets such a census data or public real
estate data even in the absence of coupled data.

While standard isotonic regression is a well understood and classical problem in shape-constrained
estimation [vdG90,Mam91,vdG93,RWD88,MW00,Zha02,BBBB72,NPT85,BT15,FMR16,Bel18], it
is not even clear a priori that consistent estimators for its uncoupled version exist. In absence of the
noise random variables, ξi, i = 1, . . . , n, the regression function is easy to estimate using monotonic-
ity: After ordering the sets {y1, . . . , yn} and {x1, . . . , xn} as y(1) ≤ . . . ≤ y(n) and x(1) ≤ . . . ≤ x(n)),
it is clear that y(i) = f(x(i)), i = 1, . . . , n. In the presence of noise, however, this näıve scheme fails,
and the problem appears to be much more difficult—see Figure 1.

In this paper, we show that, quite surprisingly, a consistent estimator for f exists under general
moment conditions on the noise distribution D. We define an estimator by leveraging connections
with optimal transport and show that it is minimax optimal simultaneously for all choices of p in
the performance measure (1). As noted in [CS16], uncoupled isotonic regression is closely connected
to deconvolution, which is a much harder problem than regression from a statistical perspective.
Consequently, as our results show, minimax rates for this problem are exponentially worse than for
the standard isotonic regression problem. A practical implication is that while uncoupled datasets
may be integrated, their size should be exponentially larger in order to lead at least as good
statistical accuracy.

Notation. Given quantities a and b, we write a . b to indicate that a ≤ Cb for some universal
constant C > 0 and define a∨ b := max(a, b). The notation a � b is used to indicate that a . b and
b . a. Throughout, log refers to the natural logarithm, and log+ x := (log x) ∨ 0. The terminology
“`p norm” refers always to the empirical `p norm defined in (1). F denotes the class of nondecreasing
functions from [0, 1] to R and for any V > 0, FV ⊂ F denotes the subset of functions f ∈ F such
that |f(x)| ≤ V for x ∈ [0, 1].

1.1 Prior work

Isotonic regression is a fundamental problem in nonparametric statistics. As such, the literature
on this topic is vast and very well established. A representative result is the following.
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Figure 1: In the noiseless case (top figure), either coupled data (gray dots) or uncoupled data (gray
tick marks on axes) suffice to recover the regression function (magenta curve). When noise is added
(middle figure), uncoupling changes the problem considerably. Estimating the regression function
by ordering the sets {x1, . . . , xn} and {y1, . . . , yn} does not yield a consistent estimator (bottom
figure).

Theorem 1. [NPT85] If FV is the class of nondecreasing functions from [0, 1] to R satisfying
|f(x)| ≤ V for x ∈ [0, 1], then

inf
gn

sup
f∈FV

(E‖f − gn‖22)1/2 � σ2/3V 1/3

n1/3
,

where the infimum is taken over all measurable functions of the data. Moreover the minimax rate
is achieved by the least squares estimator over F for which efficient algorithms such that the pool-
adjacent-violators algorithm are well developed [RWD88].

While there are many refinements of this result, the n−1/3 rate is a common feature of isotonic
regression problems in a variety of contexts. By contrast, our results indicate that the minimax rate
for the uncoupled problem is of order log logn

logn . In other words, the number of samples required to
obtain a certain level of accuracy in the uncoupled setting is exponentially larger than the number
required for isotonic regression. This gap illustrates the profound difference between the coupled
and uncoupled models.

In [CS16], the authors propose an estimator of f for uncoupled regression under smoothness
assumptions. Crucially, this work draws an important connection between uncoupled isotonic re-
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gression and deconvolution and their estimator actually uses deconvolution as a black box. Un-
der smoothness assumptions, rates of convergence may be obtained by combining the results
of [CS16] and rates of convergence for the cumulative distribution function (CDF) in deconvo-
lution as in [DGJ11]. Whether the rates obtained in this way would be optimal over smooth classes
of functions is unknown, but this question falls beyond the scope of standard shape-constrained
estimation. Instead our results show that, as in standard isotonic regression, the function f can be
consistently estimated in the uncoupled isotonic regression model, without smoothness assumptions.
Furthermore, we prove matching upper and lower bounds on the optimal rates of estimation with
respect to the empirical `p distance, for 1 ≤ p <∞.

The connection with deconvolution is not hard to see in hindsight: obtaining the function f from
the data {y1, . . . , yn} resembles the problem of obtaining an estimate of a measure µ on the basis of
samples from the convolution µ ∗ D, where D is a known noise distribution. As we note below, the
metric of interest in our case is the Wasserstein distance between univariate distributions. While
question has been recently considered in the deconvolution literature [CCDM11, DFM15, DM13],
our work present the following specificities. First, we make no smoothness assumptions on the noise
distribution, and we assume, as is common in the isotonic regression literature, that the regression
function f has bounded variation. This leads to different rates of estimation than those appearing
in the deconvolution context. Moreover, we employ a simple minimum distance estimator (see
Section 3) as opposed to the kernel estimators common in deconvolution. In short, our assumptions,
estimator, and results are quite different from those appearing in the deconvolution literature,
despite the similarities in the problem setting.

Our techniques leverage moment matching arguments, which have proven powerful in mixture
estimation [MV10,BRW17,WY18] and nonparametric statistics [LNS99,JN02,CL11,CV17]. As in
those works, our lower bounds are constructed by leveraging moment comparison theorems, which
connect the moments of two distributions to their total variation distance. Our upper bounds are
based on a novel result showing that the Wasserstein distance of any order between univariate
measures can be controlled by moment matching. This result significantly extends and generalizes
several similar results in the literature [KV17,WY18].

Finally, it is worth noting that uncoupled isotonic regression bears comparison to a similar
problem in which the regression function is assumed to be linear instead of isotonic. This model,
which goes under the names “estimation from a broken sample” [DG80], “shuffled linear regres-
sion” [APZ17], “linear regression without correspondence” [HSS17], “regression with permuted
data” [PWC17,SBD17], and “unlabeled sensing” [UHV18], has been explored from both algorith-
mic and statistical perspectives. On the algorithmic side, the core question in these works is how
to design efficient estimators for multivariate regression problems, which is nontrivial even in the
noiseless setting (i.e., when ξi ≡ 0). On the statistical side, several computationally efficient esti-
mators have been proposed [PWC17,APZ17] with provable guarantees. However, these estimators
rely heavily on the linear model and do not extend to the isotonic case.

1.2 Model and assumptions

We focus on the fixed design case, as is common in the literature on isotonic regression. We
assume the existence of a nondecreasing function f ∈ FV such that

yi = f(xi) + ξi 1 ≤ i ≤ n , (2)

where ξi ∼ D i.i.d. We observe the design points {x1, . . . , xn}, which we assume to be distinct, and
the (unordered) set of points {y1, . . . , yn}.

We make the following assumptions.
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Assumption 1. Both D and V are known.

