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In-Home Daily-Life Captioning Using Radio Signals

Lijie Fan?, Tianhong Li∗, Yuan Yuan, and Dina Katabi

MIT CSAIL

Abstract. This paper aims to caption daily life –i.e., to create a textual description
of people’s activities and interactions with objects in their homes. Addressing this
problem requires novel methods beyond traditional video captioning, as most peo-
ple would have privacy concerns about deploying cameras throughout their homes.
We introduce RF-Diary, a new model for captioning daily life by analyzing the
privacy-preserving radio signal in the home with the home’s floormap. RF-Diary
can further observe and caption people’s life through walls and occlusions and in
dark settings. In designing RF-Diary, we exploit the ability of radio signals to cap-
ture people’s 3D dynamics, and use the floormap to help the model learn people’s
interactions with objects. We also use a multi-modal feature alignment training
scheme that leverages existing video-based captioning datasets to improve the
performance of our radio-based captioning model. Extensive experimental results
demonstrate that RF-Diary generates accurate captions under visible conditions. It
also sustains its good performance in dark or occluded settings, where video-based
captioning approaches fail to generate meaningful captions.1

1 Introduction

Captioning is an important task in computer vision and natural language process-
ing; it typically generates language descriptions of visual inputs such as images or
videos [33,37,10,3,38,23,29,36,17,27,25,35]. This paper focuses on in-home daily-life
captioning, that is, creating a system that observes people at home, and automatically
generates a transcript of their everyday life. Such a system would help older people to
age-in-place. Older people may have memory problems and some of them suffer from
Alzheimer’s. They may forget whether they took their medications, brushed their teeth,
slept enough, woke up at night, ate their meals, etc. Daily life captioning enables a family
caregiver, e.g., a daughter or son, to receive text updates about their parent’s daily life,
allowing them to care for mom or dad even if they live away, and providing them peace
of mind about the wellness and safety of their elderly parents. More generally, daily-life
captioning can help people track and analyze their habits and routine at home, which
can empower them to change bad habits and improve their life-style.

But how do we caption people’s daily life? One option would be to deploy cameras
at home, and run existing video-captioning models on the recorded videos. However,
most people would have privacy concerns about deploying cameras at home, particularly
in the bedroom and bathroom. Also, a single camera usually has a limited field of view;
thus, users would need to deploy multiple cameras covering different rooms, which
? Indicates equal contribution. Correspondence to Tianhong Li <tianhong@mit.edu>.
1 For more information, please visit our project webpage: http://rf-diary.csail.mit.edu
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Video: N/A.
RF+Floormap: A person is sleeping in the bed. Then he wears a coat. Then he walks to the table and plays laptop.
GT: A young man wakes up from his bed and puts on his shoes and clothes. He stands up from the bed and then sits
down at the table and starts typing on a laptop.

Video: A person is standing next to the sink washing dishes.
RF+Floormap: A person is cooking food on the stove.
GT: A person is cooking with a black pan and spatula on the stove.

…

…

RGB Video Floormap Illustration

Fig. 1. Event descriptions generated from videos and RF+Floormap. The description generated
from video shows its vulnerability to poor lighting and confusing images, while RF-Diary is robust
to both. The visualization of floormap shown here is for illustration. The representation used by
our model is person-centric and is described in detail in section 4.2.

would introduce a significant overhead. Moreover, cameras do not work well in dark
settings and occlusions, which are common scenarios at home.

To address these limitations, we propose to use radio frequency (RF) signals for
daily-life captioning. RF signals are more privacy-preserving than cameras since they
are difficult to interpret by humans. Signals from a single RF device can traverse walls
and occlusions and cover most of the home. Also, RF signals work in both bright and
dark settings without performance degradation. Furthermore, the literature has shown
that one can analyze the radio signals that bounce off people’s bodies to capture people’s
movements [1,2], and track their 3D skeletons [43].

However, using RF signals also introduces new challenges, as described below:

– Missing objects information: RF signals do not have enough information to differ-
entiate objects, since many objects are partially or fully transparent to radio signals.
Their wavelength is on the order of a few centimeters, whereas the wavelength of
visible light is hundreds nanometer [4]. Thus, it is also hard to capture the exact shape
of objects using RF signals.

– Limited training data: Currently, there is no training dataset that contains RF signals
from people’s homes with the corresponding captions. Training a captioning system
typically requires tens of thousands of labeled examples. However, collecting a new
large captioning dataset with RF in people’s homes would be a daunting task.

