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ABSTRACT 

The mammalian brain is complex, with multiple cell types performing a variety of diverse 

functions, but exactly how each cell type is affected with aging remains largely unknown. Here, 

we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide 

comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in 

nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated 

manner across cell types and gene sets that are regulated in a cell-type specific manner, even at 

times in opposite directions. These data reveal that aging, rather than inducing a universal 

program, drives a distinct transcriptional course in each cell population, and highlight key 

molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-

scale datasets provide an important resource for the neuroscience community (accessible online 

at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain) that will facilitate 

additional discoveries directed towards understanding and modifying the aging process. 

 

INTRODUCTION 
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Aging, the time-dependent functional decline of organs and tissues, is the biggest risk factor for 

many diseases, including several neurodegenerative and cardiovascular disorders 1. 

Characterizing aging-related molecular and cellular changes will provide insights into this 

complex process and highlight opportunities to slow or reverse its progression, thereby helping 

to prevent or treat aging-associated pathologies. That this might be achievable is supported by a 

plethora of studies using model organisms demonstrating that not only lifespan, but also the 

integrity of multiple tissues, can be regulated by discrete molecular modifications 2,3. 

Towards the goal of achieving a broader understanding of aging-related changes and deciphering 

the molecular mechanisms that accompany brain aging, transcriptomic studies in model 

organisms and humans have been at the forefront of experiments. However, these studies 

generally utilize aggregated RNA from either mixed cell populations 4-6 that may vary in distinct 

ways with age, or from cell populations purified using known markers 7-9, which themselves may 

also change during aging. Therefore, despite the successful identification of major aging-related 

genes and pathways, prior transcriptomic analyses have not resolved the common aging-related 

changes experienced across all brain cells from those that may be cell-type specific. Thus, there 

is a need to elucidate how individual cell types are affected by aging and to clarify if the process 

of aging follows a similar blueprint in all cell types or whether certain cell types have unique 

transcriptional changes. This will be critical in determining whether aging at the tissue level is a 

global process, if it results from specific changes in certain cell populations that culminate in loss 

of function and deterioration, or a combination of both 10. This information may also help the 

design of effective aging-related therapeutics that are targeted either narrowly, affecting only 

certain cell types, or more broadly, affecting all cells. 

In this study, to begin to address these issues, we employed single-cell RNA sequencing to profile 

and compare the cellular composition and transcriptomes of young and old mouse brains. This is 

the first large-scale transcriptomic analysis of aging for the vast majority of brain cell types. For 

all the major cell populations, we provide comprehensive datasets of genes and pathways whose 

transcriptional profiles change with aging. Our computational analysis suggests that cells in the 

brain do not change with aging identically, indicating that, while overlapping signatures exist, the 

cellular consequences of aging are not universal. Given that cell non-autonomous changes are 

also known to regulate aging-dependent changes 2, we also detail ligand-receptor interactions 

among nearly all the cell types in the brain that are modified by aging. Overall, this study provides 

a rich resource that can facilitate the interrogation of the molecular underpinnings and cellular 

basis of the aging process in the mouse brain.  

 

RESULTS 

Identification of cell types 
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To gain new, more precise, insights into the effects of aging, we employed unbiased high-

throughput single-cell RNA sequencing (scRNA-seq) to examine the transcriptional profiles of 

young and old mouse brains (Fig. 1A). Because the dissociation of mammalian adult brains is 

challenging due to the complexity of the tissue, we first developed a new dissociation protocol 

that enables the isolation of healthy and intact cell suspensions that are representative of both 

young and old brains (Supplementary Methods).  

We then analyzed the transcriptomes of 50,212 single cells (24,401 young and 25,811 old) 

derived from the brains of 8 young (2-3 months) and 8 old (21-23 months) mice (Supplementary 

Fig. 1-2). We first aggregated transcriptionally similar cells, using an established clustering 

algorithm 11. Next, we removed clusters likely to be of low quality, resulting from debris, 

doublets/multiplets and dead cells (Supplementary Fig. 3), and employed other critical quality 

control steps as described in Supplementary Methods (Supplementary Fig. 4). Ultimately, our 

analysis led to the identification of 37,069 cells (Supplementary Fig. 5A), representing 25 cell 

types (Fig. 1B) with distinct expression profiles (Fig. 1C-D and Supplementary Fig. 6): 

oligodendrocyte precursor cells (OPC), oligodendrocytes (OLG), olfactory ensheathing glia (OEG), 

neural stem cells (NSC), astrocyte-restricted precursors (ARP), astrocytes (ASC), neuronal-

restricted precursors (NRP), immature neurons (ImmN), mature neurons (mNEUR), 

neuroendocrine cells (NendC), ependymocytes (EPC), hypendymal cells (HypEPC), tanycytes 

(TNC), choroid plexus epithelial cells (CPC), endothelial cells (EC), pericytes (PC), vascular smooth 

muscle cells (VSMC), hemoglobin-expressing vascular cells (Hb-VC), vascular and leptomeningeal 

cells (VLMC), arachnoid barrier cells (ABC), microglia (MG), monocytes (MNC), macrophages 

(MAC), dendritic cells (DC), and neutrophils (NEUT). Cell counts and other metrics for each cell 

type are shown in Fig. 1E and Supplementary Fig. 5B-E. 

Identification of cell subtypes and states 

To reveal heterogeneity within each population, we grouped the aforementioned cell types into 

6 classes based on their expression profile, lineage, function and anatomical organization 

(oligodendrocyte lineage, astrocyte lineage and stem cells, neuronal lineage, ependymal cells, 

vasculature cells, and immune cells) (Supplementary Fig. 7) and employed another round of 

clustering. This subsetting of the data enabled us to highlight more subtle changes within the 

classes without the impact of variation due to inclusion of drastically different cell identities. This 

secondary analysis identified dozens of different cell subtypes and states reflecting distinct 

functional, maturational and regional cell identities (Supplementary Fig. 8-9). These cell identities 

are in line with recent scRNA-seq studies 12-14, whose purpose was to identify novel and distinct 

cell types/subtypes and create detailed atlases of the developing and adult mouse brain (see 

details in Supplementary Fig. 8). This allowed us to generate a comprehensive dataset of gene 

expression profiles for all the experimentally validated cell populations from both young and old 
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brains at high resolution (Supplementary Tables 1-2). It also permitted us to identify specific 

markers that distinguish each type regardless of age (Supplementary Tables 3-4).  

Aging-related effects on cell-to-cell transcriptional variability and cellular composition  

We found that cell identity is largely preserved in old brains as indicated by unbiased clustering 

where all clusters represent cells of all animals from both ages (Supplementary Fig. 4C). 

Furthermore, the quality of data generated from both young and old cell types appears similar, 

with each having comparable numbers of unique molecular identifiers (UMI) and detected genes 

(Supplementary Fig. 5C, E). Next, we compared the coefficient of variation (CV) of expression for 

all the transcribed genes (Supplementary Fig. 10A), only the mitochondrially-encoded genes 

(Supplementary Fig. 10B), or only the ribosomal protein genes (Supplementary Fig. 10C). We 

observed differences in the variability of transcription between young and old cells in many cell 

types. However, the directionality of change was not identical among cell types, providing 

evidence that aging is not broadly associated with increased transcriptional variation 15. 

Then, by investigating the abundance of each cell type, we found that cellular composition was 

largely consistent across both young and old brains (Fig. 2A and Supplementary Table 5). 

Nonetheless, we were able to confirm the previously reported aging-related decline of OPC 16, 

NRP 17 and ImmN 17,18 (Fig. 2A), and to reveal potentially interesting but not statistically significant 

population shifts within certain subtypes of OPC, OLG, ASC, mNEUR and MG (Supplementary Fig. 

11; see also Supplementary Fig. 8). Of note, although the estimated percentages for each cell 

type do not necessarily reflect their actual proportions in the mouse brain, mainly due to 

differences in their sensitivity to tissue dissociation, the observed changes in cell-type ratios 

appear to reflect a real biological effect.   

