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Abstract Motivated by questions from Ehrhart theory, we present new re-
sults on discrete equidecomposability. Two rational polygons P and Q are said
to be discretely equidecomposable if there exists a piecewise affine-unimodular
bijection (equivalently, a piecewise affine-linear bijection that preserves the
integer lattice Z2) from P to Q. We develop an invariant for a particular
version of this notion called rational finite discrete equidecomposability. We
construct triangles that are Ehrhart equivalent but not rationally finitely
discretely equidecomposable, thus providing a partial negative answer to a
question of Haase–McAllister on whether Ehrhart equivalence implies discrete
equidecomposability. Surprisingly, if we delete an edge from each of these tri-
angles, there exists an infinite rational discrete equidecomposability relation
between them. Our final section addresses the topic of infinite equidecompos-
ability with concrete examples and a potential setting for further investigation
of this phenomenon.
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1 Introduction

1.1 Ehrhart Theory

Ehrhart theory is the study of counting the number of integer lattice points
in integral dilates of polytopes [3]. Let P denote a polytope in Rk. Given
t ∈ N, the tth dilate of P is the set tP = {tp | p ∈ P}. Here tp denotes scalar
multiplication of the point p by t. With this set-up, we can define the central
object of Ehrhart theory, the function ehrP (t) that counts the number of lattice
points in tP :

ehrP (t) := |{tP ∩ Zk}|. (1)

We say that P is an integral polytope, or simply, P is integral if its vertices lie
in the lattice Zk. Similarly, a rational polytope has all of its vertices given by
points whose coordinates are rational. If P is rational, the denominator of P is
defined to be the least positive integer d such that dP is an integral polytope.

A fundamental theorem due to Ehrhart states that if P is a rational
polytope with denominator d, then ehrP (t) is a quasi-polynomial of period
d [2, 3, 11, 12]. Polygons P and Q are defined to be Ehrhart equivalent if
ehrP (t) = ehrQ(t).

1.2 Discrete Equidecomposability

Unless explicitly stated otherwise, we restrict our attention to (not necessarily
convex) closed polygons in R2. However, the concept of discrete equidecom-
posability and all the questions posed in this section make sense in higher
dimensions. The main goal of this paper is to explore and more precisely char-
acterize the relationship between Ehrhart equivalence and discrete equidecom-
posability for rational polygons in dimension 2.

The notion of discrete equidecomposability captures two sorts of symme-
tries: (1) translation by an integer vector and (2) lattice-preserving linear
transformations. Note that both (1) and (2) preserve the number of lattice
points in a region and, hence, Ehrhart quasi-polynomials. The affine unimod-
ular group G := GL2(Z) n Z2 with the following action on R2 captures both
properties.

x 7→ gx := Ux+ v,

x ∈ R2, g = U n v ∈ G = GL2(Z) n Z2.

Note that GL2(Z) is precisely the set of integer 2×2 matrices with determinant
±1. Two regions R1 and R2 are said to be G-equivalent if they are in the same
G-orbit, that is, GR1 = GR2. Also, a G-map is a transformation on R2 induced
by an element g ∈ G. We slightly abuse notation and refer to both the element
and the map induced by the element as g.

In the same manner as in [7], we define the notion of discrete equidecom-
posability in R2 (labeled GL2(Z)-equidecomposability in [7], see also [6] and
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[10]), though in this definition we allow for a potentially infinite number of
simplices.

Definition 1 (discrete equidecomposability) Let P,Q ⊂ R2. Then P
and Q are discretely equidecomposable if there exist relatively open simplices
{Tα}α∈A and G-maps {gα}α∈A such that

P =
⊔

α∈A
Tα and Q =

⊔

α∈A
gα(Tα).

Here,
⊔

indicates disjoint union.

A classic example of discrete equidecomposability shown in Figure 1 first ap-
peared in [12]. Here

U(x) =
(

2 −3
−1 1

)
x+

(
1
1

)
.

Fig. 1 This is an equidecomposability relation between the triangles T and T ′. The identity
map is applied to the closed triangle R, while the half-open triangle L, which is missing only
the vertical edge, is mapped to U(L).

In the case where the simplices {Tα}α∈A are all rational, we refer to P
and Q as in Definition 1 as rationally discretely equidecomposable. Moreover,
if the index set A is finite, then we say that P and Q are finitely discretely
equidecomposable. When the context is clear, we will occasionally omit the
modifiers ‘rational’, ’finite’, and ’infinite’.

If P is a polygon, we refer to the collection of relatively open simplices
{Tα}α∈A as a simplicial decomposition or triangulation. If P and Q are dis-
cretely equidecomposable, then there exists a map F which we call the equide-
composability relation that restricts to the specified G-map on each relatively
open piece of P . Precisely, that is, F|Tα = gα|Tα for all α ∈ A. The map F
is thus a piecewise G-bijection. In the finite case, observe from the definition
that the map F preserves the Ehrhart quasi-polynomial; hence P and Q are
Ehrhart equivalent if they are discretely equidecomposable1.

1 The same is true in the infinite case as well, see Proposition 6.
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1.3 Results

Our results primarily concern rational discrete equidecomposability of ratio-
nal polygons in R2. Sections 2 and 3 study the finite case, while Section 4.1
focuses on the infinite case. In Section 2, we develop the necessary defini-
tions (namely, d-minimal edges and triangles and their respective weights)
and properties required for Section 3. In that section, we construct invariants
for finite rational discrete equidecomposability and as a corollary demonstrate
two triangles that are Ehrhart equivalent but not finitely rationally discretely
equidecomposable. Finally, in Section 4.1, we produce an infinite equidecom-
posability relation between modified versions of these two triangle. We then
generalize this example to give an infinite family of pairs of triangles that are
Ehrhart equivalent, not finitely rationally equidecomposable, but are infinitely
rationally equidecomposable after modification by removing an edge from each
triangle. This motivates our conjecture that Ehrhart equivalence implies in-
finite rational discrete equidecomposability for full-dimensional polytopes in
R2, a natural extension of a prior conjecture of Haase and McAllister [7]. We
conclude with some limitations of infinite equidecomposability in terms of a
specific example as well as further discussion of this conjecture.

Specifically, in Section 3, we introduce the weight W (P ) of a rational poly-
tope P . Our first main result is that weight is an invariant for finite rational
discrete equidecomposability.

Theorem 1 The weight W (P ) of a rational polygon P is preserved under
equidecomposability relations. That is, if P and Q are finitely rationally dis-
cretely equidecomposable, then W (P ) = W (Q).

We use this first result to find polygons in R2 that are Ehrhart equivalent
but not finitely rationally discretely equidecomposable, providing a partial
negative answer to [7, Question 4.1]2. A striking aspect of the polygons we
produce is that they are ‘almost’ infinitely equidecomposable.

Theorem 2 There exists an infinite family of pairs of triangles {Si, Ti} with
the following properties:

1. Si and Ti are Ehrhart equivalent but not finitely rationally discretely equide-
composable.

2. If a particular closed edge is deleted from both Si and Ti, then the modified
triangles are infinitely rationally discretely equidecomposable.