In this paper, we develop RF-Diary, an RF-based in-home daily-life captioning
model that addresses both challenges. To capture objects information, besides RF signals,
RF-Diary also takes as input the home floormap marked with the size and location
of static objects like bed, sofa, TV, fridge, etc. Floormaps provide information about
the surrounding environment, thus enabling the model to infer human interactions with
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objects. Moreover, floormaps are easy to measure with a cheap laser-meter in less than 10
minutes (Section 4.2). Once measured, the floormap remains unchanged for potentially
years, and can be used for all future daily-life captioning from that home.

RF-Diary proposes an effective representation to integrate the information in the
floormap with that in RF signals. It encodes the floormap from the perspective of the
person in the scene. It first extracts the 3D human skeletons from RF signals as in [43]
and then at each time step, it shifts the reference system of floormap to the location
of the extracted skeleton, and encodes the location and orientation of each object with
respect to the person in the scene. This representation allows the model, at each time
step, to focus on various objects depending on their proximity to the person.

To deal with the limited availability of training data, we propose a multi-modal
feature alignment training scheme to leverage existing video-captioning datasets for
training RF-Diary. To transfer visual knowledge of event captioning to our model, we
align the features generated from RF-Diary to the same space of features extracted from
a video-captioning model trained on existing large video-captioning datasets. Once the
features are aligned, we use a language model to generate text descriptions.

Figure 1 shows the performance of our model in two scenarios. In the first scenario, a
person wakes up from bed, puts on his shoes and clothes, and goes to his desk to work on
his laptop. RF-Diary generates a correct description of the events, while video-captioning
fails due to poor lighting conditions. The second scenario shows a person cooking on
the stove. Video-captioning confuses the person’s activity as washing dishes because, in
the camera view, the person looks as if he were near a sink full of dishes. In contrast,
RF-Diary generates a correct caption because it can extract 3D information from RF
signals, and hence can tell that the person is near the stove not the sink.

To evaluate RF-Diary, we collect a captioning dataset of RF signals and floormaps,
as well as the synchronized RGB videos. Our experimental results demonstrate that:
1) RF-Diary can obtain comparable results to video-captioning in visible scenarios.
Specifically, on our test set, RF-Diary achieves 41.5 average BLEU and 26.7 CIDEr,
while RGB-based video-captioning achieves 41.1 average BLEU and 27.0 CIDEr. 2)
RF-Diary continues to work effectively in dark and occluded conditions, where video-
captioning methods fail. 3) Finally, our ablation study shows that the integration of
the floormaps into the model and the multi-modal feature alignment both contribute
significantly to improving performance.

Finally, we summarize our contributions as follows:

– We are the first to caption people’s daily-life at home, in the presence of bad lighting
and occlusions.

– We also introduce new modalities: the combination of RF and floormap, as well as
new representations for both modalities that better tie them together.

– We further introduce a multi-modal feature alignment training strategy for knowledge
transfer from a video-captioning model to RF-Diary.

– We evaluate our RF-based model and compare its performance to past work on video-
captioning. Our results provide new insights into the strengths and weaknesses of
these two types of inputs.
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Vertical 

Depth
RGB Image Horizontal Heatmap Vertical Heatmap

Source: Camera Source: RF Device

Fig. 2. RF heatmaps and an RGB image recorded at the same time.

2 Related Work

(a) RGB-Based Video Captioning. Early works on video-captioning are direct ex-
tensions of image captioning. They pool features from individual frames across time,
and apply image captioning models to video-captioning [34]. Such models cannot cap-
ture temporal dependencies in videos. Recent approaches, e.g., sequence-to-sequence
video-to-text (S2VT), address this limitation by adopting recurrent neural networks
(RNNs) [33]. In particular, S2VT customizes LSTM for video-captioning and generates
natural language descriptions using an encoder-decoder architecture. Follow-up papers
improve this model by introducing an attention mechanism [37,10,22], leveraging hi-
erarchical architectures [3,38,17,29,12,13], or proposing new ways to improve feature
extraction from video inputs, such as C3D features [37] or trajectories [36]. There have
also been attempts to use reinforcement learning to generate descriptions from videos
[27,25,35], in which they use the REINFORCE algorithm to optimize captioning scores.

(b) Human Behavior Analysis with Wireless Signals. Recently, there has been
a significant interest in analyzing the radio signals that bounce off people’s bodies to
understand human movements and behavior. Past papers have used radio signals to
track a person’s location [1], extract 3D skeletons of nearby people [43], or do action
classification [19]. To the best of our knowledge, we are the first to generate natural
language descriptions of continuous and complex in-home activities using RF signals.
Moreover, we introduce a new combined modality based on RF+Floormap and a novel
representation that highlights the interaction between these two modalities, as well as a
multi-modal feature alignment training scheme to allow RF-based captioning to learn
from existing video captioning datasets.