The assumption that D is known is essential and is ubiquitous in the deconvolution literature:
if D is unknown, then no consistent estimator of f exists. For instance, if D is unknown, then it
is impossible to reject the hypothesis that f is identically 0, and that all the variation in the set
{y1, . . . , yn} is due to noise. By contrast, the assumption that V is known is for convenience only,
since an upper bound on V can be estimated from the data.

We also require that D is sub-exponential [Ver18], a concept that we define rigorously via Orlicz
norms.

Definition 1. Let ψ1(x) := ex − 1. We define an Orlicz norm ‖X‖ψ1 of a random variable X
by

‖X‖ψ1 := inf{t > 0 : Eψ1(|X|/t) ≤ 1} .

We say that a distribution D is sub-exponential if ξ ∼ D satisfies ‖ξ‖ψ1 < ∞ and we write by
extension ‖D‖ψ1 := ‖ξ‖ψ1.

It can be shown that ‖·‖ψ1 defines a norm on the space of random variables satisfying ‖X‖ψ1 <∞,
and that a random variable has a finite moment generating function in a neighborhood of the origin
if and only if ‖X‖ψ1 <∞. We note also that if X ∈ [−V, V ] almost surely, then ‖X‖ψ1 ≤ 2V .

Assumption 2. The noise distribution D is centered sub-exponential.

We note that, in particular, Assumption 2 implies that D has finite moments of all orders.
Nevertheless, this restriction is quite mild, as this encompasses most distributions which arise in
practice and in theory.

Our only use of Assumption 2 will be to provide a bound on the moments of D, which we obtain
via the following well known lemma (see, e.g., [Ver18]). We reproduce a proof in Section A that
exhibits an explicit constant.

Lemma 1. For all p ≥ 1,
(E|X|p)1/p ≤ p‖X‖ψ1 .

1.3 Main results

Our main results are matching upper and lower minimax bounds for the problem of estimating
the regression function in the `p distance, for any 1 ≤ p <∞.

Theorem 2 (Upper bound). Assume that D is sub-exponential. There exists an estimator f̂n
and a universal constant C, such that, for all 1 ≤ p <∞, the risk of f̂n over FV satisfies

sup
f∈FV

(E‖f − f̂n‖pp)1/p ≤ CpV log logn

log n
(1 + oV,D,p(1)) ,

Where oV,D,p(1) indicates a quantity depending on V , ‖D‖ψ1, and p that goes to 0 as n→∞.

The estimator f̂n appearing in Theorem 2 is a minimum distance estimator with respect to
the Wasserstein distance, which we call a minimum Wasserstein deconvolution estimator (see Sec-
tion 2). Surprisingly, the same estimator achieves the above bound for all 1 ≤ p <∞. An analysis
of this estimator appears in Section 3.
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We complement this result with the following lower bound, which holds already in the case when
D is the standard Gaussian distribution.

Theorem 3 (Lower bound). Let D = N(0, 1). Under the same conditions as Theorem 2, there
exists a universal constant C ′ such that the estimation risk over the class FV satisfies

inf
gn

sup
f∈FV

E‖f − gn‖p ≥ C ′V
log log n

log n
(1 + oV (1)) ,

where the infimum is taken over all measurable functions of the data.

The proofs of Theorems 2 and 3 rely on hitherto unexplored connections between isotonic regres-
sion and optimal transport between probability measures [Vil08]. To exploit this connection, we
establish a novel result connecting the Wasserstein p-distance between two univariate distributions
with the differences in the moments of the two distributions (Theorem 4). Since we believe this
connection will prove useful for other works, we prove a more general version than is needed to
obtain Theorems 2 and 3. While similar results have appeared elsewhere in the literature for the
W1 distance [KV17, WY18], our general version is the first to our knowledge to apply to Wp for
p > 1 and to unbounded measures.

2. UNCOUPLED REGRESSION VIA OPTIMAL TRANSPORT

The observation that forms the core of our work is that the uncoupled regression model naturally
relates to the Wasserstein distance between univariate measures.

2.1 Minimum Wasserstein deconvolution

We first recall the following definition.

Definition 2. For 1 ≤ p <∞, the Wasserstein-p distance between two probability distributions
µ and ν is defined by

Wp(µ, ν) := inf
γ∈C(µ,ν)

(∫ ∞
∞
|x− y|p dγ(x, y)

)1/p

, (3)

where the infimum is taken over the set C(µ, ν) of all joint distributions on R×R with first marginal
µ and second marginal ν.

For all p ≥ 1, the spaceM of probability measures having finite moments of all orders equipped
with the distance Wp defines a metric space denoted by (M,Wp). The key observation is that the
risk in isotonic regression can be controlled via the Wasserstein distance. To see this, we need the
following definition.

Definition 3. Let x1, . . . , xn be fixed. For any nondecreasing function g : [0, 1] → R, denote
by πg the measure

1

n

n∑
i=1

δg(xi) .

We call πg a pushforward measure (of the uniform measure on {x1, . . . , xn} through g).
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The following proposition establishes the central connection between isotonic regression functions
and the Wasserstein distance.

Proposition 1. Let F be the class of nondecreasing functions from [0, 1] to R. For all 1 ≤ p <
∞, the map f 7→ πf is an isometry between (F , `p) and (M,Wp). In other words, the empirical `p
distance corresponds to the Wasserstein distance between the pushforward measures:

‖f − g‖p = Wp(πf , πg) .

Proof. Let γ = 1
n

∑n
i=1 δ(f(xi),g(xi)). Clearly ‖f−g‖pp =

∫∞
−∞ |x−y|

p dγ(x, y), and γ is a coupling
between πf and πg. It suffices to show that this coupling is optimal in the sense that it realizes the
minimum definition (3). For i, j ∈ [n], the monotonicity of f and g implies

(f(xi)− f(xj))(g(xi)− g(xj)) ≥ 0 .

Therefore, the support {(f(xi), g(xi)) , i = 1, . . . , n} of γ is monotone, meaning that for any (a, b), (c, d) ∈
supp(γ), the implication a < c =⇒ b ≤ d holds. Standard facts [San15, Theorem 2.9] then imply
that it is optimal.

Denote by π̂ the empirical distribution of the observation {y1, . . . , yn}. A sample from π̂ is
marginally distributed as πf ∗ D, the convolution of the pushforward measure πf with the noise
distribution D. Thus, finding πf can be viewed as a deconvolution problem, or equivalently as a
mixture learning problem whose centers are given by the distribution πf . Consequently, our esti-
mator is similar to estimators proposed in the mixture learning literature. One common choice is to
choose the parameter that minimizes the distance to the empirical distribution in the Kolomogorov-
Smirnov distance [DK68,Che95,HK15]; however, Proposition 1 suggests as an estimator a minimizer
of g 7→ Wp(πg ∗ D, π̂) over a suitable function class. Such estimators were introduced in [BBR06]
under the name minimum Kantorovich distance estimators and shown to be consistent under reg-
ularity assumptions. By analogy, we call our technique minimum Wasserstein deconvolution.1

We focus on the following estimator:

f̂ ∈ argmin
g∈FV

W 2
2 (πg ∗ D, π̂) . (4)

As Theorem 2 shows, the estimator f̂ is adaptive to p, in the sense that it converges to f at the
same rate in all `p metrics. Furthermore, by Theorem 3, this rate is minimax optimal.

