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Abstract Shared mobility is widely recognized for its contribution in reducing carbon footprint, traffic
congestion, parking needs and transportation-related costs in urban and suburban areas. In this context,
the use of carpooling in home-work commute is particularly appealing for its potential of lessening the
number of cars and kilometers traveled, consequently reducing major causes of traffic in cities. Accord-
ingly, most of the carpooling algorithms are optimized for reducing total travel time, cost, and other
transportation-related metrics. In this paper, we analyze carpooling from a new perspective, investigating
the question of whether it can be used also as a tool to favor social integration, and to what extent social
benefits should be traded off with transportation efficiency. By incorporating traveler’s social character-
istics into a recently introduced network-based approach to model ride-sharing opportunities, we define
two social-related carpooling problems: how to maximize the number of rides shared between people
belonging to different social groups, and how to maximize the amount of time people spend together
along the ride. For each of the problems, we provide corresponding optimal and computationally effi-
cient solutions. We then demonstrate our approach on two datasets collected in the city of Pisa, Italy,
and Cambridge, US, and quantify the potential social benefits of carpooling, and how they can be traded
off with traditional transportation-related metrics. When collectively considered, the models, algorithms,
and results presented in this paper broaden the perspective from which carpooling problems are typically
analyzed to encompass multiple disciplines including urban planning, public policy, and social sciences.
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1 Introduction

Car- and ride-sharing programs have been gaining momentum in transportation planning, for their contri-
bution to reduce cost, carbon footprint, traffic congestion and parking needs. They have also proved to be
commercially successful, with companies such as Uber and Didi Chuxing expanding their operations in
developed and developing countries, and some cities even incorporating them as part of their transit op-
tions. The success of car-sharing programs came somehow as a surprise in transportation studies, which
for decades have been trying to cope with the negative environmental externalities of the automobile
while acknowledging that a door-to-door transportation system, such as the private car, brings powerful
benefits to its users. The gap between the awareness of negative effects of private cars at the societal
level (traffic, pollution) and the personal attachment to the benefits it brings at the individual level is well
known [13, 20, 24, 35].

Shared mobility programs have been promoting a half-way solution: by sharing trips, users of the
system reduce the negative externalities tied to the use of private cars, while still enjoying the comfort
and some level of privacy way beyond what is offered in public transportation. Still, a higher acceptance
of car-sharing faces the challenge of convincing more users to share a car with a total stranger who is not
a professional driver. This human aspect of shared mobility is still vastly understudied in transportation
scholarship, which mostly understands mobility primarily by its instrumental value, i.e. an activity un-
dertaken to move from point A to point B. Only recently, the intrinsic values of the time spent traveling
and the social dimensions of mobility have been gaining traction [8]. Some scholars have been pointing
to the “social capital” of sharing daily trips with others. For instance, [7] compared users of public and
private transportation in the Netherlands, considering the first as more exposed to social diversity and the
latter as less exposed, concluding that while more exposure to diversity does not necessarily create more
connections among people, non-exposure certainly blocks opportunities of person-to-person interactions.
Using travel smart card data in Singapore, [33] demonstrates that encounters between strangers in pub-
lic transportation show regular temporal patterns, creating a sort of a small-world network of “familiar
strangers”.

Acknowledging the growing interest into the human and social aspects related to shared mobility, this
paper studies for the first time the potential of a specific car sharing program – carpooling – to become
a tool for promoting social mixing between heterogeneous social categories. Introducing social mixing
into car-sharing schemes builds upon a recognized new feature of contemporary sharing economy: the
“stranger sharing” [15]. While traditional forms of sharing were usually confined to a closed network
of friends, family and trusted individuals, sharing apps have been successful in creating ways to make
strangers share resources and services. The success of sharing platforms indicates that mixing people
with different characteristics into a shared ride is better accepted than previously imagined.

The focus on carpooling is motivated by the fact that, different from app-based car-sharing schemes,
in this shared mobility model the driver is not only transporting other people, but she is also purposefully
travel from an origin to a destination, often recurrently. Thus, travel endpoints can be considered as “social
anchor points” in social network analysis [9]. While psychological and social aspects still influence the
willingness to participate in carpooling schemes [14], a common trace of carpooling groups, or clubs,
is that they “provide a common minimum level of trust between its members” [11]. Thus, carpooling,
especially if recurrently used for home-work commuting, is the ideal setting for attempting to bridge the
gap between societal and individual utility of car transportation.

This paper investigates the question of whether carpooling can be used as a tool to actively promote
social integration. We thus revert the traditional perspective that considers social ties as possible con-
strains or impediment to ride sharing [11, 26], and analyze the potential of carpooling to act as “social
mixer”, in which social characteristics are taken into consideration [5]. A thorough discussion of this
novel viewpoint through which the performance of carpooling is analyzed is reported in Section 2.
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Table 1 Reference Table.

Name Description

Ti Trip i
S(i) Starting location of trip i in (lat, long) coordinates
D(i) Destination location of trip i in (lat, long) coordinates
dAB Distance between two locations A and B
τAB Time required to travel from A to B
∆ Maximum allowed sharing delay
Mc Maximum Cardinality Matching Algorithm
Md Maximum Saved Distance Matching Algorithm
Mt Maximum Mingling Time Matching Algorithm
Mx Maximum Social Mixing Time Matching Algorithm
CDF Cumulative distribution function
ρ Assortativity coefficient
σij Kilometers saved while sharing trips i and j
σ Normalized saved mileage achieved with trip sharing
τij Mingling time spent together by the travelers associated to the shared trips i and j
τ Average mingling time achieved with trip sharing
ψ Fraction of matched trips
φ Fraction of dissortative links achieved with trip sharing

In order to answer the question above, we devise a novel methodology and a set of algorithmic tools
to actively promote social integration through carpooling. The devised methodology is then applied to
data sets collected in the city of Pisa, Italy, and Cambridge, US, to provide accurate quantification of
the potential social benefits of carpooling, and discuss how social-based metrics can be traded off with
traditional transport-based metrics in identifying the most desirable carpooling strategy.

The paper is organized as follows: Section 2 explains the main idea behind the paper, namely to ex-
plore carpooling as a possible means for promoting social integration. Section 3 discusses related work
and highlight the contribution of this paper. Section 4 describes the used methods and material, in par-
ticular: Section 4.1 describes how carpooling could be modeled through shareability networks, a com-
putationally efficient network-based approach; Section 4.2 describes four possible metrics defined for
optimizing the matching of rides, two of which geared towards maximization of environmental benefits,
while the other two oriented to maximize potential social benefits; Section 4.3 describes the data we used
for the analyses. Section 5 shows the results of our analyses, while Section 6 concludes the paper summa-
rizing the main findings and discussing possible future research directions. Table 1 reports all the symbols
and specific terms used throughout the paper for immediate reference of the reader.

