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A Marketplace for Data: An Algorithmic Solution

ANISH AGARWAL,Massachusetts Institute of Technology

MUNTHER DAHLEH,Massachusetts Institute of Technology

TUHIN SARKAR,Massachusetts Institute of Technology

In this work, we aim to design a data marketplace; a robust real-time matching mechanism to efficiently buy

and sell training data for Machine Learning tasks. While the monetization of data and pre-trained models is an

essential focus of industry today, there does not exist a market mechanism to price training data and match

buyers to sellers while still addressing the associated (computational and other) complexity. The challenge in

creating such a market stems from the very nature of data as an asset: (i) it is freely replicable; (ii) its value is

inherently combinatorial due to correlation with signal in other data; (iii) prediction tasks and the value of

accuracy vary widely; (iv) usefulness of training data is difficult to verify a priori without first applying it to a

prediction task. As our main contributions we: (i) propose a mathematical model for a two-sided data market

and formally define the key associated challenges; (ii) construct algorithms for such a market to function and

analyze how they meet the challenges defined. We highlight two technical contributions: (i) a new notion of

“fairness" required for cooperative games with freely replicable goods; (ii) a truthful, zero regret mechanism to

auction a class of combinatorial goods based on utilizing Myerson’s payment function and the Multiplicative

Weights algorithm. These might be of independent interest.
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1 INTRODUCTION
AData Marketplace -Why Now?Machine Learning (ML) is starting to take the place in industry

that "Information Technology" had in the late 1990s: businesses of all sizes and in all sectors,

are recognizing the necessity to develop predictive capabilities for continued profitability. To be

effective, ML algorithms rely on high-quality training data – however, obtaining relevant training

data can be very difficult for firms to do themselves, especially those early in their path towards

incorporating ML into their operations. This problem is only further exacerbated, as businesses

increasingly need to solve these prediction problems in real-time (e.g. a ride-share company setting

prices, retailers/restaurants sending targeted coupons to clear inventory), which means data gets

“stale" quickly. Therefore, we aim to design a data marketplace – a real-time market structure for

the buying and selling of training data for ML.

What makes Data a Unique Asset? (i) Data can be replicated at zero marginal cost – in general,

modeling digital goods (i.e., freely replicated goods) as assets is a relatively new problem (cf. [2]). (ii)

Its value to a firm is inherently combinatorial i.e., the value of a particular dataset to a firm depends

on what other (potentially correlated) datasets are available - hence, it is not obvious how to set

prices for a collection of datasets with correlated signals. (iii) Prediction tasks and the value of an

increase in prediction accuracy vary widely between different firms - for example, a 10% increase

in prediction accuracy has very different value for a hedge fund maximizing profit compared to

a logistics company trying to decrease inventory costs. (iv) The authenticity and usefulness of

data is difficult to verify a priori without first applying it to a prediction task - continuing the

example from above, a particular dataset of say satellite images may be very predictive for a specific

financial instrument but may have little use in forecasting demand for a logistics company (and

this is infeasible to check beforehand).

WhyCurrent OnlineMarkets Do Not Suffice?Arguably, the most relevant real-time markets to

compare against are: (i) online ad auctions (cf. [35]); (ii) prediction markets (cf. [36]). Traditionally,

in these markets (e.g. online ad auctions) the commodity (e.g. ad-space) is not a replicable good

and buyers have a strong prior (e.g. historical click-through-rate) on the value of the good sold (cf.

[23, 37]). In contrast for a data market, it is infeasible for a firm to make bids on specific datasets as it
is unlikely they have a prior on its usefulness. Secondly, it is infeasible to run something akin to a

second price auction (and variants thereof) since data is freely replicable (unless a seller artificially

restricts the number of replications, which may be suboptimal for maximizing revenue). This

problem only gets significantly more complicated due to the combinatorial nature of data. Thus any
market which matches prediction tasks and training features on sale, needs to do so based on which
datasets collectively are, empirically the most predictive and “cheap" enough for a buyer. This is a
capability online ad markets and prediction markets do not currently have. See Section 1.3 for a

more thorough comparison with online ad and prediction markets.

1.1 Overview of Contributions
Mathematical Model of Two-Sided DataMarket. Formal Definition of Key Challenges. As

the main contribution of this paper, we propose a mathematical model of a system design for a

data marketplace; we rigorously parametrize the participants of our proposed market - the buyers,

the sellers and the marketplace itself (Sections 2.1, 2.2, 2.3) - and the mechanism by which they

interact (Section 2.4). This is a new formulation, which lays out a possible architecture for a data
marketplace, and takes into account some of the key properties that make data unique; it is freely
replicable, it is combinatorial (i.e., features have overlapping information), buyers having no prior

on usefulness of individual datasets on sale and the prediction tasks of buyers vary widely. In

Section 3, we study the key challenges for such a marketplace to robustly function in real-time,



which include: (i) incentivizing buyers to report their internal valuations truthfully; (ii) updating

the price for a collection of correlated datasets such that revenue is maximized over time; (iii)

dividing the generated revenue “fairly" among the training features so sellers get paid for their

marginal contribution; (iv) constructing algorithms that achieve all of the above and are efficiently

computable (e.g. run in polynomial time in the parameters of the marketplace)?

Algorithmic Solution. Theoretical Guarantees. In Section 4, we construct algorithms for the

various functions the marketplace must carry out: (i) allocate training features to and collect revenue

from buyers; (ii) update the price at which the features are sold; (iii) distribute revenue amongst the

data sellers. In Section 5, we prove these particular constructions do indeed satisfy the desirable

marketplace properties laid out in Section 3. We highlight two technical contributions: (i) Property

3.4, a novel notion of “fairness" required for cooperative games with freely replicable goods, which

generalizes the standard notion of Shapley fairness; (ii) a truthful, zero regret mechanism for

auctioning a particular class of combinatorial goods based on utilizing Myerson’s payment function

(cf. [29]) and the Multiplicative Weights algorithm (cf. [3]). These might be of independent interest.

1.2 Motivating Example from Inventory Optimization
We begin with an example from inventory optimization to help build intuition for our proposed

architecture for a data marketplace (see Section 2 for a mathematical formalization of these dynam-

ics). We refer back to this example throughout the paper as we introduce various notations and

algorithmic constructions.

Inventory Optimization Example: Imagine data sellers are retail stores selling anonymized

minute-by-minute foot-traffic data streams into a marketplace and data buyers are logistics com-

panies who want features (i.e. various time series) that best forecast future inventory demand. In

such a setting, even though a logistics company clearly knows there is predictive value in these

data streams on sale, it is reasonable to assume that the company does not have a good prior

on what collection of foot-traffic data streams are most predictive for demand forecasting, and

within their budget. Thus, practically speaking, such a logistics company cannot make accuracy,

individual bids for each data stream (this is even without accounting for the significant additional

complication arising from the overlap in signal i.e., the correlation that invariably will exist between

the foot-traffic data streams of the various retail stores).

Instead what a logistics company does realistically have access to is a well-defined cost model for

not predicting demand well (cf. [21, 24]) - e.g., “10% over/under-capacity costs $10,000 per week”.

Hence it can make a bid into a data market of what a marginal increase in forecasting accuracy of

inventory demand is worth to it - e.g. “willing to pay $1000 for a percentage increase in demand

forecasting accuracy from the previous week".

In such a setting, the marketplace we design performs the following steps:

(1) The logistics company supplies a prediction task (i.e., a time series of historical inventory

demand) and a bid signifying what a marginal increase in accuracy is worth to it

(2) The market supplies the logistics company with foot-traffic data streams that are “cheap"

enough as a function of the bid made and the current price of the data streams

(3) A ML model is fit using the foot-traffic data streams sold and the historical inventory demand

(4) Revenue is collected based only on the increased accuracy in forecasting inventory demand 1

(5) Revenue is divided amongst all the retail stores who provided foot-traffic data

(6) The price associated with the foot-traffic data streams is then updated

1
Model evaluation could potentially be done on an out-of-sample test set or based on actual prediction performance on

future unseen demand



What we find especially exciting about this example is that it can easily be adapted to a variety of

commercial settings. Examples include: (i) hedge funds sourcing alternative data to predict certain

financial instruments; (ii) utility companies sourcing electric vehicle charging data to forecast

electricity demand during peak hours; (iii) retailers sourcing online social media data to predict

customer churn.

Thus we believe the dynamic described above can be a natural, scalable way for businesses to source
data for ML tasks, without knowing a priori what combination of data sources will be useful.

1.3 Literature Review
Auction design and Online Matching. In this work, we are specifically concerned with online

auction design in a two–sided market. There is a rich body of literature on optimal auction design

theory initiated by [29], [31]. We highlight some representative papers. In [32] and [10], platform

design and the function of general intermediary service providers for such markets is studied;

in [17], advertising auctions are studied; in the context of ride–sharing such as those in Uber and

Lyft, the efficiency of matching in [12] and optimal pricing in [8] are studied. An extensive survey

on online matching, in the context of ad allocation, can be found in [27]. These paper generally

focus on the tradeoff between inducing participation and extracting rent from both sides. Intrinsic

to such models is the assumption that the value of the goods or service being sold is known partially

or in expectation. This is the key issue in applying these platform designs for a data marketplace; as

stated earlier, it is unrealistic for a buyer to know the value of the various data streams being sold a

priori (recall the inventory example in Section 1.2 in which a logistic company cannot realistically

make accurate bids on separate data streams or bundles of data streams). Secondly these prior

works do no take into account the freely replicable, combinatorial nature of a good such as data.