Identification of aging-related genes 

We then investigated the breadth of transcriptional changes that occur in the mouse brain with 

aging by performing differential gene expression (DGE) analysis between young and old cell types 

and neuronal subtypes (Supplementary Tables 6-7). Of the 14,699 total detected genes, 3,897 

were significantly affected by aging in at least one cell type (FDR<0.05). When the magnitude of 

change in expression was also considered, 1,113 genes passed the 10%-fold-change (FC) 

threshold (Fig. 2B and Supplementary Table 8). Interestingly, of those, 1,027 exhibited the same 

directionality regardless of the cell-type identity (531 upregulated and 496 downregulated), 

while the direction of change in the expression of 86 genes was different across cell populations 

(discussed further below; Supplementary Table 8). As described in Supplementary Methods, our 

ability to identify genes whose transcription changes significantly with aging and the calculation 

of fold-change is dependent on several factors, including the number of cells within each 

population, the level of transcription, and the algorithm for analysis. 

Identification of shared and cell-type specific aging signatures 
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To ensure the validity of these aging signatures, we first started broadly and compared our data 

with past transcriptomic studies of the mouse aging brain 4-6. To more effectively compare 

datasets, we aggregated all of our sequenced cells, thereby recreating a traditional whole-brain 

profile similar to what might be observed using bulk sequencing (Supplementary Tables 2 and 6). 

As expected, this analysis verified previously identified aging-related genes (such as B2m, C4b, 

Ctss, Il33, Rpl8). Moreover, due to the increased sensitivity of the techniques used in our study 

compared to past ones, we were able to identify a set of aging-related genes not reported 

previously (such as Apoc1, Caly, Cxcl12, Nell2, Ybx1; see Supplementary Table 6). These changes 

could have been masked in past studies due to their limited expression levels or variations in less 

abundant cell populations. Importantly, our single-cell DGE data enabled us to build on these 

results to identify from which cell types these aging signatures arose. For example, Ctss, while 

highly transcribed in all immune cells (MG, MAC, MNC, DC; see Supplementary Table 2), was only 

significantly changed with aging in MG (Supplementary Table 6). Another example is Nell2, which 

is mostly transcribed in neuronal lineage cells and OEG (Supplementary Table 2), but its levels 

changed with aging only in OEG (Supplementary Table 6).  

We then focused our analysis on 11 major cell populations that exhibited the greatest number of 

differentially regulated genes (Fig. 2B). By comparing the DGE data from these populations (Fig. 

2C and Supplementary Fig. 12), we were able to distinguish both shared and cell-type specific 

aging signatures. Supplementary Table 8 presents a matrix that specifies the genes that changed 

significantly in each cell type. 

Fig. 2D presents selected top aging-related genes that are shared across multiple cell types. The 

majority of the most commonly aging-upregulated genes were ribosomal protein genes (such as 

Rpl6), lncRNA genes (such as Malat1) and immunoregulatory/inflammatory genes (such as B2m). 

The most commonly aging-downregulated genes were mitochondrial respiratory chain complex 

genes (such as mt-Nd1), glycolysis-related genes (such as Aldoc) and genes encoding 

selenoproteins (such as Sepw1) (see also Supplementary Table 8).  

A subset of genes representing cell-type specific aging signatures are highlighted in Fig. 2E. 

Interestingly, these data revealed that certain genes that are traditionally used as cell-type 

specific markers change with aging, such as the decrease of Mog in OLG and Csf1r in MG, and the 

increase of Cxcl12 in EC. Conversely, we observed that other classic cell-type marker genes 

change with aging in other cell populations. For example, Gfap, which is highly transcribed and 

enriched in the astrocyte lineage and stem cells (Supplementary Table 2), was found as one of 

the genes that increased the most in EPC (Fig. 2E and Supplementary Tables 6 and 8).  

We next sought to validate certain shared and cell-type unique aging-related gene expression 

changes. As shown in Fig. 3A, we were able to verify transcriptional changes in the shared aging-

related genes Rpl6, Malat1 and Meg3 by in situ hybridization. We also confirmed the cell-type 

specific aging-related changes of genes such as Csf1r, Cxcl12 and Sparc by bulk RNA-seq and qRT-
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PCR analysis of FACS-purified CD31+ (EC), CD11b+ (MG) and ACSA2+ (ASC) cells (Fig 3B-C and 

Supplementary Fig. 13). Additionally, to further determine if our transcriptomic approach 

faithfully captured changes at the protein level, we performed immunohistochemistry. As shown 

in Fig. 3D, we again observed the specific aging-related downregulation of SPARC in MG and the 

global aging-related increase of IL33 that is mostly expressed by OLG (Supplementary Fig. 14), as 

revealed by our scRNA-seq analysis (Fig. 2E and Supplementary Table 2) and by others 19,20. 

Identification of bidirectional aging signatures 

Analysis of our sequencing dataset also revealed individual genes with opposite regulation 

among different cell types (Supplementary Fig. 15 and Supplementary Table 8). For example, the 

tetraspanin Cd9 was downregulated in OPC and ASC but upregulated in EC and MG. This 

bidirectional aging signature was confirmed between OPC and MG by dual fluorescence in situ 

hybridization (Fig. 4A-B). Another example of bidirectional changes with aging is Cldn5, which is 

often used as a marker for EC, but it is also highly transcribed in OEG (Supplementary Table 2). 

We found aging-related downregulation of Cldn5 in EC but upregulation in OEG (Supplementary 

Table 6). Notably, when its levels were measured in the whole brain, changes were minimal 

(Supplementary Tables 2 and 6), further highlighting why certain changes were masked in 

previous bulk sequencing studies.   

Similarly, we found large gene sets, such as ribosomal protein genes, that were discordant 

between cell types (Supplementary Fig. 15B). As mentioned above, many ribosomal protein 

genes were found among the top shared aging-upregulated genes across major cell populations 

(Fig. 2D and Supplementary Table 8), but a subset of these genes also exhibited differential 

regulation/directionality with aging in certain cell types (Supplementary Fig. 15B). For example, 

Rps23 was found to be downregulated in OPC and ASC, but upregulated in mNEUR, EC and MG. 

This differential aging-related transcriptional signature was confirmed in OPC and MG by dual 

fluorescence in situ hybridization (Fig. 4C-D).  

Interestingly, when we examined the expression profile of all genes encoding ribosomal proteins 

across major cell populations, we found two distinct and divergent patterns. As shown in Fig. 5A 

(see also Supplementary Table 8), both OPC and ASC were found to downregulate a fraction of 

their ribosomal protein genes with aging, while the other cell types upregulated their expression. 

These patterns of expression were also detected when neuronal subtypes were compared, where 

GABA and GLUT neurons exhibited upregulation of their ribosomal protein genes with aging, 

while DOPA neurons exhibited downregulation (Supplementary Table 7). To validate these broad 

bidirectional aging-related signatures, we examined ribosomal protein gene expression in FACS-

purified ACSA2+ (ASC), CD31+ (EC) and CD11b+ (MG) cells. As shown in Fig. 5B-C, bulk RNA-seq 

reproduced the scRNA-seq data for a subset of ribosomal protein genes, highlighting their 

potentially distinct responses to aging. 
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Identification of aging-related pathways 

Next, we investigated changes in aging-related cellular pathways and processes by performing 

gene set enrichment analysis (GSEA) 21. GSEA has increased sensitivity compared to DGE analysis 

as it aggregates information from broad sets of genes that are presumed to be functionally 

related. As such, we were also able to include cell types and neuronal subtypes with limited cell 

numbers that did not show significant aging-related changes by DGE analysis. This approach 

revealed the existence of many shared and cell-type specific aging-related pathways across the 

examined cell populations (Fig. 6 and Supplementary Tables 9-10). In total, 451 pathways (1,142 

GSEA terms) changed significantly (p<0.05 and q<0.25); 234 were expressed in at least 2 cell 

types, while the remaining 217 were unique for specific cell populations. Of those aging-related 

pathways, 339 exhibited the same directionality regardless of cell type (195 were upregulated 

and 144 downregulated), while the directions of change in the remaining 112 varied across cell 

types (Supplementary Table 10). The most common aging-related pathways were those 

associated with cellular respiration, protein synthesis, inflammatory response, oxidative stress, 

and growth factor signaling (Fig. 6 and Supplementary Table 10). As expected, GSEA showed that 

the aging process entails many biological changes in mNEUR that were in common across its 

major subtypes. These include the impairment of key metabolic pathways, the dysregulation of 

ion homeostasis and the disruption of neurotransmission (Supplementary Tables 9-10), all of 

which have been well documented in the literature 3. 