The definition of our estimator involves the distance W2. However, our analysis reveals that W2

can be replaced by Wr for any r ∈ (1,∞) to obtain an estimator with the same performance. Indeed,
the interested reader may check that the only results which need to be updated are Theorem 5 and
Proposition 4. Theorem 5 can be replaced by a similar argument following [PP14, Proposition 2.21,
(ii)]. Likewise, Proposition 4 holds with exactly the same proof, since it relies only on the triangle
inequality (which holds for all Wr) and Lemma 10, a more general version of which can be found
in [BL16].

1Note that the shorthandWassertein deconvolution has appeared in the deconvolution literature [DM13,DFM15] to
refer to deconvolution problems in which the Wasserstein distance is used as a measure of success. We emphasize that
minimum Wasserstein deconvolution refers here to a novel method to perform deconvolution based on Wasserstein
distances. Moreover, in light of Proposition 1, this method also achieves good performance in the Wasserstein metric.



8 RIGOLLET AND WEED

2.2 A computationally efficient estimator

A priori, it is unclear how to optimize the function f 7→ W 2
2 (πf ∗ D, π̂) explicitly. In order

to obtain an estimator which can be computed in polynomial time, we propose in this section
a computationally efficient version of (4), which enjoys the same theoretical guarantees. We first
relax (4) and consider instead the program

argmin
µ∈MV

W 2
2 (µ ∗ D, π̂) ,

where the minimization is taken over all measures with support in [−V, V ]. This is now a convex
program, albeit an infinite dimensional one. However, we show below that it suffices to optimize
over a finite-dimensional subset ofMV , which yields a tractable convex program. Finally, we show
how to round the resulting solution µ̂ to a pushforward measure in the sense of Definition 3.

We first consider the following quantization of the real line. Assume n ≥ 3. Let α0 := −(V +
σ) log n and set

αi := α0 + i · V + σ

n1/4
for 1 ≤ i ≤ N := d2n1/4 log ne .

Let A := {αi}Ni=0, and denote by MA,V the set of measures supported on A ∩ [−V, V ], which is a
discrete set of cardinality O(n1/4). Finally, define the projection operator ΠA : R→ A by

ΠA(x) :=


α0 if x < α0

αi if αi ≤ x < αi+1 for 0 ≤ i ≤ N − 1
αN if x ≥ αN .

We propose the following computationally efficient estimator:

µ̂ ∈ argmin
µ∈MA,V

W 2
2 (ΠA](µ ∗ D), π̂) , (5)

where ΠA](µ ∗ D) is the pushforward of the measure µ ∗ D by the projection operator. The map
µ 7→ W 2

2 (ΠA](µ ∗ D), π̂) is convex, and subgradients can be obtained by standard methods in
computational optimal transport [PC18]. The measure µ̂ can therefore be obtained efficiently.

In general, the solution µ̂ to (5) will not be of the form πg for some isotonic function g. However,
a sufficiently close function can easily be obtained. Given a measure µ, denote by Qµ the quantile
function of µ; we then define ĝ by

ĝ(xi) := Qµ̂(i/n) for 1 ≤ i ≤ n ,

and extend ĝ to other values in [0, 1] arbitrarily so that the resulting function lies in FV .

Proposition 2. The estimator ĝ achieves the same rate as the estimator f̂ defined in (4).

The proof is deferred to Appendix A.1.

2.3 From Wasserstein distances to moment-matching, and back

Both the upper and lower bounds for the uncoupled regression problem (Theorems 2 and 3)
depend on moment-matching arguments that we gather here. The core of our approach is Theorem 4,
which establishes that the Wasserstein distance between univariate measures can be controlled by
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comparing the moments of the two measures. In Proposition 3, we give examples establishing that
Theorem 4 cannot be improved in general.

Similar moment-matching results for the Wasserstein-1 distance W1 have appeared in other
works [KV17,WY18], but in general these results rely on arguments via polynomial approximation
of Lipschitz functions combined with the dual representation of W1 [Vil03]. This approach breaks
down for measures with unbounded support, and cannot establish tight bounds Wp for p > 1. By
contrast, Theorem 4 applies to all measures with convergent moment generating functions, and
yields bounds for Wp for all 1 ≤ p <∞.

Definition 4. For any distributions µ and ν on R and ` ≥ 1, define

∆`(µ, ν) :=
∣∣∣E[X`]− E[Y `]

∣∣∣1/` X ∼ µ, Y ∼ ν .

When µ and ν are clear from context, we abbreviate ∆`(µ, ν) by ∆`.

We are now in a position to state the main result of this section: it shows that two distributions
with similar moments are close in Wasserstein distance. Its proof is postponed to Appendix A.2.

Theorem 4. Let µ and ν be two distributions on R whose moment generating functions are
finite everywhere. There exists a universal constant C > 0 such that, for 1 ≤ p <∞,

Wp(µ, ν) ≤ Cp sup
`≥1

∆`(µ, ν)

`
.

Theorem 4 includes as a corollary the following result for bounded measures, a version of which
appeared in [KV17, Proposition 1] for the p = 1 case.

Corollary 1. Let µ and ν be two measures supported on [−1, 1]. For any k ≥ 1, if max`≤k ∆`
`(µ, ν) ≤

ε < 1, then

Wp(µ, ν) . p

(
1

log(1/ε)
∨ 1

k

)
.

Proof. For ` ≤ k, we have by assumption the bound ∆` ≤ ε1/`, whereas for ` > k, we have
the bound ∆` . 1 because µ and ν are supported on [−1, 1]. Applying Theorem 4 and noting that
` 7→ ε1/`/` is maximized at ` = log(1/ε) yields the claim.

Our results imply a similar simple result for sub-Gaussian measures. We state it as a result of
independent interest but will not need it to analyze uncoupled isotonic regression.

Corollary 2. Let µ and ν be two sub-Gaussian measures. For any k ≥ 1, if max`≤k ∆`
`(µ, ν) ≤

ε < 1, then

Wp(µ, ν) . p

(
1

log(1/ε)
∨ 1√

k

)
.

Proof. The proof is the same as the proof of Corollary 1, except that we replace the estimate
∆` . 1 for ` > k by the estimate ∆` .

√
`.

As the following proposition makes clear, Theorem 4 is essentially tight.
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Proposition 3. There exists a universal constant c > 0 such that, for any k ≥ 1, there exist
two measures µ and ν on [−1, 1] such that ∆` = 0 for 1 ≤ ` < k but

W1(µ, ν) ≥ c

k
.

In other words, the dependence on sup`≥1
∆`
` cannot be improved.