Online Ad Auctions. See [35] for a detailed overview. There are two key issues with online ad

markets that make it infeasible for data. Firstly, ad-space is not a replicable good i.e., for any

particular user on an online platform, at any instant in time, only a single ad can be shown in an

ad-space. Thus an online ad market does not need to do any “price discovery" - it simply allocates the

ad-space to the highest bidder; to ensure truthfulness, the highest bidder pays the second highest

bid i.e., the celebrated second price auction (and variants thereof). In contrast, for a freely replicable

good such as data, a second price auction does not suffice (unless a seller artificially restricts a

dataset to be replicated a fixed number of times, which may be suboptimal for maximizing revenue).

Secondly, buyers of online ad-space have a strong prior on the value of a particular ad-space - for

example, a pharmaceutical company has access to historical click-through rates (CTR) for when a

user searches for the word “cancer ". So it is possible for firms to make separate bids for different

ad-spaces based on access to past performance information such as CTR (cf. [23, 37]). In contrast,

since prediction tasks vary so greatly, past success of a specific training feature on sale has little

meaning for a firm trying to source training data for its highly specific ML task; again, making it is

infeasible for a firm to make bids on specific datasets as they have no prior on its usefulness.

Prediction Markets. Such markets are a recent phenomenon and have generated a lot of interest,

rightly so. See [36] for a detailed overview. Typically in such markets, there is a discrete random

variable,W , that a firm wants to accurately predict. The market executes as follows: (i) “experts" sell

probability distributions ∆W i.e., predictions on the chance of each outcome; (ii) the true outcome,

w , is observed; (iii) the market pays the “experts" based on ∆W andw . In such literature, payment

functions based on the Kullback–Leibler divergence are commonly utilized, as they incentivize

“experts" to be truthful (cf. [19]). Despite similarities, prediction markets remain infeasible for data

as “experts" have to explicitly choose which tasks to make specific predictions for. In contrast,

it is not known a priori whether a particular dataset has any importance for a prediction task;



in the inventory optimization example in Section 1.2, retail stores selling foot-traffic data cannot

realistically know which logistics company’s demand forecast their data stream will be predictive

for (again, this is only exacerbated when taking into account the overlap of information between

features). A data market must instead provide a real-time mechanism to match training features to

prediction tasks based on the increase in predictive value from the allocated features.

Information Economics. There has been an exciting recent line of work that directly tackles data

as an economic good which we believe to be complimentary to our work. We divide them into three

major buckets and highlight some representative papers: (i) data sellers have detailed knowledge of

the specific prediction task and incentives to exert effort to collect high-quality data (e.g. reduce

variance) are modeled [5, 13]; (ii) data sellers have different valuations for privacy and mechanisms

that tradeoff privacy loss vs. revenue gain are modeled [16, 22]; (iii) studying the profitability of

data intermediaries who supply consumer data to firms that want to sell the very same customers

more targeted goods [9]. These are all extremely important lines of work to pursue, but they focus

on different (but complementary) objectives.

Referring back to the inventory optimization example in Section 1.2), we model the sellers (retail

stores) as simply trying to maximize revenue by selling foot-traffic data they already collect. Hence

we assume they have (i) no ability to fundamentally increase the quality of their data stream; (ii) no
knowledge of the prediction task; (iii) no concerns for privacy. In many practical commercial settings,

these assumptions do suffice as the data is sufficiently anonymized, and these sellers are trying to

monetize data they are already implicitly collecting through their operations. We focus our work

on such a setting, where firms are trying to buy features to feed their ML models, and believe

our formulation to be the most relevant for it. It would be interesting future work to find ways of

incorporating privacy, feedback and the cost of data acquisition into our model.

2 THE MODEL - PARTICIPANTS AND DYNAMICS
2.1 Sellers
Let there be M sellers, each supplying data streams in this marketplace. We formally parameterize

a seller through the following single quantity:

Feature. X j ∈ RT , j ∈ [M] is a vector of length T .
For simplicity, we associate with each seller a single feature and thus restrict X j to be in RT .

Our model is naturally extended to the case where sellers are selling multiple streams of data by

considering each stream as another “seller" in the marketplace. We refer to the matrix denoting

any subset of features as X S , S ⊂ [M]. Recall from the motivations we provide in Sections 1.2

and 1.3 for our model, we assume data sellers do not have the ability to change the quality of the

data stream (e.g. reducing variance) they supply into the market nor any concerns for privacy (we

assume data is sufficiently anonymized as is common in many commercial settings). Additionally

sellers have no knowledge of the prediction tasks their data will be used for and simply aim to

maximize revenue from the datasets that they already have on hand.

2.2 Buyers
Let there be N buyers in the market, each trying to purchase the best collection of datasets they

can afford in this marketplace for a particular prediction task. We formally parameterize a buyer

through the following set of quantities, for n ∈ [N ]:

Prediction Task. Yn ∈ RT is a vector of T labels that Buyer n wants to predict well
2
.

2
To reduce notational overload, we abstract away the partition of Yn into training and test data.



We provide a clarifying example of Yn and X j , using the inventory optimization example in

Section 1.2. There, the historical inventory demand for the logistics company is Yn and each

historical foot-traffic data stream sold by retailers is X j . The “prediction task" is then to forecast

inventory demand, Yn , from time-lagged foot traffic data, X j for j ∈ [M].

Prediction Gain Function. Gn : R2T → [0, 1], the prediction gain function, takes as inputs the

prediction task Yn and an estimate Ŷn , and outputs the quality of the prediction.

For regression, an example of Gn is 1 − RMSE
3
(root-mean-squared-error). For classification,

an example of Gn is Accuracy
4
. In short, a larger value for Gn implies better prediction accuracy.

To simplify the exposition (and without any loss of generality of the model), we assume that all

buyers use the same gain function i.e., G = Gn for all n.

Value of Accuracy. µn ∈ R+ is how much Buyer n values a marginal increase in accuracy.

As an illustration, recall the inventory optimization example in Section 1.2 where a logistics

company makes a bid of the form, “willing to pay $1000 for a percentage increase in demand

forecasting accuracy from the previous week". We then have the following definition for how a

buyer values an increase in accuracy,

Definition 2.1. Let G be the prediction gain function. We define the value Buyer n gets from
estimate Ŷn as:

µn · G(Yn , Ŷn)

i.e., µn is what a buyer is willing to pay for a unit increase in G.

Remark 2.1. Though a seemingly natural definition, we view it as one of the key modeling decisions
we make in our design of a data marketplace. In particular, a buyer’s valuation for data does not come
from specific datasets, but rather from an increase in prediction accuracy of a quantity of interest.

Remark 2.2. A potential source of confusion is we require µn to be linear while many ML error
metrics are non-linear. For example, in balanced, binary classification problems, randomly guessing
labels has expected accuracy of 50%, which has zero value (and not µn/2). However, such non-linearities
can easily be captured in the gain function, G. For the balanced, binary classification problem, G can
easily be normalized such that 50%-accuracy has value 0 and 100%-accuracy has value 1 (specifically,
G =

max (0, �accuracy)
0.5 ). µn can thus be thought of as a buyer-specific scaling of how much they value an

increase in accuracy. Indeed, linear utility models are standard in information economics (c.f. [9]).

Remark 2.3. Recall that to reduce notational overload, we let Yn refer to both test and train data.
Specifically, Yn = (Y train

n ,Y test
n ). The ML-algorithm accesses Y train

n and the Gain function, G accesses
Y test
n (i.e. Ŷn), as is standard in ML workflows.

Public Bid Supplied to Market. bn ∈ R+ is the public bid supplied to the marketplace.

Note that µn is a private valuation. If Buyer n is strategic, µn is not necessarily what is revealed

to the marketplace. Thus we define bn , which refers to the actual bid supplied to the marketplace

(not necessarily equal to µn ).

3
RMSE = 1

Ymax−Ymin

√∑T
i=1(Ŷi − Yi )2/T , where: (i) Ŷi is the predicted value for i ∈ [T ] produced by the machine learning

algorithm, M, (ii) Ymax, Ymin are the max and min of Yn respectively.

4
Accuracy = 1

T
∑T
i=1 1(Ŷi = Yi ), with Ŷi defined similarly to that above



2.3 Marketplace
The function of the marketplace is to match buyers and sellers as defined above. As we make

precise in Section 2.4, we model theM sellers as fixed and the N buyers as coming one at a time.

We formally parameterize a marketplace through the following set of quantities, for n ∈ [N ]:

Price. pn ∈ R+ is the price the marketplace sets for the features on sale when Buyer n arrives.

As we make precise in Property 3.2, we measure the quality of the prices (p1, . . . ,pN ) set by
the marketplace for each buyer by comparing against the optimal fixed price in hindsight (i.e.,

standard definition of regret). However, it is well-known that standard price update algorithms

for combinatorial goods, which satisfy Property 3.2, scale very poorly inM (cf. [15]). Specifically,

if we maintain separate prices for every data stream (i.e., if pn ∈ RM+ ) it is easily seen that regret-

minimizing algorithms such as Multiplicative Weights (cf. [3]) or Upper Confidence Bandits (cf.

[4]), will have exponential running time or exponentially loose guarantees (inM) respectively. In

fact from [15], we know regret minimizing algorithms for even very simple non-additive buyer

valuations are provably computationally intractable.

