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ABSTRACT

We report the discovery of SMSS J160540.18−144323.1, a new ultra-metal poor halo star
discovered with the SkyMapper telescope. We measure [Fe/H] = −6.2 ± 0.2 (1D LTE),
the lowest ever detected abundance of iron in a star. The star is strongly carbon-enhanced,
[C/Fe] = 3.9 ± 0.2, while other abundances are compatible with an α-enhanced solar-like
pattern with [Ca/Fe] = 0.4±0.2, [Mg/Fe] = 0.6±0.2, [Ti/Fe] = 0.8±0.2, and no significant
s- or r-process enrichment, [Sr/Fe] < 0.2 and [Ba/Fe] < 1.0 (3σ limits). Population III stars
exploding as fallback supernovae may explain both the strong carbon enhancement and the
apparent lack of enhancement of odd-Z and neutron-capture element abundances. Grids of
supernova models computed for metal-free progenitor stars yield good matches for stars of
about 10 M⊙ imparting a low kinetic energy on the supernova ejecta, while models for stars
more massive than roughly 20 M⊙ are incompatible with the observed abundance pattern.

Key words: stars: Population III – stars: abundances – stars: individual: SMSS J160540.18-
144323.1

1 INTRODUCTION

The early evolution of the Universe depends on the properties of the
first generation of metal-free stars, the so-called Population III, and
in particular on their mass as well as properties of their supernova
explosions. High-mass Population III stars were short-lived, and
can only be studied indirectly through their supernova ejecta that
enriched the gas clouds from which the oldest metal-poor (but not
metal-free) stars formed which are still observable today.

Targeted efforts by several groups (e.g., Beers et al. 1985;
Christlieb 2003; Keller et al. 2007; Caffau et al. 2013; Aguado et al.
2017; Starkenburg et al. 2017) have led to the discovery of roughly
30 stars with [Fe/H] < −41 (Abohalima & Frebel 2018), where
the most iron-poor stars in fact only have upper limits. In

⋆ thomasn@mso.anu.edu.au
1 Throughout this discussion we use the 1D LTE abundance values.

particular, SMSS 0313−6708 at [Fe/H] < −7.3 (Keller et al.
2014; Nordlander et al. 2017) and J0023+0307 at [Fe/H] < −5.8
(Aguado et al. 2018; Frebel et al. 2019) both have abundance pat-
terns that indicate true iron abundances (predicted from Popula-
tion III star supernova models) significantly lower than their de-
tection limits. The most iron-poor stars where iron has actually
been detected are HE 1327−2326 at [Fe/H] = −5.7 (Frebel et al.
2005; Aoki et al. 2006), HE 0107−5240 at [Fe/H] = −5.4
(Christlieb et al. 2002, 2004), and SD 1313−0019 at [Fe/H] = −5.0
(Allende Prieto et al. 2015; Frebel et al. 2015). All five stars exhibit
strong carbon enhancement and typically strong odd-even effects
that are similar to predictions for Population III star supernovae
with masses between 10 and 60 M⊙ , and explosion energies less
than 1051 erg assuming a mixing and fallback explosion mechanism
(Heger & Woosley 2010; Ishigaki et al. 2014). In particular for the
two stars that have only upper limits on their iron abundance, the
comparison is not well constrained and matches instead for a wide
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range of progenitor mass and explosion energy (Nordlander et al.
2017; Frebel et al. 2019). This happens because the iron abundance
is sensitive to processes that occur near the iron core of the progeni-
tor star, e.g., the amount of mixing driven by Rayleigh-Taylor insta-
bilities, the location where the explosion originates, and the explo-
sion energy that determines whether ejecta subsequently fall back
onto the newly formed black hole (see discussion in Ishigaki et al.
2014).

We have recently discovered SMSS J160540.18−144323.1
(hereafter SMSS 1605−1443), a red giant branch star with the low-
est ever detected abundance of iron, [Fe/H] = −6.2 ± 0.2. The fact
that iron has been detected alongside carbon, magnesium, calcium
and titanium, offers for the first time strong constraints on chemical
enrichment at this metallicity. We give here an assessment of its
stellar parameters and chemical composition based on the spectra
acquired during discovery and verification.