As explained in [4, Example 4], it is easy to construct rational line segments in
R1 that are Ehrhart equivalent but not finitely equidecomposable, taking for
example L = [1/5, 6/5] and R = [2/5, 7/5]. In fact, they are not even infinitely

2 Citing [6, Theorem 1.3], the authors of [7] claimed that Ehrhart equivalence implies
finite rational discrete equidecomposability for rational polygons. This appears to be a slight
misinterpretation, as the analogous notion of discrete equidecomposability in [6], referred to
as a pZ0 homeomorphism (see [6, Definition 1.1]), also allows for translation by a rational
vector as opposed to a strictly integral one. Note, however, that [6, Theorem 1.3] does show
that Ehrhart equivalence implies discrete equidecomposability for integral polygons.
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decomposable, as can be seen by looking at the orbits under GL1(Z) of the
denominator-5 points in L and R [4]. However, it is not obvious how to extend
that example to polygons in R2 with the same property. In particular, when
the segments above are naturally embedded into the horizontal axis in R2,
S, T ⊂ R2 become equidecomposable. Hence, if we take a point p ∈ Z2, it does
not necessarily hold that the triangles P = Conv (p, L) and Q = Conv (p,R)
are not discretely equidecomposable, even though they will have the same
Ehrhart quasi-polynomial. It can be shown, e.g., that if p = (0, 1), then P and
Q are also equidecomposable.

Moreover, if we remove the left-endpoints from the one-dimensional exam-
ples L and R, then the resulting half-open intervals (1/5, 6/5] and (2/5, 7/5]
are equidecomposable by fixing the interval (2/5, 6/5] and taking an integer
translation of the interval (1/5, 2/5]. On the other hand, it is an open question
as to whether or not there exists a finite rational equidecomposability rela-
tion between Si and Ti from Theorem 2 after the appropriate closed edges are
removed—we expect that the answer to this is negative.

Interestingly enough, we can also construct rational relatively closed line
segments e, e′ ⊂ R2 that are Ehrhart equivalent but have very strong re-
strictions on potential (not necessarily rational or finite) equidecomposability
relations between them. In particular, we show that if there exists an equide-
composability relation F : e→ e′, then for all G-maps g involved in F , the set
of points that are mapped by g in F cannot contain an interval (see Proposition
7). In particular, this rules out any finite, not necessarily rational, equidecom-
posability relation.

Theorem 2 and the previous discussion thus motivate the following conjec-
tures. The first will be discussed in more detail in Section 4.1.

Conjecture 1 Ehrhart equivalence is a sufficient condition for (not necessar-
ily finite or rational) discrete equidecomposability of full-dimensional rational
polytopes in dimension k ≥ 2.

Conjecture 2 Let 0j denote the zero-vector in Rj . Suppose that rational poly-
topes P,Q ⊂ Rk are Ehrhart equivalent. Then there exists k′ ≥ k such that
P × 0k′−k and Q× 0k′−k are rationally discretely equidecomposable.

A better understanding of the connection between Ehrhart equivalence and
rational discrete equidecomposability for various classes of polytopes is a fas-
cinating avenue for future research. In particular, the recent work [4] showed
that the two notions are equivalent for integral polytopes in R3, and the recent
work [5] showed the same is true for polytopes associated to cubic graphs.

2 d-Minimal Triangles

In this section and Section 3, we only consider finite rational discrete equide-
composability. Hence in these sections, for the sake of brevity, we take the term
‘equidecomposability’ to mean ‘finite rational discrete equidecomposability.’
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2.1 Definitions and Motivation

Definition 2 Let d ∈ Z≥1 and define Ld = (1/d)Z× (1/d)Z. A triangle T is
said to be d-minimal if T ∩ Ld consists precisely of the vertices of T .

Definition 3 A polygon P is said to be an Ld-polygon if all of its vertices lie
in Ld.

It is well known that d-minimal triangles have area 1/(2d2) and that any Ld-
polygon can be triangulated by d-minimal triangles. See Section 3 of the thesis
[9] for proofs of both of these results. Henceforth, we refer to a triangulation
consisting entirely of d-minimal triangles as a d-minimal triangulation. Observe
that any triangulation T of P can be refined into a d′-minimal triangulation
T ′ for some positive integer d′. It is also useful to note that G-maps send
d-minimal triangles to d-minimal triangles.

Now, in light of Definition 1 and the following discussion, a (finite, rational)
equidecomposability relation F : P → Q can be viewed as bijecting a simplicial
decomposition (that is, a triangulation) T1 of P to a simplicial decomposition
(triangulation) T2 of some polygon Q. That is, to each relatively open simplex
(face) in T1, we assign a G-map such that the overall map is a bijection. In
this case we write F : (P, T1)→ (Q, T2).

Define the denominator of a triangulation T to be the least integer d such
that for all faces F ∈ T , the dilate dF is an integral simplex. The following
remark follows from the definitions.

Remark 1 If P and Q are Ld-polygons and F : (P, T1)→ (Q, T2), then T1 and
T2 have the same denominator, call it d′. In this case, we write Fd′ : (P, T1)→
(Q, T2) and say that F has denominator d′. Moreover, this implies that d′ is
divisible by d.

Without loss of generality, we can refine T1 to a d′-minimal triangulation T ′1
for some denominator d′ and let F instead act on T ′1 . Pointwise, the definition
of F has not changed, we are simply changing the triangulation upon which
we view F as acting. This yields the following useful remark.

Remark 2 If P andQ are Ld-polygons, any equidecomposability relation F : P →
Q can be viewed as fixing a d′-minimal triangulation T1 (in some denomina-
tor d′ divisible by d) of P and assigning a G-map gF to each face F (vertex,
edge, or facet, respectively) of T1 such that gF (F ) = F(F ) is a face (vertex,
edge, or facet, respectively) of some d′-minimal triangulation T2 of Q. Hence,
when analyzing equidecomposability relations with domain P , it suffices to
consider, for all d′ divisible by d, those F that assign G-maps to the faces of
a d′-minimal triangulation of P .

Therefore, it makes sense to study the d-minimal triangles in general, espe-
cially their G-orbits. In this section, we will first classify the G-orbits of d-
minimal triangles according to an action of the dihedral group on 3 elements.
Then we will introduce a G-invariant weighting system on edges of d-minimal
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Fig. 2 The possible images of T1 under U .

triangles (known as d-minimal edges) which is crucial to the main results in
Section 3. Finally, we show that the G-orbit of a d-minimal triangle is classi-
fied by the weights of its d-minimal edges. This last result provides an explicit
parametrization of the G-equivalence classes of d-minimal triangles.

2.2 Classifying G-orbits of d-Minimal Triangles According to an Action of
the Dihedral Group D3

The following properties of G-maps are pivotal for all of the results of this
section.

Remark 3 Suppose we have a G-map g : P → Q. Since g is an invertible affine
linear map, it is a (topological) homeomorphism. Therefore g : ∂P → ∂Q is
also a homeomorphism. Moreover, if P and Q are polygons, linearity and
invertibility guarantee that edges are sent to edges and vertices are sent to
vertices.