3 RF Signal Preliminary

In this work, we use a radio commonly used in prior works on RF-based human sens-
ing [43,14,15,20,26,31,7,40,42,39,44,11,16]. The radio has two antenna arrays organized
vertically and horizontally, each equipped with 12 antennas. The antennas transmit a
waveform called FMCW [30] and sweep the frequencies from 5.4 to 7.2 GHz. Intuitively,
the antenna arrays provide angular resolution and the FMCW provides depth resolution.

Our input RF signal takes the form of two-dimensional heatmaps, one from the
horizontal array and the other from the vertical array. As shown in Figure 2, the horizontal
heatmap is similar to a depth heatmap projected on a plane parallel to the ground, and
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Fig. 3. Model architecture. It contains four parts: RF+Floormap feature extraction (the left yellow
box), video feature extraction (the right blue box), unified embedding space for feature alignment
(the center grey box), and language generation network (the bottom green box). RF-Diary extracts
features from RF signals and floormaps and combines them into a unified human-environment
feature map. The features are then taken by the language generation network to generate captions.
RF-Diary also extracts features from both paired videos (synchronized videos with RF+Floormap)
and unpaired videos (an existing video captioning dataset), and gets the video representation.
These features are used to distill knowledge from existing video dataset to RF-Diary. During
training, RF-Diary uses the caption loss and the feature alignment loss to train the network. During
testing, RF-Diary takes only the RF+Floormap without videos as input and generates captions.

the vertical heatmap is similar to a depth heatmap projected on a plane perpendicular
to the ground. Red parts in the figure correspond to large RF power, while blue parts
correspond to small RF power. The radio generates 30 pairs of heatmaps per second.

RF signals are different from vision data. They contain much less information than
RGB images. This is because the wave-length of RF signals is few centimeters making it
hard to capture objects’ shape using RF signals; they may even totally miss small objects
such as a pen or cellphone. However, the FMCW radio enables us to get a relatively high
resolution on depth (∼8cm), making it much easier to locate a person. We harness this
property to better associate RF signals and floormaps in the same coordinate system.

4 RF-Diary
RF-Diary generates event captions using RF signals and floormaps. As shown in Figure 3,
our model first performs feature extraction from RF signals and floormaps, then combine
them into a unified feature (the left yellow box). The combined feature is taken by a
language generation network to generate captions (the bottom green box). Below, we
describe the model in detail. We also provide implementation details in Appendix A.

4.1 RF Signal Encoding

RF signals have properties totally different from visible light, which are usually not
interpretable by human. Therefore, it can be hard to directly generate captions from
RF signals. However, recent works demonstrate that it is possible to generate accurate
human skeletons from radio signals [43], and that the human skeleton is a succinct yet
informative representation for human behavior analysis [18,9]. In this work, we first
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generate 3D human skeletons from RF signals, then extract the feature representations
of the 3D skeletons.

Thus, the first stage in RF-Diary is a skeleton generator network, which has an
architecture similar to the one in [43], with 90-frame RF heatmaps (3 seconds) as input;
we refer to these 90 frames as an RF segment. The skeleton generator first extracts
information from the RF segment with a feature extraction network (12-layer ResNet).
This is followed by a region proposal network (6-layer ResNet) to generate region
proposals for potential human bounding boxes and a pose estimation network (2-layer
ResNet) to generate the final 3D skeleton estimations based on the feature maps and
the proposals. Note that these are dynamic skeletons similar to skeletons extracted from
video segment.

After we obtain the 3D skeletons from RF signals, we extract the feature representa-
tion through a skeleton encoder from each skeleton segment S. The skeleton encoder
is a Hierarchical Co-occurrence Network (HCN) [18], which is a CNN-based network
architecture for skeleton-based action recognition. We use the features from the last
convolutional layer of HCN, denoted as urf , as the encoded features for RF signals.

Bed
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𝐿1

𝑊1
Moving Path

(𝑥1(𝑡), 𝑦1(𝑡))

Table

TV
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X
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X
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𝑡2𝑡3
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Fig. 4. Illustration of floormap representation. Noted that this figure is not the input to our model
but only a visualization. Red dotted line in the apartment denotes the moving path of a person
from time t1 to t5. Green axes X-Y centered at the person illustrate our person-centric coordinate
system, where the origin of the coordinate system is changed through time along with people’s
location. Under this person-centric coordinate system, at tth time step, we describe each object
using a 5-element tuple: (length L, width W , center coordinates x(t), y(t), and rotation θ), as
exemplified using the Table in the figure.