Here, we highlight changes in EC and EPC, two understudied, but important, brain cell 

populations, that form the barriers that isolate the brain parenchyma from factors circulating in 

blood and cerebrospinal fluid. GSEA showed that EC exhibit numerous aging-related changes in 

cellular pathways, such as the induction of senescence, hypoxia signaling and response to ketone 

signaling, and the reduction of xenobiotic metabolism, lipid metabolism and hormone processing 

(Supplementary Fig. 16A and Supplementary Tables 9-10). In EPC, there was a notable 

upregulation of interferon-induced signaling (Supplementary Fig. 16B and Supplementary Tables 

9-10) that aligns with the induction of certain interferon-stimulated genes (like Ifitm3) just as 

found in the DGE analysis (Supplementary Tables 6 and 8). The aging-related upregulation of 

interferon-stimulated genes and other aging-induced genes was also seen by qRT-PCR in FACS-

purified EPC (Supplementary Fig. 17). This suggests that an aging-induced inflammatory response 

may extend to these cells and appears similar to what it has been previously reported for the 

choroid plexus epithelium 22. 

Importantly, GSEA also points to ribosome biogenesis as a biological process exhibiting 

differential regulation with aging across different cell types and neuronal subtypes, beyond what 

we found based on DGE analysis alone (Supplementary Tables 9-10). In particular, even 

employing stringent significance criteria, the vast majority of brain cell types was seen to exhibit 

an aging-related upregulation of genes encoding ribosomal subunits, while three types of 
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stem/progenitor cells (NSC, NRP, OPC) showed downregulation (Fig. 6, Supplementary Fig. 18 

and Supplementary Table 10).  

Identification of aging-related changes in intercellular communication 

Finally, our single-cell transcriptomics data provides the ability to explore how aging-driven 

changes in gene expression might affect intercellular communication within the brain. By 

leveraging the transcriptional profiles of each cell population, we built a comprehensive 

intercellular network of potential ligand-receptor interactions among nearly all the identified 

brain cell types. We then enriched this network with data from our DGE analysis to mark all those 

interactions that were found to change with aging at the ligand or receptor level.  

Here we highlight the ligand-receptor changes in EC (Fig. 7), not only because they exhibited a 

variety of aging-related changes, as mentioned above (Fig. 2B-C and Supplementary Fig. 16A), 

but also because they possess the unique ability to interact directly with factors synthesized in 

the brain and with those secreted by peripheral tissues into the circulation. Network analysis 

showed that both cystatin C (Cst3; an aging-downregulated gene) and stromal cell-derived factor 

1 (Cxcl12; an aging-upregulated gene), which have been previously linked to multiple pathologies 
23,24, are mediators of crosstalk between vascular cells and many brain cell types (Fig. 7). This 

signifies that their aging-related changes may modulate, either synergistically or separately, 

important, still to be identified aging-related processes occurring in the brain parenchyma. 

DISCUSSION 

The transcriptomic database reported here is the first to examine the aging process in the 

mammalian brain at a single-cell level. In this study, we first investigated the cellular complexity 

of the mouse brain and showed that cell identity and composition is generally maintained with 

aging. More specifically, we found that the numbers of cells within most of the cell types did not 

change radically with age, when quantified as a fraction of total brain cells. Nonetheless, we did 

observe the previously reported aging-related decline of certain cell populations, such as NRP 17. 

Of note, it seems possible that additional work focused on this issue might reveal additional 

changes in subtypes of cells, particularly those occurring in specific regions of the brain. 

We then compared young and old cells and observed a noticeable aging-related cell-to-cell 

transcriptional variation within certain cell populations. However, our data did not show a 

universal aging-related change in transcriptional variability across all cell types. That is, gene 

transcription in particular cell populations does not necessarily become more variable with aging. 

This is in line with Warren et al. 25, but in contrast to other studies that suggested increased 

transcriptional variability as a common feature of aging 15,26.  

By aggregating all of our sequenced single cells and performing DGE analysis comparable to what 

was done in prior bulk sequencing studies, we validated many of the previously identified aging-
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related genes 4-6 and extended the list to include additional gene signatures. We then utilized 

single cell-type DGE analyses to reveal the primary cell type(s) generating these signatures. The 

fine resolution provided by scRNA-seq further allowed us to detect changes in specific cell 

populations that would otherwise be masked by bulk sequencing techniques. More specifically, 

single cell-type DGE analyses yielded a large number of aging-related genes that are: (a) 

commonly regulated among cell types, (b) specific to certain cell types and (c) discordant 

between cell types. To the best of our knowledge, only a small fraction of the genes reported 

here have been previously associated with brain aging. 

Interestingly, our data analysis revealed different patterns of aging across cell populations. We 

found that certain aging-related genes and pathways are differentially regulated across cell types. 

For example, we provide evidence that, with aging, expression of ribosomal protein genes is 

regulated in opposite directions among groups of cell types and among neuronal subtypes. Data 

from both DGE and pathway analyses showed that most of the brain cell types exhibited an aging-

driven upregulation of ribosomal protein genes, while those exhibiting the opposite regulation 

include important stem/progenitor cell populations. This paradoxical bidirectional regulation of 

ribosomal protein genes with aging is noteworthy.  

Over the past years, it has been clearly shown that the attenuation of protein synthesis by dietary 

restriction or genetic manipulation of translation-associated genes, including those encoding 

ribosomal subunits, increases the lifespan of multiple species 27. Notably, the down-regulation of 

ribosomal protein genes and bulk protein synthesis has been long considered as a hallmark of 

aging 28. It appears that the aging-driven down-regulation of ribosomal protein genes had been 

widely accepted, mostly based on transcriptomic studies in yeast 28. However, several studies in 

other model organisms and humans have presented conflicting results 5,29-35. Zahn et al. reported 

an aging-driven upregulation of ribosomal protein genes in human brain and muscle tissues 35 

and, in a later study, reported an aging-driven upregulation of ribosomal protein genes in mouse 

neuronal tissues 5 with a downregulation of the same genes in multiple non-neuronal tissues 5. 

Moreover, recently published transcriptomic studies showed an aging-related downregulation of 

ribosomal protein genes in ASC 7 and NSC 36, and an upregulation in MG of both aged 37,38 and 

diseased brains 37,39,40. Intriguingly, a very recent study reported increased ribosome biogenesis 

and activity as hallmarks of premature aging in human fibroblasts 41. A possible explanation for 

this is that cells with different metabolic demands are affected differently by aging, thus inducing 

alternative feedback loops to partially compensate for loss of translational efficiency and protein 

synthesis. Another explanation is that certain cell populations may start producing different types 

and/or levels of specialized ribosomes 42 tailored to their translational needs to cope with the 

metabolic changes induced by aging.  
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Collectively, these data indicate that the aging process may not be identical in all cell types, which 

is in line with our findings and with a recent transcriptome analysis of the Drosophila brain that 

showed a differential aging trajectory in the transcriptional profile of neurons and glial cells 33. In 

short, it is not yet clear whether the regulation of ribosomal protein genes and other translation-

associated genes is causative of aging or the consequence of physiological changes accompanying 

aging, or both depending on species, tissue and cell type. However, our work demonstrating that 

ribosome biogenesis is one of the aging-related pathways that is differentially regulated across 

cell types may help to reconcile seemingly conflicting studies.  

Lastly, we created a roadmap of intercellular communication in the brain by generating detailed 

information on ligand-receptor interactions that change with aging across nearly all brain cell 

types. This is also of high importance as recent findings from our lab 43 and others 22,44 have shown 

that certain secreted factors, either derived from brain parenchyma or blood, are able to 

modulate brain aging, degeneration and rejuvenation. Thus, the discovery of novel factors, their 

source, and their targets are emerging areas of importance in the aging field 2. We foresee the 

extension of this network by including data from blood proteomic analyses and transcriptomic 

data from both disease models and heterochronic parabiosis experiments 43 that may help in 

identifying novel therapeutic targets for treating functional defects in the brain brought on by 

aging and disease. 