The next proposition shows that it suffices to consider right triangles occurring
in the unit square [0, 1]× [0, 1]. It is a direct consequence of the fact that any
two bases of the lattice Ld are G-equivalent. Consider the d-minimal triangle
T1 := Conv ((0, 0), (1/d, 0), (0, 1/d)).

Proposition 1 Every d-minimal triangle is G-equivalent to some translation
T1 + v of T1 with v ∈ Ld ∩ [0, 1)2.

Thus, the question of classifying G-orbits reduces to classifying the G-orbits
of the Ld-translations of T1 lying in the unit square. The next proposition
classifies the types of transformations that send a triangle of the form T1 + v
to some T1 + w.

Proposition 2 Suppose U(T1 + v) + u = T1 + w where U ∈ GL2(Z) and
u ∈ Z2. Then U belongs to the following set of matrices:

D :=
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
−1 −1

)
,

(
−1 −1
1 0

)
,

(
1 0
−1 −1

)
,

(
−1 −1
0 1

)}
.
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Fig. 3 The triangulation T on P in the case d = 5.

Note thatD defines a group isomorphic to the dihedral groupD3 = 〈A,B |A3 =
B2 = ABAB = I〉. Simply set

A =
(
−1 −1
1 0

)
and B =

(
0 1
1 0

)
.

This is the crucial observation required for the proof of the main theorem later
in this section.

Proof If U(T1 + v)+u = T1+w, then UT1+Uv+u = T1+w. Thus UT1+Uv+
u − w = T1. Note that invertible linear transformations preserve the vertices
of a triangle by Remark 3. Precisely, the vertices of the original triangle map
to the vertices of its image. Hence, Uv + u−w is a vertex of T1. This implies
that UT1 is either T1, T1 − (1, 0)T, or T1 − (0, 1)T. These triangles are shown
in Figure 2.

Since U is linear and sends vertices to vertices, we just need to compute the
number of ways to send the ordered basis (and vertices of T1) {(0, 1), (1, 0)}
to other non-zero vertices of the previous triangles listed. This amounts to
computing six changes of basis matrices, which are precisely given by the
matrices in the set D. ut

The next proposition will accomplish our classification of G-orbits, as men-
tioned before, via a relationship with the dihedral group. Consider the half
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Fig. 4 The map Φ in the case d = 5.

of the unit square given by P = Conv ((0, 0), (1, 0), (0, 1)) and the d-minimal
triangulation T of P given by cutting grid-squares in half by lines of slope −1.
An example is shown in Figure 3.

This triangulation involves translations of T1 and translations of reflections
of T1 about the line y = −x. These reflected triangles are, however, equivalent
under the lattice-preserving transformation given by the flip about the line
y = −x to translations of T1 lying in the unit square. Hence, it suffices to
classify the G-orbits of the triangles lying in P . To simplify things, we can
consider instead the quotient P := P + Z2 ⊂ Ld/Z2.

It is straightforward to check that we get an action of D3 ∼= D on P and its
triangulation by checking that each matrix in D preserves the triangulation.
Hence, this action defines a permutation on T . Let Φ be the bijection from
P (and its constituent triangles) to a triangulated equilateral triangle T as
shown in Figure 4 for the case n = 5.

Now, we also have an action of D on T by letting A act as a counterclock-
wise 60◦ rotation and B as a reflection about the angle bisector of the leftmost
vertex, where A and B are defined in Proposition 2. We regard this action as
a permutation on the set of triangles in the given triangulation of T . We claim
that these two actions are compatible. This gives us an explicit understanding
of the distribution of d-minimal triangles in P .

Proposition 3 The actions of D on the constituent triangles of P and on
the constituent triangles of T are compatible in the sense that given α ∈ D,
αΦ = Φα.
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2.3 A G-invariant d-Minimal Edge Weighting System

It is convenient to work with d-minimal segments, which are the 1-dimensional
counterparts of d-minimal triangles.

Definition 4 (minimal edge) A line segment E with endpoints in Ld is said
to be a d-minimal segment if E ∩ Ld consists precisely of the endpoints of E.

In particular, observe that the edges of d-minimal triangles are d-minimal
segments. Our goal in the next two subsections is to develop a G-invariant
weighting system on d-minimal edges that we will extend to a weighting system
on d-minimal triangles. The existence of this invariant is the key to all of our
main results. Note that this weight is defined on oriented d-minimal edges.
The notation Ep→q denotes that the edge E is oriented from the source p to
the sink q.

Definition 5 (weight of an edge) Let Ep→q be an oriented d-minimal edge
from endpoint p = (w/d, x/d) to q = (y/d, z/d). Then define the weight
W (Ep→q) to be

W (Ep→q) = det
[(
d 0
0 d

)(
w/d y/d
x/d z/d

)]
= det

(
w y
x z

)
mod d.

As mentioned, W is invariant (up to sign) under the action of G. This is a
straightforward computation.

Proposition 4 (W is G-invariant) Let Ep→q be an oriented d-minimal edge
and let g ∈ G. Then W (Ep→q) = ±W

(
g(E)g(p)→g(q)

)
. Precisely, if g is orien-

tation preserving (i.e., det g = 1), W (Ep→q) = W
(
g(E)g(p)→g(q)

)
, and if g is

orientation reversing (i.e., det g = −1), W (Ep→q) = −W
(
g(E)g(p)→g(q)

)
.

We state a nice geometric interpretation of the weight which is critical to the
proofs in Section 2.4. Doing so requires the following definition.

Definition 6 Let E be an oriented d-minimal edge with endpoints p = (w/d, x/d)
and q = (y/d, z/d). The edge E is said to be oriented counterclockwise if

det
(
w y
x z

)
≥ 0

and oriented clockwise if

det
(
w y
x z

)
≤ 0.

In particular, if the determinant above is 0, then E is said to be both oriented
counterclockwise and clockwise.

Now we define dis(E), the lattice-distance (with respect to the lattice Ld)
of a d-minimal segment E from the origin. A line in R2 is said to be an Ld-
line if its intersection with Ld is non-empty. Let LE be the line extending the
segment E and call L‖E the set of all Ld-lines parallel to LE . Construct S⊥E ,
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Fig. 5 dis (Ep→q) = 4− 1 = 3 in this case, where E is the edge with end points p, (0.6, 0)
and q, (0.8,0.4) (both lie in L5). The L(i)

E indicate the lines between LE and the origin.

the (closed) line segment perpendicular to LE from the origin to LE . Finally,
we may define dis(E) formally as follows:

dis(E) :=
∣∣{L‖E ∩ S⊥E

}∣∣− 1.

In words, dis(E) is the number of Ld lines parallel to E between the origin
and the line LE containing E, inclusive, minus one for the line through the
origin. Alternatively, dis(E) is the relative length of the segment S⊥E in Ld.

It is a known fact that we attribute to folklore, told to us by Tyrrell McAl-
lister, that the determinant used to define our weight before taking residues
computes dis(E). We thank an anonymous referee for suggesting the following
simple proof.