4.2 Floormap Encoding

Many objects are transparent or semi-transparent to RF signals and act in a manner
similar to air [2]. Even objects that are not transparent to RF signals, they can be partially
invisible; this is because they can deflect the incident RF signal away from the emitting
radio, preventing the radio from sensing them [41,43]. Thus, to allow the model to
understand interactions with objects, we must provide additional information about
the surrounding environment. But we do not need to have every aspect of the home
environment since most of the background information, e.g. the color or the texture



In-Home Daily-Life Captioning Using Radio Signals 7

of furniture, is irrelevant to captioning daily life. Therefore, we represent the in-home
environment using the locations and sizes of objects – the floormap. The floormap
is easily measured with a laser meter. Once measured, the floormap tends to remain
valid for a long time. In our model, we only consider static objects relevant to people’s
in-home activities, e,g., bed, sofa, stove, or TV. To demonstrate the ease of collecting
such measurements, we have asked 5 volunteers to measure the floormap for each of our
test environments. The average time to measure one environment is about 7 mins.

Let M be the number of objects, N be the maximum number of instances of an
object, then the floormap can be represented by a tensor f ∈ RM×N×O, where O
denotes the dimension for the location and size of each object, which is typically 5, i.e.,
length L, width W , the coordinate of the center x(t), y(t), and its rotation θ.

Since people are more likely to interact with objects close to them, we set the origin
point of the floormap reference system to the location of the 3D skeleton extracted from
RF. Specifically, we use a person-centric coordinate system as shown in the green X-Y
coordinates in Figure 4. A person is moving around at home in a red-dotted path from
time t1 to t5. At each time step ti, we set the origin of the 3D coordinate system to be
the center of the 3D human skeleton and the X-Y plane to be parallel to the floor plane.
The orientation of the X-axis is parallel to the RF device and Y -axis is perpendicular
to the device. Each object is then projected onto the X-Y plane. For example, at time
ti, the center coordinates of the Table is (x1(ti), y1(ti)), while its width, length and
rotation (L1,W1, θ1) are independent of time. The floormap at time ti is thus generated
by describing each object k using a 5-element tuple: (Lk,Wk, xk(ti), yk(ti), θk), as
shown in the left yellow box in Figure 3. In this way, each object’s location is encoded
w.r.t. the person’s location, allowing our model to pay different attention to objects
depending on their proximity to the person at that time instance.

To extract features of the floormaps F, we use a floormap encoder which is a two-
layer fully-connected network which generates the encoded features for floormaps uflr.

Using the encoded RF signal features urf and floormap features uflr, we generate a
unified human-environment feature:

u = ψ(urf ⊕ uflr),

where ⊕ denotes the concatenation of vectors, and ψ denotes an encoder to map the
concatenated features to a joint embedding space. Here we use another two-layer fully-
connected sub-network for ψ.

4.3 Caption Generation

To generate language descriptions based on the extracted features, we use an attention-
based sequence-to-sequence LSTM model similar to the one in [33,35]. During the
encoding stage, given the unified human-environment feature u = {ut}T1 with time
dimension T , the encoder LSTM operates on its time dimension to generate hidden
states {ht}T1 and outputs {ot}T1 . During the decoding stage, the decoder LSTM uses
hT as an initialization for hidden states and take inputs of previous ground-truth words
with an attention module related to {ut}T1 , to output language sequence with m words
{w1, w2, ..., wm}. The event captioning loss Lcap(u) is then given by a negative-log-
likelihood loss between the generated and the ground truth caption similar to [33,35].
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5 Multi-Modal Feature Alignment Training

Training RF-Diary requires a large labeled RF captioning dataset. Collecting such a
dataset would be a daunting task. To make use of the existing large video-captioning
dataset (e.g., Charades), we use a multi-model feature alignment strategy in the training
process to transfer knowledge from video-captioning to RF-Diary. However, RGB
videos from Charades and RF signals have totally different distributions both in terms
of semantics and modality. To mitigate the gap between them and make the knowledge
distillation possible, we collect a small dataset where we record synchronized videos and
RF from people performing activities at home. We also collect the floormaps and provide
the corresponding natural language descriptions (for dataset details see section 6(a)). The
videos in the small dataset are called paired videos, since they are in the same semantic
space as their corresponding RF signal, while the videos in large existing datasets are
unpaired videos with the RF signals. Both the paired and unpaired videos are in the
same modality. Since the paired videos share the same semantics with the RF data,
and the same modality with the unpaired videos, they can work as a bridge between
video-captioning and RF-Diary, and distill knowledge from the video data to RF data.