2 Carpooling for Social Integration

This paper investigates whether and to what extent carpooling can be used as a tool for not only reducing
the carbon footprint of home-work commuting, but also to favor social integration. Although ride-sharing
systems must be designed to minimize the inconvenience for both drivers and passengers in terms of
waiting and travel time to provide an acceptable service, researchers have tested certain degrees of incon-
venience (such as including meeting points along the journey [32]) to optimize the efficiency of the system
without decaying the participants’ satisfaction with the ride-sharing experience. Here, we introduce an-
other dimension for analysis: by coupling network-based shared mobility models with a social profile of
the travelers performing the trips, we demonstrate that it is possible to define social-based metrics linked
to sharing opportunities, and ultimately to prioritize the ride matching choices accordingly.

It is important to observe that this paper does not attempt to claim that travelers of different pro-
files interact more. For the social interaction to happen, what matters is not similarity but compatibility
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between two individuals. More broadly speaking, for social mixing two steps need to happen: 1) to cre-
ate opportunities for social interaction; and 2) given the opportunity, assess whether and to what extent
that opportunity fostered a fruitful social interaction. This paper is focused with 1), and in particular to
investigate to what extent carpooling can be used to create opportunities for social interaction.

Social mixing is highly valued in urban studies and transit studies and policies. Although social mix-
ing is an umbrella term that include different characteristics in different contexts, overall its goal is to
bring together social groups with different social, economic, ethnic characteristics within the same urban
unit, what is achieved with the implementation of specific programs [18]. Attempts to use transit to foster
social mixing have a long history. Early 20th century, transportation policies in New York actively fos-
tered social mixing, including open seating, single price, first-served basis, lateral seats giving more room
to physical proximity inside the cars [19]. Research on carpooling and ride-sharing and social mixing is
understandably restrict, since these are relatively new forms of mobility and not as common as transit.
Still, surveying 2,041 Uber and Lyft users, in [23] the authors showed that rider-to-rider discriminatory
attitudes do not present a significant barrier to getting individuals in shared vehicles, and are actually
negatively predictive of the passengers level of service among dynamic ridesharing users (when the riders
do not know who their ride companion will be).

Our approach is aimed at evaluating the potential for social integration and its fundamental trade
off with traditional transport-related metrics. In current ride-sharing systems, the equilibrium between
the number of available cars and potential users is the resultant of a day-to-day adjustment process that
aims to reach an optimal operational point between offer and demand. The equilibrium point is tied to
the daily choices of travelers and operators, with implications on several aspects of flexible transport
services, such as fare price, operator’s profit, and wait time for passengers. Such analyses could inform
operating policies - in particular in cases where there is a clear cut between who provides the service and
who uses the service, such as with taxis [1]. By adding social characteristics of the users as an element
in the matching algorithms, as we propose here, the process of optimally matching rides is taken out
of the control of customers and assumed to be performed by a central server that collects trip requests,
computes the optimal matching, and returns the results to the carpooling users. In this regard, stimulating
social integration becomes part of a transportation policy and strategy, not simply a personal choice.

We also would like to emphasize that this paper deliberately proposes a centralized approach to ride
matching optimization since recent studies in social aspects of transportation have clearly shown that,
when left free to choose, user preferences tend to induce social segregation, if not explicit race and gender
biases [17,29]. Similar evidences come from housing policy experiences, where initiatives aimed favoring
social inclusion are customarily centrally enacted and often locally enforced [6]. Thus, we believe that,
in order to fully exploit the potential of carpooling as a tool for social integration, ride matching decision
should be mostly taken out of user control and centrally optimized.

More generally speaking, how to translate the potential benefits investigated in this paper into actual
societal and ecological returns becomes a new research problem by itself, bearing some resemblance to
the field of mechanism design in game theory where, known the socially optimal outcome of a game,
the goal is to design its rules in such a way that selfish players converge to the social optimum [27].
Analogously, this paper then opens the problem of how to design policy, incentives, and intervention
actions so that the socially and economically desirable outcome of carpooling defined herein becomes
acceptable for the individuals participating in the carpooling program.

We stress that the specific social integration metric and objectives reported herein – e.g., the choice
to favor dissortative over assortative shared trips (see Section 4.2) – shall be intended for exemplifying
reasons only. The methodology and ideas presented in this paper easily extend to other social metrics and
optimization objectives, as defined for the specific urban scenario at hand. For instance, the approach can
be used to favor travel time between members of the same social groups, thus favoring social cohesion
within a group instead of mixing across groups.
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Returning to the problem of evaluating the potential social benefits of carpooling, the main challenge
is to identify datasets that comprise not only travel data, but also some information regarding social
characteristics of the travelers. While GPS traces would provide extensive travel data and accuracy in
mobility tracking, none of the GPS trace for academic study we are aware of contains also information
about travelers. Thus, we resume to survey data to perform the study reported herein. While smaller, yet
significant, in size, the datasets used in this study have the unique feature of providing both accurate,
street-level information about the origin and destination of trips, and rich profile information about the
travelers.

3 Related work and Contribution

The social and human behavioral aspects of shared mobility have consistently attracted attention of the
research community only recently. Typically, the traveler behavior dimension in transportation studies (in-
cluding ride-sharing models) is restricted to waiting times -both in traveler’s strategies to reduce waiting
times and as a parameter in the optimization algorithms [21]. Interestingly, [36] propose an incentive-
based active demand management (ADM) method that, based on requests from automobile commuters,
provides multiple departure times and route choices as a way to create incentives for potential car-sharing,
with users receiving more benefits if the chosen departure time and route are more beneficial to the entire
system. [38] propose a ride-matching method that incorporates personal preferences of carpool com-
muters. In their case, the travel behaviors taken into account are route preferences, departure time, walk-
ing distance to the carpool location, and the size of the carpool group. In spite of its contribution and its
argument on the importance of considering commuter behaviors, the social characteristics of commuters
are not included in their model and are not considered in the ride matching process, which is precisely
the contribution of our paper. In a related paper [28], De Palma et al. investigate how preferences related
to spending more time with a partner tend to modify the starting time of trips, with an ultimate negative
effect on congestion.

In [12], the authors investigate the dynamics of reaching optimal equilibrium points in shared mobil-
ity markets. While their shared mobility model, based on a clear distinction between mobility providers
(drivers) and users (passengers), is different from the carpooling scenario considered here where a partic-
ipant can take either role, integrating the ideas and approach of [12] to include social-related metrics in
the shared ride formation process is an interesting avenue for further research that is outside the scope of
this paper.

From a methodological viewpoint, the modeling and analytic approach presented herein has the merit
of bridging the gap between socially-oriented [2, 24] and mathematically-oriented [4, 31, 37] approaches
to carpooling, presenting a mathematically clean optimization framework. Specifically, we extend the
computationally efficient model of shareability networks introduced in [31] to incorporate social char-
acteristics of the travelers. In doing so, we expand the scope of matching algorithms from traditional
transport-related metrics [16] to include the potential social capital of the trips. This is the main concep-
tual contribution of this paper.

4 Material and Methods

4.1 Modeling Carpooling

We model carpooling opportunities based on spatial and temporal constraints. Notice that the definition
of carpooling opportunity reported herein is independent of the social profile of travelers, which will be
introduced in the next section.
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To model carpooling we use a network representation of the sharing opportunities we call carpooling
shareability network, defined as N = (T,E), where T is the set of nodes corresponding to the trips in
the dataset, and E is the set of directed links between nodes corresponding to shareable trips.