Thus to achieve a zero-regret price update algorithm, without making additional restrictive

assumptions, we restrict pn to be a scalar rather than aM-dimensional vector. This is justified due

to Definition 2.1, where we model a buyer’s “value for accuracy" (and the associated public bid)

through the scalar, µn (and the scalar bn respectively). This allows the marketplace to control the

quality of the predictions based on the difference between pn and bn (see Section 4.1 for details).

Machine Learning/Prediction Algorithm.M : RMT → RT , the learning algorithm utilized by

the marketplace, takes as input the features on sale XM , and produces an estimate Ŷn of Buyer n’s
prediction problem Yn .
M does not necessarily have to be supplied by the marketplace and is a simplifying assumption.

Instead buyers could provide their own learning algorithm that they intend to use, or point towards

one of the many excellent standard open-source libraries widely used such as SparkML, Tensorflow

and Scikit-Learn (cf. [1, 28, 30])
5
.

Allocation Function. AF : (pn ,bn ;XM ) → X̃M , X̃M ∈ RM , takes as input the current price pn
and the bid bn received, to decide the quality at which Buyer n gets allocated the features on sale

XM (e.g. by adding noise or subsampling the features).

In Section 4.1, we provide explicit instantiations of AF and detailed reasoning for why we

choose this particular class of allocation functions.

Revenue Function. RF : (pn ,bn ,Yn ;M,G,XM ) → rn , rn ∈ R+, the revenue function, takes as
input the current price pn , in addition to the bid and the prediction task provided by the buyer (bn
and Yn respectively), to decide how much revenue rn to extract from the buyer.

Payment Division Function. PD : (Yn , X̃M ;M,G) → ψn , ψn ∈ [0, 1]M , the payment-division

function, takes as input the prediction task Yn along with the features that were allocated X̃M , to

computeψn , a vector denoting the marginal value of each allocated feature for the prediction task.

Price Update Function. PF : (pn ,bn ,Yn ;M,G,XM ) → pn+1, pn+1 ∈ R+, the price-update

function, takes as input the current price pn , in addition to the bid and the prediction task provided

by the buyer (bn and Yn respectively) to update the price for Buyer n + 1.

5
Indeed a key trend in many business use cases, is that the ML algorithms used are simply lifted from standard open-source

libraries. Thus the accuracy of predictions is primarily a function of the quality of the data fed to these ML algorithms.



Fig. 1. Overview of marketplace dynamics.

2.3.1 Buyer Utility. We can now precisely define the utility function, U : R+ × RT → R, each
buyer is trying to maximize,

Definition 2.2. The utility Buyer n receives by bidding bn for prediction task Yn is given by

U(bn ,Yn) B µn · G(Yn , Ŷn) − RF (pn ,bn ,Yn) (1)

where Ŷn =M(Yn , X̃M ) and X̃M = AF(pn ,bn ;XM ).

In words, the first term on the right hand side (r.h.s) of (1) is the value derived from a gain in

prediction accuracy (as in Definition 2.1). Note this is a function of the quality of the features that

were allocated based on the bid bn . The second term on the r.h.s of (1) is the amount the buyer

pays, rn . Buyer utility as in Definition 2.2 is simply the difference between these two terms.

2.4 Marketplace Dynamics
We can now formally define the per-step dynamic within the marketplace (see Figure 1 for a

graphical overview). Note this is a formalization of the steps laid out in the inventory optimization

example in Section 1.2. When Buyer n arrives, the following steps occur in sequence (we assume

p0,b0,Y0 are initialized randomly):

For n ∈ [N ]:
(1) Market sets price pn , where pn = PF (pn−1,bn−1,Yn−1)
(2) Buyer n arrives with prediction task Yn
(3) Buyer n bids bn where bn = argmaxz∈R+ U(z,Yn)
(4) Market allocates features X̃M to Buyer n , where X̃M = AF(pn ,bn ;XM )
(5) Buyer n achieves G

(
Yn ,M(X̃M )

)
gain in prediction accuracy

(6) Market extracts revenue, rn , from Buyer n, where rn = RF (pn ,bn ,Yn ;M,G)
(7) Market divides rn amongst allocated features usingψn , whereψn = PD(Yn , X̃M ;M,G)

Remark 2.4. A particularly important (albeit implicit) benefit of the above proposed architecture
is that the buyer’s do not ever access the underlying features. Rather they only receive predictions



through the ML model trained on the allocated features. This circumvents a known, difficult problem
in designing data markets where sellers are reluctant to release potentially valuable data streams as
they do not have control over who subsequently accesses it (since data streams are freely replicable).

Remark 2.5. In our proposed architecture, the price for each buyer is set centrally by the marketplace
rather than by the sellers individually. A sellers simply supplies data streams to the marketplace and is
assigned revenue based on the marginal contribution the data stream provides to the prediction task.
Thus from the perspective of price setting, our model can equivalently be thought of as a single seller
supplying multiple data streams to the market and adjusting pn to maximize overall revenue.

Remark 2.6. We note from the dynamics laid out above (specifically Step 3), a buyer is “myopic"
over a single-stage i.e., Buyer n comes into the market once and leaves after being provided the estimate
Ŷn . Thus Buyer n maximizing utility only over Step n. In particular, we do not study the additional
complication if the buyer’s utility is defined over multiple-stages.

Remark 2.7. Our proposed architecture does not take into account an important attribute of data; a
firm’s utility for a particular dataset may be heavily dependent on what other firms get access to it
(e.g. a hedge fund might pay a premium to have a particularly predictive dataset only go to it). By
modeling buyer’s coming to the market one at a time, we do not study the externalities associated with
a dataset being replicated multiple times.

3 DESIRABLE PROPERTIES OF MARKETPLACE
We define key properties for such a marketplace to robustly function in a large-scale, real-time

setting, where buyers are arriving in quick succession and need to be matched with a large number

of data sellers within minutes, if not quicker. Intuitively we require the following properties: (i)

buyers are truthful in their bids; (ii) overall revenue is maximized; (iii) revenue is fairly divided

amongst sellers; (iv) marketplace runs efficiently. In Sections 3.1-3.4, we formally define these

properties.

3.1 Truthfulness
Property 3.1 (Truthful). A marketplace is “truthful" if for all Yn ,

µn = argmax

z∈R+
U(z,Yn)

where U(z,Yn) is defined as in Definition 2.2.

Property 3.1 requires that the allocation function,AF , and the revenue function, RF , incentivize

buyers to bid their true valuation for an increase in prediction accuracy. Note that we assume

buyers do not alter their prediction task, Yn .

3.2 Revenue Maximization
Property 3.2 (Revenue Maximizing). Let {(µ1,b1,Y1), (µ2,b2,Y2), . . . , (µN ,bN ,YN )} be a se-

quence of buyers entering the market. A marketplace is “revenue maximizing" if the price-update
function, PF (·), produces a sequence of prices, {p1,p2, . . . ,pn}, such that the “worst-case" average
regret, relative to the optimal price p∗ in hindsight, goes to 0, i.e.,

lim

N→∞

1

N

[
sup

{(bn,Yn ):n∈[N ]}

(
sup

p∗∈R+

N∑
n=1

RF (p∗,bn ,Yn) −
N∑
n=1

RF (pn ,bn ,Yn)
)]
.

As is convention, we term the expression with the square bracket as regret and denote it, R(N ,M).
Property 3.2 is the standard worst-case regret guarantee (cf. [20]). It necessitates the price-update



function, PF , produce a sequence of prices pn such that the average difference with the unknown

optimal price in hindsight, p∗ goes to zero as N increases. Note Property 3.2 must hold over the

worst case sequence of buyers i.e, no distributional assumptions on µn ,bn ,Yn are made.

3.3 Revenue Division
In the following section, we abuse notation and let S ⊂ [M] refer to both the index of the training

features on sale and to the actual features, X S themselves.

3.3.1 Shapley Fairness.

Property 3.3 (Shapley Fair). A marketplace is “Shapley-fair" if ∀ n ∈ [N ],∀ Yn , the following
holds on PD (and its output,ψn):
(1) Balance:

∑M
m=1ψn(m) = 1

(2) Symmetry: ∀m,m′ ∈ [M],∀S ⊂ [M] \ {m,m′}, if PD(S ∪m,Yn) = PD(S ∪m′,Yn), then
ψn(m) = ψn(m′)

(3) Zero Element: ∀m ∈ [M],∀S ⊂ [M], if PD(S ∪m,Yn) = PD(S,Yn), thenψn(m) = 0

(4) Additivity: Let the output of PD([M],Y (1)
n ),PD([M],Y (2)

n ) be ψ (1)
n ,ψ

(2)
n respectively. Let ψ ′

n

be the output of PD([M],Y (1)
n + Y

(2)
n ). Thenψ ′

n = ψ
(1)
n +ψ

(2)
n .

The conditions of Property 3.3, first laid out in [34], are considered the standard axioms of

fairness. We choose them as they are the de facto method to assess the marginal value of goods

(i.e., features in our setting) in a cooperative game (i.e., prediction task in our setting).

Remark 3.1. A naive definition of the marginal value of feature m would be a “leave-one-out"
policy, i.e.,ψn(m) = G(Yn ,M(X̃ [M ])) − G(Yn ,M(X̃ [M ]\m)). As the following toy example shows, the
correlation between features would lead to the market “undervaluing" each feature. Consider the simple
case where there are two sellers each selling identical features. It is easy to see the “leave-one-out"
policy above would lead to zero value being allocated to each feature, even though they collectively
might have great predictive value. This is clearly undesirable. That is why Property 3.3 is a necessary
notion of fairness as it takes into account the overlap of information that will invariably occur between
the different features, X j .