Our findings, in agreement with recent studies, highlight the sensitivity and power of single-cell 

transcriptomics not only to reveal differences in cell identities, but also to reveal changes within 

individual cell types after different conditions 20,45,46, including organismal aging 8,9,32-34,38,47. As 

single-cell sequencing technologies continue to mature, some of the technical and experimental 

limitations that we encountered will be improved upon. These include: (a) potential sampling 

problems resulting from the enzymatic dissociation of the brain that may be overcome using 

single-nuclei sequencing approaches 19; (b) potential age-associated biases in response to 

dissociation, cell encapsulation, and other procedures that might drive transcriptional 

differences between experimental groups; (c) the relatively small number of cells sequenced 

compared to the total size of the brain, restricting the comparative analyses to more abundant 

cell populations; (d) the relatively shallow depth of sequencing limiting the analysis to highly 

transcribed genes; and (e) the lack of full-length splicing isoform profiling that could be enabled 

using other methods 48. Our data could not also reveal potentially important aging-driven 

regional changes 49 that may be resolved using spatial mapping sequencing approaches 50, and 

sex-specific gene expression variations as only whole brain preparations of male mice were 

analyzed. 

Nonetheless, our work identified aging-related changes in nearly all mouse brain cell types and 

revealed different patterns of aging across different populations, many of which we validated in 

this study. Thus, while there may be hallmarks of aging that occur in most cell types, such as 
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mitochondrial dysfunction and loss of proteostasis 1,3,28, our data argue against the hypothesis 

that aging induces a single universal molecular program in all cells and tissues 10. However, we 

note that the aging process may occur gradually or in discrete steps depending on complex 

interactions among cells in the brain and ways in which these interactions modified by extrinsic 

factors, such as stress and exercise. Thus, future studies exploring gene expression changes along 

a continuum, by examining additional timepoints, will help to reveal the precise aging trajectories 

for each cell and gene, and to distinguish changes that are causative of aging from those that 

change as a consequence of aging. 

Collectively, as a resource to the aging community, we provide comprehensive datasets of genes, 

pathways and ligand-receptor interactions with aging-related variation for all the cell types 

identified. We expect that, beyond the valuable exploration of aging signatures and novel insights 

regarding the aging process, our data will be used as a reference for a series of other applications. 

For example, we showed that numerous putative cell-specific marker genes change with aging. 

Thus, the purification or investigation of cells based on single discriminatory markers maybe 

faulty in the context of aging. Similarly, our data revealed that the transcript levels of certain 

housekeeping genes change with aging in many cell types, which could confound some 

quantitative analyses.  

Overall, these data will help to advance a variety of efforts towards understanding and 

modulating the aging process and exploring molecular and cellular therapeutic targets for aging-

related neurodegenerative diseases.  
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FIGURE LEGENDS 

Fig. 1. Identification of cell types. (A) Overview of the experimental workflow. (B) t-distributed 

stochastic neighbor embedding (t-SNE) projection of 37,069 single-cell transcriptomes (16,028 

from 8 young mouse brains and 21,041 from 8 old mouse brains). Cell clusters were color-coded 

and annotated post hoc based on their transcriptional profile identities (see details in 

Supplementary Methods). (C) t-SNE visualization of 6 major cell populations showing the 

expression of representative well-known cell-type specific marker genes. Numbers reflect the 

number of unique molecular identifiers (UMI) detected for the specified gene for each cell. (D) 

Violin plot showing the distribution of expression levels of well-known representative cell-type 

enriched marker genes across all 25 cell types (n=37,069 cells) (see details in Supplementary 

Methods). (E) Bar plot showing the total number of detected cells and the total number of 

detected genes per cell type.  

 

Fig. 2. Aging-related population shifts and changes in gene expression. (A) Bar plot showing the 

fraction of cells associated with each cell type in both young and old brains (data presents mean 

± SEM of 8 young and 8 old brains; *FDR<0.05 by two-tailed Mann-Whitney U test). (B) Strip chart 

showing the aging-related logarithmic fold changes (logFC) of all detected genes (dots) across all 

25 cell types. Genes in colored dots are significantly (FDR<0.05 and FC>10%) upregulated or 
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downregulated with aging, as determined by MAST analysis (see details in Supplementary 

Methods). Genes in gray are not significantly changed with aging. (C) Sample volcano plot for EC 

showing –log10(FDR) and logFC values for all genes with highlighting for those that are 

significantly upregulated (magenta dots) or downregulated (blue dots) with aging. Genes in black 

are not significantly changed with aging. (D) Heatmap of logFC showing a subset of aging-related 

genes (FDR<0.05 and FC>10%) that are shared across many of the major cell types. Gray indicates 

no significant dysregulation. (E) Heatmap of logFC showing a subset of aging-related genes 

(FDR<0.05 and FC>10%) that are unique to each major cell type.  

 

Fig. 3. Validation of shared and cell-type-specific aging-related gene expression changes. (A) 

Violin plots with boxplots overlaid with data in TPM from our scRNA-seq across all cells derived 

by brain (n=16 brains; 8 young and 8 old) (left panels) and RNAscope in situ hybridization images 

of mouse hippocampi (middle panels) showing the aging-related upregulation of the ribosomal 

protein gene Rpl6, and of the lncRNAs Malat1 and Meg3. Scatter plots (right panels) showing the 

quantification of the RNAscope data (data presents mean ± SEM of 3 young and 3 old brains for 

Rpl6 and Malat1, and of 4 young and 4 old brains for Meg3; *p=0.0279 for Rpl6, **p=0.0082 for 

Malat1, **p=0.0045 for Meg3 by two-tailed Welch’s t-test). Scale bar: 20μm. (B) Heatmap 

showing the fold expression changes (FC) of a few representative significantly (FDR<0.05) aging-

related genes in MG, EC, and ASC as identified by our scRNA-seq (left panel) and verified by both 

bulk RNA-seq (middle panel) and qRT-PCR (right panel) on sorted CD11b+ (MG), CD31+ (EC) and 

ACSA-2+ (ASC) cells. Gray indicates no aging-related gene expression changes in the seq data; 

consequently, these genes were not analyzed by qRT-PCR. For the qRT-PCR experiments, data 

presents mean ± SEM of 3-9 young and 3-10 old brains. (C) Scatter plots showing the significant 

correlations of the gene expression changes in (B) between the scRNA-seq, bulk RNA-seq and 

qRT-PCR datasets. Linear regression is depicted with the colored line, while black dotted lines 

represent 95% confidence intervals. Pearson’s squared correlation coefficient (R2) and p-value 

are shown at the bottom right of each plot. (D) Violin plots with boxplots overlaid with data in 

TPM from our scRNA-seq (n=16 brains; 8 young and 8 old) (left panels) and 

immunohistochemistry images of mouse cortices (middle panels) showing the aging-related up-

regulation of IL33 (that is mainly expressed in OLG; see Supplementary Fig. 14), and the aging-

related down-regulation of SPARC in MG (IBA1+ cells; indicated by arrows). Scatter plots (right 

panels) showing the quantification of the immunohistochemistry data (data presents mean ± 

SEM of 4 young and 4 old brains; *p=0.0467 for IL33+ cells, *p=0.0342 for SPARC+/IBA1+ cells by 

two-tailed Welch’s t-test). Scale bar: 50μm. 

 

Fig. 4. Validation of bidirectional aging-related gene expression changes. (A-B) Violin plots with 

boxplots overlaid with data in UMI from our scRNA-seq (left panels) and RNAscope in situ 
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hybridization micrographs of mouse cortices (middle panels) showing the aging-related 

downregulation of Cd9 in OPC (Pdgfra+ cells; indicated by arrows) (A), and the aging-related 

upregulation of the same gene in MG (Itgam+ cells; indicated by arrows) (B). Arrowheads in (B) 

designate autofluorescence from lipofuscin granules in the lysosomes of old microglia (see details 

in Supplementary Methods). Violin plots with boxplots overlaid (right panels) showing the 

quantification of the RNAscope data [data presents median expression of Cd9 in Pdgfra+ OPC 

(n=529 cells from 4 young brains, n=1,922 cells from 4 old brains) and Itgam+ MG (n=841 cells 

from 4 young brains, n=3,058 cells from 4 old brains); ****p<0.0001 by two-tailed Mann-Whitney 

U test]. Scale bar: 2μm. (C-D) Violin plots with boxplots overlaid with data in UMI from our scRNA-

seq (left panels) and RNAscope in situ hybridization micrographs of mouse cortices (middle 

panels) showing the aging-related downregulation of the ribosomal protein gene Rps23 in OPC 

(C), and the aging-related upregulation of the same gene in MG (D). As in (B), arrowheads in (D) 

designate autofluorescence from lipofuscin granules. Dotted lines outline the area of each cell 

that was considered for quantification (see details in Supplementary Methods). Violin plots with 

boxplots overlaid (right panels) showing the quantification of the RNAscope data [data presents 

median expression of Rps23 in Pdgfra+ OPC (n=1,012 cells from 4 young brains, n=2,483 cells 

from 4 old brains) and Itgam+ MG (n=1,234 cells from 4 young brains, n=2,237 cells from 4 old 

brains); ****p<0.0001 by two-tailed Mann-Whitney U test]. Scale bar: 2μm.  