2 OBSERVATIONS

SMSS 1605−1443 (g = 16.0) was discovered as part of the Sky-
Mapper search for extremely metal-poor stars (Keller et al. 2007;
Da Costa et al. 2019) using the metallicity-sensitive narrow-band
v-filter in SkyMapper DR1.1 (Wolf et al. 2018). The star was con-
firmed to have [Fe/H] < −5 from medium-resolution (R = 3000
and R = 7000) spectrophotometry acquired in March and August
2018 with the WIFES spectrograph (Dopita et al. 2010) on the
ANU 2.3-metre telescope. The photometric selection and confir-
mation methodology is described further elsewhere (Jacobson et al.
2015; Marino et al. 2019; Da Costa et al. 2019). Follow-up high-
resolution spectra were taken on the night of September 1 2018 in
1 arcsec seeing with the MIKE spectrograph (Bernstein et al. 2003)
at the 6.5m Magellan Clay telescope. We used a 1 arcsec slit and 2x2
binning, producing a spectral resolving power R = λ/∆λ = 28 000
on the blue detector and 22 000 on the red detector. We reduced data
using the CarPy pipeline (Kelson 2003). Coadding the 4x1800 s ex-
posures resulted in a signal-to-noise per pixel, S/N ≈ 10 at 3700 Å,
30 at 4000 Å, and 90 at 6700 Å.

3 METHODS

We fit the observed high- and medium-resolution spectra using
χ2 statistics. Upper limits to abundances were determined using a
likelihood estimate assuming Gaussian errors, considering multiple
lines simultaneously where applicable. While fitting, the synthetic
spectra are convolved with a Gaussian profile representing the in-
strumental profile. We determine the continuum placement by tak-
ing the median ratio between the observed and synthetic spectrum in
continuum windows that are predicted to be free of line absorption.
In the spectrophotometric analysis, the slope of the continuum is
matched by applying the RV = 3.1 reddening law from Fitzpatrick
(1999) to the synthetic spectra.

For the spectrophotometric analysis, we compute a comprehen-
sive grid of 1D LTE spectra using the Turbospectrum code (v15.1;
Alvarez & Plez 1998; Plez 2012) and MARCS model atmospheres
(Gustafsson et al. 2008). We use vmic = 2 km s−1 and perform the
radiative transport under spherical symmetry taking into account
continuum scattering. The spectra are computed with a sampling
step of 1 km s−1, corresponding to a resolving power R ≈ 300 000.
We adopt the solar chemical composition and isotopic ratios from

Asplund et al. (2009), but assume [α/Fe] = 0.4 and compute spec-
tra with varying carbon abundance. For our high-resolution spec-
troscopic abundance analyses, we compute additional grids where
we vary the overall metallicity as well as the abundance of carbon
and one additional element at a time. We also use the 3D NLTE
hydrogen Balmer line profiles from Amarsi et al. (2018).

For all 1D LTE grids, we use a selection of atomic lines from
VALD3 (Ryabchikova et al. 2015) together with roughly 15 million
molecular lines representing 18 different molecules, the most im-
portant of which for this work being those for CH (Masseron et al.
2014) and CN (Brooke et al. 2014; Sneden et al. 2014).

4 RESULTS

4.1 Stellar parameters

We find consistent stellar parameters from medium-resolution spec-
trophotometry, optical and infrared photometry, high-resolution
Balmer line analyses and stellar evolution constraints, and illustrate
our synthetic spectrum fits in Fig. 1.