Moreover, there exists a universal constant c > 0 such that, for all ε > 0 sufficiently small, there
exist two measures µ and ν whose moment generating functions are finite everywhere and

Wp(µ, ν) ≥ cp1−ε ∀p ≥ 1 .

In other words, the dependence on p cannot be improved.

A proof of Proposition 3 appears in Appendix A.5.

The following result complements Theorem 4 by showing that if two probability measures µ and
ν are close in Wasserstein-2 distance, then their moments are close. This direction is much easier
than that of Theorem 4 and illustrates that Wasserstein distances are strong distances.

Theorem 5. For any two subexponential probability measures µ and ν on R and any integer
` ≥ 1, it holds

∆`
`(µ, ν) ≤ (2`)`(‖µ‖ψ1 ∨ ‖ν‖ψ1)`−1W2(µ, ν) .

Proof. We employ the following bound [PP14], Proposition 2.21, (ii), valid for any random
variables X ∼ µ and Y ∼ ν and positive integer `:

E[X` − Y `] ≤ ` ·W2(µ, ν)
((

E|X|2(`−1)
)1/2

+
(
E|Y |2(`−1)

)1/2)
Lemma 1 implies

`
(

(E|X|2(`−1))1/2 + (E|Y |2(`−1))1/2
)
≤ 2` (2(`− 1)(‖X‖ψ1 ∨ ‖Y ‖ψ1))`−1

≤ (2`)`(‖X‖ψ1 ∨ ‖Y ‖ψ1)`−1 .

Combining these bounds yields the claim.

A similar result showing that ∆` may be controlled by the Wasserstein-1 distance follows directly
from the dual representation of W1 as a supremum over Lipschitz functions (see, e.g., [Vil03]) when
the measures µ and ν have bounded support. As we will see in the proof of Theorem 2, we apply
Theorem 5 to convolved distributions of the form µ = πg ∗ D, which have unbounded support
whenever D does. Our proof techniques therefore require the use of a stronger metric than W1

whenever the noise distribution D has unbounded support.

3. PROOF OF THE UPPER BOUND

In this section, we show that the minimum Wasserstein deconvolution estimation (4) achieves
the upper bound of Theorem 2. The proof employs the following steps.
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1. We show that it follows from the fact that f̂ is a minimum Wasserstein distance estimator
that W2(πf̂ ∗ D, πf ∗ D) is small (Proposition 4).

2. In light of Theorem 5, this implies that the sequence {∆`(πf̂ ∗ D, πf ∗ D)}`≥1 is uniformly
controlled.

3. A simple lemma (Lemma 2) induces a weaker control for the deconvolved measures so that
{∆`(πf̂ , πf )}`≥1 is also controlled.

4. Finally, we use Theorem 4 to control Wp(πf̂ , πf ) for all p ≥ 1.

We collect steps 2–4 into Proposition 5, a deconvolution result which may be of independent interest.
Throughout this section, we assume ‖D‖ψ1 ≤ σ. We first carry out step 1, and show that f̂

satisfies the following “convolved” guarantee as a simple consequence of its definition.

Proposition 4. The estimator f̂ defined in (4) satisfies

EW2(πf̂ ∗ D, πf ∗ D) . (σ + V )n−1/4 .

Proof. The triangle inequality and the definition of f̂ imply

W2(πf̂ ∗ D, πf ∗ D) ≤W2(πf̂ ∗ D, π̂) +W2(πf ∗ D, π̂) ≤ 2W2(πf ∗ D, π̂) . (6)

By definition, the support of π̂ is {f(x1)+ξ1, . . . , f(xn)+ξn}. Let w1, . . . , wn be i.i.d. samples from
πf , independent of all other randomness, and denote by w(1), . . . , w(n) their increasing rearrange-
ment. Since {wi} and {ξi} are independent, the set {w(i) + ξi, i = 1, . . . , n} comprises i.i.d. samples
from πf ∗ D. Applying the triangle inequality, we get that

E[W2(πf ∗ D, π̂)] ≤ E[W2(πf ∗ D,
1

n

n∑
i=1

δw(i)+ξi)] + E[W2(π̂,
1

n

n∑
i=1

δw(i)+ξi)] . (7)

It follows from Lemma 10 that

E[W2(πf ∗ D,
1

n

n∑
i=1

δw(i)+ξi)] .
σ + V

n1/4
. (8)

We now control the second term in the right-hand side of (7). A simple coupling between the two
measures π̂ and 1

n

∑n
i=1 δw(i)+ξi yields

W 2
2 (π̂,

1

n

n∑
i=1

δw(i)+ξi) ≤
1

n

n∑
i=1

|f(xi) + ξi − w(i) − ξi|2 =
1

n

n∑
i=1

|f(xi)− w(i)|2 = W 2
2 (πf ,

1

n

n∑
i=1

δwi) .

Thus, applying again, Lemma 10, we get

E[W2(π̂,
1

n

n∑
i=1

δw(i)+ξi)] .
V

n1/4
(9)

Combining (6)–(9) completes the proof.

The following uses steps 2–4 to obtain a deconvolution result. It implies that a bound on W2(µ ∗
D, ν ∗D) can yield a bound on Wp(µ, ν) for all p ∈ [1,∞), as long as µ and ν have bounded support.
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Proposition 5. If µ and ν have support lying in [−V, V ] and W2(µ∗D, ν ∗D) ≤ (σ+V )e−e
1/2

,
then

Wp(µ, ν) . pV
log log σ+V

W2(µ∗D,ν∗D) + log+
σ(σ+2V )

V

log σ+V
W2(µ∗D,ν∗D)

.

Proof. As mentioned above, this proofs goes via a moment-matching argument. Since µ and ν
have bounded support, their moment generating functions converge everywhere; hence, Theorem 4
implies that it suffices to control sup`≥1

∆`(µ,ν)
` to obtain a bound on Wp(µ, ν).

Define

ε :=
W2(µ ∗ D, ν ∗ D)

σ + V
.

Note that ‖µ ∗ D‖ψ1 + ‖ν ∗ D‖ψ1 ≤ 2(σ + 2V ), so that Theorem 5 yields

∆`
`(µ ∗ D, ν ∗ D) ≤

(
4`(σ + 2V )

)`
ε (10)

We now use the following deconvolution Lemma. Its proof is postponed to Appendix A.6.

Lemma 2. For any two subexponential probability measures µ and ν on R and any integer ` ≥ 1,
it holds

∆`
`(µ, ν) ≤ (4`‖D‖ψ1)` · sup

m≤`
∆m
m(µ ∗ D, ν ∗ D) .