 

Fig. 5. Aging-related changes in the expression of ribosomal protein genes. (A) Heatmap 

showing the logFC for all the significantly (FDR<0.05) aging-related ribosomal and translation-

associated genes across 11 cell types, as identified by our scRNA-seq. Gray indicates no aging-

related changes. (B) Heatmap of logFC showing all the significant (FDR<0.05) aging-related 

ribosomal protein genes and translation-associated genes across MG, EC and ASC as identified 

by our scRNA-seq (left panel) and further verified by bulk RNA-seq on sorted CD11b+ (MG), CD31+ 

(EC), and ACSA-2+ (ASC) cells (right panel). The few inconsistencies presented here more probably 

reflect differences in the composition of the input sorted populations used for the comparisons 

(see details in Supplementary Methods). Of note, despite the fact that only a subset of these 

genes was found significantly dysregulated in our bulk RNA-seq analysis, due to lower statistical 

power, there is a significant correlation of the gene expression changes between the scRNA-seq 

and bulk RNA-seq datasets, as shown in scatter plot (C). More specifically, dots in (C) represent 

all genes from the examined cell types in (B). Linear regression is depicted with the colored 

line, while black dotted lines represent 95% confidence intervals. Pearson’s squared correlation 

coefficient (R2) and p-value are shown at the bottom right of the plot. 

 

Fig. 6. Aging-related changes in cellular pathways and processes. Heatmap of gene set 

enrichment analysis (GSEA) showing a small subset of significant (p<0.05 and q<0.25) aging-
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related pathways across major cell types. Numbers in legend correspond to normalized 

enrichment scores (NES) (GSEA statistics; see details in Supplementary Methods). Positive NES 

values indicate upregulation, while negative NES values indicate downregulation. Gray indicates 

no significant dysregulation with aging. 

 

Fig. 7. Aging-related changes in intercellular communication. Panel (A) shows aging-related 

ligands produced and secreted by EC with receptors expressed in ASC, while panel (B) shows 

aging-related ligands produced and secreted by EC with receptors expressed in mNEUR. In both 

panels, nodes represent ligands or receptors expressed in the denoted cell type, and edges 

represent protein-protein interactions between them. Node color represents magnitude of 

differential gene expression (logFC as estimated by the MAST model), such that the most 

significantly age-upregulated genes are in magenta, and age-downregulated are in blue. Node 

borders indicate statistical significance of differential expression, specifically the false-discovery 

rate (padj) expected from the MAST analysis. Edge color represents the sum of scaled differential 

expression magnitudes from each contributing node, while width and transparency are 

determined by the magnitude of scaled differential expression (see details in Supplementary 

Methods). These figures have been filtered such that the top 65 edges representing the most 

differentially expressed node pairs are shown. Figures for these cell interactions, and all others, 

are available from our online interactive data viewer accessible at 

http://shiny.baderlab.org/AgingMouseBrain/. 
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METHODS 

 

Animals 

C57BL/6J mice (JAX #000664) were housed in the Harvard Biolabs Animal Facility under standard 

conditions. All experimental procedures were approved in advance by the Animal Care and Use 

Committee of Harvard University (AEP #10-23) and are in compliance with federal and state laws. 

Young male mice were used at 2-3 months of age, and old male mice at 21-22 months of age. 

 

Brain tissue dissociation  

Brain tissue harvest and dissociation was performed at the same daytime (09:00-10:00 am) for 

each animal, thus limiting circadian variation 51. For brain tissue dissociation, we modified existing 
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protocols and developed a new one that enables the isolation of intact living cells from both 

young and old mouse brains in less than 1 hour. Briefly, mice were CO2-anesthetized and then 

rapidly decapitated. Brains were extracted, and hindbrain regions were removed. The remaining 

tissue was dissociated into single cells using the Adult Brain Dissociation kit (Miltenyi Biotec #130-

107-677) with these modifications: (a) the tissue was manually dissociated following the basic 

steps of the protocol described in the Neural Tissue Dissociation Kit (Miltenyi Biotec #130-092-

628); (b) 5% (w/v) trehalose (Sigma Aldrich #T0167) was added in all buffers to ensure higher 

cellular viability 52; (c) half concentration of papain was used, and the digestion was performed 

at 33-35oC; (d) the enzymatic reaction was quenched using ovomucoid protease inhibitor, as 

described in the Papain Dissociation System (Worthington #LK003182); (e) cell clusters were 

removed by serial filtration through pre-wetted 70um (Falcon #352350) and 40um (Falcon 

#352340) nylon cell strainers; (f) myelin debris and erythrocyte removal steps were omitted to 

prevent any bias in the recovered cell yields; (g) all centrifugations were performed at 220xg for 

8min at 4oC. After dissociation, cells were kept on ice for no longer than 1 hour until further 

processing. 

 

Single-cell RNA-sequencing 

For the scRNA-seq experiments, 8 young and 8 old mouse brains were analyzed, with 2 animals 

sacrificed per day. Brain cells were processed through all steps to generate stable cDNA libraries. 

Briefly, after dissociation, cells were diluted in ice-cold PBS containing 0.4% BSA at a density of 

1,000 cells/ul. For every sample, 17,400 cells were loaded into a Chromium Single Cell 3’ Chip 

(10x Genomics) and processed following the manufacturer’s instructions. Single-cell RNA-seq 

libraries were prepared using the Chromium Single Cell 3’ Library & Gel Bead kit v2 and i7 

Mutiplex kit (10X Genomics). Libraries were pooled based on their molar concentrations. Pooled 

libraries were then loaded at 2.07 pM and sequenced on a NextSeq 500 instrument (Illumina) 

with 26 bases for read1, 57 bases for read2 and 8 bases for Index1. Cell Ranger (version 1.2) (10X 

Genomics) was used to perform sample de-multiplexing, barcode processing and single cell gene 

unique molecular identifier (UMI) counting, while a digital expression matrix was obtained for 

each experiment with default parameters 53, mapped to the 10X reference for mm10, version 

1.2.0. After the initial sequencing, the samples in each pool were re-pooled based on the actual 

number of cells detected by Cell Ranger (Supplementary Fig. 2A), aiming to sequence each 

sample to a similar depth (number of reads/cell) (median: 40,007; Supplementary Fig. 2C). 

Multiple NextSeq runs were conducted to achieve over 70% sequencing saturation as determined 

again by Cell Ranger (median: 75%; Supplementary Fig. 2F). 

 

Raw data processing and quality control for cell inclusion 
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Basic processing and visualization of the scRNA-seq data were performed using the Seurat 

package (version 2.3) in R (version 3.3.4) 54-56. Our initial dataset contained 50,212 cells with data 

for 19,607 genes. The average numbers of UMI (nUMI) and non-zero genes (nGene) were 

2,876.70 and 1,112.56 respectively. The data were log normalized and scaled to 10,000 

transcripts per cell. Variable genes were identified with the FindVariableGenes() function with 

the following parameters used to set the minimum and maximum average expression and the 

minimum dispersion: x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5. Next, principal 

component analysis (PCA) was carried out, and the top 20 principal components (PCs) were 

stored, which is the default number in Seurat. Clusters were identified with the FindClusters() 

function using the shared nearest neighbor (SNN) modularity optimization with a clustering 

resolution set to 1.6. All clusters with only one cell were removed. This method resulted in 40 

initial clusters. Data for all cells are provided in Supplementary Fig. 3A with colors representing 

each of the clusters. For initial quality control filtering, we selectively removed entire clusters 

with the majority of cells having greater than 30% mitochondrial RNA, under 1,000 detected 

transcripts, or under 500 unique genes. Finally, we filtered the remaining individual cells using 

the following parameters: minimum percent mito = 0, maximum percent mito = 30%, minimum 

number of UMI = 200, maximum number of UMIs = 30,000, minimum number of nGene = 250, 

and maximum number of nGene = 6,000 to exclude outliers. Finally, we removed any genes that 

were only detected in fewer than 3 cells. After initial quality control (QC), we maintained a total 

of 38,244 cells and 14,699 genes. Data for all cells are provided in Supplementary Fig. 3B with 

black representing excluded cells and grey the included cells. The average nUMI, non-zero genes, 

percent mitochondrial RNA, and percent ribosomal RNA were 3,199.12, 1,284.08, 8.33%, and 