Our spectrophotometric analysis of the initial medium-
resolution spectrum indicates Teff = 4925 K, log g = 2.0 and
[Fe/H] < −4.75 (see Da Costa et al. 2019). We assumed a reddening
value E(B − V) = 0.20 based on the dust map from Schlegel et al.
(1998, rescaled according to Wolf et al. 2018). This is similar to
the distance-dependent dust map of Green et al. (2018) that in-
dicates E(B − V) = 0.23 ± 0.02. The interstellar lines of Na iD
5890 Å and K i 7699 Å show a complex structure of multiple com-
ponents, indicating E(B − V) between 0.12 and 0.21 using the cal-
ibrations of Munari & Zwitter (1997) and Poznanski et al. (2012).
Adopting this range in reddening, we find good spectrophotometric
fits for Teff = 4900 ± 100 K, log g = 2.0 ± 0.2. The infrared flux
method calibrations on SkyMapper and 2MASS photometry from
Casagrande et al. (2019) indicate Teff = 4865 ± 34 ± 117 K from
g − Ks and 4784 ± 59 ± 83 K from z − Ks , where the error bars
represent the uncertainties due to the measurement and reddening,
respectively.

We fit 3D NLTE Balmer line profiles (Amarsi et al. 2018) to
the high-resolution spectrum, taking care to avoid telluric lines for
Hα as well as lines of CH that contaminate Hγ and Hβ. We find good
simultaneous fits for all three Balmer lines with Teff = 4850±100 K
and log g = 2.0+0.5

−0.3. These reddening-free estimates are in excel-
lent agreement with the aforementioned spectrophotometric and
photometric values, and we therefore adopt as our final parame-
ters: Teff = 4850 ± 100 K, log g = 2.0 ± 0.2 dex. With these stellar
parameters, the spectrophotometry indicates E(B − V) = 0.12, in
agreement with the strengths of interstellar lines.

Placco et al. (2014) present stellar evolution models that take
into account varying enhancement of carbon and nitrogen. The
fact that nitrogen is not detected in SMSS 1605−1443 implies that
the episode of extra mixing usually associated with thermohaline
mixing (Eggleton et al. 2006; Charbonnel & Zahn 2007) has not yet
occurred, and further that the surface abundance of carbon is not
depleted (< 0.01 dex). This extra mixing episode is associated with
significant theoretical uncertainty, both in the magnitude of effects
and the evolutionary stage where they occur (Angelou et al. 2011;
Henkel et al. 2017; Shetrone et al. 2019). Taking into account the
systematic corrections discussed by Placco et al. (2014), our non-
detection of nitrogen constrains log g > 1.9, in agreement with our
spectroscopic measurements.

The Gaia DR2 parallax measurement, π = 0.0004±0.0544 mas

MNRAS 000, 1–6 (2019)
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Figure 1. Upper panel: Fit of the effective temperature to the first three Balmer lines (labeled) in the MIKE high-resolution spectrum, compared to models at
the preferred Teff = 4850 K. The lines are shown on a velocity scale centred on each line, and have been offset vertically. The grey shaded blocks represent the
wavelength ranges used in the χ

2 minimisation. Middle panel: Fit of the surface gravity to the WiFeS medium-resolution spectrophotometry, with a zoomed
inset showing the Balmer jump region, at the preferred log g = 2.0. Lower panel: Example fits to lines of Fe and Mg in the MIKE high-resolution spectrum.
In all panels additional models illustrate the sensitivity, and the legend lists the models as shown from top to bottom.

(Brown et al. 2018), yields a lower limit to the distance to SMSS
1605−1443 implying log g < 2.5 (3σ). Conversely, our spectro-
scopic estimate of log g = 2.0 ± 0.2 implies a predicted parallax
of π = 0.09 ± 0.02 mas, i.e., a distance of 11 ± 3 kpc, placing it
on the other side of the Galaxy. We note that its kinematics (with
vrad = −224 km s−1) indicate it being a normal inner halo star.

4.2 Abundance analysis

We report results of our abundance analysis in Table 1, where sta-
tistical uncertainties on the absolute abundance are based on our χ2

analyses and upper limits are given at the 3σ level. The systematic er-
rors on the absolute abundances are estimated by changing the stellar
parameters (Teff, log g, [Fe/H] and [C/H]), one at a time according
to their estimated uncertainty, and adding the effects in quadrature.
We do not attempt to quantify the influence of hydrodynamic and
non-LTE effects (e.g., Amarsi et al. 2016; Nordlander et al. 2017),

but defer this to future work that incorporates a full 3D non-LTE
analysis and higher-quality observations (Nordlander et al, in prep.).