Given a set of commuting trips, each trip Ti in the dataset T is defined by the following quantities:

– S(i), the starting location, expressed as a pair of (lat, long) coordinates;
– D(i), the destination location, also expressed as a pair of (lat, long) coordinates;
– st(i), the typical starting time of the trip, as reported by respondents in the survey;
– tt(i), the tolerance on the starting time. This value, together with st(i), identifies a time interval
[st(i)− tt(i), st(i) + tt(i)] which represents the time window within which the traveler is willing to
start the trip. Consequently, we set smin

t (i) = st(i)− tt(i) and sMAX
t (i) = st(i) + tt(i).

Furthermore, we define dAB to be the distance between any two locations A and B, as determined by the
underlying road network; and τAB , the time required to travel from A to B. Travel time estimations have
been obtained through a public, OpenStreetMap-based API. Using the above notation, for a given trip Ti,
its length is denoted dS(i)D(i), and its duration is τS(i)D(i).

Similarly to what have been done by [31] and [34], in the remainder of this paper we focus on pair-
wise, static matching of rides: i.e., at most two trips can be combined into a single ride and, when the
shared ride is formed, no further modification to the route is possible. Although simplified with respect to
some ride-sharing models and existing services, this approach has proven to be computationally effective
and to provide impressive opportunities for ride sharing and carbon footprint reduction.

4.1.1 When to share a trip

Serving two trips with a single vehicle has the potential advantage of halving the number of vehicles
required for the two travelers to reach their destinations, which can in turn lead to a substantial reduction
in the travel expenses. Different from Uber-like car-sharing programs, in which drivers roam the city
picking up and dropping off passengers, in the context of carpooling travelers have a different role of
driver and passenger, and the driver might incur a higher travel cost due to the extra time typically
required to detour from the optimal route and pick up (and, possibly, drop off) the passenger. As in [31],
we call this the sharing delay∆, and incorporate this notion in the definition of the carpooling shareability
network.

Specifically, ∆ is defined as the maximum amount of extra time allowed by the driver for the detour
needed to pick a passenger up. Correspondingly, given a driver trip T1 and a passenger trip T2, we say
that T2 is shareable with T1 if the two following conditions hold:

τS(1)S(2) + τS(2)D(2) + τD(2)D(1) ≤ τS(1)D(1) +∆ (1)

smin
t (2)− sMAX

t (1) ≤ τS(1)S(2) ≤ sMAX
t (2)− smin

t (1) (2)

The first condition states that the required detour time for the driver to pick the passenger up and drop
her off does not exceed the threshold value ∆. Note that the value of ∆ is only taking into account the
extra time necessary to detour with respect to the standard driver’s route, but not the time the passenger
would need to physically get into the car (quantifiable in 30 seconds, 1 minute at most).

The second condition ensures that the two starting time windows are properly overlapped. More pre-
cisely, the two inequalities in (2) ensure that there exists a time t1 in the interval [smin

t (1), sMAX
t (1)] such

that the driver, leaving at t1, can reach the passenger start location at a time t2 ∈ [smin
t (2), sMAX

t (2)].
While the second condition establishes the temporal compatibility of the two trips, this is not enough

to ensure that carpooling actually contributes to reduce traffic and carbon footprint. In fact, it is possible
that the driver performs a very long detour to pickup the passenger, thus making the length of the shared
trip longer than the sum of the lengths of the two individual trips. This would be a detrimental condition
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for traffic and carbon emissions, that is likely to occur especially for relatively large values of the sharing
delay ∆. Therefore, while focusing our attention on the social aspects of carpooling, we do not want this
to come at the expense of negative environmental externalities; so, we add a third condition that ensures
that the above described possible negative externalities of shared mobility are avoided:

dS(1)D(1) > dS(1)S(2) + dD(2)D(1) (3)

To sum up, in the carpooling shareability network N = (T,E) a directed link e1,2 ∈ E between T1
and T2 exists if and only if the three conditions (1), (2) and (3) stated above are satisfied. The carpooling
shareability network as defined herein is substantially different from the one defined in [31] to analyze
taxi ride sharing opportunities in New York City, the main distinctions being the dissimilar criteria used
to determine the existence of a link in the network, and the directed nature of carpooling links in contrast
to the bi-directional links used for taxi rides. However, for the sake of conciseness, and when clear from
the context, in the following we will drop the word “carpooling” and simply use the term “shareability
network” when referring to N . In the Supplementary Material (Appendix A) we report the results of the
analyses of the shareability networks generated by applying the above described shared conditions to the
data described in Section 4.3. Due to space reason, the Appendix reports only the results for the Pisa data
set, being the others quite similar.

Notice that the role of the traveler corresponding to a trip Ti is not predefined in the shareability
network N . In other words, the traveler corresponding to Ti can be either a driver or a passenger. The
role of the traveler in a shared trip is determined by the direction of the link incident into Ti. If the
link is outgoing, the traveler corresponding to Ti is designated to be the driver; if the link is incoming,
she is designated to be the passenger. The choice of not preassigning roles to travelers has been done
with the goal of maximizing trip sharing opportunities, and it is consistent with the choice of selecting,
among those available in the datasets, only the trips performed by people that declared the car as either
the primary or the secondary mode of commuting. On the other hand, the role of each traveler becomes
well-defined after the execution of the trip matching algorithms, and it is determined by the direction of
the incident link of the matching as described above. The fact that shared trips are selected according to a
(maximum) matching algorithm ensures that no traveler is assigned a double role of passenger and driver
at the same time, and, hence, the correctness of our model.

4.2 Matching metrics and algorithms

We now define a number of metrics that can be used to optimize the trip matching process. Some of
them are borrowed from [31] and based on transport-related metrics, while others are introduced here
for the first time to account for the social dimension of carpooling. The social metrics here defined must
be intended as examples of the type of information that is possible to assign to each traveler to enrich
the shareability network so to be able to perform social-aware trip matching. Note that the algorithms
reported in the following matches at most 2 rides in a carpool. However, it is possible to extend the
method to matching of k rides, with k a small number such as 3,4, following the methodology of [31].
Technically speaking, all the algorithms reported in the following are instances of maximum weighted
matching on graphs, which can be solved in time O(

√
T ·E) using Micali and Vazirani’s algorithm [22].

The difference between the algorithms lies in the way link weights are defined, and the resulting matching
properties.

4.2.1 Transport-related metrics

The first and most commonly used metric for optimizing the trip matching process is the number of paired
trips. The rationale is that, by increasing as much as possible the number of shared trips, it is possible to
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reduce to the maximum extent the number of vehicles needed to serve all the trips. It is easy to see that
the number of paired trips can be maximized by computing the maximum cardinality matching on the
shareability network. The corresponding matching algorithm is called Maximum Cardinality and denoted
Mc.

While optimally reducing the number of vehicles needed to serve the commuting trips, the matching
resulting from Maximum Cardinality is not necessarily optimal from a carbon footprint viewpoint. In
fact, it is possible that the two travelers share only a small portion of the trip, while the total number of
traveled kilometers is not optimized. To account for this, we assign a weight to each link in the shareability
network, where the link weight is defined as follows:

– the amount of kilometers σij saved if a shared trip is performed by the travelers associated to trips i
and j, with respect to performing the two separate trips.