Our multi-modal feature alignment training scheme operates by aligning the features
from RF+Floormaps and those from RGB videos. During training, our model extracts
features from not only RF+Floormaps, but also paired and unpaired RGB videos, as
shown in Figure 3 (the right blue box). Besides the captioning losses, we add additional
paired-alignment loss between paired videos and RF+Floormaps and unpaired-alignment
loss between paired and unpaired videos. This ensures features from the two modalities
are mapped to a unified embedding space (the center grey box). Below, we describe the
video encoder and the feature alignment method in detail.

5.1 Video Encoding

We use the I3D model [5] pre-trained on Kinetics dataset to extract the video features.
For each 64-frame video segment, we extract the Mixed_5c features from I3D model,
denoted as vm. We then apply a spatial average pooling on top of the Mixed_5c feature
and get the spatial pooled video-segment feature vn. For a video containing T non-
overlapping video-segment, its Mixed_5c features and the spatial-pooled features are
denoted as vm = {vm(t)}T1 and vn = {vn(t)}T1 . Therefore, the extracted features of
paired videos XP and unpaired videos XU are denoted as vPm, vPn and vU

m, vUn . We use
the spatial-pooled features to generate captions through the language generation model.
The corresponding captioning loss is Lcap(vPn ) and Lcap(vU

n ).

5.2 Alignment of Paired Data

Since the synchronized video and RF+Floormap correspond to the exact same event, we
use L2 loss to align the features from paired video vPn in Sec 5.1 and RF+Floormap uP

in Sec 4.2 (we deonte a P here to indicate the paired data) to be consistent with each
other in a unified embedding space, i.e., the paired data alignment loss Lpair(uP , vPn ) =∥∥uP − vPn

∥∥
2
.
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5.3 Alignment of Unpaired Data

Existing large video-captioning datasets have neither synchronized RF signal nor the
corresponding floormaps, so we cannot use the L2-norm for alignment. Since we col-
lect a small paired dataset, we can first train a video-captioning model on both paired
and unpaired datasets, and then use the paired dataset to transfer knowledge to RF-
Diary. However, the problem is that since the paired feature alignment is only applied
on the paired dataset, the video-captioning model may overfit to the paired dataset
and cause inconsistency between the distribution of features from paired and unpaired
datasets. To solve this problem, we align the paired and unpaired datasets by making
the two feature distributions similar. We achieve this goal by applying discriminators on
different layers of video features that enforces the video encoder to generate indistin-
guishable features given XP and XU . Specifically, we use two different layers of video
features, i.e., vm and vn in Sec 5.1, to calculate the discriminator lossesLunpair(vPm, vUm)
and Lunpair(vPn , vUn ). Since features from the paired videos are also aligned with the
RF+Floormap features, this strategy effectively aligns the feature distribution of the
unpaired video with the feature distribution of RF+Floormaps. The total loss of training
process is shown as below:

L = Lcap(uP ) + Lcap(vP
n ) + Lcap(vUn )

+Lpair(uP , vPn )
+Lunpair(vPn , v

U
n ) + Lunpair(vPm, v

U
m).

6 Experiments

(a) Datasets: We collect a new dataset named RF Captioning Dataset (RCD). It
provides synchronized RF signals, RGB videos, floormaps, and human-labeled captions
to describe each event. We generate floormaps using a commercial laser meter. The
floormaps are marked with the following objects: cabinet, table, bed, wardrobe, shelf,
drawer, stove, fridge, sink, sofa, television, door, window, air conditioner, bathtub,
dishwasher, oven, bedside table. We use a radio device to collect RF signals, and a multi-
camera system to collect multi-view videos, as the volunteers perform the activities. The
synchronized radio signals and videos have a maximum synchronization error of 10 ms.
The multi-camera system has 12 viewpoints to allow for accurate captioning even in
cases where some viewpoints are occluded or the volunteers walk from one room to
another room.

To generate captions, we follow the method used to create the Charades dataset [28]
–i.e., we first generate instructions similar to those used in Charades, ask the volunteers to
perform activities according to the instructions, and record the synchronized RF signals
and multi-view RGB videos. We then provide each set of multi-view RGB videos to
Amazon Mechanical Turk (AMT) workers and ask them to label 2-4 sentences as the
ground-truth language descriptions.

We summarize our dataset statistics in Table 1. In total, we collect 1,035 clips in 10
different in-door environments, including bedroom, kitchen, living room, lounge, office,
etc. Each clip on average spans 31.3 seconds. The RCD dataset exhibits two types of
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#environments #clips avg len #action types #object types #sentences #words vocab len (hrs)
10 1,035 31.3s 157 38 3,610 77,762 6,910 8.99

Table 1. Statistics of our RCD dataset.

diversity. 1. Diversity of actions and objects: Our RCD dataset contains 157 different
actions and 38 different objects to interact with. The actions and objects are the same as
the Charades dataset to ensure a similar action diversity. The same action is performed
at different locations by different people, and different actions are performed at the same
location. For example, all of the following actions are performed in the bathroom next
to the sink: brushing teeth, washing hands, dressing, brushing hair, opening/closing a
cabinet, putting something on a shelf, taking something off a shelf, washing something,
etc. 2. Diversity of environments: Environments in our dataset differ in their floormap,
position of furniture, and the viewpoint of the RF device. Further, each environment and
all actions performed in that environment are included either in testing or training, but
not both.