Proposition 5 (lattice-distance interpretation of the weight W ) Let
Ep→q be a counterclockwise oriented d-minimal segment. Then

W (Ep→q) = dis (Ep→q) mod d.

Proof Let p = (p1/d, p2/d) and q = (q1/d, q2/d). We show that the statement
holds before taking residues; that is

det
(
p1 q1
p2 q2

)
= dis (Ep→q).

A lattice line parallel to Ep→q has an equation of the form

(q2 − p2)x− (q1 − p1)y =
c

d
(2)
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in the (x, y)-plane, for some c ∈ Z. In particular, the line LEp→q has the
equation

(q2 − p2)x− (q1 − p1)y =
1
d

det
(
p1 q1
p2 q2

)
.

Since Ep→q is oriented counterclockwise, by definition

w := det
(
p1 q1
p2 q2

)
≥ 0.

As the nonnegative integer c ranges from 0 to w, Eq. (2) parametrizes all of
the lines parallel to LEp→q that lie between the origin and LEp→q , inclusive.
Therefore,

w =
∣∣{L

E
‖
p→q
∩ SE⊥

p→q

}∣∣− 1 = dis (Ep→q),

so taking residues yields the desired result. ut

2.4 Classifying G-orbits of d-Minimal Triangles via Weights

Using the geometric properties described in Propositions 2 and 5, we can
classify d-minimal triangles by the weights of their d-minimal edges. We begin
with the definition of this weight.

Definition 7 Let T be a d-minimal triangle with vertices p, q, and r. Orient
T counterclockwise, and suppose, without loss of generality, this orients the
edges of T as follows: Ep→q, Eq→r, and Er→p. Then we define the weight
W (T ) of T to be the (unordered) multiset as follows:

W (T ) := {W (Ep→q),W (Eq→r),W (Er→p)}.
The weight of a d-minimal triangle determines its G-orbit.

Theorem 3 Two d-minimal triangles S and T are G-equivalent if and only
if W (S) = W (T ).

Proof The left-to-right direction is a direct consequence of Proposition 4.
Now, supposeW (S) = W (T ). Use Proposition 1 to map S and T to transla-

tions S′ and T ′, respectively, of the triangle T1 = Conv ((0, 0), (1/d, 0), (0, 1/d))
by a vector in Ld. Let’s temporarily order the sets W (S′) and W (T ′), starting
from the hypotenuse and reading off weights counterclockwise.

By Propositions 2 and 3, we may act on S′ by a G-map g such that (1) g(S′)
is still a translation of T1 by a denominator d vector and (2) the ordered weight
of g(S′) is a permutation of the ordered weight of S′. In fact, all permutations
of orderings are possible because the dihedral group on 3 elements is precisely
the symmetric group on 3 elements. See Figure 6 for a particular permutation.

Thus, we may choose a map g so that the ordered weights of T ′ and S′′ =
g(S′) agree. By Proposition 5, the lattice distance of the vertical (respectively,
horizontal) edges of T ′ and S′′ agree modulo d. Therefore, the coordinates of
the vertex of T ′ opposite the hypotenuse must agree with the coordinates of the
vertex of S′′ opposite its hypotenuse modulo integer translation. We conclude
that S′′ is an integer translate of T ′, so indeed S and T are G-equivalent. ut
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14 Paxton Turner, Yuhuai Wu

Fig. 6 Each triangle in this figure is a translate of T1. The matrix shown sends the ordered
weight {a, b, c} to {b, a, c}. In general, each matrix from Proposition 2 acts as one of the
permutations in the symmetric group of three letters on {a, b, c}.

3 Weight is an Invariant for Equidecomposability

Our goal in this section is to generalize the weight W to arbitrary rational
polygons (not just d-minimal triangles) and show that it serves as an invariant
for finite rational discrete equidecomposability. As in the previous section, we
only consider finite rational discrete equidecomposability, which we also refer
to in this section as ‘equidecomposability’ for brevity.

3.1 Weight of a Rational Polygon

Definition 8 (weight of a rational polygon) Let P be a counterclockwise
oriented Ld polygon, and let d′ denote a positive integer divisible by d. Then
we may uniquely regard the boundary of P as a finite union

⋃
Ei of oriented

d′-minimal segments {Ei}. We define the d′-weight Wd′(P ) of the polygon P
to be the unordered multiset

Wd′(P ) :=
⋃
{W (Ei)}.

Observe that for a d-minimal triangle T , Wd(T ) agrees with W (T ) as described
by Definition 7. We will work an example for clarity.

Example 1 Let T(1,2) = Conv ((1/5, 0), (0, 1/5), (1/5, 1/5)) and T(1,4) = Conv ((2/5, 0), (1/5, 1/5), (2/5, 1/5)).
The triangles T(1,2) and T(1,4) are the denominator 5 triangles labeled (1, 2)
and (1, 4), respectively, on the bottom row of the right hand side of Figure 4.

We compute the edge-weights in the multiset W5(T(1,2)) below. To do so,
we orient T(1,2) counterclockwise. Also, in such computations modulo d, for our
purposes, it is convenient to select our set of residues to be centered around
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Fig. 7 The two-sided edge-weighting system for interior edges.

0. For example, if d = 5, we choose our residues from the set {−2,−1, 0, 1, 2}.

W
(
E(0,1/5)→(1/5,0)

)
= det

(
0 1
1 0

)
mod d = −1

W
(
E(1/5,1/5)→(0,1/5)

)
= det

(
1 0
1 1

)
mod d = 1

W
(
E(1/5,0)→(1/5,1/5)

)
= det

(
1 1
0 1

)
mod d = 1

So W5(T(1,2)) = {1, 1,−1}. In the same fashion, we can compute W5(T(1,4)) =
{2,−2, 1}. Observe that W5(T(1,2)) 6= W5(T(1,4)).

3.2 Wd is an Invariant for Equidecomposability

Recall from Remark 2 that a (finite, rational) equidecomposability relation
F : P → Q between Ld-polygons may be regarded as an assignment of G-
maps to a d′-minimal triangulation T1 of P . Since F is a bijection and G-maps
preserve the lattice Ld′ , T1 is sent to a d′-minimal triangulation T2 of Q. From
this point on, we will write Fd′ : (P, T1) → (Q, T2) to indicate the underlying
triangulations and their denominator.

Since weights of facets (that is, d′-minimal triangles) in T1 are preserved
by G-maps, we see the multiset of weights of facets comprising T1 must be
in bijection with the multiset of weights of facets comprising T2. Concretely,
if there is a triangle with weight ω in the triangulation T1, there must be a
triangle of weight ω in T2 and vice versa.

The edges in T1 have a weighting (up to sign) induced by the weights of
the facets. An edge E in the interior of T1 is bordered by two facets F1 and F2
of T1. If the facet F1 induces the weight i on E, then F2 induces the weight −i
on E, since both F1 and F2 are oriented counterclockwise. Hence, the induced
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weighting on the edges of T1 by the facets of T1 is properly regarded as a two-
sided edge-weighting system on interior edges. See Figure 7 for illustration.
However, note that boundary edges in T1 only border a single facet in T1, and
hence have a well-defined orientation and weight induced by the orientation
on the facet weights. In particular, the multiset of weights of boundary edges
induced by the neighboring facets agrees with Wd′(P ). To proceed further, we
need the following definition.