Together with (10), it yields

∆`(µ, ν) ≤ 16`2σ(σ + 2V )ε1/` , ` ≥ 1 (11)

We now split the analysis into small and large `. Assume first that

` <
log(1/ε)

2 log log(1/ε) + log+
σ(σ+2V )

V

,

Then, (11) yields

∆`

`
≤ 16`σ(σ + 2V )ε1/` ≤ 16`

V

(log(1/ε))2
. V

log log(1/ε) + log+
σ(σ+V )

V

log(1/ε)
,

where we have used the fact that 2 log log(1/ε) + log+
σ(σ+2V )

V ≥ 2 log log(1/ε) ≥ 1, by assumption.
Next assume that

` ≥ log(1/ε)

2 log log(1/ε) + log+
σ(σ+2V )

V

.

Since µ and ν have bounded support, clearly ∆`(µ, ν) . V for all ` ≥ 1. Therefore,

∆`(µ, ν)

`
. V

log log(1/ε) + log+
σ(σ+2V )

V

log(1/ε)
.

Combining small and large `, we obtain

sup
`≥1

∆`(µ, ν)

`
. V

log log(1/ε) + log+
σ(σ+V )

V

log(1/ε)
.

The proof of Proposition 5 then follows by applying Theorem 4.
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We are now in a position to conclude the proof of the upper bound in Theorem 2. Let W :=
W2(πf̂ ∗ D, πf ∗ D). Assume that n is large enough that n1/8 ≥ ee

1/2
. Denote by E the event on

which the inequality W ≤ (σ + V )n−1/8 holds.

(E‖f − f̂‖pp)1/p = (EW p
p (πf , πf̂ ))1/p

≤ (E[W p
p (πf , πf̂ )1E ])

1/p + (E[W p
p (πf , πf̂ )1EC ])1/p .

On E , Proposition 5 yields

Wp(πf , πf̂ ) . pV
log log n1/8 + log+

σ(σ+2V )
V

log n1/8
.

On the other hand, since f, f̂ ∈ FV , we have the trivial bound W p
p (πf , πf̂ ) ≤ (2V )p, so Markov’s

inequality combined with Proposition 4 yields

(E[W p
p (πf , πf̂ )1EC ])1/p ≤ 2V P[W > (σ + V )n−1/8]1/p . V n−1/8p .

We obtain

(E‖f − f̂‖pp)1/p . pV
log log n1/8 + log+

σ(σ+2V )
V

log n1/8
+ V n−1/8p

= pV
log log n

log n
(1 + oV,σ,p(1)) .

4. PROOF OF THE LOWER BOUND

In this section, we prove Theorem 3. To that end, we employ the “method of fuzzy hypothe-
ses” [Tsy09] and define two prior probability distributions on the space of nondecreasing functions.

Our construction is based on the following lemma which has appeared before in the moment-
matching literature.

Lemma 3. [CL11, WY18] There exists a universal constant c such that, for any k ≥ 1, there
exist two centered probability distributions P and Q on [−V, V ]such that

∆`(P,Q) = 0 for ` = 1, . . . , k − 1,

and such that W1(P,Q) ≥ cV
k .

Proof of Theorem 3. By the monotonicity of `p norms, it suffices to prove the claim for
p = 1. First, we show how a measure on [−V, V ] can be reduced to a sample {y1, . . . yn} from an
uncoupled regression model, with a possibly random regression function.

Let µ be any measure on [−V, V ]. Let Z1, . . . , Zn be i.i.d from µ, and denote by {Z(i)} the sorted
version of {Zi} such that Z(1) ≤ · · · ≤ Z(n). Let F = FZ1,...,Zn from [0, 1] to [−V, V ] be a random
monotonically non decreasing function such that

F (x(i)) = Z(i) .

Finally, let yi = Zi+ξi where ξi are i.i.d N(0, 1), and let the pair of unordered sets X = {x1, . . . , xn},
Y = {y1, . . . , yn} be the uncoupled observations: The yi’s are i.i.d. from µ ∗N(0, 1) and we denote
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by PF their joint distribution. Similarly, denote by Pf the joint distribution of y1, . . . , yn when
yi = f(xi) + ξi and note that Pf need not be a product distribution: it is, in general, different from(
πf ∗ N(0, 1)

)⊗n
. This is because the sampling mechanism of uncoupled isotonic regression that

does not allow for replacement when sampling from the xi’s.
Let f̃ be any measurable function of y1, . . . , yn. Fix a k to be chosen later, and let P and Q be

the two distributions from Lemma 3. Then for any rn > 0, recalling that F is a random function
since it depends on Z1, . . . , Zn, it holds

sup
g

Pg
(
W1(πg, πf̃ ) > rn

)
≥ max

{∫
PF
(
W1(πF , πf̃ ) > rn

)
dP⊗n(Z1, . . . , Zn),∫

PF
(
W1(πF , πf̃ ) > rn

)
dQ⊗n(Z1, . . . , Zn)

}
, (12)

where the supremum is taken over all non-decreasing functions g from [0, 1] to [−V, V ].
Observe first that the two mixture distributions that appear above are, in fact, product distri-

butions: for any event A in the sigma-algebra generated by y1, . . . , yn,∫
PF (A)dP⊗n(Z1, . . . , Zn) = P⊗n∗ (A) and

∫
PF (A)dQ⊗n(Z1, . . . , Zn) = Q⊗n∗ (A) ,

where P∗ = P ∗N(0, 1) and Q∗ = Q ∗N(0, 1).
For any measure µ on [−V, V ], note that

πF =
1

n

n∑
i=1

δZi ,

where the Zis are i.i.d from µ. Thus by [BL16, Theorem 3.2] we obtain∫
W1(πF , µ)dµ⊗n(Z1, . . . , Zn) ≤ V√

n
,

which yields via Markov’s inequality and the triangle inequality that∫
PF (W1(πF , πf̂ ) > rn)dµ⊗n ≥

∫
PF (W1(µ, πf̂ ) > 2rn)dµ⊗n −

∫
1{(W1(πF , µ) > rn)}dµ⊗n

≥
∫

PF (W1(µ, πf̂ ) > 2rn)dµ⊗n − V

rn
√
n
.

Next, if W1(P,Q) ≥ 4rn, we get from the triangle inequality that

PF
(
W1(Q, πf̃ ) > 2rn

)
≥ PF

(
W1(P, πf̃ ) ≤ 2rn

)
.

Combining (12) with the above two displays yields

sup
g

Pg
(
W1(πg, πf̃ ) > rn

)
≥ max

{
P⊗n∗

(
W1(P, πf̃ ) > 2rn

)
, Q⊗n∗

(
W1(P, πf̃ ) ≤ 2rn

)}
− 2V

rn
√
n

=
1

2

(
1− TV

(
P⊗n∗ , Q⊗n∗

))
− 2V

rn
√
n
.

By Lemma 11, we have that

TV(P⊗n∗ , Q⊗n∗ )2 ≤
(

1 + e5V 2/2(eV 2/k)k
)n
− 1 .
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Choosing k = c1
logn

log logn and rn = c2V/k for suitable constants c1 and c2, we obtain

sup
g

Pg
(
W1(πg, πf̃ ) > c−1

1 c2V
log log n

log n

)
≥ 1

2
− oV (1) ,

and the claim follows.