6.94% respectively. PCA was again carried out, and the top 20 PCs were retained. The clustering 

was again performed with the clustering resolution now set to 2.0. This method resulted in 55 

initial clusters. The final pre-processing stage was to remove likely doublet artifacts arising from 

the co-capture of multiple cells in one droplet. This step occurred following an initial round of 

determination of cell-type identity as described in the next section. We first searched for the top 

differential markers for each identified cluster/sub-cluster using the FindMarkers() function 

(Supplementary Tables 3-4). Then, we defined doublets/multiplets as any cluster in which >30% 

of its cells express at least 5 of the top 10 genes specific for the initially identified cell type and 

any other cell type outside of the cell class it is associated with (see below for details on cell 

classes). These clusters were removed from downstream analysis. Furthermore, cell clusters that 

were not represented by at least half of the young and old animals were also excluded. For 

example, although we detected epithelial cells (Epcam+/Krt18+) in our dataset, we excluded them 

from our processing as they were detected only in two of the eight young animals but none of 

the old animals. After exclusions, clustering was again performed. Ultimately, we included 37,069 

cells representing 38 clusters (Supplementary Fig. 4). 
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Determination of cell-type identity 

For each cell type, we used multiple cell-type specific/enriched marker genes that have been 

previously described in the literature to determine cell-type identity. These include, but are not 

limited to: Pdgfra for OPC 57; Cldn11 for OLG 57; Npy for OEG 14,58; Thbs4 for NSC 59-63; Cd44 for 

ARP 64; Gja1 for ASC 46; Cdk1 for NRP ; Sox11 for ImmN 65; Syt1 for mNEUR 66; Baiap3 for NendC 
67; Ccdc153 for EPC 45; Sspo for HypEPC 12; Rax for TNC 45; Ttr for CPC 68; Cldn5 for EC 69; Kcnj8 for 

PC 69; Acta2 for VSMC 69; Alas2 for Hb-VC 20,70; Slc6a13 for VLMC 12,57; Slc47a1 for ABC 12; 

Tmem119 for MG 46; Plac8 for MNC 71; Pf4 for MAC 71; Cd209a for DC 71,72; S100a9 for NEUT 71 

(see Fig. 1C-D). We then arranged all the identified cell types based on their expression profile, 

lineage, function and topology into 6 classes of cells (Supplementary Fig. 7A). For each class, we 

re-clustered the subcategorized cell types following the same strategy (top 20 PCs using a 

clustering resolution of 2.0). Only for the neuronal lineage, which has an increased complexity in 

terms of cell subtypes, we utilized the top 40 PCs to yield more separated clusters. The 

annotation of sub-clusters was performed similarly to identification of the main cell clusters, 

using additional reported cell type/subtype marker genes 73-76. 

 

Differential gene expression analysis  

After initial quality control pre-processing and determination of cellular identities, we utilized the 

MAST package (version 1.6.1) 77 in R (version 3.3.4) to perform differential gene expression (DGE) 

analysis. MAST generated p-values, fold changes (FC), and logFC (based on natural log of the fold 

changes) using a hurdle model with normalized nUMI as a covariate. It is worth mentioning that 

due to shrinkage in the Bayes approach leveraged by MAST, we were able to detect significance 

in very small changes in transcription but there was also an underestimation of fold change. This 

is especially noticeable when comparing fold change between MAST calculations and traditional 

TPM-based calculations for genes with low expression levels. Additionally, the DGE techniques 

employed here have more power to assign significance of subtle changes in highly transcribed 

genes and therefore our results may underrepresent changes in lowly transcribed genes. Finally, 

our ability to establish a baseline level of transcription is proportional to the number of cells 

measured and thus more subtle changes in abundant populations can be deemed significant.  

 

Pathway analysis 

Gene set enrichment analysis (GSEA) 21 was performed to identify cellular pathways and 

processes associated with aging. Analysis was carried out using the GSEA package (version 3.0) 

(Broad Institute), following the protocol described in Reimand et al. 2019 78. Briefly, prior to the 
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analysis, genes for every distinct cell population were ranked according to their differential gene 

expression changes and significance (young vs. old). Two pre-ranked gene lists were generated 

for each cell population: (1) with all genes transcribed, and (2) without the highly abundant 

mitochondrially-encoding genes and ribosomal protein genes. All of these pre-ranked gene lists 

were then used as an input, while 5 gene datasets [Hallmark pathways; GO biological processes; 

KEGG; BioCarta; Reactome (versions 6.1)] were used as a reference. One thousand random 

permutations were performed to calculate the p-values for each pathway. Only gene sets with 

p<0.05 and q<0.25 were considered as significantly enriched. To overcome redundancy and help 

interpretation of the analysis, we grouped terms over-representing the same pathway using the 

Cytoscape software (version 3.5.1) and the AutoAnnotate app (version 1.2) 79. Pathways 

belonging to similar biological processes were also grouped together for easier 

navigation/exploration (Supplementary Tables 9-10). For the expression heatmaps of pathways 

and processes, the top leading edge genes and their raw normalized expression values were 

determined by the Cytoscape software (version 3.5.1) and the EnrichmentMap app (version 3.0.) 
79. More specifically, for each gene value (TPM) in a row of expression the mean of the row was 

subtracted followed by division by the row’s standard deviation. 

 

Intercellular network analysis 

Cell-cell interactions were predicted by a method similar to that described by Kirouac et al. 80. 

First, a cell communication interactome was created, collecting known protein-protein 

interactions between receptor, ligand, and extracellular matrix (ECM) proteins. Receptor genes 

were defined based on a set of GO terms (GO: 0043235 - receptor complex; GO: 0008305 - 

integrin complex; GO: 0072657 - protein localized to membrane; GO: 0043113 - receptor 

clustering; GO: 0004872 - receptor activity; GO: 0009897 - external side of plasma membrane) 

and UniProt (search term: "Receptor [KW-0675]" GO: 0005886 organism: human). Ligand genes 

were defined based on a GO term (GO: 0005102 - receptor binding) and the set of proteins 

labeled as secreted in the Secretome dataset 

(https://www.proteinatlas.org/humanproteome/secretome) 81. ECM genes were defined based 

on a set of GO terms (GO: 0031012 - extracellular matrix; GO: 0005578 - proteinacious 

extracellular matrix; GO: 0005201 - extracellular matrix structural constituent; GO: 1990430 - 

extracellular matrix protein binding; and GO: 0035426 - extracellular matrix cell signalling). Gene 

lists were manually curated to correct or remove genes that were misclassified. Using the curated 

list of receptors, ligands, and ECM genes, known protein-protein interactions were collected 

from iRefindex (version 14) 82, Pathway Commons (version 8) 83, and BioGRID (version 3.4.147) 84, 

keeping only those occurring between genes from the different classes (ligand, receptor, ECM). 

This dataset is available at https://baderlab.org/CellCellInteractions. To predict cell-cell 

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.proteinatlas.org_humanproteome_secretome&d=DwMF-g&c=WO-RGvefibhHBZq3fL85hQ&r=yHjZ9myVDluHOX2MiNX_ikX7c99rFjCJIrp_lxkBN_4&m=XmlAvX2NeDkxQYpXSEqY0-NYsA8vNqowEg7hVKepqYU&s=UHhs6crZMYvkCv7l85eT8Q5skZckCcMsDB-3T0wqkHc&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__baderlab.org_CellCellInteractions&d=DwMF-g&c=WO-RGvefibhHBZq3fL85hQ&r=yHjZ9myVDluHOX2MiNX_ikX7c99rFjCJIrp_lxkBN_4&m=XmlAvX2NeDkxQYpXSEqY0-NYsA8vNqowEg7hVKepqYU&s=nGyTtVLsFE3jiejZamUiXfZ_TgmXl0dF5zJJpwQ0lUw&e=
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interactions, the ligand-receptor interaction dataset was filtered for genes detected to be 

expressed at the mRNA transcript level in our cell types. To investigate aging-related 

perturbations in these putative cell-cell interaction networks, differential gene expression 

metrics from the MAST analysis outlined above were used to build subnetworks for each set of 

interactions between cell types. In these networks, nodes represent ligands or receptors 

expressed in the denoted cell type, and edges represent protein-protein interactions between 

them. Nodes were colored to represent the magnitude of differential gene expression (logFC as 

estimated by the MAST model). These values were scaled per cell type and summed to determine 

edge weight. An R Shiny application was built to interactively explore the bipartite graphs 

generated from this analysis and is available at http://shiny.baderlab.org/AgingMouseBrain/ and 

on GitHub at https://github.com/BaderLab/AgingMouseBrainCCInx. 