We then have the following celebrated theorem from [34],

Theorem 3.1 (Shapley Allocation). Let ψshapley ∈ [0, 1][M ] be the output of the following
algorithm,

ψshapley(m) =
∑

T ⊂[M ]\{m }

|T |!(M − |T | − 1)!
M!

(
G
(
Yn ,M(X̃T∪m)

)
− G

(
Yn ,M(X̃T )

))
(2)

Thenψshapley is the unique allocation that satisfies all conditions of Property 3.3

Intuitively, this algorithm is computing the average marginal value of featurem over all subsets

T ⊂ [M] \ {m}. It is easily seen that the running time of this algorithm is Θ(2M ), which makes it

infeasible at scale if implemented as is. But it still serves as a useful standard to compare against.

3.3.2 Robustness to Replication.

Property 3.4 (Robustness to replication). For allm ∈ [M], letm+i refer to the ith replicated
copy ofm i.e., X+m,i = Xm . Let [M]+ = ∪m(m ∪i m

+
i ) refer to the set of original and replicated features.

Let ψ+n = PD([M]+,Yn). Then a marketplace is ϵ-“robust-to-replication" if ∀ n ∈ [N ],∀ Yn , the
following holds on PD:

ψ+n (m) +
∑
i

ψ+n (m+i ) ≤ ψn(m) + ϵ .



Fig. 2. Shapley fairness is inadequate for freely replicable goods.

Property 3.4 is a novel notion of fairness, which can be considered a necessary additional

requirement to the Shapley notions of fairness for freely replicable goods. We use Example 3.1

below to elucidate how adverse replication of data can lead to grossly undesirable revenue divisions

(see Figure 2 for a graphical illustration). Note that implicit in the definition of Property 3.4 is that

the “strategy-space" of the data sellers is the number of times they replicate their data.

Example 3.1. Consider a simple setting where the marketplace consists of only two sellers, A and B,
each selling one feature which are both identical. By Property 3.3, the Shapley value of A and B are
equal, i.e.,ψ (A) = 1

2
,ψ (B) = 1

2
. However if seller A replicated her feature once and sold it again in the

marketplace, it is easy to see that the new Shapley allocation will beψ (A) = 2

3
,ψ (B) = 1

3
. Hence it is

not robust to replication since the aggregate payment remains the same (no change in accuracy).

Such a notion of fairness in cooperative games is especially important in modern day applications

where: (i) digital goods are prevalent and can be produced at close to zero marginal cost; (ii) users get

utility from bundles of digital goods with potentially complex combinatorial interactions between

them. Two examples of such a setting are battery cost attribution among smartphone applications

and reward allocation among “experts" in a prediction market.

3.4 Computational Efficiency
We assume theMachine Learning algorithm,M, and the Gain function,G, each require computation

running time of O(M), i.e., computation complexity scales at most linearly with the number of

features/sellers,M . We define the following computational efficiency requirement of the market,

Property 3.5 (Efficient). A marketplace is “efficient" if for each Step n, the marketplace as laid
out in Section 2.4 runs in polynomial time in M , where M is the number of sellers. In addition, the
computational complexity for each step of the marketplace cannot grow with N .

Such a marketplace is feasible only if it functions in real-time. Thus, it is pertinent that the

computational resources required for any Buyer n to interface with the market are low i.e., ideally

with run-time close to linear inM , the number of sellers, and not growing based on the number

of buyers seen thus far. Due to the combinatorial nature of data, this is a non–trivial requirement

as such combinatorial interactions normally lead to an exponential dependence inM ; recall from

earlier sections, the Shapley Algorithm in Theorem 3.1 runs in Θ(2M ) and a naive implementation

of Multiplicative Weights Algorithm for combinatorial goods runs in Θ(exp(M)).

4 MARKETPLACE CONSTRUCTION
We now explicitly construct instances of AF ,RF ,PF and PD and argue in Section 5 that the

properties laid out in Section 3 hold for these particular constructions.



Remark 4.1. In line with Remark 2.5, we can think of AF ,RF as instances of how to design a
robust bidding, data allocation and revenue generation scheme from the buyer’s perspective with the
features sold held fixed (see Property 3.1). Analogously, PD is a function for fair revenue division
from the seller’s perspective for a fixed amount of generated revenue (see Properties 3.3 and 3.4). And
PF is a function to centrally adjust the price of the features sold dynamically over time from the
marketplace’s perspective (see Property 3.2).

4.1 Allocation and Revenue Functions (Buyer’s Perspective)
Allocation Function. Recall the allocation function, AF , takes as input the current price pn and

the bid bn received, to decide the quality of the features XM , used for Buyer n’s prediction task.

Recall from Definition 2.1 that a buyer’s utility comes solely from the quality of the estimate

Ŷn received, rather than the particular datasets allocated. Thus the key structure we exploit in

designing AF is that from the buyer’s perspective, instead of considering each feature X j as a
separate good (which leads to computational intractability), it is greatly simplifying to think of XM as
the total amount of “information" on sale. AF can thus be thought of as a function to collectively
adjust the quality of all of XM based on the difference between pn and bn
Specifically, we choose AF to be a function that adds noise to/degrades XM proportional to the

difference between pn and bn . This degradation can take many forms and depends on the structure

of X j itself. Below, we provide examples of commonly used allocation functions for some typical

X j encountered in ML.

Example 4.1. Consider X j ∈ RT i.e. sequence of real numbers. Then an allocation function (i.e.
perturbation function), AF ∗

1
(pn ,bn ;X j ), commonly used (cf. [13, 16]) would be for t in [T ],

X̃ j (t) = X j (t) +max(0,pn − bn) · N(0,σ 2)
where N(0,σ 2) is a univariate Gaussian.

Example 4.2. Consider X j ∈ {0, 1}T i.e. sequence of bits. Then an allocation function (i.e. masking
function), AF ∗

2
(pn ,bn ;X j ), commonly used (cf. [33]) would be for t in [T ],

X̃ j (t) = B(t ;θ ) · X j (t)

where B(t ;θ ) is an independent Bernoulli random variable with parameter θ = min(bnpn , 1).

In both examples if bn ≥ pn , then the buyer is given XM as is without degradation. However if

bn < pn , then X j is degraded in proportion to the difference between bn and pn .

Remark 4.2. Through Assumption 1 (see Section 5.1), we formalize a natural and necessary property
required of any such allocation function so that Property 3.1 (truthfulness) holds. Specifically, for a
fixed price pn , increasing the bid bn cannot lead to a decrease in prediction quality. The space of possible
allocations functions that meet this criteria is clearly quite large. We leave it as future work to study
what is the optimal AF from the space of feasible allocation functions to maximize revenue.

Remark 4.3. A celebrated result from [29] is that for single-parameter buyers, a single take-it-or-
leave-it price for all data is optimal, i.e. if the bid is above the singe posted price then allocate all
the data without any noise and if the bid is less than the price, allocate no data. However, maybe
surprisingly, in our setting this result does not apply. This is due to an important subtlety in our
formalism - while µn (how much a buyer values a marginal increase in accuracy), is a scalar, a buyer
is also parametrized by Yn , the prediction task.

This leads to the following simple counter-example - imagine buyers are only of two types: (i) Type I
with prediction task Y1 and valuation µ1; (ii) Type II with prediction task Y2 and valuation µ2. Further,



Fig. 3. Features allocated (AF ∗) and revenue collected (RF ∗) for a particular price vector pn and bid bn .

let there be only two types of features on sale,X1 andX2. AssumeX1 is perfectly predictive of prediction
task Y1 and has zero predictive value for Y2. Analogously, assume X2 is perfectly predictive of Y2 and
has no predictive value for Y1. Then it is easy to see that the optimal pricing mechanism is to set the
price of X1 to be µ1 and X2 to be µ2. Thus a single posted price is not optimal 6.
More generally, if different datasets have varying amounts of predictive power for different buyer

types, it is not even clear that a take-it-or-leave-it price per feature sold is optimal.

Revenue Function. Recall from Definition 2.1, we parameterize buyer utility through the pa-

rameter µn , i.e., how much a buyer values a marginal increase in prediction quality. This crucial

modeling choice allows us to use Myerson’s payment function rule (cf. [29]) given below,

RF ∗(pn ,bn ,Yn) = bn · G
(
Yn ,M

(
AF ∗(bn ,pn)

))
−
∫ bn

0

G
(
Yn ,M

(
AF ∗(z,pn)

))
dz. (3)

In Theorem 5.1, we show that RF ∗ ensures Buyer n is truthful (as defined in Property 3.1). Refer to

Figure 3 for a graphical view of AF ∗
and RF ∗

.

4.2 Price Update Function (Marketplace Perspective)
The market is tasked with how to pick pn for n ∈ [N ]. Recall from Section 2.4, the market must

decide pn before Buyer n arrives (otherwise, it is easily seen that truthfulness cannot be gauranteed).

We now provide some intuition of how increasing/decreasing pn affects the amount of revenue

collected, and the implicit tradeoff that lies therein. Observe from the construction of RF ∗
in (3)

that for a fixed bid, bn , and prediction task Yn , it is easily seen that if pn is picked to be too large,

then the positive term in RF ∗
is small (as the degradation of the signal inXM is very high), leading

to lower than optimal revenue generation. Similarly, if pn is picked to be too small, it is easily seen

that the negative term in RF ∗
is large, which again leads to an undesired loss in revenue.