We estimate the iron abundance from a set of 16 lines of Fe i,
10 detected and 6 upper limits, with lower excitation potential Elow
between 0 and 1.5 eV. Using a maximum-likelihood estimate that
also takes into account the 6 lines that have only upper limits, we
find a mean abundance [Fe/H] = −6.21 ± 0.17, with a flat trend
−0.01±0.14 dex eV−1 as a function of Elow. Fe ii cannot be detected
using the current spectrum. The three strongest lines yield an upper
limit [Fe/H] < −4.7 (3σ).

We estimate a carbon abundance [C/H] = −2.32 ± 0.05 us-
ing CH lines from the A2

∆–X2
Π system at 4100–4400 Å and the

B2
Σ
−–X2

Π system at 3900 Å. We do not detect absorption due to
13CH, and refrain from placing a limit on the isotopic ratio. For
magnesium, we measure [Mg/H] = −5.65 ± 0.13 from the UV
triplet at 3829–3838 Å. We find an equivalent width of just 17 mÅ
for the only detectable Mg ib line at 5185 Å. For calcium, the Ca ii

H and K lines indicate [Ca/H] = −5.07 ± 0.05. We also measure

MNRAS 000, 1–6 (2019)
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Table 1. High-resolution spectroscopic 1D LTE abundance analysis. Upper
limits are given at the 3σ level. Error estimates on the absolute abundances
are reported for both the statistical measurement uncertainty (σstat) and the
systematic uncertainty due to uncertainties in stellar parameters (σsys). The
last column gives the reference solar chemical composition.

Species A(X) [X/H] [X/Fe] σstat σsys A(X)⊙

Li i < 0.48 < −0.57 < 5.64 0.18 0.09 1.05
C (CH) 6.07 −2.32 3.89 0.05 0.27 8.39
N (CN) < 4.80 < −2.98 < 3.23 0.19 0.18 7.78
O i < 7.21 < −1.48 < 4.73 0.19 0.15 8.69
Na i < 0.90 < −5.27 < 0.94 0.18 0.10 6.17
Mg i 1.88 −5.65 0.57 0.13 0.09 7.53
Al i < 0.67 < −5.76 < 0.45 0.19 0.11 6.43
Si i < 2.09 < −5.42 < 0.80 0.20 0.11 7.51
K i < 1.98 < −3.10 < 3.11 0.19 0.09 5.08
Ca i 0.46 −5.85 0.37 0.11 0.13 6.31
Ca ii 1.24 −5.07 1.15 0.05 0.15 6.31
Sc ii < −1.76 < −4.93 < 1.29 0.12 0.10 3.17
Ti ii −0.50 −5.40 0.82 0.10 0.10 4.90
V ii < 0.69 < −3.31 < 2.90 0.23 0.09 4.00
Cr i < 0.22 < −5.42 < 0.79 0.20 0.13 5.64
Mn i < 0.03 < −5.36 < 0.85 0.19 0.15 5.39
Fe i 1.24 −6.21 . . . 0.17 0.14 7.45
Fe ii < 2.72 < −4.73 . . . 0.18 0.06 7.45
Co i < 0.56 < −4.36 < 1.85 0.19 0.14 4.92
Ni i < 0.87 < −5.36 < 0.85 0.25 0.14 6.23
Cu i < 1.51 < −2.70 < 3.51 0.19 0.12 4.21
Zn i < 1.55 < −3.05 < 3.16 0.19 0.06 4.60
Sr ii < −3.12 < −6.04 < 0.17 0.19 0.10 2.92
Ba ii < −3.07 < −5.24 < 0.97 0.19 0.11 2.17
Eu ii < −2.41 < −2.93 < 3.28 0.19 0.11 0.52

[Ca/H] = −5.85 ± 0.11 from Ca i 4226 Å, resulting in a very large
0.8 dex abundance difference between the two ionisation stages.
This is likely mainly due to the non-LTE overionisation of Ca i as
well as a smaller non-LTE effect of opposite sign acting on Ca ii (see
e.g., Sitnova et al. 2019). Comparing the measured abundances of
Ca i and Fe i, this implies a normal level of α-enhancement as seen
in most halo stars, [Ca/Fe] = 0.37±0.20. For titanium we detect the
two lines of Ti ii at 3759–3761 Å and obtain [Ti/H] = −5.40±0.10.