5. CONCLUSION

Our results establish that uncoupled isotonic regression can surprisingly be solved without further
assumptions on the regression function f . However, as in nonparametric deconvolution, minimax
rates are much slower than standard isotonic regression. One conclusion of the mixture learning
literature is that significantly better results are possible when the original measure has small sup-
port [HK15, WY18]. In the context of uncoupled regression, this suggests that better rates may
be available when the regression function f is piecewise constant with a small number of pieces,
an assumption which also improves rates of estimation under the standard isotonic regression
model [BT15]. Additional smoothness assumptions or more restrictive shape constraints may also
lead to better rates. We leave this question to future work.

In this work, we have restricted ourselves to the univariate problem. Recent work [HWCS17] has
considered the generalization of isotonic regression in which the regression function is a coordinate-
wise nondecreasing function on [0, 1]d. Extending our results to the multidimensional setting is
another interesting future research direction.
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APPENDIX A: OMITTED PROOFS

A.1 Proof of Proposition 2

In the following proof, the symbol C will represent a universal constant whose value may change
from line to line. We will show that the estimator ĝ satisfies

W2(πĝ ∗ D, π̂) ≤W2(πf̂ ∗ D, π̂) + C(σ + V )n−1/4 .

Following the proof of Proposition 4, this implies

EW2(πĝ ∗ D, πf ∗ D) ≤ 2EW2(πf ∗ D, π̂) + C(σ + V )n−1/4 . (σ + V )n−1/4 ,

or, in other words, that ĝ satisfies the same inequality as f̂ does (Proposition 4), up to constants.
Since the inequality in Proposition 4 is the only fact about f̂ used in the proof of the upper bound,
this will serve to establish the claim.
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We first analyze the solution µ̂ to (5). Let ν̂ ∈ argminν∈MV
W 2

2 (ν ∗D, π̂), where the minimization
is taken over the set MV of all measures on [−V, V ] rather than over the set MA,V . By Lemma 5,
there exists a ν̂ ′ ∈MA,V such that

W2(ν̂ ′, ν̂) ≤ (V + σ)n−1/4 . (13)

Moreover, by Lemma 6, we have that for all µ ∈MA,V ,

W2(ΠA](µ ∗ D), µ ∗ D) ≤ C(V + σ)n−1/4 . (14)

Combining these inequalities yields

W2(µ̂ ∗ D, π̂) ≤W2(ΠA](µ̂ ∗ D), π̂) + C(V + σ)n−1/4 (triangle inequality and (14))

≤W2(ΠA](ν̂
′ ∗ D), π̂) + C(V + σ)n−1/4 (optimality of µ̂)

≤W2(ν̂ ′ ∗ D, π̂) + C(V + σ)n−1/4 (triangle inequality and (14))

≤W2(ν̂ ∗ D, π̂) + C(V + σ)n−1/4 (triangle inequality and (13))

≤W2(πf̂ ∗ D, π̂) + C(V + σ)n−1/4 , (optimality of ν̂)

where we have used in the fourth step the fact that, for any two measures α and β,

W2(α ∗ D, β ∗ D) ≤W2(α, β) .

(See, e.g., [San15], Lemma 5.2.)
Finally, by Lemma 7, we have

W2(µ̂, πĝ) . 2V n−1/2 .

Therefore, by another application of the triangle inequality, we obtain

W2(πĝ ∗ D, π̂) ≤W2(µ̂ ∗ D, π̂) + 2V n−1/2 ≤W2(πf̂ ∗ D, π̂) + C(V + σ)n−1/4 ,

as claimed.

A.2 Proof of Theorem 4

The proof of Theorem 4 depends on convolving the measures µ and ν with a kernel with specific
smoothness and decay properties. This kernel is related to the well-known sinc kernel [Tsy09], and
coincides with a kernel proposed for deconvolution with respect to Wasserstein distance [DM13].

We define the kernel as follows. For any positive integer m, denote by Sm the distribution on R
with density function

fm(t) :=

{
Cm

(
sin(t/4em)
t/4em

)2m
if t 6= 0,

Cm if t = 0,
(15)

where Cm is positive a constant chosen so that
∫∞
−∞ fm(t) dt = 1. Lemma 8 establishes Cm ≤ 1.

We require two properties of the distribution Sm:

(i) that it possesses sufficiently many moments, and
(ii) that the successive derivatives of the density fm decay sufficiently quickly.
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To see that (i) holds, note that for any p ≤ 2m− 2, since fm(t) ≤ 1 ∧ (t/4em)−2m, it holds

E[|S|p] = 2

∫ ∞
0

tpfm(t) dt ≤ 2

∫ 4em

0
tp dt+ 2(4em)2m

∫ ∞
4em

tp−2m dt ≤ 4(4em)p+1 ≤ 4(4em)p+1 ,

(16)
The requirement (ii) on the successive derivatives of fm is ensured by the following lemma. Its

proof is presented in Appendix A.4.

Lemma 4. The function fm is analytic on R and satisfies

|f (n)
m (t)| ≤ (8em)2m

(2e)n(4em+ |t|)2m
∀n ≥ 0 .

With these two lemmas, we can establish the claimed result.

Proof of Theorem 4. The assumption that µ and ν have finite moment generating functions
implies that sup`≥1

∆`
` < ∞. Since the statement of the theorem is scale-invariant, it suffices to

prove the claim in the case that sup`≥1
∆`
` = 1, where the claimed bound simplifies to Wp(µ, ν) . p.

Also, because Wq ≤ Wp for q ≤ p, we can assume without loss of generality that p is a positive
even integer.

Set m := p/2+1. Let X ∼ µ and Y ∼ ν, and let S ∼ Sm be independent of X and Y . We denote
by µ̃ the distribution of X + S and by ν̃ the distribution of Y + S.

By the triangle inequality applied to Wp,

Wp(µ, ν) ≤Wp(µ, µ̃) +Wp(ν, ν̃) +Wp(µ̃, ν̃) . (17)

Since (X,X + S) is a valid coupling between µ and µ̃, by (16), it holds

Wp(µ, µ̃) ≤ (E|X −X − S|p)1/p ≤ (4(4em)p+1)1/p . p . (18)

It remains to bound the final term. Denote by fµ̃ and fν̃ the densities of µ̃ and ν̃, respectively.
By [Vil08], Theorem 6.15,

W p
p (µ̃, ν̃) ≤ 2p−1

∫ ∞
−∞
|t|p|fµ̃(t)− fν̃(t)| dt .

The definitions of fµ and fν imply

fµ̃(t)− fν̃(t) = E [fm(t−X)− fm (t− Y )] = E
∞∑
`=1

f
(`)
m (t)(X` − Y `)

`!
=
∞∑
`=1

f
(`)
m (t)E(X` − Y `)

`!
,

where in the last step we used Fubini’s theorem since µ and ν have moment generating functions
that are finite everywhere. By applying successively the assumption that sup`≥1 ∆`/` ≤ 1, Lemma 4,
and Stirling’s approximation, we obtain

|fµ̃(t)− fν̃(t)| ≤
∞∑
`=1

|f (`)
m (t)|``

`!
≤ (8em)2m

(4em+ |t|)2m

∞∑
`=1

``

(2e)``!
≤ (8em)2m

(4em+ |t|)2m
.