In Algorithm 1, we apply the Multiplicative Weights method to pick pn in an online fashion

and to balance the tradeoff described above. To construct Algorithm 1 more precisely, we need to

define some additional quantities. As we make precise in Assumption 4 in Section 5, we assume

bids come from some bounded set, B ⊂ R+. We define Bmax ∈ R to be the maximum element of B
6
When it comes to truthfulness (see Property 3.1), the fact that we can parametrize a buyerâĂŹs valuation through a

scalar, µn , does indeed mean MyersonâĂŹs payment function (see (3)) is truthful as long as the data allocation function is

monotonic.



ALGORITHM 1: PRICE-UPDATE: PF ∗(bn ,Yn ,B, ϵ,δ )
Input: bn ,Yn ,B, ϵ,δ
Output: pn
Let Bnet(ϵ) be an ϵ-net of B;

for ci ∈ Bnet(ϵ) do
Setwi

1
= 1 ; // initialize weights of all experts to 1

end

for n = 1 to N do

Wn =
∑ |Bnet(ϵ ) |
i=1 wi

n ;

Let pn = c
i
with probabilitywi

n/Wn ; // note pn is not a function of bn
for ci ∈ Bnet(ϵ) do

Let дin = RF ∗(ci ,bn ,Yn )/Bmax ; // revenue gain if price ci was used

Setwi
n+1 = w

i
n · (1 + δдin ) ; // Multiplicative Weights update step

end

end

and Bnet(ϵ) to be a minimal ϵ-net of B 7
. Intuitively, the elements of Bnet(ϵ) serve as our “experts"

(i.e. the different prices we experiment with) in the Multiplicative Weights algorithm.

In Theorem 5.2, we show that this algorithm does indeed achieve zero-regert with respect to the

optimal p∗ ∈ R+ in hindsight.

4.3 Payment-Division Functions (Seller’s Perspective)
4.3.1 Shapley Approximation. In our model (see Section 2.4), a buyer only makes an aggregate

payment to the market based on the increase in accuracy experienced (see RF ∗
in (3)). It is thus

up to the market to design a mechanism to fairly (as defined in Property 3.3) allocate the revenue

among the sellers to incentivize their participation. Following the seminal work in [34], there

have been a substantial number of applications (cf. [6, 7]) leveraging the ideas in [34] to fairly

allocate cost/reward among strategic entities cooperating towards a common goal. Since the Shapley

algorithm stated in (2) is the unique method to satisfy Property 3.3, but unfortunately runs in time

Θ(2M ), the best one can do is to approximate (2) as closely as possible.

In Algorithm 2, we uniformly sample from the space of permutations over [M] to construct an

approximation of the Shapley value in (2). To construct Algorithm 2 more precisely, we need to

define some additional quantities. Let σ[M ] refer to the set of all permutations over [M]. For any
permutation σ ∈ σ[M ], let [σ < m] refer to the set of features in [M] that came beforem.

The key observation in showing that Algorithm 2 is effective, is that instead of enumerating

over all permutations in σ[M ] as in the Shapley allocation, it suffices to sample σk ∈ σ[M ] uniformly

at random with replacement, K times, where K depends on the ϵ-approximation a practitioner

desires. We provide guidance on how to pick K in Section 5.4. We note some similar sampling based

methods, albeit for different applications (cf. [11, 25, 26]).

In Theorem 5.3, we show that Algorithm 2 gives an ϵ-approximation for (2) with high probability

while running in time O(M2).

4.3.2 Robustness to Replication. Recall from Section 3.3.2 that for freely replicable goods such as

data, the standard Shapley notion of fairness does not suffice (see Example 3.1 for how it can lead

to undesirable revenue allocations). Though this issue may seem difficult to overcome in general,

7
We endow R with the standard Euclidean metric. An ϵ -net of a set B is a set K ⊂ B such that for every point x ∈ B,

there is a point x0 ∈ K such that |x − x0 | ≤ ϵ .



ALGORITHM 2: SHAPLEY-APPROX: PD∗
A(Yn , X̃M ,K)

Input: Yn , X̃M ,K

Output:
ˆψn = [ ˆψn (m) :m ∈ [M]]

Let Bnet(ϵ) be an ϵ-net of B;

form ∈ [M] do
for k ∈ [K] do

σk ∼ Unif(σ[M ]);
G = G(Yn ,M(X [σk<m]));
G+ = G(Yn ,M(X [σk<m ∪ m]));
ˆψk
n (m) = [G+ −G]

end

ˆψn (m) = 1

K
∑K
k=1

ˆψk
n (m)

end

we again exploit the particular structure of data as a path forward. Specifically, we note that there

are standard methods to define the “similarity" between two vectors of data. A complete treatment of

similarity measures has been done in [18]. We provide two examples:

Example 4.3. Cosine similarity, a standard metric used in text mining and information retrieval, is:
|⟨X1,X2⟩|

| |X1 | |2 | |X2 | |2
, X1,X2 ∈ RT

Example 4.4. “Inverse" Hellinger distance, a standard metric to define similarity between underlying
data distributions, is: 1 − 1

2

∑
x ∈X(

√
p1(x) −

√
p2(x))2)1/2, p1 ∼ X1, p2 ∼ X2.

We introduce some natural properties any such similarity metric must satisfy for our purposes,

Definition 4.1 (Adapted from [18]). A similarity metric is a function,SM : RT ×RT → [0, 1],
that satisfies: (i) Limited Range: 0 ≤ SM(·, ·) ≤ 1; (ii) Reflexivity: SM(X ,Y ) = 1 if and only ifX = Y ;
(iii) Symmetry: SM(X ,Y ) = SM(Y ,X ); (iv) Define dSM(X ,Y ) = 1 − SM(X ,Y ), then Triangle
Inequality: dSM(X ,Y ) + dSM(Y ,Z ) ≥ dSM(X ,Z )
In Algorithm 3, we construct a “robust-to-replication" version of the randomized Shapley ap-

proximation algorithm by utilizing Definition 4.1 above.

Intuitively, the algorithm penalizes similar features (relative to the similarity metric, SM) to

disincentivize replication. We provide guidance on how to pick the hyper-parameter λ in Section 5.

In Theorem 5.4, we show Algorithm 3 is ϵ-“Robust to Replication" i.e. Property 3.4 (Robustness-

to-Replication) holds. See the example below for an illustration of the effect of Algorithm 3 on

undesired replication.

Example 4.5. Recall Example 3.1 where there are two sellers, A and B, each selling an identical
feature. In that example, if Seller A replicated her feature, her Shapley allocation increased from 1

2

to 2

3
. If we instead apply Algorithm 3 (with λ = 1), then it is easy to see that her Shapley allocation

decreases from 1

2e to 2

3e2 , ensuring Property 3.4 holds. See Figure 4 for an illustration.

5 MAIN RESULTS
5.1 Assumptions.
To give performance guarantees, we state four mild and natural assumptions we need on: (i) AF ∗

(allocation function); (ii) M (ML algorithm); (iii) RF ∗
(revenue function); (iv) bn (bids made).



ALGORITHM 3: SHAPLEY-ROBUST: PD∗
B (Yn , X̃M ,K ,SM, λ)

Input: Yn , X̃M ,K ,SM, λ
Output:ψn = [ψn (m) :m ∈ [M]]
ˆψn (m) = SHAPLEY-APPROX(Yn ,M,G,K );
ψn (m) = ˆψn (m) exp(−λ∑j ∈[M ]\{m } SM(Xm ,X j ));

Fig. 4. A simple example illustrating how SHAPLEY-ROBUST down weights similar data to ensure robustness
to replication.

Assumption 1 (AF ∗
is Monotonic). M,AF ∗ are such that an increase in the difference between

pn andbn leads to a decrease in G i.e. an increase in “noise" cannot lead to an increase in prediction accu-

racy. Specifically, for any Yn ,pn , let X̃
(1)
M , X̃

(2)
M be the outputs of AF(pn ,b(1);XM ),AF(pn ,b(2);XM )

respctively. Then if b(1) ≤ b(2), we have G
(
Yn ,M(X̃ (1)

M )
)
≤ G

(
Yn ,M(X̃ (2)

M )
)
.

Assumption 2 (M is Invariant to Replicated Data). M is such that replicated features do not
cause a change in prediction accuracy. Specifically, ∀ S ⊂ [M], ∀ Yn , ∀m ∈ S , letm+i refer to the ith

replicated copy ofm (i.e. X+m,i = Xm). Let S+ = ∪m(m ∪i m
+
i ) refer to the set of original and replicated

features. Then G(Yn ,M(X S )) = G(Yn ,M(X S+ ))
Assumption 3 (RF ∗

is Lipschitz). The revenue function RF ∗ is L-Lipschitz with respect to price.
Specifically, for any Yn ,bn ,p(1),p(2), we have |RF ∗(p(1),bn ,Yn) − RF ∗(p(2),bn ,Yn)| ≤ L|p(1) − p(2) |.

Assumption 4 (Bounded Bids). The set of possible bids bn forn ∈ [N ] come from a closed, bounded
set B. Specifically, bn ∈ B, where diameter(B) = D, where D < ∞.