(b) Train-test Protocol: To evaluate RF-Diary under visible scenarios, we do a 10-fold
cross-validation on our RCD Dataset. Each time 9 environments are used for training,
and the other 1 environment is used for testing. We report the average performance of 10
experiments. To show the performance of RF-Diary under invisible scenarios, e.g., with
occlusions or poor lighting conditions, we randomly choose 3 environments (with 175
clips) and collect corresponding clips under invisible conditions. Specifically, in these 3
environments, we ask the volunteers to perform the same series of activities twice under
the visible and invisible conditions (with the light on and off, or with an occlusion in
front of the RF device and cameras), respectively. Later we provide the same ground
truth language descriptions for the clips under invisible conditions as the corresponding
ones under visible conditions. During testing, clips under invisible scenarios in these 3
environments are used for testing, and clips in the other 7 environments are used to train
the model.

During training, we only use RGB videos from 3 cameras with good views instead of
all 12 views in the multi-modal feature alignment between the video-captioning model
and RF-Diary model. Using multi-view videos will provide more training samples and
help the feature space to be oblivious to the viewpoint. When testing the video-captioning
model, we use the video from the master camera as it covers most of the scenes. The
master camera is positioned atop of the RF device for a fair comparison.

We leverage the Charades caption dataset [28,35] as the unpaired dataset to train
the video-captioning model. This dataset provides captions for different in-door human
activities. It contains 6,963 training videos, 500 validation videos, and 1,760 test videos.
Each video clip is annotated with 2-5 language descriptions by AMT workers.

(c) Evaluation Metrics: We adopt 4 caption evaluation scores widely used in video-
captioning: BLEU [24], METEOR [8], ROUGE-L [21] and CIDEr [32]. BLEU-n ana-
lyzes the co-occurrences of n words between the predicted and ground truth sentences.
METEOR compares exact token matches, stemmed tokens, paraphrase matches, as well
as semantically similar matches using WordNet synonyms. ROUGE-L measures the
longest common subsequence of two sentences. CIDEr measures consensus in captions
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by performing a Term Frequency Inverse Document Frequency (TF-IDF) weighting for
each n words. According to [28], CIDEr offers the highest resolution and most similarity
with human judgment on the captioning task for in-home events. We compute these
scores using the standard evaluation code provided by the Microsoft COCO Evaluation
Server [6]. All results are obtained as an average of 5 trials. We denote B@n, M, R, C
short for BLEU-n, METEOR, ROUGE-L, CIDEr.

6.1 Quantitative Results

We compare RF-Diary with state-of-the-art video-captioning baselines [17,33,37,10].
The video-based models are trained on RGB data from both the Charades and RCD
training sets, and tested on the RGB data of the RCD test set. RF-Diary is trained on RF
and floormap data from the RCD training sets. It also uses the RGB data from Charades
and RCD training sets in multi-modal feature alignment training. It is then tested on the
RF and floormap data of the RCD test set.

The results on the left side of Table 2 show that RF-Diary achieves comparable
performance to state-of-the-art video captioning baselines in visible scenarios. The right
side of Table 2 shows that RF-Diary also generates accurate language descriptions when
the environment is dark or with occlusion, where video-captioning fails completely. The
little reduction in RF-Diary’s performance from the visible scenario is likely due to that
occlusions attenuate RF signals and therefore introduce more noise in the RF heatmaps.

Methods
Visible Scenario Dark/Occlusion Scenario

B@1 B@2 B@3 B@4 M R C B@1 B@2 B@3 B@4 M R C
S2VT [33] 57.3 40.4 27.2 19.3 19.8 27.3 18.9 - - - - - - –
SA [37] 56.8 39.2 26.7 19.0 18.1 25.9 22.1 - - - - - - –
MAAM [10] 57.8 41.9 28.2 19.3 20.7 27.1 21.2 - - - - - - –
HTM [17] 61.3 44.6 32.2 22.1 21.3 28.3 26.5 - - - - - - –
HRL [35] 62.5 45.3 32.9 23.8 21.7 28.5 27.0 - - - - - - –
RF-Diary 62.3 45.9 33.9 23.5 21.1 28.9 26.7 61.5 45.5 33.1 22.6 21.1 28.3 25.9

Table 2. Quantitative results for RF-Diary and video-based captioning models. All models are
trained on Charades and RCD training set, and tested on the RCD test set. The left side of the
Table shows the results under visible scenarios, and the right side of the Table shows the results
under scenarios with occlusions or without light.