Definition 9 (±i d-minimal edges) A d-minimal edge E is said to be a ±i
d-minimal edge (or simply a ±i edge when the denominator is clear) if there
is an orientation on E such that W (E) = i.

If Fd′ : (P, T1) → (Q, T2) is an equidecomposability relation of denominator
d′ between Ld-polygons P and Q, we see by Proposition 4 the number of ±i
d′-minimal edges in T1 is the same as the number of ±i weighted d′-minimal
edges in T2.

Remark 4 Suppose Fd′ : (P, T1)→ (Q, T2) is an equidecomposability relation.
Then:

1. The multiset {Wd′(F ) | F a facet in T1} is in bijection with the multiset
{Wd′(F ) | F a facet in T2}.

2. The set {E | E an edge in T1, W (E) = ±i} is in bijection with the set
{E | E an edge in T2, W (E) = ±i} for all residues i modulo d′.

The following two definitions, the signed and unsigned weights of a polygon P ,
can be used to compute Wd(P ). These definitions are convenient because they
can each be shown with some simple combinatorial arguments to be invariant
under equidecomposability relations.

Remark 5 In all statements and definitions that follow in this section, P and
Q denote Ld-polygons, d′ is a positive integer divisible by d, and Fd′ is an
equidecomposability relation from (P, T1) to (Q, T2) where T1 and T2 are both
d′-minimal triangulations.

Definition 10 (signed d′-weight SWd′) Fix a residue i mod d′ and let 1i
denote the indicator function of i on the multiset Wd′(P ). That is,

1i(j) =

{
1 if j ≡ i mod d′,

0 else.

Then SWd′(P ) is a vector indexed by Z/d′Z as follows:

(SWd′(P ))i =
∑

j∈Wd′ (P )

1i(j) −
∑

j∈Wd′ (P )

1−i(j).

That is, (SWd′(P ))i is the difference between the number of appearances of i
and −i in the multiset Wd′(P ).
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Example 2 Recall triangles T(1,2) and T(1,4) from Example 1. Let’s compute
SW5 of these two triangles. Recall thatW5(T(1,2)) = {1, 1,−1} andW5(T(1,4)) =
{2,−2, 1}. Represent SW5 by a five-entry vector, starting with the i = −2
index and ending at the i = 2 index. Then SW5(T(1,2)) = SW5(T(1,4)) =
(0,−1, 0, 1, 0). As an example, let’s show SW5(T(1,4))1 = 1. By definition,

SW5(T(1,4))1 =
∑

j∈W5(T(1,4))

11(j) −
∑

j∈W5(T(1,4))

1−1(j) = 1− 0 = 1.

Definition 11 (unsigned d′-weight UWd′) Fix a residue i mod d′ and let
1±i denote the indicator function of {i,−i} on the multiset Wd′(P ). That is,

1±i(j) =

{
1 if j ≡ i mod d′ or j ≡ −i mod d′,

0 else.

Then UWd′(P ) is a vector indexed by Z/d′Z as follows:

(UWd′(P ))i =
∑

j∈Wd′ (P )

1±i(j).

That is, (UWd′(P ))i is the total number of edges in Wd′(P ) with weight ±i.
Example 3 Let’s compute UW5 of the triangles T(1,2) and T(1,4), recalling again
thatW5(T(1,2)) = {1, 1,−1} andW5(T(1,4)) = {2,−2, 1}. As in Example 2, let’s
index the 5-entry vector UW5 so that the entries run starting with the index
i = −2 and ending at the index i = 2. We see that UW5(T(1,2)) = (0, 3, 0, 3, 0)
but UW5(T(1,4)) = (2, 1, 0, 1, 2). For example, using the definition,

UW5(T(1,2))−1 =
∑

j∈Wd′ (T(1,2))

1±1(j) = 3,

UW5(T(1,4))2 =
∑

j∈Wd′ (T(1,4))

1±2(j) = 2.

Now we prove the invariance under equidecomposability of the signed and
unsigned weight.

Lemma 1 (signed d′-weight invariance) Let Fd′ : (P, T1)→ (Q, T2). Then
SWd′(P ) = SWd′(Q).

Proof The key observation is that
∑

F a facet inT1
SWd′(F ) = SWd′(P ), (3)

where we sum up the vectors SWd′(F ) componentwise3. Eq. (3) is justified as
follows. Let i mod d′ be a residue modulo d′. We show

∑

F a facet inT1
SWd′(F )i = SWd′(P )i.

3 This implies that SWd′ (P ) is a discrete valuation in the sense of [13].
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The LHS adds 1 for every weight i edge among the facets in T1 and adds −1
for every weight −i edge among the facets in T1. Formally, we have:

∑

F a facet inT1
SWd′(F )i =

∑

F a facet inT1

∑

E an edge ofF

{1i(W (E))− 1−i(W (E))}

=
∑

F a facet inT1

∑

E an edge ofF

1i(W (E)) −
∑

F a facet inT1

∑

E an edge ofF

1−i(W (E))
(4)

Recall from Figure 7 and the neighboring discussion that interior weight i
edges would appear once in the first summand of the RHS of Eq. (4) with
sign +1 and once in the second summand of the RHS of Eq. (4) with sign −1.
Therefore, the contribution of any interior edge to the sum in Eq. (4) is 0. Only
the boundary edges with weight i (when given the orientation induced by the
counterclockwise orientation on P ) need to be taken into account. Thus,

∑

F a facet inT1
SWd′(F )i =

∑

E∈T1
E⊂∂P

{1i(W (E))− 1−i(W (E))} = SWd′(P )i,

where the last equality follows from unraveling Definitions 8 and 10. Thus, Eq.
(3) holds.

Finally, the LHS of Eq. (3) is invariant under the equidecomposability
relation F , because F restricts to a G-map on facets of T1, and the weights of
these facets are invariant under G-maps. That is,

∑

F a facet inT1
SWd′(F ) =

∑

F(F ) s.t.
F a facet inT1

SWd′(F(F ))

=
∑

F ′ a facet inT2
SWd′(F ′) = SWd′(Q).

The proof is complete. ut
Lemma 2 (unsigned d′-weight invariance) Let Fd′ : (P, T1) → (Q, T2).
Then UWd′(P ) = UWd′(Q).