 

Flow cytometry 

For the simultaneous isolation and purification of ASC, EC, and MG, we developed a multicolor 

flow cytometry approach. Briefly, dissociated cells from each brain were pelleted (220xg, 8min, 

4oC) and resuspended in 1ml ice-cold labeling buffer (HBSS without calcium and magnesium, 0.1% 

BSA, 2mM EDTA, 5% trehalose, 1% GlutaMAX). Cells were incubated with 100ul of FcR blocking 

reagent (Miltenyi Biotec #130-092-575) for 12min at 4oC under continuous rotation, and then 

labeled with 3ug/ml of each of the following antibodies: APC anti-ACSA-2 (Miltenyi Biotec #130-

102-315) for ASC; BV786 anti-CD31 (BD Biosciences #740870 and BD Biosciences #740879) for 

EC; and BV510 anti-CD11b (BD Biosciences #562950) for MG. Cells were also incubated with the 

following antibodies targeting unwanted cell populations: PE anti-CD200 (BioLegend #123808) 

for mNEUR and Alexa Fluor 488 anti-O4 (R&D Systems #FAB1326G) for OLG. This step is critical 

as it helps to exclude unwanted cells during sorting, thus minimizing cross-contamination events. 

After 12min of incubation at 4oC (in dark conditions), cells were washed extensively, pelleted and 

resuspended in ice-cold FACS buffer (HBSS containing calcium and magnesium, 0.5% BSA, 5% 

trehalose, 1% Glutamax) in a volume of 25ml per brain (5 FACS tubes). To exclude cellular debris 

and dead cells, 15min before sorting, 10uM Calcein Blue AM (BD Biosciences #564060) was added 

to the FACS tubes to stain live cells. Calcein+ cells were then sorted using a Moflo Astrios 

instrument (Beckman Coulter) with a 70um nozzle at 60psi. Gates were set manually by using 

compensation beads (Life Technologies #A10497) and appropriate control samples, and data 

were analyzed with FlowJo software (version 10). For the purification of EPC, we followed a 

similar flow cytometry approach using these antibodies: APC anti-CD133 (Miltenyi Biotec #130-

102-197); APC anti-CD133 (eBioscience #17-1331-81); PE anti-CD24a (BD Biosciences #553262); 

and PE anti-CD24a (BioLegend #138504). To minimize RNA degradation, sorted cells were 

collected directly in RL buffer (Norgen Biotek #48500) supplemented with 10% BME, in a 1:1 final 

http://shiny.baderlab.org/AgingMouseBrain/
https://github.com/BaderLab/AgingMouseBrainCCInx
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ratio (50% lysis buffer : 50% cells in sheath fluid; the PBS-based solution that is derived from the 

flow cytometer). After sorting, cell lysates were snap frozen and stored at -80oC for up to 1 month 

until further processing.  

 

RNA extraction  

Total RNA was extracted from sorted cells using the total RNA purification plus Micro kit (Norgen 

Biotek #48500) following the manufacturer’s instructions. Prior to RNA extraction, a chloroform 

extraction step was included to remove myelin debris/lipids, as well as, an on-column DNase 

digestion step (Qiagen #79254) to remove genomic and mitochondrial DNA. For all samples, RNA 

concentration was determined using a Qubit Fluorometer (Invitrogen), while RNA purity and 

integrity were evaluated with a BioAnalyzer instrument (Agilent). After extraction, RNA was 

immediately stored at -80oC for no longer than a month until further processing.  

 

Bulk RNA sequencing 

For the bulk RNA-seq experiments, sorted/purified cells from 8 mouse brains (4 young and 4 old) 

were analyzed. Bulk RNA-seq was performed using a modified version of the SCRB-Seq that was 

originally developed for single cell RNA-seq analysis 85. Briefly, polyadenylated RNA, from total 

RNA (7.5-25ng; RIN values >6.5) extracted from our FACS-purified cells, with ERCC Spike-in 

control Mix A (Ambion) at 10-6 final dilution, were converted to cDNA and decorated with 

universal adapters, sample-specific barcodes and UMI using a template-switching reverse 

transcriptase. Decorated cDNA was then pooled, amplified and prepared for multiplexed 

sequencing (NextSeq500, Illumina) using a modified transposon-based fragmentation approach 

that enriched for 3’ ends and preserved strand information. 

 

Bulk sequencing data analysis 

Post-sequencing quality control on each of the libraries was performed to assess coverage depth, 

enrichment for messenger RNA (exon/intron and exon/intergenic density ratios), fraction of 

rRNA reads and number of detected genes using bespoke scripts. Second sequence reads were 

aligned against the murine genome mm9 using bwa mem (version 0.7.10-r789) (http://bio-

bwa.sourceforge.net/). Gene expression was estimated based on reads mapping near the 3' end 

of transcripts using ESAT 86, based on the mm9 Refseq annotation, with flags java -Xmx128G -

task score3p -wLen 50 -wExt 5000 -wOlap 0 -sigTest 0.01 -multimap ignore. Results were 

summarized as counts per million mapped reads (CPM), merged across samples, log-transformed 

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
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and subjected to hierarchical clustering and visualization. For ERCC quantification, reads were 

mapped against the ERCC sequences using STAR (version 2.5.1b) 87 with flags --runMode 

alignReads --runThreadN 8 –outSAMtype BAM SortedByCoordinate –outFilterType BySJout --

outFilterMultimapNmax 20 --outFilterMismatchNmax 999 --alignIntronMin 10 –alignIntronMax 

1000000 --alignMatesGapMax 1000000 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --

quantMode TranscriptomeSAM. Bam files from STAR were sorted and indexed with samtools 88 

and counts were retrieved from the indices using idxstats. Differential gene expression (DGE) 

analysis 89 was performed in R (version 3.2.3) using Bioconductor’s DESeq2 package (version 3.7) 
90. Dataset parameters were estimated using the estimateSizeFactors(), and 

estimateDispersions() functions; read counts across conditions were modeled based on a 

negative binomial distribution and a Wald test was used to test for differential expression 

(nbinomWaldtest(), all packaged into the DESeq() function), using the age as a contrast.  

 

Quantitative Real time PCR 

For the quantitative Real-Time PCR (qRT-PCR) experiments, sorted/purified cells from 19 mouse 

brains (9 young and 10 old) were analyzed. Briefly, RNA samples with RIN values >6.5 were 

reverse transcribed into cDNA using the iScript cDNA synthesis kit (Bio-Rad #170-8891) following 

the manufacturer’s instructions. The resulting cDNA was then processed for qRT-PCR analysis 

using pre-designed primers (Integrated DNA Technologies) (Supplementary Table 11) and the 

Fast SYBR Green Master Mix (Life Technologies #4385614) in a QuantStudio 12K Flex Real-Time 

PCR System (Applied Biosystems). Before data analysis, we examined the melting curves for each 

reaction and included only those with a single peak at the expected melting temperature. The 

fold-change (FC) in gene expression was determined by the 2-DDC
T method 91, and all values were 

normalized to the endogenous expression of Vcp; a housekeeping gene that has been proposed 

for calibration in quantitative experiments 92. Our scRNA-seq analysis showed that in the vast 

majority of cell populations Vcp levels remain unaltered with aging, in contrast to other more 

commonly used genes. Samples with Vcp Ct values >29 were excluded from our analysis. Each 

sample was repeated in technical duplicates on 3-10 biological replicates. 