Notice that σij is equal to the sum of the length of the two trips i and j minus the length of the shared
trip, which is always positive due to the fact that condition (3) is fulfilled when building the shareability
network.

It is easy to see that the total traveled distance can be minimized (or, similarly, the total saved distance
can be maximized) by computing the maximum weighted matching on the shareability network, where
the network links are weighted with quantities σij defined as above. The resulting matching algorithm is
called Maximum Saved Distance and denoted Md.

4.2.2 Social-related metrics

We now define two social-related metrics aimed at promoting social interactions between carpooling
participants.

The first metric is rooted on the observation that carpooling, by locating two travelers into a physically
constrained and private environment like the car, can become an active means for starting new social
relationships or strengthening the existing ones, if any: a form of social mingling. To this purpose, we
define a metric aimed at maximizing the time travelers spend together on their way to the destination,
called the mingling time. More specifically, we assign a weight to the links in the shareability network
defined as:

– the mingling time τij that the two travelers associated to trips i and j spend together when they share
their trip.

Notice that the herein defined quantity τij is different from the previously defined metric σij . In
fact, the latter quantity aims at minimizing the total traveled distance, which includes also the detour
necessary to pick the passenger up and drop her off, while the former quantity specifically maximizes the
time the two travelers spend together on-board, while still under the constraints imposed by condition 3
defined in Section 4.1. Thus, while related, these two quantities are inherently different and serve distinct
optimization goals.

Next in this section, we formally prove that the total mingling time can be maximized by applying
maximum weighted matching algorithms on the shareability network, where links are weighted with the
τij values. The corresponding matching algorithm is called Maximum Mingling Time and denoted Mt.

With the above defined metrics we are still not taking into account any social trait of travelers, which
could be used to define social categories. In accordance with [3], by social category we mean here a
“collection of people that have certain characteristics or traits in common, but they do not necessarily
interact with each other on a regular basis”. Following this definition, social categories could be defined
to classify travelers with respect to the age, the education level, the gender, the race, and so on. For
this reason, the second social metric defined accounts for the fact that, while maximizing the mingling
time, the metric τij defined above is oblivious to the social category of the travelers: i.e., travelers of
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same/different categories are neither favored nor hampered when forming shared trips. On the other hand,
if carpooling is to be proposed as a possible tool for favoring social mixing, traveler’s social categories
cannot be disregarded in the shared trip formation process. Motivated by this observation, we now define
a social metric aimed at favoring shared trips across different social categories and, thus, social mixing.

Let us define a link ei,j in the shareability network N to be assortative if both its endpoints (trips
i and j) are performed by travelers belonging to the same social category, and dissortative otherwise.
The Maximum Social Mixing matching, denoted as Mx, is the one which contains the largest number
of dissortative links, and hence maximizes the social mixing between trips whose travelers belong to
different social categories. In order to find this matching, we assign a weight to each link in the shareability
network. The weight depends on whether the link is assortative or dissortative, and is equal to:

– z for assortative links;
– W for dissortative links,

where z and W can be any positive integers, with W > `z, being ` the total number of assortative links.
In our work, we set z = 1, but any other choice is admissible as well.

The lemmas reported in the following prove that, by computing the maximum weighted matching
on the shareability network with link weights as defined above, it is possible to obtain the Maximum
Social Mixing matching. Note that, if the goal would instead be to favor assortative links to strengthen
ties within same social categories, the above weights should be assigned exactly in the opposite way. In
fact, these weights do not represent real quantities or metrics. They are instead tuned in order to privilege
the dissortative (or assortative) links and to ensure that the maximum weighted matching, applied on the
shareability network, gives the the desired result.

It is also possible to combine some of the above defined matchings to further increase a particular kind
of benefit. For instance, if we wish to use carpooling to foster social inclusion, we may wish to increase
at the same time the number of dissortative links in the matching and the mingling time. We can obtain
this by combining algorithms Mx and Mt. In the Supplementary Material (Appendix B) we also present
this new matching, called Mxt.

The Maximum Social Mixing matching Mx over a shareability network, as well as its variant Mxt,
are meant to maximize the number of included dissortative links. Therefore, they belong to the class of
the Maximum Dissortative (MD) matchings, which we define here as the set of all the matchings over a
multi-class network N which contain the highest possible number of dissortative links.

If the network N is weighted, we can define, for N and for any matching over it, the assortative
weight as the sum of the weights of all the assortative links. An analogous definition can be given to the
dissortative weight, while the total weight is the sum of the two quantities. Among the MD matchings, we
can thus identify three matchings of interest, namely: the MD-Maximum Assortative Weight (MD-MAW),
which has the highest assortative weight, the MD-Maximum Dissortative Weight (MD-MDW), which has
the highest dissortative weight, and the MD-Maximum Total Weight (MD-MTW), which has the highest
total weight.

The Maximum Social Mixing matching Mx corresponds to the MD-MAW matching over the share-
ability network, with all the weights set to 1; its variantMxt is instead the MD-MTW over the shareability
network where the weight of each link is given by the mingling time. Now, we show how the MD-MAW
and the MD-MTW over a network N are equivalent to the maximum weighted matching over the same
network, with properly modified weights.

Consider a weighted undirected network N = (V, E) whose nodes can be divided into K disjoint
subsets V1,V2, . . .VK . Correspondingly, the links can be partitioned into two subsets, namely:

Ea = {(a, b) ∈ E : a, b ∈ Vi} for some i = 1, . . . ,K (4)
Ed = {(a, b) ∈ E : a ∈ Vi, b ∈ Vj} for some i 6= j (5)
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We call dissortative links the links belonging to Ed, and assortative links those belonging to Ea.
Consider now a generic matchingM ⊂ E over the whole network N , whose weight is defined as M =∑

e∈M w(e), being w(e) the weight of link e ∈ E . As any matching over N ,M can be partitioned into
two subsets Sa and Sd:

Sa =M∩ Ea Sd =M∩ Ed (6)

whose weights are Sa and Sd, respectively. Therefore, M = Sa +Sd, where Sa is the assortative weight,
while Sd is the dissortative weight.

The maximum weighted matchingMN is the one whose weight MN is the highest possible value for
M . Now, let us call Γ the set of all the MD matchings, that is, the set of all the matchings which contain
the highest possible number C of dissortative links. Clearly, C ≤ |Ed|, where the equality holds if no
node in V is touched by more than one dissortative link. The exact value of C can be computed by finding
the maximum matching over the non weighted sub-network of N which contains only the dissortative
links (all with the same unitary weight).

The MD-MAW matchingMe ∈ Γ is the MD matching with the highest assortative weight. Notice
that in general:

– Me is different from the maximum weighted matchingMN ;
– Me does not necessarily maximize the dissortative weight Sd (unless all the dissortative links have

the same weight): it is only guaranteed to maximize the cardinality of Sd, irrespective of the weight.

If we define as N ′(W ) a network obtained from N by setting the weight of all the dissortative links
to a given value W > 0, we can state the following Lemma:

Lemma 1. For anyW > Sa, being Sa the total assortative weight of networkN , the MD-MAW matching
over the network N is the maximum weighted matchingM′

N over the network N ′(W ).