Proof Let i mod d′ denote a residue modulo d′. Let k ∈ {1, 2, 3} and define

∆±ik (T1) =

{
F

∣∣∣∣ F is a facet in T1 and
∑

E an edge inF

1±i(W (E)) = k

}
. (5)

That is, ∆±ik (T1) is the set of facets in T1 having precisely k edges of weight
±i. For the next part of this proof until Eq. (7), we will take the underlying
triangulation T1 as implicit and simply write ∆±ik to represent ∆±ik (T1). We
make the following claim:

∑

E an edge inT1
1±i(W (E)) =

1
2
(
|∆±i1 |+ 2 |∆±i2 |+ 3 |∆±i3 |

)

+
1
2

∑

E an edge inT1
E⊂∂P

1±i(W (E)).
(6)
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To see this, note first that the LHS of Eq. (6) counts the total number of
edges in T1 with weight ±i. To understand the RHS, let E◦±i be the set of
all interior edges in T1 with weight ±i. Each edge E ∈ E◦±i is bordered by
precisely two facets, say FE,1 and FE,2. Observe that FE,1 (respectively, FE,2)
is a member of exactly one of the sets ∆±i1 , ∆±i2 , and ∆±i3 . Thus the expression
|∆±i1 | + 2 |∆±i2 | + 3 |∆±i3 | counts each edge in E◦±i exactly twice. Therefore, E
is counted precisely once by the RHS of Eq. (6) (note the normalizing factor
1/2), since E is not a boundary edge.

Similarly, if E is a boundary edge of T1, then E only borders one facet in
T1. Therefore, E is counted once by the expression |∆±i1 | + 2|∆±i2 | + 3|∆±i3 |.
Furthermore, E is counted precisely once by the term

∑

E an edge inT1
E⊂∂P

1±i(W (E)).

Since we normalize by 1/2, E is counted precisely once on the RHS of Eq. (6),
as desired.

Observe by Definitions 8 and 11 and rearranging Eq. (6) that

UWd′(P )i =
∑

E an edge inT1
E⊂∂P

1±i(W (E)) = 2
∑

E an edge inT1
1±i(W (E))

−
(
|∆±i1 (T1)|+ 2 |∆±i2 (T1)|+ 3 |∆±i3 (T1)|

)
.

(7)

We observe using Remark 4 that the total number of ±i weighted edges in T1
is preserved by F . That is, T2 has the same amount of ±i weighted edges as
T1. Also by Remark 4, |∆±ik (T1)| = |∆±ik (T2)| for all k ∈ {1, 2, 3}. Therefore,
the RHS of Eq. (7) is preserved by F , which implies UWd′(P ) = UWd′(F(P )),
as desired. ut

Lemma 3 The weight Wd′(P ) is uniquely determined by the signed weight
SWd′(P ) and unsigned weight UWd′(P ).

Proof Let ni denote the number of times the residue i occurs in the mul-
tiset Wd′(P ). If i = −i mod d, then we have by Definitions 8 and 11 that
(UWd′(P ))i = ni. Now suppose that i 6= −i mod d. In this case,

1±i = 1i + 1−i.

From Definitions 10 and 11 we see that ni − n−i = SWd′(P )i and ni +
n−i = UWd′(P )i. Therefore, ni = (SWd′(P ) + UWd′(P ))/2. Thus, the multi-
set Wd′(P ) is uniquely determined by SWd′(P ) and UWd′(P ). ut

Lemma 4 Recall that d′ is a fixed integer divisible by d and that P and Q are
Ld-polygons. If Wd′(P ) = Wd′(Q), then Wd(P ) = Wd(Q).

Proof Our proof strategy is that given Wd′(P ), we can reconstruct Wd(P )
uniquely. If we can show this, then Lemma 4 is justified.
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Let n = d′/d. Label the counterclockwise oriented boundary d-minimal
segments of P as {Ei}Ni=1. Each Ej is subdivided into n d′-minimal segments
{Ej,k}nk=1 when we regard P as an Ld′ -polygon for the purposes of computing
Wd′(P ). For fixed j, each segment Ej,k has the same d′-weight since each lies
in the same line (apply Proposition 5 to see this). Therefore,

Wd′(P ) =
N⋃

j=1

n⋃

k=1

{Wd′(Ej,k)}.

Suppose Ej goes from p = (w/d, x/d) to q = (y/d, z/d). Then the edge from
p = (w/d, x/d) to q′ = p + (y − w, z − x)/d′ is in the set {Ej,k}nj=1. Without
loss of generality, say this d′-minimal edge is Ej,1. Then,

Wd′(Ej,1) = det
(
nw nw + (y − w)
nx nx+ (z − x)

)
= det

(
nw y − w
nx z − x

)

= nwz − nwx− nxy + nxw = n(wz − xy) = ndet
(
w y
x z

)
mod d′.

We claim that there exists a unique choice r of residue modulo d such that

Wd′(Ej,1) = nr mod d′. (8)

Eq. (8) says that for some integer t,

Wd′(Ej,1) = nr + td′ = nr + tnd = n(r + td).

Therefore, the residue n divides Wd′(Ej,1) and we get

(Wd′(Ej,1)/n) = r + td ⇐⇒ r ≡Wd′(Ej,1)/n mod d.

We conclude that

Wd(P ) =
N⋃

j=1

{(Wd′(Ej,1)/n)}.

Indeed, Wd(P ) is uniquely determined by Wd′(P ). ut

Theorem 4 (weight Wd is an invariant for equidecomposability) Let
P and Q be Ld-polygons, and suppose F : P → Q is an equidecomposability
relation. Then Wd(P ) = Wd(Q).

Proof If Fd′ : P → Q, then by Lemmas 1 and 2, SWd′(P ) = SWd′(Q) and
UWd′(P ) = UWd′(Q). By Lemmas 3 and 4, this implies Wd(P ) = Wd(Q), as
desired. ut

Remark 6 Note that all our definitions and results immediately generalize to
the case where P or Q is a finite union of rational polygons. Moreover, nowhere
have we used any assumptions about convexity, and in general, we make no
assumptions about convexity for this paper.
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Theorem 4 comes with the following interesting corollary regarding d-minimal
triangles.

Corollary 1 If S and T are d-minimal triangles, then the following are equiv-
alent.

(1) S and T are G-equivalent.
(2) W (S) = W (T ).
(3) S and T are finitely rationally discretely equidecomposable.

Proof (1)⇔ (2) is the content of Theorem 3. (3)⇒ (2) is the content of The-
orem 4. (1)⇒ (3) is true because a G-map from S to T is automatically an
equidecomposability relation. ut

3.3 Ehrhart Equivalence Does not Imply Rational Finite Discrete
Equidecomposability

The computational software LattE [1] can be used to show ehrT(1,2)(t) =
ehrT(1,4)(t). The explicit formulas are below.

ehrT(1,2)(t) = ehrT(1,4)(t) =





x2

50
+

3x
50
− 2

25
if t ≡ 1 mod 5,

x2

50
+

x

50
− 3

25
if t ≡ 2 mod 5,

x2

50
− x

50
− 3

25
if t ≡ 3 mod 5,

x2

50
− 3x

50
− 2

25
if t ≡ 4 mod 5,

x2

50
+

3x
10

+ 1 if t ≡ 5 mod 5.

However, by Theorem 4, we see that T(1,2) and T(1,4) are NOT rationally,
finitely equidecomposable because W5(T(1,2)) = {1, 1,−1} and W5(T(1,4)) =
{2,−2, 1}. This provides the partial negative answer in dimension 2 to Haase–
McAllister’s [7] question of whether Ehrhart equivalence implies equidecom-
posability.