 

Comparison of gene expression changes across different datasets 

Unless stated otherwise, heatmaps of LogFC were used for the comparison of gene expression 

changes across different datasets (scRNA-seq, FACS/bulk RNA-seq, FACS/qRT-PCR). Heatmaps 

are much more informative compared to Venn diagrams as they display gene identity and the 

degree of expression change. Our independent datasets were in a very good agreement with 
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each other, as only a few inconsistencies in the expression changes of certain individual genes 

were observed. These changes more likely reflect slight differences in the cell populations 

identified either informatically (for scRNA-seq) or by antibody labeling (for FACS/bulk RNA-seq). 

For example, in our flow cytometry experiments we used anti-ACSA-2 to isolate and purify 

astrocytes 93,94, but a recent study showed that this marker is not expressed at the same level by 

all astrocytes 95. Thus, this marker may slightly enrich some subpopulations of astrocytes more 

than others. Of note, the existence of diverse subpopulations of astrocytes with distinct regional-

specific transcriptomic signatures has been recently demonstrated 12, and verified by our scRNA-

seq analysis (see Supplementary Fig. 8), while aging-associated gene expression changes in 

different regional astrocytes have been also documented 7,96,97. Therefore, it is possible that 

informatics-based identification, and FACS-based isolation/purification, define cell populations 

that are very similar, but not identical, to each other, potentially contributing to discrepancies 

when comparative analyses are employed. 

 

RNAscope In Situ Hybridization 

RNAscope fluorescent in situ hybridization was performed on fresh-frozen brain tissue from 16 

mice (8 young and 8 old). For sample preparation, mice were CO2-anesthetized, and brains were 

rapidly extracted and embedded in OCT (Tissue Tek) on dry ice, and then stored at -80°C until 

further processing. We collected 14μm cryostat sections and RNAscope hybridizations were 

carried out according to the manufacturer’s instructions, using the RNAscope Multiplex 

Fluorescent Manual Assay kit (Advanced Cell Diagnostics). Briefly, thawed sections were 

dehydrated in sequential incubations with ethanol, followed by 30 min Protease IV treatment 

and washing in 1x PBS. Appropriate combinations of hybridization probes were incubated for 2 

hours at 40°C, followed by four amplification steps, DAPI counterstaining, and mounting with 

Prolong Gold mounting medium (Thermo Fisher Scientific #P36930). Brain regions were selected 

considering the high expression levels of the examined genes, according to the Allen Brain Atlas 
98. For single probe analysis, probes against Rpl6 (ACD #300031), Malat1 (ACD #313391), and 

Meg3 (ACD #527201) were tested and labeled using the fluorophore Atto-550nm. For each 

mouse, 3-4 bregma-matched sections were imaged. Images (4 per brain section) were acquired 

using a Zeiss LSM 880 Confocal Microscope using identical settings across young and old sections 

and represented as maximum intensity projections of acquired confocal z stacks. Analysis was 

done using the CellProfiler software (version 3) 99 with the following specifications for different 

target probes: Malat1/Meg3: only puncta with a diameter between 4-8 pixels that were located 

within the nuclei were quantified; Rpl6: only puncta with a diameter between 4-8 pixels that 

were located within the perinuclear space (within 70 pixels of the DAPI-positive nuclei) were 

quantified. For dual probe analysis, RNAscope was performed as described above, but here 
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imaging settings were kept identical across all young and old brain sections and all probes tested. 

Probes against Cd9 (ACD #430631), Rps23 (ACD #571741), Pdgfra (ACD #480661-C3), and Itgam 

(ACD #311491-C3) were tested. Target probes (Cd9, Rps23) were labeled by fluorophore Atto-

550nm while cell-type markers (Pdgfra, Itgam) were labeled by fluorophore Alexa-488nm. An 

empty channel (Atto-647) was collected for every image processed to account for 

autofluorescence from lipofuscin granules largely associated in the aged brain with microglia 100. 

In our imaging we observed that lipofuscin autofluorescence mainly interfered with Alexa-488 

channel. Imaging analysis was performed as above with the following specifications for target 

probes (Cd9, Rps23): only puncta with a diameter between 6-15 pixels that were located within 

an OPC’s or MG’s perinuclear space (within 70 pixels of the DAPI-positive nuclei) were quantified. 

OPC and MG were defined as cells that contained at least two Pdgfra+ or Itgam+ puncta 

respectively (diameter 6-15 pixels). It is important to note that due to the high degree of 

homology among ribosomal protein genes, certain pseudogenes and predicted mouse genes, 

probes designed against Rpl6 and Rps23 may also cross-detect off-targets, based on the 

specificity criteria provided by the vendor: Rpl6 probe may cross-detect: Gm13397, Gm6807; 

Rps23 probe may cross-detect Gm8624, Gm3189, Gm10689, Rps23-ps1, Rps23-ps2.  

 

Immunohistochemistry 

For immunohistochemistry experiments, 14 mouse brains (7 young and 7 old) were processed. 

For preparation of free-floating tissue sections, mice were perfused intracardially with 1x PBS 

followed by 4% paraformaldehyde (PFA), brains were removed and embedded in 3% agarose, 

and serial 30µm-thick coronal sections were cut in a vibrating microtome and were kept in 1x 

PBS with 0.1% sodium azide at 4°C until staining. For preparation of fresh-frozen tissue sections 

(used only to show the co-expression of IL33 and OLIG2), mice were CO2-anesthetized, brains 

were rapidly extracted and embedded in OCT, and serial 14μm-thick coronal sections were cut in 

a cryostat and then fixed in 4% PFA prior to staining. Immunostaining was performed using 

standard procedures. Briefly, sections were washed thoroughly in 1x PBS and incubated in a 

permeabilization/blocking solution [10% normal goat serum (or 10% donkey serum, or 2% horse 

serum), 0.25% Triton X-100, 1x PBS] for 1 hour at room temperature. Sections were then 

incubated overnight at 4°C with the following primary antibodies in blocking solution (typically 

at 1:100 dilution): goat polyclonal anti-SPARC (R&D Systems #AF942), rabbit polyclonal anti-IBA1 

(Wako #019-19741), goat polyclonal anti-IL33 (R&D Systems #AF3626), and mouse monoclonal 

anti-OLIG2 (Millipore #MABN50). Alexa Fluor secondary antibodies (Invitrogen) were used for 

detection of primary antibodies in 1% normal goat (or donkey serum or horse serum), 1x PBS for 

1-2 hours at room temperature. Hoechst 33342 was used to label nuclei. Imaging was performed 

using a Zeiss ELYRA super-resolution confocal microscope (free-floating tissue sections) or a Zeiss 
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LSM 880 confocal microscope (fresh-frozen tissue sections) at 20x and 40x magnifications. 

Images were visualized using Zeiss Zen software (blue edition; version 2.6). For each mouse, 3-4 

bregma-matched sections were imaged. Images were represented as maximum intensity 

projections of acquired confocal z-stacks. Analysis was done using Image J software (version 

1.49).  

 

Statistics and reproducibility 

No statistical methods were used to predetermine sample sizes; our samples sizes were 

determined iteratively. No randomization was performed. Data collection and analysis were not 

performed blind to the conditions of the experiments. All statistical analyses were performed 

using R (version 3.3.4) or GraphPad Prism (version 7.04). Unless otherwise stated, to generate p-

values for cell counts and other metrics/variables we used the Mann-Whitney U test 101. All p-

values modified to a false discovery rate (FDR) of 5% using the Benjamin-Hochberg precedure 102. 

For validation of gene expression changes by qRT-PCR, immunohistochemistry and RNAscope in 

situ hybridization assays, data distribution was assumed to be normal for each analysis, but this 

was not formally tested.   

 

Reporting Summary 

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article. 

 

Code availability 

The code used to perform analysis of the sequencing data was an adaptation of standard R 

packages, such as Seurat and MAST, as described in the Methods section. The code used for the 

ligand-receptor interaction analyses is available on GitHub at 

https://github.com/BaderLab/AgingMouseBrainCCInx. More detailed information is available 

upon request.  

 

Data availability 

https://github.com/BaderLab/AgingMouseBrainCCInx
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The raw single-cell RNA sequencing data are available through NCBI’s Gene Expression Omnibus 

(GEO) under the accession number GSE129788. The processed datasets can be readily viewed, 

explored and downloaded through our web-based interactive viewers at 

https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain and 

http://shiny.baderlab.org/AgingMouseBrain/. 
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