Remark 5.1. We provide some justification for Assumptions 1 and 2 above, which impose require-
ments of the ML algorithm and the accuracy metric (i.e. M and G). These assumptions require that:
(i) as more noise is added to data, the less gain in prediction accuracy; (ii) replicated features do not
have an effect on the accuracy. Essentially all ML algorithms and the accuracy metrics function like
this. Thus these assumptions reflects standard, weak statistical assumptions. Assumptions 3 and 4 are
self-explanatory.

5.2 Truthfulness.
Theorem 5.1. For AF ∗, Property 3.1 (Truthfulness) can be achieved if and only if Assumption 1

holds. In which case, RF ∗ guarantees truthfulness.

Theorem 5.1 is an application of Myerson’s payment function (cf. [29]) which ensures bn = µn .
See Appendix A for the proof.



Again, the key is the modeling choice made to define buyer utility as in Definition 2.1. It lets

us parameterize a buyers value for increased accuracy by a scalar, µn , which allows us to exploit

Myerson’s payment function (unfortunately generalization of Myerson’s payment function to the

setting where µn is a vector are severely limited cf. [14]).

5.3 Revenue Maximization.
Theorem 5.2. Let Assumptions 1, 3 and 4 hold. Let pn:n∈[N ] be the output of Algorithm 1. Let L be

the Lipschitz constant of RF ∗ (defined as in Assumption 3). Let Bmax ∈ R be the maximum element
of B (where B is defined as in Assumption 4). Then by choosing the algorithm hyper-parameters
ϵ = (L

√
N )−1, δ =

√
log(|Bnet(ϵ)|)/N , the total average regret is bounded by,

1

N
E[R(N )] ≤ CBmax

√
log(BmaxL

√
N )

N
= O(

√
log(N )
N

),

for some positive constant C > 0. Here, the expectation is taken over the randomness in Algorithm 1.
Hence, Property 3.2 (Revenue Maxmization) holds.

Theorem 5.2 proves Algorithm 1 is a zero regret algorithm. We note the bound is independent of

M , the number of features sold. See Appendix B for the proof.

As we note in Remark 4.2, a limitation of the AF ∗
we design is that it is fixed, i.e., we degrade

each feature by the same scaling. We leave it as future work to design an adaptive AF ; instead

of fixing AF ∗
a priori (as we currently do using standard noising procedures), can we make

the noising procedure adaptive to the prediction tasks to further increase the revenue generated

(potentially by adding distributional assumptions to the prediction tasks)?

5.4 Fairness in Revenue Division.
Theorem 5.3. Letψn,shapley be the unique vector satisfying Property 3.3 (Shapley Fairness) as given

in (2). For Algorithm 2, pick the following hyperparameter: K > (M log(2/δ ))/(2ϵ2), where δ , ϵ > 0.
Then with probability 1 − δ , the output ˆψn of Algorithm 2, achieves the following,

| |ψn,shapley − ˆψn | |∞ < ϵ .

Theorem 5.3 gives an ϵ-approximation forψn,shapley, the unique vector satisfying Property 3.3, in

O(M). Recall, computing it exactly would take Θ(2M ) running time. See Appendix C for the proof.

To the best of our knowledge, the direct application of random sampling to compute feature

importances for ML algorithms along with finite sample guarantees is novel. We believe this random

sampling method could be used as a model-agnostic tool (not dependent on the particulars of

the prediction model used) to assess feature importance - a prevalent question for data scientists

seeking interpretability from their prediction models.

Theorem 5.4. Let Assumption 2 hold. For Algorithm 3, pick the following hyperparameters: K ≥
(M log(2/δ ))/(2(ϵ/3)2), λ = log(2), where δ , ϵ > 0. Then with probability 1 − δ , the output, ψn , of
Algorithm 3 is ϵ-“Robust to Replication" i.e. Property 3.4 (Robustness-to-Replication) holds. Additionally
Conditions 2-4 of Property 3.3 continue to hold forψn with ϵ-precision.

Theorem 5.4 states Algorithm 3 protects against adversarial replication of data, while maintaining

the conditions of the standard Shapley fairness other than balance. Again, the key observation,

which makes Algorithm 3 possible is that we can precisely compute similarity between data streams

(see Definition 4.1). See Appendix C for the proof.

A natural question is whether Property 3.4 and Condition 1 of Property 3.3 and can hold together.

Unfortunately, as we see from Proposition 5.1, they cannot (see Appendix C for the proof),



Proposition 5.1. If the identities of sellers in the marketplace is anonymized, the balance condition
in Property 3.3 and Property 3.4 cannot simultaneously hold.

Note however, Algorithm 3, down-weights features in a “local" fashion i.e. highly correlated

features are individually down-weighted, while uncorrelated features are not. Hence, Algorithm 3
incentivizes sellers to provide data that is: (i) predictive for a wide variety of tasks; (ii) uncorrelated
with other features on sale i.e. has unique information.

In Step 2 of Algorithm 3, we exponentially penalize (i.e. down weight) each feature, for a given

similarity metric, SM. An open question for future work is which revenue division mechanism

is the most balanced preserving while being robust to replication? As an important first step, we

provide a necessary and sufficient condition for any penalty function
8
to be robust to replication

for a given similarity metric, SM (see Appendix E for the proof),

Proposition 5.2. Let Assumption 2 hold. Then for a given similarity metricSM, a penalty function
f is “robust-to-replication" if and only if it satisfies the following relation for any c ∈ Z+,x ∈ R+,

(c + 1)f (x + c) ≤ f (x)

5.5 Efficiency.
Corollary 5.1. AF ∗,RF ∗,PF ∗ run in O(M). PD∗

a , PD∗
b run in O(M2). Property 3.5 holds.

See Appendix D for the proof. AF ∗,RF ∗,PF ∗
running in O(M) is desirable as they need to be

re-computed in real-time for every buyer. However, the revenue division algorithms (which run in

O(M2)) can conceivably run offline as we assume the sellers to be fixed.

6 CONCLUSION
Modeling contributions. Our main contribution is a mathematical model for a two-sided data

market (Section 2). We hope our proposed architecture can serve as a foundation to operationalize

real-time data marketplaces, which have applicability in a wide variety of important commercial

settings (Section 1.2). To further this goal, we define key challenges (Section 3), construct algorithms

to meet these challenges (Section 4) and theoretically analyze their performance (Section 5).

To make the problem tractable, we make some key modeling choices. Two of the most pertinent

ones include: (i) Buyer n’s utility comes solely from the quality of the estimate Ŷn received, rather

than the particular datasets allocated (Definition 2.1); (ii) the marketplace is allowed to centrally set

prices for all features for each buyer, rather than sellers individually setting prices for each feature

(Remark 2.5).

Technical contributions. We highlight two technical contributions, which might be of indepen-

dent interest. First, a new notion of “fairness" required for cooperative games with freely replicable

goods (and associated algorithms). As stated earlier (Section 3.3.2), such a notion of fairness is espe-

cially important in modern applications where users get utility/cost from bundles of digital goods

with potentially complex combinatorial interactions (e.g. battery cost attribution for smartphone

applications, reward allocation in prediction markets). Second, a truthful, zero regret mechanism

for auctioning a particular class of combinatorial goods, which utilizes Myerson’s payment function

and the Multiplicative Weights algorithm. Specifically, if one can find a way of modeling buyer

utility/cost through a scalar parameter (e.g. number of unique views for multimedia ad campaigns,

total battery usage for smartphone apps), then the framework described can potentially be applied.

8
We define a general penalty function to be of the form

ˆψn (m)f (·), instead of
ˆψn (m) exp(−λ∑j∈[M ]\{m} SM(Xm, X j ))

as in Step 2 of Algorithm 3.



Future Work. We reiterate some interesting lines of questioning for future work: (i) how to take

into account the externalities of replication experienced by buyers (Remark 2.7); (ii) how to design

an adaptive allocation function that further increases revenue generated (Remark 4.2); (iii) which

“robust-to-replication" revenue division mechanism is the most balanced preserving (Section 5.4)?
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A TRUTHFULNESS
Theorem A.1 (Theorem 5.3). For AF ∗, Property 3.1 (Truthfulness) can be achieved if and only

if Assumption 1 holds. In which case, RF ∗ guarantees truthfulness.

Proof. This is a classic result from [29]. We provide the arguments here for completeness and

for consistency with the properties and notation we introduce in our work. We begin with the

backward direction. By Assumption 1 the following then holds ∀ b ′n ≥ bn

G(Yn ,M(AF ∗(b ′n ,pn))) ≥ G(Yn ,M(AF ∗(bn ,pn))) (4)

To simplify notation, let h(z; G,pn ,Yn ,M) = G(Yn ,M(AF ∗(z,pn))). In words, h(z) is the gain
in prediction accuracy as a function of the bid, z, for a fixed G,Yn ,M,pn .
By definition of (1), it suffices to show that if bn , µn , the following holds

µn · h(µn) − µn · h(µn) +
∫ µn

0

h(z)dz ≥ µn · h(bn) − bn · h(bn) +
∫ bn

0

h(z)dz (5)

This is equivalent to showing that∫ µn

0

h(z)dz ≥
∫ bn

0

h(z)dz − (bn − µn) · h(bn) (6)

Case 1: bn > µn . In this case, (6) is equivalent to

(bn − µn) · h(bn) ≥
∫ bn

µn
h(z)dz (7)

This is immediately true due to monotonicity of h(z) which comes from (4). Case 2: bn < µn . In this

case, (6) is equivalent to ∫ µn

bn
h(z)dz ≥ (µn − bn) · h(bn) (8)

Again, this is immediately true due to monotonicity of h(z).