6.2 Ablation Study

We conduct several ablation studies to demonstrate the necessity of each component in
RF-Diary. All experiments here are evaluated on the visible test set of RCD.

3D Skeleton vs. Locations: One may wonder whether simply knowing the location
of the person is enough to generate a good caption. This could happen if the RCD dataset
has low diversity, i.e., each action is done in a specific location. This is however not
the case in the RCD dataset, where each action is done in multiple locations, and each
location may have different actions. To test this point empirically, we compare our model
which extracts 3D skeletons from RF signals with a model that extracts only people
locations from RF. We also compare with a model that extracts 2D skeletons with no
locations (in this case the floormap’s coordinate system is centered on the RF device).
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Method B@1 B@2 B@3 B@4 M R C
Locations 52.0 37.4 24.3 17.2 15.7 22.1 19.1
2D Skeletons 56.5 39.8 26.9 18.8 18.0 24.1 22.3
3D Skeletons 62.3 45.9 33.9 23.5 21.1 28.9 26.7

Table 3. Comparison between using different human representations.

Table 3 shows that replacing 3D skeletons with locations or 2D skeletons yields poor
performance. This is because locations do not contain enough information of the actions
performed by the person, and 2D skeletons do not contain information of the person’s
position with respect to the objects on the floormaps. These results show that: 1) our
dataset is diverse and hence locations are not enough to generate correct captioning, and
2) our choice of representation, i.e., 3D skeletons, which combines information about
both the people’s locations and poses provides the right abstraction to learn meaningful
features for proper captioning.

Person-Centric Floormap Representation: In this work, we use a person-centric
coordinate representation for the floormap and its objects, as described in subsection 4.2.
What if we simply use the image of the floormap with the objects, and mark the map
with the person’s location at each time instance? We compare this image-based floormap
representation to our person-centric representation in Table 4. We use ResNet-18 pre-
trained on ImageNet to extract features from the floormap image. The result shows
that the image representation of floormap can achieve better performance than not
having the floormap, but still worse than our person-centric representation. This is
because it is much harder for the network to interpret and extract features from an
image representation, since the information is far less explicit than our person-centric
coordinate-based representation.

Method B@1 B@2 B@3 B@4 M R C
w/o floormap 56.3 40.8 27.7 18.5 18.1 24.0 22.1
image-based floormap 60.1 43.9 31.5 21.6 20.1 26.7 24.4
person-centric floormap 62.3 45.9 33.9 23.5 21.1 28.9 26.7
person-centric floormap+noise 61.6 45.8 33.7 23.4 21.0 28.7 26.5

Table 4. Performance of RF-Diary with or without using floormap, with different floormap
representations, and with gaussian noise.

Measurement Errors: We analyze the influence of floormap measurement errors
on our model’s performance. We add a random gaussian noise with a 20cm standard
deviation on location, 10cm on size and 30 degrees on object rotation. The results in
the last row of Table 4 show that the noise has very little effect on performance. This
demonstrates that our model is robust to measurement errors.

Feature Alignment: Our feature alignment framework consists of two parts: the
L2-norm between paired dataset, and the discriminator between unpaired datasets. Ta-
ble 5 quantifies the contribution of each of these alignment mechanisms to RF-Diary’s
performance. The results demonstrate that our multi-modal feature alignment training
scheme helps RF-Diary utilize the knowledge of the video-captioning model learned
from the large video-captioning dataset to generate accurate descriptions, while training
only on a rather small RCD dataset. We show a visualization of the features before and
after alignment in the Appendix.
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Video: A person is texting on his phone. He then starts
calling someone.
RF+Floormap: A person is working on his phone. Then he
talks on his phone.
GT: A person plays with his phone. He then makes a phone
call.

Video: A person walks into the room cleans the table.
He sits down on chair.
RF+Floormap: A person walks to the table. Then he
tidies the table and sits down at the table.
GT: A person enters the room and starts cleaning up the
stuffs on the table. He then sits at the table when done.

Video: N/A.
RF+Floormap: A person removes his clothes and puts it in
wardrobe. Then he sits at a table and starts typing.
GT: A person walks into the room. He takes off his coat and
hangs it in the wardrobe. Then he walks to the table, sits
down and works on his laptop.