18 RIGOLLET AND WEED

Therefore, recalling that 2m = p+ 2, we obtain

W p
p (µ̃, ν̃) ≤ 2p−1(4e(p+ 2))p+2

∫ ∞
−∞

|t|p

(2e(p+ 2) + |t|)p+2
dt

=
2p(4e(p+ 2))p+2

2e(p+ 1)(p+ 2)
≤ (cp)p , (19)

where c is a universal constant.
Combining (18) and (19) with (17) yields

Wp(µ, ν) . p = p

(
sup
`≥1

∆`

`

)
,

as claimed.

A.3 Proof of Lemma 1

The claim is trivial if ‖X‖ψ1 = ∞, so we assume ‖X‖ψ1 < ∞, and indeed, by homogeneity, we
may assume ‖X‖ψ1 = 1. We have( |X|

p

)p
≤ (e|X|/p − 1)p ≤ e|X| − 1 = ψ1(X) ,

so
E|X|p ≤ ppEψ1(X) ≤ pp .

A.4 Proof of Lemma 4

The analyticity of fm follows immediately from the well known fact that sin t
t is analytic, so it

suffices to prove the derivative bound. The claim will follow from the fact that∣∣∣∣∣ dndtn
(

sin t

t

)2m
∣∣∣∣∣ ≤ 22m(2m)n

(1 + |t|)2m
,

which we prove by induction on m. Recall that, for function f and g, the general Leibniz rule states

dn

dtn
f(t)g(t) =

n∑
k=0

(
n

k

)
f (n−k)(t)g(k)(t) .

We therefore have∣∣∣∣∣ dndtn
(

sin t

t

)2
∣∣∣∣∣ ≤∑

k=0

(
n

k

) ∣∣∣∣ dn−kdtn−k
sin t

t

∣∣∣∣ ∣∣∣∣ dkdtk sin t

t

∣∣∣∣ =
4

(1 + |t|)2

n∑
k=0

(
n

k

)
=

4 · 2n

(1 + |t|)2
,
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where we have used Lemma 9 to bound the derivatives of sin t
t . This proves the base case m = 1.

By induction, for m > 1, we have∣∣∣∣∣ dndtn
(

sin t

t

)2m
∣∣∣∣∣ ≤

n∑
k=0

(
n

k

) ∣∣∣∣∣ dn−kdtn−k

(
sin t

t

)2
∣∣∣∣∣
∣∣∣∣∣ dkdtk

(
sin t

t

)2m−2
∣∣∣∣∣

≤
n∑
k=0

(
n

k

)
4 · 2n−k

(1 + |t|)2

22m−2(2m− 2)k

(1 + |t|)2m−2

=
22m

(1 + |t|)2m

n∑
k=0

(
n

k

)
2n−k(2m− 2)k

=
22m(2m)n

(1 + |t|)2m
.

The function fm(t) therefore satisfies∣∣∣∣ dndxn fm(t)

∣∣∣∣ = Cm

∣∣∣∣∣ dndxn
(

sin(t/4em)

t/4em

)2m
∣∣∣∣∣ ≤ Cm(4em)−n

22m(2m)n

(1 + |t/4em|)2m
≤ (8em)2m

(2e)n(4em+ |t|)2m
,

which concludes the proof.

A.5 Proof of Proposition 3

The first part is the content of Lemma 3. For the second part, for a given ε ∈ (0, 1/2], denote by
Pε the distribution on R with density

fε(x) := cεe
−|x|

1
1−ε

,

where cε ≤ 1 is a suitable normalizing constant. Note that the moment generating function of Pε
is finite everywhere. Integrating fε implies that if X ∼ Pε, then for all positive integers p,

(E|X|p)1/p � p1−ε .

Denote by P ′ε the distribution of 2X. The coupling (X, 2X) is a monotone coupling between Pε
and P ′ε, so by [San15, Theorem 2.9] we have

Wp(Pε,P ′ε) = (E|X − 2X|p)1/p � p1−ε ,

as claimed.

A.6 Proof of Lemma 2

We assume that ‖D‖ψ1 < ∞, since otherwise the claim is vacuous. Write Mµ, Mν , and MD for
the moment generating functions of µ, ν, and D, respectively. We have

∆`
`(µ, ν) =

∣∣∣∣ d`dt`Mµ(t)−Mν(t)

∣∣∣∣
t=0

=

∣∣∣∣ d`dt`Mµ(t)MD(t)−Mν(t)MD(t)

MD(t)

∣∣∣∣
t=0

≤
∑̀
m=0

(
`

m

) ∣∣∣∣ d`−mdt`−m
Mµ(t)MD(t)−Mν(t)MD(t)

∣∣∣∣
t=0

∣∣∣∣ dmdtm 1

MD(t)

∣∣∣∣
t=0

≤

(∑̀
m=0

(
`

m

) ∣∣∣∣ dmdtm 1

MD(t)

∣∣∣∣
t=0

)
· sup
m≤`

∆m
m(µ ∗ D, ν ∗ D)
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If X ∼ D, then

|MD(t)− 1| = |EetX − 1| ≤ E|etX − 1| ≤ Eet|X| − 1 = Eψ1(t|X|) ,

which implies in particular that

|MD(t)− 1| ≤ 1

2
∀t ≤ (2‖D‖ψ1)−1 .

The function 1
MD(t) is therefore analytic and bounded in norm by 2 on a disk of radius (2‖D‖ψ1)−1

around the origin. Standard results from complex analysis (see, e.g., [FS09], Proposition IV.1) then
imply that ∣∣∣∣ dmdtm 1

MD(t)

∣∣∣∣
t=0

≤ m!(2‖D‖ψ1)m .

Combining this with the above bound yields

∆`
`(µ, ν) ≤ `!(4‖D‖ψ1)` · sup

m≤`
∆m
m(µ ∗ D, ν ∗ D) ,

and the claim follows.

APPENDIX B: SUPPLEMENTAL LEMMAS

Lemma 5. For all ν ∈MV , there exists a ν ′ ∈MA,V such that

W2(ν, ν ′) ≤ (V + σ)n−1/4 .

Proof. Let ΠA,V be the map sending each point in [−V, V ] to the nearest point in A∩ [−V, V ],
and set ν ′ := ΠA,V ]ν. Clearly ν ′ ∈MA,V , and

W 2
2 (ν, ν ′) ≤ sup

x∈[−V,V ]
|x−ΠA,V (x)|2 ≤ (V + σ)2

n1/2
,

which proves the claim.

Lemma 6. For all µ ∈MV ,

W2(ΠA](µ ∗ D), µ ∗ D) . (V + σ)n−1/4 .