Proof. See the Supplementary Material (Appendix C.1).

The MD-MTW matching is the one with the highest total weight. Notice that the MD-MTW matching
does not necessarily maximize neither the assortative weight nor the dissortative weight, but simply their
sum. If we define as N ′′(W ) a network obtained from N by adding W to the weight of any dissortative
link, we can state the following Lemma:

Lemma 2. For anyW ≥M , beingM the total weight of the links of networkN , the MD-MTW matching
over the network N is the maximum weighted matchingM′′

N over the network N ′′(W ).

Proof. See the Supplementary Material (Appendix C.2).

We report in Figure 1 an example of a network N partitioned into two groups. The total weight of
the links is W = 31. Notice that the maximum weighted matching of N is {a, c}, whose weight is 16.
Conversely, if we apply Lemma 1, we discover that the MD-MAW matching is {f, c}, whose weight is 6.
The MD-MDW matching which maximizes the dissortative weight is {g, b}, with weight 6. Finally, the
MD-MTW matching, obtained using Lemma 2, is {e, d}, whose weight is 8. Notice that MD-MTW does
not maximize the assortative nor the dissortative weight, but only their sum.

The four proposed matching algorithms, which aim at maximizing different metrics, give different
results in most cases. This is easily seen in Figure 2. Here, as an illustrative example, we build a small
shareability network consisting of 12 trips belonging to two social categories, where each edge is labeled
with two weights, representing the mingling time and the saved mileage. The four matchings are then
computed as explained in this section, each leading to a different sharing configuration.
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N
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Fig. 1 An example of weighted network N , partitioned into k = 2 sub-networks, with the corresponding modified network
N ′′(W ). The weight of each link is reported after its label, in brackets. Here C = 1, and in order for Lemma 2 to hold, W is
required to be at least equal to M = 31.
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Fig. 2 An example of a small shareability network consisting of 12 trips, belonging to two different categories. Each edge is labeled
with two weights, the former utilized by matchingMt, the latter by matchingMd. The four matchings lead to four different sharing
configurations.
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4.3 Datasets

The results presented in the following sections are based on two mobility surveys performed in the city of
Pisa, Italy, and at MIT campus, Cambridge, MA, US. The nature and quality of survey data are described
in the following subsections. From the datasets, we extracted a set of NP = 1966 morning commuting
trips in Pisa, and a set of NM = 1968 morning commuters towards MIT in Cambridge. These trips were
performed by commuters that declared the car as a primary or secondary transport mode.

4.3.1 Data from Pisa

In Pisa, the MobilitandoPisa joint initiative of the National Research Council with the city of Pisa and
other academic partners [10] led to an anonymous mobility survey whose objective was to understand the
daily commuting habits and verify potential attitude towards shared mobility and public transportation
within the metropolitan area of the city of Pisa. The ultimate goal of the initiative was to design a new,
ad-hoc mobility plan for the whole city.

The survey was extensive and structured into different parts, namely:

– Demographic Data, where information such as gender, age, marital status, educational level, profes-
sion, and owned transportation means, were asked;

– Workers Commuting Data, where respondents were asked which transportation mode(s) they use to
commute, their commuting hours and typical travel times, and to provide information about their
home and work addresses, stopovers (if there were any on the way to the working place), working
times during the day and working days throughout the week, and their potential flexibility in departing
earlier/later from/to home;

– Students Specific Data: since Pisa has several private and public Universities, students were asked
specific information related to the way they commute to/from university, the preferred transportation
mode, times, etc.;

– Moving Around Pisa Metropolitan Area: in this section people were asked when, how and how many
days per week they travel, both within and to the city of Pisa, for activities like entertainment, study,
family, sport;

– Attitude towards: car sharing/pooling, public transportation, biking;
– Transportation Related Problems, and in particular on using the bike, using transit, pooling, sharing,

parking;
– Suggestions and Criticisms, where there were specific questions on suggested improvements, such as

”would you like more improved personal safety within parking lots?”, or more connections, transit
availability, and on potential incentives they would like to shift their current transportation habits,
such as subsides, lower costs, prizes, as well as open-answer questions.

Among the 6,200+ respondents, for the study we considered the subset of NP = 1966 commuters
who daily commute by car, and provided detailed information on their home and work addresses.

4.3.2 Data from MIT campus in Cambridge

With converging motivations of the MIT Climate Action Plan, local sustainability goals and a pragmatic
consideration of land use pressures in Cambridge, the Massachusetts Institute of Technology recognized
an opportunity to jointly address these pressures through transportation reforms for its own community. To
this end, every two years the MIT surveys its staff and student members to monitor commuting behavior
and attitude towards a potential mode shift.

The 2016 survey was structured into different parts, namely:
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Table 2 Age and Education level classes.

Age Age Education Education
Class ID Class ID Level

1 18-25 1 Lower Secondary School
2 26-35 2 High School
3 36-45 3 Bachelor’s Degree
4 46-55 4 Master’s Degree
5 56-65 5 Ph.D.
6 Over 65 6 Professional Specialization

– About You, where information about flexibility and time were asked, such as time spent on campus,
daily arriving and departure time;

– Your Commute, where respondents were asked which transportation mode(s) they use to commute, if
and (possibly) why there was a mode shift compared to the previous academic year, and if they are
considering/willing to shift and the reason why;

– Use of Transportation Services, where employees and students also answered to what extent current
MIT transportation benefits could influence their commuting choices;

– Knowledge of & Feedback on Transportation Services and MIT Current Benefits, such as Subsidized
MBTA Pass, Electric Vehicle Charging Stations, Emergency Ride Home Program, Carpools/Vanpool
Parking Programs, Hubway (bike sharing), etc. ;

– Driving, Car Ownership, and Bicycling, where information such as car and bike ownership/use were
asked;

– Feedback and comments.

The survey did not require any demographic section since it was not anonymous and each respondent
is directly connected to her MIT account. Note that before being processed, the data in our analyses has
been anonymized.

Among the 10,000+ respondents, for the study we considered the subset of NM = 1968 commuters
belonging to the MIT staff who daily commute by car. Notice that in this scenario the work address is
the same for each respondent. Home address information is also known but only at the census block level
and, even if not as accurate as in the case of survey data in Pisa, it represents a good compromise between
spatial accuracy and the need of preserving privacy.

4.3.3 Node classification

The datasets chosen for this study have the unique feature of containing not only trip information, but also
additional information about travelers that can be used to classify them into different social categories.

In the following, we consider two specific traveler features to form distinct social categories: age, and
educational level. Both features are routinely used in social sciences to define social categories [3]. For the
former feature, we use 6 different age intervals to divide travelers into 6 corresponding social categories.
For the latter feature, which is only available for the Pisa survey, we used the education degree as stated
in the survey, which also comes into 6 increasing levels of education. The resulting social categories used
in this study are reported in Table 2. We stress that the study is focused on a single social feature at a
time, and does not consider their combination into more refined social categories (e.g., people with age
in the 36-45 interval and a Bachelor degree) which would have required more extensive datasets. We also
stress that these categories are used as examples, and should not be read as a constraint to the proposed
method, nor any sort of particular policy recommendation.