Video: N/A.
RF+Floormap: A person is brushing his teeth in the
bathroom. Then he brushes hair.
GT: A person is in the bathroom. He takes out his tooth
brush and cup, and then brushes his teeth. Then he starts
brushing his hair.

(a)                                           (b)                               

(c)                                           (d)                              

Video: A woman opens a fridge. She takes some juice and
drink it and walks away.
RF+Floormap: A person opens the fridge, takes out
something and then drinks water. Then he walks to the sink.
GT: In the kitchen, a woman takes some juice from fridge
and drink it. She then closes the fridge door and goes to the
sink.

Video: A person sits at a table. He opens snacks from the
table and eats.
RF+Floormap: A person sits at a table. He then starts eating
something.
GT: A person sits down at a dinning table. Then he takes a
chocolate bar from the table and eats it.

(e)                                           (f)                              

Fig. 5. Examples from our RCD test set. Green words indicate actions. Blue words indicate objects
included in floormap. Brown words indicate small objects not covered by floormap. Red words
indicate the misprediction of small objects from RF-Diary. The first row shows RF-Diary can
generate accurate captions compared to the video-based captioning model under visible scenarios.
The second row shows that RF-Diary can still generate accurate captions when the video-based
model does not work because of poor lighting conditions or occlusions. The third row shows the
limitation of RF-Diary that it may miss object color and detailed descriptions of small objects.

6.3 Qualitative Result

In Figure 5, we show six examples from the RCD test set. The first row under each
image is the caption generated by state of the art video-based captioning model [35], the
second row is the caption generated by RF-Diary, and the third row is the ground truth
caption labeled by a human.

The result shows that RF-Diary can generate accurate descriptions of the person’s
activities (green) and interaction with the surrounding environment (blue), and continue
to work well even in the presence of occlusions (Figure 5 (c)), and poor lighting (Figure 5
(d)). Video-based captioning is limited by bad lighting, occlusions and the camera’s field
of view. So if the person exits the field of view, video captioning can miss some of the
events (Figure 5 (e)).
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Method B@1 B@2 B@3 B@4 M R C
w/o L2 52.5 38.0 25.7 18.5 16.6 23.1 20.3
w/o discrim 59.4 44.1 31.4 21.0 19.8 26.3 24.6
RF-Diary 62.3 45.9 33.9 23.5 21.1 28.9 26.7

Table 5. Performance of RF-Diary network on RCD with or without L2 loss and discriminator.
Note that without adding the L2 loss, RF-Diary will not be affected by the video-captioning model.
So if without the L2 loss, then adding the discriminator loss on video-captioning model or not will
not affect the RF-Diary’s performance.

Besides poor lighting conditions, occlusions and field of view, video-captioning is
also faced with privacy problems. For example, in Figure 5 (b), the person just took a
bath and is not well-dressed. The video will record this content which is quite privacy-
invasive. However, RF signal can protect privacy since it is not interpretable by a human,
and it does not contain detailed information because of the relatively low resolution.

We also observe that RF-Diary has certain limitations. Since RF signals cannot
capture details of objects such as color, texture, and shape, the model can mispredict
those features. It can also mistake small objects. For example, in Figure 5 (e), the person
is actually drinking orange juice, but RF-Diary predicts he is drinking water. Similarly,
in Figure 5 (f), our model reports that the person is eating but cannot tell that he is eating
a chocolate bar. The model also cannot distinguish the person’s gender, so it always
predicts “he” as shown in Figure 5 (e).

6.4 Additional Notes on Privacy

In comparison to images, RF signal is privacy-preserving because it is difficult to
interpret by humans. However, one may also argue that since RF signals can track people
though walls, they could create privacy concerns. This issue can be addressed through a
challenge-response authentication protocol that prevent people from maliciously using
RF signals to see areas that they are not authorized to access. More specifically, previous
work [1] demonstrates that RF signals can sense human trajectories and locate them in
space. Thus, whenever the user sets up the system to monitor an area, the system first
challenges the user to execute certain moves (e.g., take two steps to the right, or move
one meter forward), to ensure that the monitored person is the user. The system also asks
the user to walk around the area to be monitored, and only monitors that area. Hence,
the system would not monitor an area which the user does not have access to.

7 Conclusion

In this paper, we introduce RF-Diary, a system that enables in-home daily-life captioning
using RF signals and floormaps. We also introduce the combination of RF signal and
floormap as new complementary input modalities, and propose a feature alignment train-
ing scheme to transfer the knowledge from large video-captioning dataset to RF-Diary.
Extensive experimental results demonstrate that RF-Diary can generate accurate descrip-
tions of in-home events even when the environment is under poor lighting conditions or
has occlusions. We believe this work paves the way for many new applications in health
monitoring and smart homes.
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