Now we prove the opposite direction, i.e. if we have a truthful payment mechanism, which we

denote as RF ′
, an increased allocation of features cannot decrease accuracy. Our definition of a

truthful payment function implies the following two inequalities ∀ b > a

a · h(a) − RF ′(·,a, ·) ≥ a · h(b) − RF ′(·,b, ·) (9)

b · h(b) − RF ′(·,b, ·) ≥ b · h(a) − RF ′(·,a, ·) (10)

These two inequalities imply

a · h(a) + b · h(b) ≥ a · h(b) + b · h(a) =⇒ h(b)(b − a) ≥ h(a)(b − a) (11)

Since by construction b − a > 0, we can divide both sides of the inequality by b − a to get

h(b) ≥ h(a) ⇐⇒ Gn(Yn ,M(AF ∗(b,pn))) ≥ Gn(Yn ,M(AF ∗(a,pn))) (12)

Since the allocation function AF ∗(z,pn) is increasing in z, this completes the proof. □



B PRICE UPDATE - PROOF OF THEOREM 5.2
Theorem B.1 (Theorem 5.2). Let Assumptions 1, 3 and 4 hold. Let pn:n∈[N ] be the output of

Algorithm 1. Let L be the Lipschitz constant of RF ∗ with respect to price (where L is defined as in
Assumption 3). Let Bmax ∈ R be the maximum element of B (where B is defined as in Assumption 4).

Then by choosing algorithm hyper-parameters ϵ = 1

L
√
N
, δ =

√
log( |Bnet(ϵ ) |)

N for some positive constant
C > 0, the total average regret is bounded by,

1

N
E[R(N )] ≤ CBmax

√
log(BmaxL

√
N )

N
= O(

√
log(N )
N

).

where the expectation is taken over the randomness in Algorithm 1. Hence, Property 3.2 (Revenue
Maxmization) holds.

Proof. Our proof here is an adaptation of the classic result from [3]. We provide the arguments

here for completeness and for consistency with the properties and notation we introduce in our

work. It is easily seen by Assumption 1 that the revenue function RF ∗
is non-negative. Now since

by construction the gain function, G ∈ [0, 1], the range of RF ∗
is in [0,Bmax]. This directly implies

that for all i and n, дin ∈ [0, 1] (recall дin is the (normalized) revenue gain if we played price i for
every buyer n).

We first prove a regret bound for the best fixed price in hindsight within Bnet(ϵ). Let дalgn be the

expected (normalized) gain of Algorithm 1 for buyer n. By construction,

д
alg

n =

∑ |Bnet(ϵ ) |
i=1 w i

nд
i
n

Wn

Observe we have the following inductive relationship regardingWn

Wn+1 =

|Bnet(ϵ ) |∑
i=1

w i
n+1 (13)

=

|Bnet(ϵ ) |∑
i=1

w i
n + δw

i
nд

i
n (14)

=Wn + δ

|Bnet(ϵ ) |∑
i=1

w i
nд

i
n (15)

=Wn(1 + δдalgn ) (16)

=W1Π
n
i=1(1 + δд

alg

n ) (17)

(a)
= |Bnet(ϵ)| · Πn

i=1(1 + δд
alg

n ) (18)

where (a) follows sinceW1 was initialized to be |Bnet(ϵ)|.
Taking logs and utilizing the inequality log(1 + x) ≤ x for x ≥ 0, we have

log(WN+1) = log(|Bnet(ϵ)|) +
N∑
i=1

log(1 + δдalgn )) (19)

≤ log(|Bnet(ϵ)|) +
N∑
i=1

δд
alg

n (20)



Now using that log(1 + x) ≥ x − x2 for x ≥ 0, we have for all prices ci ∈ Bnet(ϵ),

log(WN+1) ≥ log(w i
n+1) (21)

=

N∑
n=1

log(1 + δдin)) (22)

≥
N∑
n=1

δдin − (δдin)2 (23)

(a)
≥

N∑
i=1

δдin − δ 2N (24)

where (a) follows since дin ∈ [0, 1].
Thus for all prices ci ∈ Bnet(ϵ)

N∑
n=1

δд
alg

n ≥
N∑
n=1

δдin − log(|Bnet(ϵ)|) − δ 2N

Dividing by δN and picking δ =
√

log( |Bnet(ϵ ) |)
N , we have for all prices ci ∈ Bnet(ϵ)

1

N

N∑
n=1

д
alg

n ≥ 1

N

N∑
i=1

дin − 2

√
log(|Bnet(ϵ)|)

N

So far we have a bound on how well Algorithm 1 performs against prices in Bnet(ϵ). We now

extend it to all of B. Let д
opt

n be the (normalized) revenue gain from buyer n if we had played the

optimal price, p∗ (as defined in Property 3.2). Note that by Assumption 4, we have p∗ ∈ B. Then by

the construction of |Bnet(ϵ)|, there exists ci ∈ Bnet(ϵ) such that |ci − p∗ | ≤ ϵ . Then by Assumption

3, we have that

|дoptn − дin | =
1

Bmax

|RF ∗(p∗,bn ,Yn) − RF ∗(ci ,bn ,Yn)| ≤
Lϵ
Bmax

We thus have

1

N

N∑
n=1

д
alg

n ≥ 1

N

N∑
i=1

д
opt

n − 2

√
log(|Bnet(ϵ)|)

N
− Lϵ
Bmax

Multiplying throughout by Bmax, we get

1

N

N∑
n=1

E[RF ∗(pn ,bn ,Yn)] ≥
1

N
RF ∗(p∗,bn ,Yn) − 2Bmax

√
log(|Bnet(ϵ)|)

N
− Lϵ

Now setting ϵ = 1

L
√
N

and noting that |Bnet(ϵ)| ≤ 3Bmax

ϵ , for some positive constantC > 0, we have

1

N

N∑
n=1

E[RF ∗(pn ,bn ,Yn)] ≥
1

N
RF ∗(p∗,bn ,Yn) −CBmax

√
log(BmaxL

√
N )

N

□



C FAIRNESS
Theorem C.1 (Theorem 5.3). Letψn,shapley be the unique vector satisfying Property 3.3 as given

in (2). For Algorithm 2, pick the following hyperparameter: K > M log(2/δ )
2ϵ 2 , where δ , ϵ > 0. Then with

probability 1 − δ , the output ˆψn of Algorithm 2, achieves the following

∥ψn,shapley − ˆψn ∥∞ < ϵ (25)

Proof. It is easily seen thatψn,shapley can be formulated as the following expectation

ψn,shapley(m) = Eσ∼Unif(σSn )[Gn(Yn ,Mn(X [σ<m ∪ m])) − Gn(Yn ,Mn(X [σ<m])] (26)

The random variable
ˆψ k
n (m) is distributed in the following manner:

P
(
ˆψ k
n (m) = Gn(Yn ,M(X [σk<m ∪ m])) − Gn(Yn ,M(X [σk<m]));σ ∈ σSn

)
=

1

Sn !
(27)

We then have

E[ ˆψn(m)] = 1

K

K∑
k=1

E[ ˆψ k
n (m)] = ψn,shapley (28)

Since
ˆψn(m) has bounded support between 0 and 1, and the

ˆψ k
n (m) are i.i.d, we can apply Hoeffd-

ing’s inequality to get the following bound

P
(
|ψn,shapley − ˆψn(m)| > ϵ

)
< 2 exp(−2ϵ

2

K
) (29)

By applying a Union bound over allm ∈ Sn ≤ M , we have

P
(
∥ψn,shapley − ˆψn ∥∞ > ϵ

)
< 2M exp(−2ϵ

2

K
) (30)

Setting δ = 2M exp(−2ϵ 2K ) and solving for K completes the proof. □

Theorem C.2 (Theorem 5.4). Let Assumption 2 hold. For Algorithm 3, pick the following hyper-
parameters: K ≥ M log(2/δ )

2( ϵ
3
)2 , λ = log(2), where δ , ϵ > 0. Then with probability 1 − δ , the output,ψn , of

Algorithm 3 is ϵ-“Robust to Replication" i.e. Property 3.4 (Robustness-to-Replication) holds. Additionally
Conditions 2-4 of Property 3.3 continue to hold forψn with ϵ-precision.

Proof. To reduce notational overhead, we drop the dependence on n of all variables for the

remainder of the proof. Let S = {X1,X2, . . . ,XK } refer to the original set of allocated features

without replication. Let S+ = {X(1,1),X(1,2), . . . ,X(1,c1),X(2,1), . . . ,X(K,cK )} (with ci ∈ N), be an

appended version of S with replicated versions of the original features, i.e. X(m,i) is the (i − 1)-th
replicated copy of feature Xm .