We reiterate that the goal of this paper is to show the potential of a social category-based approach
to carpooling, and not to test all the possible categories and/or metrics, nor to identify the best: it would
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Fig. 4 Age distribution in Italy and US derived from census data.

be up to policy makers to select, based on specific situations and the results provided by our framework,
which one is better for the purpose at hand.

Figure 3 reports the distribution of travelers across the social categories based on age in Pisa (purple)
and MIT (yellow), and education level in Pisa (orange). MIT education level info is not reported because
the data was too sparse to be used here, since providing education level info is not mandatory for MIT
staff. It is interesting to note that in Pisa while the age distribution hints to a Gaussian curve, centered
around age interval 36− 45, the education level distribution is bi-modal with two peaks for High School
and Master Degree level. We stress that the above are not necessarily representative, e.g., of the whole
population in Pisa, but are likely influenced by the way the survey was administrated. E.g., a large number
of respondents in Pisa were University undergraduate students, which likely explains the peak in the High
School education level. While existent, the bias in social categories distribution observed in the dataset
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Table 3 Average Node Degree and Assortativity Coefficient

Pisa MIT
Delay ∆ Average Degree ρ (Age) ρ (Edu) Average Degree ρ

0 min 0.396 -0.0112 0.0406 1.284 -0.0175
1 min 3.941 0.0309 0.0629 12.387 -0.001
2 min 11.788 0.0374 0.0482 33.941 -0.0001
3 min 23.618 0.0292 0.0371 55.296 0.0004
4 min 38.468 0.0272 0.0330 74.61 0.0003
5 min 53.713 0.0242 0.0327 92.601 0.0016
10 min 109.076 0.0196 0.0266 146.329 0.0045
15 min 134.911 0.0181 0.0249 171.055 0.0059

does not influence the validity of the proposed methodology, which is oblivious to social category defini-
tion and distribution. On the other hand, the bias might have an impact on the results of the considered
case study, which is discussed later on in the paper.

Nevertheless, we also include Figure 4 reporting the age distribution of population in Italy and US,
derived from census data. Even if different, by comparing the two distributions we can highlight similar
shapes, but with relatively lower representation of both young and older ages. This is consistent with the
fact that the surveys were focused on working population and university students, who have a narrower
age range than general population. An interesting topic for future work is repeating the analysis with an
unbiased population sample selected for an ad hoc study.

Based on the definition of social category according to one of the social features described above,
each node in the shareability network is labeled with the social category corresponding to the traveler
associated with the trip. Thus, in the following we consider the shareability network to be a node-labeled
network.

5 Results

In the following two subsections we report the results of the performed analyses, both in terms of social
mixing and algorithms performance.

5.1 Social analysis of shareability networks

We start analyzing the structure of the resulting shareability networks, and their interplay with the above
described social categories. We generate a number of different shareability networks by varying the share-
ability delay parameter ∆ within the interval [0, 1, 2, 3, 4, 5, . . . , 15], measured in minutes. Correspond-
ingly, we get 16 different shareability networks, one for each value of ∆.

Figure 5 reports the cumulative distribution function of the node degree of the shareability networks
obtained for Pisa data. For clarity, we report only some representative curves, using for ∆ the values
{0, 1, 2, 3, 4, 5, 10, 15}. Each value reported in the plot corresponds to the sum of the out- and of the in-
degree of a node. The amount of carpooling opportunities for even moderate values of ∆ is noteworthy:
with ∆ = 10min, we already observe more than 50 carpooling opportunities for over 70% of the trips.

Table 3 reports the average node degree in the shareability network for different values of ∆, i.e. the
average sharing opportunities per trip, while varying the delay needed to detour for picking a carpooler
up and dropping her off. Note that with only 5 minutes of delay ∆ each trip in Pisa has on average the
opportunity to be shared with about 54 other trips, 92 if we consider MIT.

Next, we take into account the node labels based on social categories, and compute the assortativity
coefficient of the shareability networks. Assortativity is a well-known metric in social network analysis
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Pisa: Degree Distribution
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Fig. 5 Pisa data: degree distribution for some representative shareability networks. Each value reported corresponds to the sum of
the out- and of the in-degree of a node.

[25] which measures to what extent links between nodes belonging to the same category are more often
established with respect to a random graph. More specifically, the assortativity coefficient ρ is a real
number varying from -1 to 1: if ρ = −1, only links between nodes belonging to different categories exist,
and we say that the corresponding network is fully dissortative; on the other hand, if ρ = 1 only links
between nodes of the same category exist, and the corresponding network is said to be fully assortative.
Values of ρ close to 0 indicate that there is neither an assortative nor a dissortative trend in how links
connect nodes, resembling entirely random connection.

For the 16 values of ∆, we computed ρ as:

ρ =

∑
i,j (Aij − kikj/2m) δ(ci, cj)

2m−
∑

i,j (kikj/2m) δ(ci, cj)
(7)

where Aij is the element at row i and column j of the adjacency matrix A representing the shareability
network, ki is the degree of node i, m is the total number of edges, ci is the class of node i, and δ(a, b) is
the Kronecker delta function, and is equal to 1 if a = b and 0 otherwise.

We have computed the assortativity coefficient for the shareability networks obtained with different
values of ∆, obtaining values very close to 0, as illustrated in Table 3.

This indicates that the structure of the shareability network is neither assortative nor dissortative,
and trip opportunities can equally be found between and across different social categories. This is a first
interesting finding, indicating that carpooling “per se” neither favor nor impede social mixing between
categories. So, unless social factors are explicitly taken into account when matching rides, we can expect
a “socially neutral” effect of centrally-optimized carpooling when the two chosen dimensions are used
(age and educational level). This intuition is confirmed by the results presented in the following.

5.2 Performance Analysis

In this Section we evaluate the performance of the four matching algorithms defined in Section 4.2 ,
namely Maximum Cardinality (Mc), Maximum Saved Distance (Md), Maximum Mingling Time (Mt),
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Fig. 6 Pisa data: the fraction ψ of matched trips for increasing values of the sharing delay∆. The plot on the right reports a close-up
view for values of the sharing delay above 4 min.

MIT: Matched Trips
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Fig. 7 MIT data: the fraction ψ of matched trips for increasing values of the sharing delay ∆. The plot on the right reports a
close-up view for values of the sharing delay above 4 min.

and Maximum Social Mixing (Mx). We use the following evaluation metrics, accounting for both trans-
port and social aspects of carpooling:

1. the fraction ψ of matched trips;
2. the fraction φ of dissortative links included in the matching, considering social categories defined on

both age and education level;
3. the average mingling time τ ;
4. the overall saved mileage σ achieved with trip sharing.