Proof. By the definition of the Wasserstein distance, we have

W 2
2 (ΠA](µ ∗ D), µ ∗ D) ≤ E|ΠA(X + ξ)−X − ξ|2 X ∼ µ, ξ ∼ D .

If |(X + ξ)| ≤ (V + σ) log n, then |ΠA(X + ξ)−X − ξ|2 ≤ (V + σ)2n−1/2, which implies

E|ΠA(X + ξ)−X − ξ|2 ≤ (V + σ)n−1/4 + E[|αN −X − ξ|21X+ξ>αN
] + E[|α0 −X − ξ|21X+ξ<α0 ]

≤ (V + σ)2n−1/2 + E[|X + ξ|21|X+ξ|>(V+σ) logn]

≤ (V + σ)2n−1/2 + E[|X + ξ|4]1/2P[|X| > σ log n]1/2 ,

where the last step uses the Cauchy-Schwarz inequality.
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The assumption that ‖X‖ψ1 ≤ σ implies

E[|X + ξ|4]1/2 . (V + σ)2

and

P[|X| > σ log n] ≤ P[e|X|/σ > n] ≤ 2

n
.

Combining the above three displays yields

E|ΠA(X + ξ)−X − ξ|2 . (V + σ)2n−1/2 ,

and this implies the stated bound.

Lemma 7. Let µ be any measure on [−V, V ] with quantile function Qµ, and let g ∈ FV satisfy
g(xi) = Qµ(i/n) for 1 ≤ i ≤ n. Then

W2(µ, πg) ≤ 2V n−1/2 .

Proof. The definition of πg implies that the quantile function Qπg of πg satisfies

Qπg(x) = Qµ(i/n) where (i− 1)/n < x ≤ i/n .

Since µ is supported on [−V, V ], we set Qµ(0) := limp→O+Qµ(p) ≥ −V . By the explicit represen-
tation for the Wasserstein distance between one-dimensional measures [BL16, Theorem 2.10], we
have

W 2
2 (µ, πg) =

∫ 1

0
|Qµ(x)−Qπg(x)|2 dx

=

n∑
i=1

∫ i/n

(i−1)/n
|Qµ(x)−Qµ(i/n)|2 dx

≤
n∑
i=1

∫ i/n

(i−1)/n
|Qµ((i− 1)/n)−Qµ(i/n)|2 dx

≤ 1

n

n∑
i=1

|Qµ((i− 1)/n)−Qµ(i/n)|2

≤ 2V

n

n∑
i=1

Qµ(i/n)−Qµ((i− 1)/n) ≤ (2V )2

n
.

Lemma 8. Let fm be defined as in (15). If
∫∞
−∞ fm(t) dt = 1, then

Cm ≤ 1 .

Proof. It suffices to show that
∫∞
−∞

(
sin(t/4em)
t/4em

)2m
dt ≥ 1. The inequality | sin(t)| ≥ |t| − |t|

3

6

implies (
sin(t/4em)

t/4em

)2m

≥
(

1− t2

6(4em)2

)2m

≥ 1− t2

48e2m
≥ 1

2
if t2 ≤ 24e2m.
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Therefore ∫ ∞
−∞

(
sin(t/4em)

t/4em

)2m

dt ≥
∫ 1

−1

1

2
dt ≥ 1 .

Lemma 9. ∣∣∣∣ dndtn sin t

t

∣∣∣∣ ≤ 2

1 + |t|
∀n ≥ 0 .

Proof. Recall that
sin t

t
=

∫ 1

0
cos(tx) dx ,

which implies after differentiating under the integral that

dn

dtn
sin t

t
=

∫ 1

0
xn cos(n)(tx) dx .

Since | cos(n)(tx)| ≤ 1, we obtain immediately that∣∣∣∣ dndtn sin t

t

∣∣∣∣ ≤ ∫ 1

0
xn dx =

1

n+ 1
,

which proves the claim when |t| ≤ 2n+ 1.
To prove the claim when |t| > 2n+1, we proceed by induction. When n = 0 and |t| > 2n+1 = 1,

the bound | sin(t)| ≤ 1 implies ∣∣∣∣sin tt
∣∣∣∣ ≤ 1

t
≤ 2

1 + |t|
.

We now assume that the bound in question holds for n − 1 and all t. Integrating by parts and
applying the induction hypothesis yields∣∣∣∣∫ 1

0
xn cos(n)(tx)

∣∣∣∣ =

∣∣∣∣∣cos(n−1) t

t
− n

t

∫ 1

0
xn−1 cos(n−1)(tx) dx

∣∣∣∣∣
≤ 1

|t|
+
n

|t|
2

1 + |t|
=
|t|+ 2n+ 1

|t|(1 + |t|)
.

Since |t| > 2n+ 1, this quantity is smaller than 2
1+|t| , as claimed.

Lemma 10. Let µ be any distribution satisfying ‖µ‖ψ1 ≤ K, and let µ̂ = 1
n

∑n
i=1 δXi, where

Xi ∼ µ are i.i.d. Then

E[W 2
2 (µ, µ̂)] ≤ 16K2

√
n

.

Proof. We assume without loss of generality that µ is centered. By [BL16, Theorem 7.16],

E[W 2
2 (µ, µ̂)] ≤ 4√

n

∫ ∞
−∞
|x|
√
F (x)(1− F (x) dx ,

where F is the CDF of the measure µ. Let X ∼ µ. Then

F (x)(1− F (x)) = P[X ≤ x]P[X > x] ≤ P[|X| ≥ |x|] ≤ 2e−|x|/K ,
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where in the last step we have used the fact that ‖µ‖ψ1 ≤ K. We obtain

E[W 2
2 (µ, µ̂)] ≤ 16√

n

∫ ∞
0

xe−x/K dx =
16K2

√
n

.

Lemma 11. [CL11] If P and Q are two centered measures supported on [−V, V ] such that
∆`(P,Q) = 0 for ` = 1, . . . , k − 1, then

TV((P ∗N(0, 1))⊗n, (Q ∗N(0, 1))⊗n)2 ≤
(

1 + e5V 2/2 (2V 2)k

k!

)n
− 1 .

Proof. By [CL11], proof of Theorem 3, (see also [WY18], Lemma 14), if P and Q are supported
on [−V, V ], then

χ2(P ∗N(0, 1), Q ∗N(0, 1)) ≤ eV 2/2
∞∑
`=1

∆2`
`

`!
.

By assumption, ∆`(P,Q) = 0 for ` < k, and for ` ≥ k the fact that P and Q are supported on
[−V, V ] implies ∆`

` ≤ (2V )`. Combining these bounds yields

χ2(P ∗N(0, 1), Q ∗N(0, 1)) ≤ eV 2/2
∑
`≥k

(2V )2`

`!
≤ e5V 2/2 (2V )2k

k!
≤ e5V 2/2

(
4eV 2

k

)k
,

where in the last step we have applied Stirling’s approximation.
The claim then follows from standard properties of the χ2-divergence [Tsy09].
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