Let
ˆψ , ˆψ+ be the respective outputs of Step 1 of Algorithm 3 for S, S+ respectively. The total

revenue allocation to sellerm in the original and replicated setting is given by the following:

ψ (m) = ˆψ (m) exp(−λ
∑

j ∈Sm\{m }
SM(Xm ,X j )) (31)

ψ+(m) =
∑
i ∈cm

ˆψ+
(
(m, i)

)
exp(−λ

∑
(j,k)∈S+m\{(m,i)}

SM(X(m,i),X(j,k ))) (32)



For Property 3.4 to hold, it suffices to show thatψ+(m) ≤ ψ (m) + ϵ . We have that∑
i ∈cm

ˆψ+
(
(m, i)

)
exp(−λ

∑
(j,k )∈S+m\{(m,i)}

SM(X(m,i),X(j,k )))

(a)
≤

∑
i ∈cm

ˆψ+
(
(m, i)

)
exp(−λ

∑
j ∈[cm ]\i

SM(X(m,i),X(m, j))) exp(−λ
∑

l ∈Sm\{m }
SM(X(m,i),X(l,1)))

(b)
=

∑
i ∈cm

ˆψ+
(
(m, i)

)
exp(−λ(cm − 1)) exp(−λ

∑
l ∈Sm\{m }

SM(X(m,i),X(l,1)))

(c)
≤ cm

(
ˆψ+
(
(m, 1)

)
+
1

3

ϵ

)
exp(−λ(cm − 1)) exp(−λ

∑
l ∈Sm\{m }

SM(X(m,1),X(l,1)))

≤ cm

(
ˆψ+
(
(m, 1)

)
+
1

3

ϵ

)
exp(−λ(cm − 1)) exp(−λ

∑
j ∈Sm\{m }

SM(Xm ,X j ))

(a) follows since λ,SM(·) ≥ 0; (b) follows by condition (i) of Definition 4.1; (c) follows from

Theorem 5.3;

Hence it suffices to show that cm

(
ˆψ+
(
(m, 1)

)
+ 1

3
ϵ

)
exp(−λ(cm − 1)) ≤ ˆψ (m) + ϵ ∀cm ∈ N. We

have

cm exp(−λ(cm − 1))
(
ˆψ+
(
(m, 1)

)
+
1

3

ϵ

)
(d )
≤ cm exp(−λ(cm − 1))

(ψ (m)
cm
+
2

3

ϵ
)

(e)
≤ cm exp(−λ(cm − 1))

(
ψ (m) + 2

3

ϵ
)

(f )
≤ cm exp(−λ(cm − 1))

(
ˆψ (m) + ϵ

)
(д)
≤

(
ˆψ (m) + ϵ

)
where (d) and (f) follow from Theorem 5.3; (e) follows since cm ∈ N; (g) follows since cm exp(−λ(cm−
1)) ≤ 1 ∀cm ∈ N by picking λ = log(2).

The fact that Conditions 2-4 of Property 3.3 continue to hold for follow ψn with ϵ-precision
follow easily from Theorem 5.3 and the construction ofψn . □

Proposition C.1 (Proposition 5.1). If the identities of sellers in the marketplace is anonymized,
the balance condition in Property 3.3 and Property 3.4 cannot simultaneously hold.

Proof. We show this through an extremely simple counter-example consisting of three scenarios.

In the first scenario, the marketplace consists of exactly two sellers, A,B, each selling identical

features i.e. XA = XB . By Condition 1 and 2 of Property 3.3, both sellers must receive an equal

allocation i.e.ψ1(A) = ψ1(B) = 1

2
for any prediction task.

Now consider a second scenario, where the marketplace against consists of the same two sellers,

A and B, but this time sellerA replicates his or her feature once and sells it again in the marketplace

as A′
. Since by assumption the identity of sellers is anonymized, to achieve the “balance" condition

in Property 3.3, we require ψ2(A) = ψ2(B) = ψ2(A′) = 1

3
. Thus the total allocation to seller A is

ψ2(A) +ψ2(A′) = 2

3
> 1

2
= ψ1(A) i.e. Property 3.4 does not hold.



Finally consider a third scenario, where the marketplace consists of three sellers A,B andC , each
selling identical features i.e. XA = XB = XC . It is easily seen that to achieve “balance", we require

ψ3(A) = ψ3(B) = ψ3(C) = 1

3
.

Since the marketplace cannot differentiate between A′
andC , we either have balance or Property

3.4 i.e. “robustness to replication". □

D EFFICIENCY
Corollary D.1 (Corollary 5.1). AF ∗,RF ∗,PF ∗ run in O(M). PD∗

a , PD∗
b run in O(M2)

time. Hence, Property 3.5 holds.

Proof. This is immediately seen by studying the four functions: (i)AF ∗
simply tunes the quality

of each feature X j for j ∈ [M], which is a linear time operation inM ; (ii) RF ∗
again runs in linear

time as we require a constant number of calls to G and M; (iii) PF ∗
runs in linear time as we call

G andM once for every price in Bnet(ϵ); (iv) PD∗
a has a running time of

M2
log(2/δ )
2ϵ 2 for any level

of precision and confidence given by ϵ,δ respectively i.e. we require
M log(2/δ )

2ϵ 2 calls to G and M to

compute the Shapley Allocation for each feature X j for j ∈ [M]. The additional step in PD∗
b i.e.

Step 2, is also a linear time operation inM (note that the pairwise similarities between Xi ,X j for

any i, j ∈ [M] can be precomputed). □

E OPTIMAL BALANCE-PRESERVING, ROBUST-TO-REPLICATION PENALTY
FUNCTIONS

In this section we provide a necessary and sufficient condition for “robustness-to-replication" any

penalty function f : R+ → R+ must satisfy, where f takes as argument the cumulative similarity

of a feature with all other features. In Algorithm 3, we provide a specific example of such a penalty

function given by exponential down-weighting. We have the following result holds

Proposition E.1 (Proposition 5.2). Let Assumption 2 hold. Then for a given similarity metric
SM, a penalty function f is “robust-to-replication" if and only if it satisfies the following relation

(c + 1)f (x + c) ≤ f (x)

where c ∈ Z+,x ∈ R+.

Proof. Consider the case where a certain data seller with feature Xi has original cumulative

similarity x , and makes c additional copies of its own data. The following relation is both necessary

and sufficient to ensure robustness,

ˆψi (c + 1)f (x + c) ≤ ψi f (x)

We first show sufficiency. By Assumption 2, the new Shapley value (including the replicated

features) for a single feature Xi denoted by
ˆψ , is no larger than the original Shapley value,ψ , for

the same feature. Then it immediately follows that (c + 1)f (x + c) ≤ f (x).
We now show that it is also necessary. We study how much the Shapley allocation changes when

only one player duplicates data. The Shapley allocation for feature Xi is defined as

ψi (v) =
∑

S ⊆N \{i }

|S |!(|N | − |S | − 1)!
|N |! (v(S ∪ {i}) −v(S))

A key observation to computing the new Shapley value is that v(S ∪ {i}) −v(S) ≥ 0 if i appears
before all its copies. DefineM to be the number of original sellers (without copying) and c are the



additional copies. By a counting argument one can show that

ˆψi (v) =
M−1∑
i=0

1

(M + c)!

(
M − i + c − 1

M − i − 1

)
[v(S ∪ {i}) −v(S)]

=

M−1∑
i=0

M!

(M + c)!

(
M − i + c − 1

M − i − 1

)
1

M!

[v(S ∪ {i}) −v(S)]

=

M−1∑
i=0

M!

(M + c)!

(
M − i + c − 1

c

)
1

M!

[v(S ∪ {i}) −v(S)]

≤ M

M + c

M−1∑
i=0

1

M!

[v(S ∪ {i}) −v(S)]

=
M

M + c
ψi (v)

Observe this inequality turns into an equality when all the original sellers have exactly the same

data. We observe that for a large number of unique sellers then copying does not change the Shapley

allocation too much ≃ −c/M . In fact, this bound tells us that when there are a large number of

sellers, replicating a single data set a fixed number of times does not change the Shapley allocation

too much, i.e., ˆψi ≈ ˆψi (with the approximation being tight in the limit as M tends to infinity).

Therefore, we necessarily need to ensure that

(c + 1)f (x + c) ≤ f (x)
□

Remark E.1. If we make the extremely loose relaxation of letting c ∈ R+ instead of Z+, then the
exponential weighting in Algorithm 3 is minimal in the sense that it ensures robustness with least
penalty in allocation. Observe that the penalty function (assuming differentiability) should also satisfy

f (c + x) − f (x)
c

≤ −f (x + c)

lim

c→0
+

f (c + x) − f (x)
c

≤ −f (x)

f
′(x) ≤ −f (x)

By Gronwall’s Inequality we can see that f (x) ≤ Ce−Kx for suitable C,K ≥ 0. This suggests that the
exponential class of penalty ensure robustness with the “least” penalty, and are minimal in that sense.


	Abstract
	1 Introduction
	1.1 Overview of Contributions
	1.2 Motivating Example from Inventory Optimization
	1.3 Literature Review

	2 The Model - Participants and Dynamics
	2.1 Sellers
	2.2 Buyers
	2.3 Marketplace
	2.4 Marketplace Dynamics

	3 Desirable Properties of Marketplace
	3.1 Truthfulness
	3.2 Revenue Maximization
	3.3 Revenue Division
	3.4 Computational Efficiency

	4 Marketplace Construction
	4.1 Allocation and Revenue Functions (Buyer's Perspective)
	4.2 Price Update Function (Marketplace Perspective)
	4.3 Payment-Division Functions (Seller's Perspective)

	5 Main Results
	5.1 Assumptions.
	5.2 Truthfulness.
	5.3 Revenue Maximization.
	5.4 Fairness in Revenue Division.
	5.5 Efficiency.

	6 Conclusion
	Acknowledgments
	References
	A Truthfulness
	B Price Update - Proof of Theorem ??
	C Fairness
	D Efficiency
	E Optimal Balance-Preserving, Robust-to-Replication Penalty Functions