The four metrics are computed as a function of the sharing delay ∆.
Figures 6 and 7 reports the fraction ψ of matched trips for Pisa and MIT, respectively. As expected,

ψ is increasing with ∆, since a higher delay tolerance translates into a higher number of links in the
shareability network, and consequently to a lower number of unmatched trips. It is worth noticing that,
for values of∆ = 5 min or larger, the fraction of matched nodes is consistently above 0.9, with values for
MIT slightly larger than those observed in Pisa. While algorithm Mc, which specifically maximizes the
fraction ψ of matched trips, achieves a slightly higher value of ψ as expected (above 0.99 for∆ ≥ 10 min
in case of MIT), the other matching algorithms perform very similarly in terms of the fraction of matched
trips. This is an important result, as it indicates that the space of solutions with maximal or nearly maximal
number of matched trips is very large. In turn, this opens the way to the approach proposed herein of
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Pisa: Dissortative Links for Age
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Fig. 8 Pisa data: fraction φ of dissortative links for increasing values of the sharing delay ∆. Age social categories are considered.
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Fig. 9 MIT data: fraction φ of dissortative links for increasing values of the sharing delay ∆. Age social categories are considered.

considering other metrics in the matching process that, while slightly sub-optimal from the viewpoint of
the fraction ψ of matched trips, might incorporate environmental or social aspects.

Figures 8 and 9 report the fraction φ of dissortative links, referred to age classes in Pisa and MIT,
respectively, while Figure 10 reports those referred to education level in Pisa, as per Table 2. As a refer-
ence, the plots also report the probability of choosing a dissortative link when a link is randomly selected
from the corresponding shareability network. It is interesting to observe that, while matching algorithms
Mc, Mt, and Md do not significantly differ from the inherent dissortativity of the shareability network,
represented by the “random” (dotted) curve, algorithm Mx achieves a nearly optimal dissortativity value
of 1 for values of ∆ of at least 5 min. This means that potentially all the trips can be shared by people
belonging to different age or education level categories. Comparing these results with those in Figures 6
and 7, we can also argue that a social mixing strategy can be quite effective, achieving near optimal social
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Pisa: Dissortative Links for Education Level
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Fig. 10 Pisa data: fraction φ of dissortative links for increasing values of the sharing delay ∆. Education level social categories are
considered.

Pisa: Average Mingling Time
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Fig. 11 Pisa data: average mingling time for increasing values of the sharing delay ∆.

mixing while, at the same time, matching almost all possible trips. Interestingly, the observations made
above consistently apply in two different locations (Pisa and MIT), as well as when different definitions
of social categories are used (age and educational level in Pisa). This hints to generality of the observed
trends in both urban scenarios and definition of social category.

Figures 11 and 12 report average mingling time τ for Pisa and MIT, respectively. The value reported
in the plots is computed by averaging the duration of mingling time for each shared trip selected by the
matching. Two trends can be clearly identified. Matchings Mc and Mx lead to an average value for τ
between 8 and 9 minutes for Pisa and between 12 and 13 minutes for MIT, with no relevant variations as
∆ varies. On the other hand,Md andMt achieve a much longer mingling time τ , which is increasing with
the sharing delay. The maximum value is attained for ∆ = 15 min, where we get a maximum mingling
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MIT: Average Mingling Time
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Fig. 12 MIT data: average mingling time for increasing values of the sharing delay ∆.

time of about 15 min in Pisa, and above 20 min for MIT. Thus, without exceeding the time constraints
posed by the travelers and the mileage constraints imposed by the model, it is possible to match trips in
a way that travelers can spend an average of at least 15 minutes together, which is a very significant time
for mingling. The relatively higher values of the mingling time observed in the MIT vs. Pisa case study
are consistent with the larger geographical footprint of the Boston metropolitan area as compared to the
region surrounding Pisa. The similar behavior of algorithms Md and Mt confirms that the two metrics
used to weight links in the respective algorithms, namely, σij and τij , are indeed related but distinct.

By comparing the results reported in Figures 8, 10, and 11 for Pisa, and Figures 9 and 12 for MIT, we
can see that a trade-off is likely to emerge when we consider carpooling as a tool for social integration:
we can either aim at a better mixing, with shorter mingling time, or at a longer time for interactions at the
expense of fewer mixing opportunities.

Finally, Figures 13 and 14 show the amount of saved kilometers obtained through car pooling, nor-
malized over the sum of the lengths of all trips. All the matchings for ∆ = 0 min offer only minimal
normalized savings, amounting to about 4% of total traveled distance in Pisa and about 8% for MIT.
These savings, however, grow very substantially when the sharing delay is increased, up to about 40% re-
duction in Pisa and even higher reductions for MIT. Again, the relatively higher traveled distance savings
observed in the MIT dataset as compared to Pisa are likely implied by the larger geographical footprint
of the Boston metropolitan area, and seems to suggest that carpooling mechanism could be especially
effective in large cities to reduce the carbon footprint of home-work commuting. Finally, we observe that
as expected the highest performance is offered by Md, and that ‘social mixing’ algorithms, while still
providing substantial savings in the order of 15-20%, are well below the optimal travel distance savings
provided by suitably optimized algorithms. Note that from a certain delay δ on Mt starts to worsen in
terms of saved kilometers. This is due to the fact that it is designed to maximize the time the poolers
spend together on the car, thus not always choosing the shortest path for the shared trip, even though it is
subject to the general mileage constraints of Equation 3.

Thus, a trade-off between environmental and social benefits of carpooling is likely to arise and shall
be addressed at policy and regulatory level.
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Pisa: Overall Saved Mileage
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Fig. 13 Pisa data: distance σ saved thanks to carpooling for increasing values of the sharing delay ∆. To ease comparison, the
metric is normalized over the total amount of traveled kilometers.

MIT: Overall Saved Mileage
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Fig. 14 MIT data: distance σ saved thanks to carpooling for increasing values of the sharing delay ∆. To easy comparison, the
metric is normalized over the total amount of traveled kilometers.

5.3 Introducing temporal diversity

In the above sections, the trip sharing opportunities and the resulting matchings are considered as a static
problem. Indeed, the commuting trips are likely to be performed daily and should be able to keep their
performance characteristics across time. Nevertheless, offering the same sharing solution over several
subsequent days, despite optimal from the traffic point of view, may appear limiting in terms of social
mixing. In this section, we hence add a temporal dimension to the considered problem. We assume that the
set of trips to be pooled is kept unchanged during a 20-day period, but we slightly modify our approach
in order to favor sharing with different co-travelers across different days.
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Pisa: Matched Trips over Time
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Fig. 15 Fraction ψ of matched trips as a function of time, when time coefficients are used to favor different choices across different
days. Here, the sharing delay is ∆ = 3 min.

The key point is to avoid that a commuter is matched with the same co-traveler in subsequent days.
To this aim, for each link ei,j of the shareability network and for a given day d, we consider a temporal
coefficient ωi,j(d). The value of ωi,j(1) for the first day is randomly selected in the interval [0, 1]. For the
subsequent days, it is instead updated as

ωi,j(d) =

{
0 if link ei,j was selected on day d− 1

ωi,j(d− 1) +X otherwise ,
(8)

where X is a uniform random variable in the interval [0, 2χ], with expected value χ. Each day, the weight
assigned to each link by the selected matching algorithm (Mc, Mx, Mt or Md) is multiplied by the
temporal coefficient of the same link. The matching is then computed on the resulting weighted graph,
which now keeps into account also the past choices. By adopting this scheme, it is unlikely that a link
ei,j is chosen in subsequent days: after being selected in day d, its total weight drops to 0, thus making
other links preferable when a maximum weighted matching is applied. In the subsequent days, ωi,j(d)
gradually increases, until ei,j becomes again a valid option.