We determine upper limits for additional elements using a
likelihood estimate that assumes Gaussian errors. We use synthetic
spectra for these estimates, and consider multiple lines simultane-
ously when applicable.

5 DISCUSSION

Our analysis of SMSS 1605−1443 reveals remarkably low abun-
dances of heavier elements, including the lowest ever measured
abundance of iron at [Fe/H] = −6.2 ± 0.2. While the abundance
pattern from Na to Zn is broadly compatible with a standard α-
enhanced chemical composition typical of halo stars, the large car-
bon enhancement is a strong indicator for enrichment from a Popula-
tion III mixing-and-fallback supernova (see e.g. Umeda & Nomoto
2002; Nomoto et al. 2013). Using the predicted supernova yields
computed for metal-free Population III stars by Heger & Woosley
(2010), we find a reasonable match only for low-mass progenitors
(M ≈ 10 M⊙) with low explosion energy (< 1051 erg), as shown in
Fig. 2. Models more massive than about 20 M⊙ cannot simultane-
ously reproduce the strong carbon enhancement and the otherwise
flat abundance trend.

0 10 20 30
Atomic number

−8

−6

−4

−2

0

[X
/H

]

 11.2 MO • ,  0.3 B, log(fmix) = -1.8
 50.0 MO • ,  1.5 B, log(fmix) = -1.0
 11.2 MO • ,  0.3 B, log(fmix) = -1.8
 50.0 MO • ,  1.5 B, log(fmix) = -1.0

Li
C

N
O

Na
Mg

Al
Si

K
Ca

Sc
Ti

V
Cr
Mn

Fe
Co

Ni
Cu

Zn
Sr

Ba
Eu

Figure 2. Comparison of the measured abundances (blue squares) and 3σ

upper limits (blue arrows) to yields from Pop III supernova models with
varying progenitor star mass, explosion energy (in units of 1051 erg = 1 B),
and mixing parameter. No satisfactory fit to the observed abundance pattern
exists for models more massive than about 20 M⊙ .

Alternative explanations are unsatisfactory. The elevated abun-
dance of carbon could be due to pollution from an intermediate-
mass companion star, but models predict that this also leads to
similar enhancement of nitrogen and neutron-capture elements
(Campbell & Lattanzio 2008; Campbell et al. 2010; Cruz et al.
2013). An initially metal-free, or perhaps metal-poor but carbon-
normal, star could also be polluted by accretion from the ISM.
Again, models of this process predict significant enhancement of
nitrogen alongside carbon relative to the depletion of refractory
iron-peak elements (Johnson 2015), and can likewise be ruled out.

It has been shown in previous work (Collet et al.
2006; Frebel et al. 2008; Caffau et al. 2012; Bessell et al. 2015;
Nordlander et al. 2017) that significant systematic uncertainties are
associated with the chemical abundance analyses of the most iron-
poor stars. We note that these corrections depend sensitively on not
only the effective temperature and surface gravity of the star, but also
the abundance of the element under study, and we caution against
blindly applying representative corrections. Although these effects
may be as large as 1 dex, they are unlikely to significantly alter the
main conclusions of this work: It is clear that SMSS 1605−1443 is
the most iron-deficient star for which iron has been detected, that
it is strongly carbon enhanced, and that it does not exhibit strong
enhancement nor a strong abundance trend among elements heavier
than carbon. A higher-quality spectrum would enable more stringent
limits and likely detections of additional elements, which together
with advanced spectrum synthesis techniques will allow us to better
understand the properties of the Pop III progenitor star.
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