4 An Infinite Equidecomposability Relation

In this section—unlike in Sections 2 and 3—we consider discrete equidecom-
posability in full generality as stated in Definition 1. Hence, equidecompos-
ability relations need not be finite or consist entirely of rational simplices.
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4.1 Construction of the Infinite Equidecomposability Relation

Previously, by Section 3.3, we have shown that the two special triangles T(1,2)
and T(1,4) with the same Ehrhart quasi-polynomial are not finitely rationally
equidecomposable. However, if we delete an edge from each triangle, there
does exist an infinite rational equidecomposability relation mapping one to
the other. The existence of this infinite construction also explains why these
two triangles share the same Ehrhart quasi-polynomial. It also raises many
interesting problems discussed at the end of this section.

Label two edges of each of these triangles as follows. Let e1 denote the
closed edge of T(1,2) with endpoints (1/5, 0), (0, 1/5), let e2 denote the closed
edge with endpoints (1/5, 0), (1/5, 1/5), let e3 denote the closed edge of T(1,4)
with endpoints (2/5, 0), (1/5, 1/5), and let e4 denote the closed edge with
endpoints (2/5, 0), (2/5, 1/5).

Theorem 5 Denote by T(1,2) the triangle with vertices (1/5, 0), (0, 1/5), (1/5, 1/5),
and by T(1,4) the triangle with vertices (2/5, 0), (1/5, 1/5), (2/5, 1/5). If we
delete either one of e1, e2 from T(1,2) and either one of e3, e4 from T(1,4), the
remaining half-open polygons are infinitely equidecomposable.

Proof Since the unimodular transformation

U =
(

1 1
0 1

)

maps e1 to e2 and e3 to e4, respectively, we delete either e1 or e2 from T(1,2)
and either e3 or e4 from T(1,4), and claim that the remaining half-open ∆-com-
plexes4 are infinitely equidecomposable. Therefore, without loss of generality,
we delete e1 from T(1,2) and e3 from T(1,4).

Part I: Choosing a ∆-complex decomposition of T(1,2) and T(1,4) (cutting). Let
I = (1/5, 0). Construct all the lines {l4,i} connecting I and the lattice points
of (1/5)Z × (1/5)Z contained in the line y = 1/5, starting from (2/5, 1/5)
and going to the right. The ith line l4,i will divide T(1,4) into one more region.
Denote the upper new region resulting from constructing l4,i as Ri. We restrict
Ri to be open. Let ri,i+1 denote the relatively open edge between Ri and Ri+1.
Also, Ri has one side of its boundary bordering one of the two non-deleted
edges of T(1,4). We let ni denote this relatively open edge of Ri. Finally, let
Ni be the point of intersection of the line l4,i and the edge e4. See Figure 8.
Thus we have

T(1,4) − e3 =
⊔

i

{Ri}
⊔

i

{ri,(i+1)}
⊔

i

{ni}
⊔

i

{Ni}.

4 For our purposes, a ∆-complex can be thought of as a disjoint union of relatively open
simplices. This is looser than the notion of simplicial complex because it is not required
that the boundary of a face of a ∆-complex be a part of the ∆-complex, i.e., relatively half-
open structures are allowed. See Chapter 2 of [8] for a more general topological definition
of ∆-complexes.
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Fig. 8 An Infinite Equidecomposability Relation.

Next, choose another point J = (2/5, 0). Construct all the lines {l2,i} connect-
ing J and the lattice points of (1/5)Z× (1/5)Z contained in the line y = 1/5,
starting from (1/5, 1/5) and going to the left. The ith line l2,i will divide T(1,2)
into one more region. Denote the upper new open region resulted from cutting
by l2,i as Si. Let s0,1 denote the relatively open edge bordering S1 that lies on
the line y = 1/5. Denote by si,i+1 the relatively open edge lying between the
regions Si and Si+1. For each Si, denote the relatively open edge bordering Si
that lies on e2 of T(1,2) by mi. Finally, let Mi be the point of intersection of
the line l2,i and the edge e2. See Figure 8. Thus,

T(1,2) − e1 =
⊔

i

{Si}
⊔

i

{s(i−1),i}
⊔

i

{mi}
⊔

i

{Mi}.

Part II: Mapping the selected ∆-complex decompositions (pasting). Let

Ui =
(

1 i
0 1

)
.

Ui sends each Si to Ri, si−1,i to ni, mi to ri,i+1, and Mi to Ni. The details can
be verified by writing down explicit expression of the coordinates of each piece.
Intuitively, we can think of the transformation U as mapping the triangle T(1,2)
to cover T(1,4), step by step. Since Ui fixes the points on y = 0 but moves the
lattice points on y = 1/5 to the right by i units of the lattice, T(1,4) is covered
by T(1,2) completely. ut

We observe that the construction from Theorem 5 can be applied to a much
larger family of pairs of triangles.
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Definition 12 Let Tl and Tr be two d-minimal triangles. The pair of triangles
Tl and Tr are called similar neighbors if Tl is G-equivalent to T ′l and Tr is G-
equivalent to T ′r, where

T ′l = Conv
((

1 + t

d
,

1
d

)
,

(
1 + t

d
, 0
)
,

(
t

d
,

1
d

))
,

T ′r = Conv
((

2 + t

d
,

1
d

)
,

(
2 + t

d
, 0
)
,

(
1 + t

d
,

1
d

))
,

(9)

for some fixed integer t, where 1 + t, 2 + t, and d are pairwise relatively prime,
and 3 + 2t 6= 0 mod d. When 3 + 2t = 0 mod d, Tl and Tr are actually
G-equivalent, so we exclude this case.

Remark 7 Observe that when d < 5 there are no similar neighbors. One ex-
ample of similar neighbors is the pair of our favorite two triangles T(1,2) and
T(1,4) (see Figure 3).

Theorem 6 If two triangles Tl and Tr are similar neighbors, then they share
the same Ehrhart quasi-polynomials but are not finitely rationally equidecom-
posable.

Proof Without loss of generality, let Tl and Tr be as T ′l and T ′r in (9), respec-
tively. First let’s show they share the same Ehrhart quasi-polynomials. Let el,1
be the edge with endpoints ((1 + t)/d, 0) to (t/d, 1/d), and let el,2 be the edge
with endpoints ((1 + t)/d, 0), ((1 + t)/d, 1/d). Let er,1 be the edge with end-
points ((2 + t)/d, 0) to ((1 + t)/d, 1/d), and let er,2 be the edge with endpoints
((2 + t)/d, 0), ((2 + t)/d, 1/d). By the same construction as in the proof of The-
orem 5, we can map the ∆-complex (Tl−el,1) to (Tr−er,1). By Proposition 6,
(Tl−el,1) and (Tr−er,1) share the same Ehrhart quasi-polynomial. It remains
to show the edges el,1 and er,1 have the same Ehrhart quasi-polynomial.