The average coefficient increment χ plays a key role in determining a trade-off between the time di-
versity of the scheme and the maximization of the other transport or social metrics. When χ is high, the
selected links become again advantageous after a short time. This means that most of the time coefficients
are always close to 1, and it is possible to choose a nearly optimal solution in terms of cardinality, dis-
sortativity, mingling time or saved distance. However, this also implies that only a small subset of links is
repeatedly chosen, thus reducing the number of co-travelers met by a commuter across time. Conversely,
a low value of χ strongly increases the recovery time of a selected link. As a consequence, different sub-
optimal solutions are to be selected in the following days. This limits the performance in terms of the
above mentioned transport or social metrics, but it allows a larger number of different links to be chosen
during subsequent days, thus making a commuter change her co-traveler more often from day to day.

In Figure 15, we show the fraction ψ of matched trips over a period of 20 days, for increasing values
of χ, using the Pisa dataset with ∆ = 3 min. Matching Mc is employed for each day, and the results
are averaged over 10 runs. The figure highlights the predicted reduction of ψ observed when the optimal
links can no longer be always selected due to the dynamics of the time coefficients. A transient phase of
around 5 days can be noticed, after which all the curves oscillate around steady state values. As expected,



Home-work Carpooling for Social Mixing 23

Pisa: Matched Trips and Dissortative Links vs Number of Co-travelers
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Fig. 16 Average fraction of matched trips and of dissortative links in the steady state phase as a function of the average number of
different co-travelers per commuter.

low values of χ make the best links unavailable for longer times, thus lowering the fraction of matched
trips. However, even for χ = 0.1, approximately 80% of the trips can be matched every day.

We now move to Figure 16 in order to illustrate the effectiveness of our strategy in improving the
number of co-travelers per commuter over time. For each of the five curves of Figure 15, we consider
the average value after the transient phase (from day 7 to day 20), and we plot it against the measured
average number of different co-travelers selected for a commuter during the same two-week period. As
the fraction ψ decreases (corresponding to lower values of χ) the number of co-travelers becomes almost
50% higher, growing from 5.5 to more than 7.5, implying that a commuter does not travel with the same
person more than once a week.

We repeated the same experiment by applying matching Mx (using Age classes), and analyzing the
trade-off between the fraction φ of dissortative links among the selected ones and the average number of
different co-travelers. The resulting curve, still shown in Figure 16, reveals that by lowering χ (moving
from left to right in the figure) it is possible to keep almost the same fraction of dissortative links while
substantially increasing the number of co-travelers met by a commuter over subsequent days. Analogous
results (not reported) are obtained for the normalized saved mileage. This suggests that it is possible to
further boost the social impact of home-work carpooling by also increasing the number of co-traveling
pairs over time, with a limited cost in terms of the other transport-related or social metrics.

5.4 Exploring Commuters’ preferences

As described above, our proposed sharing approach is centralized. This allows to leverage full informa-
tion and hence to achieve optimal global performance in terms of traffic-related or social metrics. From
the user perspective, however, this might seem undesirable: the user in fact is not aware of the various
sharing options, and she can only accept the proposed co-traveler, regardless of her preferences. While
this might be fine in certain scenarios, where users are only interested in reaching their destination within
a predefined time interval, the possibility of being involved in the co-traveler selection is often a relevant
point which can potentially improve the commuter’s attitude towards carpooling. In the Supplementary
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Material (Appendix D) we introduce an extension of our scheme to a semi-distributed approach, which
accounts for both user preferences and the need for a valid solution at a global level.

6 Discussion and Conclusions

The aim of this paper is to investigate whether and to what extent carpooling can be used as a tool for not
only reducing the carbon footprint of home-work commuting, but also to favor social integration. By cou-
pling network-based shared mobility models with a social profile of the travelers performing the trips, we
were able to define social-based metrics linked to sharing opportunities, and ultimately to prioritize the
ride matching choices accordingly. One of the main lessons we have learnt from the proposed approach
is that it brings a different perspective into current ride-sharing and carpooling methods, which consider
drivers and passengers as abstract entities within optimization algorithms. By incorporating social char-
acteristics of drivers and passengers, and demonstrating the potential of matching users with different
backgrounds, we show that carpooling has the potential to promote the social aspects of urban mobility,
and could become a social mixing tool to be embraced by transportation and planning agencies. Within
the sharing economy, more than regulators, police makers would play the role of facilitators, helping to
design services and incentives to promote social mixing and carpooling [30].

We applied the defined algorithms to two different commuting scenarios, the city of Pisa, in Italy,
and the MIT campus, in Cambridge, MA, US, obtaining similar results with respect to all considered
metrics. Although clearly non-conclusive, the observed similarities between the case studies in Pisa and
Cambridge hint to a more general validity of carpooling as a social mixing tool.

When collectively considered, the results presented in this paper clearly indicate existence of non-
trivial trade-offs between environmental and social benefits of carpooling. While not advocating any
specific matching strategy amongst the ones proposed in this paper, and the many others possible, the
methodology and tools presented in this paper allow for the first time an accurate quantification of these
trade-offs.

To give a collective view of the performance of each matching algorithm in terms of the four con-
sidered performance metrics, Figure 17 reports the radar graphs corresponding to each algorithm Mc,
Mx, Mt and Md, with ∆ = 15 min, while varying the metric. Generally speaking, a larger yellow area
indicate higher performance.

While finding a definite optimal matching strategy is beyond the scope of this paper for the reasons de-
scribed above, we want to sketch here a possible way of identifying the most suitable matching algorithm
once priorities between the four different matching metrics considered herein have been defined. Assume
for instance that policy makers decide that carpooling services operating in the city should prioritize social
mixing, and then achieve the best travel distance savings possible. We could then assign weights to the
matching performance metrics so that they sum up to 1, and reflect the priorities defined by policy mak-
ers, e.g.: weight .5 for φ, weight .25 for σ, weight .15 for τ , and weight .1 for ψ. Then, we can compute
for each value of ∆ the aggregate performance of each matching algorithm using the defined weights,
and select the best performing algorithm accordingly. Another approach to simultaneously account for
different performance metrics in the optimization process could be to introduce a multi-objective opti-
mization function directly in the ride matching algorithms, and to find a Pareto optimal matching of the
rides. While more rigorous from a theoretical viewpoint, this approach is however computationally cum-
bersome. Assessing whether a similar approach can be applied at a large scale is an interesting direction
for future work.

The one reported above is only an exemplification of how the wealth of results presented in this paper
can help to better inform the growing debate about shared mobility and its implied social and environ-
mental benefits. Moreover, it adds social aspects to be used in car-sharing and car-pooling optimization
algorithms.
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Algorithms’ Performance as Radar Graphs

ψ

φ

τ

σ

Mc

ψ

φ

τ

σ

Mx

ψ

φ

τ

σ

Mt

ψ

φ

τ

σ

Md

Fig. 17 Radar graphs comparing the performance of the 4 selected matchings, for ∆ = 15 min. The four metrics are the matched
node fraction ψ, the fraction of age-based dissortative links φ, the mingling time τ (normalized to 15 min) and the overall
normalized saved mileage σ (normalized to the maximum, 0.5).
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