Observe that the matrix

U =
(

1 1
0 1

)

maps el,1 to el,2 (respectively, er,1 to er,2). Thus it suffices to show that el,2
and er,2 share the same Ehrhart quasi-polynomial. Because 1 + t, 2 + t, and d
are pairwise relatively prime, we have a bijection between the denominator d′

points in el,2 and the denominator d′ points in er,2 by projecting the segment
el,2 onto er,2. Thus Tl and Tr share the same Ehrhart quasi-polynomial. To
show they are not finitely rationally equidecomposable, we compute Wd(Tl) =
{1 + t, 1,−1− t} and Wd(T(1,2)) = {2 + t, 1,−2− t}. Since 3 + 2t 6= 0 mod d,
Wd(Tl) 6= Wd(Tr). This completes the proof. ut

4.2 General Discrete Equidecomposability

It is natural to ask if the Ehrhart quasi-polynomial is even preserved in general
by equidecomposability relations consisting of an infinite amount of (not nec-
essarily rational) simplices. To do so, let’s first provide the general definition
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of an Ehrhart function of a bounded subset of R2. In this section, when we
refer to equidecomposability, we mean it in the most general sense as allowed
by Definition 1.

Here we denote as ehr(t), the Ehrhart function (also referred to as the
Ehrhart counting function), the number of lattice points in the tth dilate of
a general subset S ⊂ R2. As opposed to the case of rational polytopes, this
function may not necessarily be a quasipolynomial. Observe that the definition
provided below agrees with the Ehrhart function of a polygon provided in Eq.
(1) of Section 1.

Definition 13 (Ehrhart function of a subset of R2) Let S be a bounded
subset of R2. Then the Ehrhart function of S is defined to be

ehrS(t) := |tS ∩ Z2|

where t ∈ Z≥1 and tS denotes the tth dilate of S.

We require S to be bounded so that ehrS(t) is always finite. The fact that
Ehrhart functions are preserved by potentially infinite equidecomposability
relations follows fairly quickly from the definitions.

Proposition 6 Let S and S′ be bounded subsets of R2 with (not necessar-
ily finite or rational) ∆-complex decompositions T and T ′, respectively. If
F : (S, T )→ (S′, T ′) is an equidecomposability relation, then

ehrS(t) = ehrS′(t).

Proof Let t be a positive integer. We want to construct a bijection Φ from
Z2 ∩ tS to Z2 ∩ tS′. Given p ∈ Z2 ∩ tS, define Φ(p) = tF(p/t). Injectivity of Φ
is clear because both the scaling map p 7→ p/t, equidecomposability relation,
and dilation map F(p/t) 7→ tF(p/t) are all injective. Also, tF(p/t) is an inte-
ger point because p is an integer point and F preserves denominators.

Now we show surjectivity. Suppose tq ∈ tS′ ∩ Z2. Then q ∈ S′. Since F is
surjective, there exists p ∈ S such that F(p) = q. Since tp ∈ tP , we observe
that Φ(tp) = tF(p) = tq. Again, since F preserves denominators, if tq is an
integer point, it follows that tp is an integer point, as desired.

Indeed, Z2 ∩ tS is in bijection with Z2 ∩ tS′. Moreover, both sets are finite
by the boundedness of S and S′. ut

We restate Conjecture 1 from the introduction.

Conjecture (formal statement of Conjecture 1 in dimension two) Let P and
Q be full-dimensional (closed, open, or half-open) rational polygons in R2. If

ehrS(t) = ehrS′(t),

then there exists an equidecomposability relation F : (S, T )→ (S′, T ′), where
T and T ′ are ∆-complex decompositions of P and Q, respectively.
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Note that we just proved the forward direction. The key difficulty of the back-
ward direction is that it is hard to keep track of the irrational points in an
arbitrary decomposition, although their Ehrhart function is trivially 0.

Referring back to Theorem 5, the question remains as to why we must
delete an edge from each triangle. Since we allow decompositions consisting of
infinitely many pieces, can we also find an infinite equidecomposable relation
between e1 and e3? This depends on the restrictions on decompositions, leading
us to consider special types of decompositions.

Definition 14 Let S and S′ be bounded subsets of R2. Consider a ∆-complex
decomposition of S consisting entirely of 0-simplices: S =

⊔
α∈A Sα, where

the Sα are vertices. Suppose that S and S′ are equidecomposable, and let
G = {gα}α∈A denote a set of G-maps such that

S′ =
⊔

α∈A
gα(Sα).

Let A : S → G denote the naturally resulting assignment α 7→ gα. Given g ∈ G,
we refer to the pre-image A−1(g) as the maximal subcomplex associated to g.
Furthermore, we define the maximal decomposition T (A) associated to A as
follows:

T (A) := {A−1(g) | g ∈ G}.

Since the group G is countable, it holds that G and T (A) are countable as well.
Therefore, for typical equidecomposable sets S, S′ ⊂ R2, some of the maximal
subcomplexes A−1(g) are uncountable.

An assignment A as in the previous definition yields an equidecomposabil-
ity relation FA : S → S′. Note that an equidecomposability relation F : S → S′

may have two distinct assignments A and A′ such that FA ≡ FA′ ≡ F . To
avoid any ambiguity in what follows, we take the assignment A to be part of
the data associated with the resulting equidecomposability relation denoted
by FA.

Definition 15 Let S and S′ be bounded subsets in R2 of infinite cardinality
that are equidecomposable, and let A denote an assignment of points in S to
a subset G ⊂ G as in Definition 14 that yields an equidecomposability relation
FA : S → S′. If for every g ∈ G, the maximal subcomplex A−1(g) is totally
disconnected, then FA is called an intractable equidecomposability relation.
Otherwise, it is referred to as tractable.

The Ehrhart function turns out to not be a sufficient condition for the existence
of a tractable equidecomposability relation. It can easily be computed by hand
that ehre1(t) = ehre3(t), and the following shows that the two segments are
not tractably equidecomposable.

Proposition 7 There does not exist a tractable equidecomposability relation
between edges e1 with endpoints (1/5, 0), (0, 1/5) and e3 with endpoints (2/5, 0),
(1/5, 1/5).
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Proof Suppose there exists an assignment A as in Definition 14 so that the
resulting equidecomposability relation FA : e1 → e3 is tractable. By tractabil-
ity, there exists g ∈ G such that the maximal subcomplex A−1(g) is not to-
tally disconnected. Hence, this maximal subcomplex contains some relatively
open segment e′ ⊂ e1. Moreover, FA(e′) = g(e′) is a relatively open segment
contained in e3. Recall that G-maps send 5-minimal segments to 5-minimal
segments. Therefore, since e′ ⊂ e1, g(e1) is a 5-minimal segment containing
g(e′). However, there can be at most one 5-minimal segment containing a given
relatively open segment. It follows that g(e1) = e3. Yet this is a contradiction
because ±1 = W (e1) 6= W (e3) = ±2 mod 5, and Proposition 4 says that the
weight of a d-minimal edge is preserved up to sign by G-maps. ut

We recall Conjecture 1. Now to be more precise, we conjecture the Ehrhart
function is a necessary and sufficient criterion for equidecomposability of full-
dimensional polygons if we allow intractable equidecomposability relations.
An example of a possible maximal subcomplex in an intractable equidecom-
posability relation is a fat Cantor set, which is a nowhere dense set of points
that has uncountable cardinality and positive measure. We also wonder if
there exists a tractable equidecomposability relation between a pair of similar
neighbors.
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