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Abstract

Model quantization is a widely used technique to com-
press and accelerate deep neural network (DNN) inference.
Emergent DNN hardware accelerators begin to support
mixed precision (1-8 bits) to further improve the compu-
tation efficiency, which raises a great challenge to find the
optimal bitwidth for each layer: it requires domain experts
to explore the vast design space trading off among accu-
racy, latency, energy, and model size, which is both time-
consuming and sub-optimal. There are plenty of specialized
hardware for neural networks, but little research has been
done for specialized neural network optimization for a par-
ticular hardware architecture. Conventional quantization
algorithm ignores the different hardware architectures and
quantizes all the layers in a uniform way. In this paper,
we introduce the Hardware-Aware Automated Quantization
(HAQ) framework which leverages the reinforcement learn-
ing to automatically determine the quantization policy, and
we take the hardware accelerator’s feedback in the design
loop. Rather than relying on proxy signals such as FLOPs
and model size, we employ a hardware simulator to gener-
ate direct feedback signals (latency and energy) to the RL
agent. Compared with conventional methods, our framework
is fully automated and can specialize the quantization policy
for different neural network architectures and hardware ar-
chitectures. Our framework effectively reduced the latency
by 1.4-1.95× and the energy consumption by 1.9× with neg-
ligible loss of accuracy compared with the fixed bitwidth (8
bits) quantization. Our framework reveals that the optimal
policies on different hardware architectures (i.e., edge and
cloud architectures) under different resource constraints (i.e.,
latency, energy and model size) are drastically different. We
interpreted the implication of different quantization policies,
which offer insights for both neural network architecture
design and hardware architecture design.

∗ indicates equal contributions.

68

69

70

71

72

73

25 44 63 82 101 120

MobileNets (fixed 8-bit quantization)
MobileNets (our flexible-bit quantization)

Latency (ms)

To
p-

1 
A

cc
ur

ac
y 

(%
)

1MB 2MB 3MB

Model Size:

Figure 1: We need mixed precision for different layers. We
quantize MobileNets [12] to different number of bits (both
weights and activations), and it lies on a better pareto curve
(yellow) than fixed bit quantization (blue). The reason is that
different layers have different redundancy and have differ-
ent arithmetic intensity (OPs/byte) on the hardware, which
advocates for using mixed precision for different layers.

1. Introduction

In many real-time machine learning applications (such
as robotics, autonomous driving, and mobile VR/AR), deep
neural networks is strictly constrained by the latency, energy,
and model size. In order to improve the hardware efficiency,
many researchers have proposed to quantize the weights and
activations to low precision [8, 18, 34].

Conventional quantization methods use the same number
of bits for all layers [2, 14], but as different layers have dif-
ferent redundancy and behave differently on the hardware
(computation bounded or memory bounded), it is necessary
to use mixed precision for different layers (as shown in Fig-
ure 1). This flexibility was originally not supported by chip
vendors until recently the hardware manufacturers started
to implement this feature: Apple released the A12 Bionic
chip that supports mixed precision for the neural network
inference [6]; NVIDIA recently introduced the Turing GPU
architecture that supports 1-bit, 4-bit, 8-bit and 16-bit arith-
metic operations [21]; Imagination launched a flexible neural
network IP that supports per-layer bitwidth adjustment for
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Inference latency on

HW1 HW2 HW3

Best Q. policy for HW1 16.29 ms 85.24 ms 117.44 ms

Best Q. policy for HW2 19.95 ms 64.29 ms 108.64 ms

Best Q. policy for HW3 19.94 ms 66.15 ms 99.68 ms

Table 1: Inference latency of MobileNet-V1 [12] on three
hardware architectures under different quantization policies.
The quantization policy that is optimized for one hardware
is not optimal for the other. This suggests we need a spe-
cialized quantization solution for different hardware archi-
tectures. (HW1: BitFusion [25], HW2: BISMO [26] edge
accelerator, HW3: BISMO cloud accelerator, batch = 16).

both weights and activations [13]. Besides industry, recently
academia also works on the bit-level flexible hardware de-
sign: BISMO [26] proposed the bit-serial multiplier to sup-
port multiplications of 1 to 8 bits; BitFusion [25] supports
multiplications of 2, 4, 8 and 16 bits in a spatial manner.

However, a very missing part is how to determine the
bitwidth of both weights and activations for each layer
on different hardware accelerators. This is a vast design
space: withM different neural network models, each withN
layers, on H different hardware platforms, there are in total
O(H ×M × 82N )∗ possible solutions. For a widely used
ResNet-50 [9] model, the size of the search space is about
8100, which is even larger than the number of particles in
the universe. Conventional methods require domain experts
(with knowledge of both machine learning and hardware
architecture) to explore the huge design space smartly with
rule-based heuristics, such as: we should retain more bits
in the first layer which extracts low level features and in the
last layer which computes the final outputs; also, we should
use more bits in the convolution layers than in the fully-
connected layers because empirically, the convolution layers
are more sensitive. As the neural network becomes deeper,
the search space increases exponentially, which makes it
infeasible to rely on hand-crafted strategies. Therefore, these
rule-based quantization policies are usually sub-optimal, and
they cannot generalize from one model to another. In this
paper, we would like to automate this exploration process by
a learning-based framework.

Another challenge is how to optimize the latency and
the energy consumption of a given model on the hardware.
A widely adopted approach is to rely on some proxy sig-
nals (e.g., FLOPs, number of memory references) [12, 24].
However, as different hardware behaves very differently, the
performance of a model on the hardware cannot always be
accurately reflected by these proxy signals. Therefore, it
is important to directly involve the hardware architecture’s

∗Assuming the bitwidth is 1 to 8 for both weights and activations.

performance feedback into the design loop. Also, as demon-
strated in Table 1, the quantization solution optimized on
one hardware might not be optimal on the other, which raises
the demand for specialized policies for different hardware
architectures.

To this end, we propose the Hardware-Aware Automated
Quantization (HAQ) framework that leverages reinforce-
ment learning to automatically predict the quantization pol-
icy given the hardware’s feedback. The RL agent decides the
bitwidth of a given neural network in a layer-wise manner.
For each layer, the agent receives the layer configuration and
statistics as observation, and it then outputs the action which
is the bitwidth of weights and activations. We then leverage
the hardware accelerator as the environment to obtain the
direct feedback from hardware to guide the RL agent to sat-
isfy the resource constraints. After all layers are quantized,
we finetune the quantized model for one more epoch, and
feed the validation accuracy after short-term retraining as the
reward signal to our RL agent. During the exploration, we
leverage the deep deterministic policy gradient (DDPG) [17]
to supervise our RL agent. We also studied the quantization
policy on multiple hardware architectures: both cloud and
edge neural network accelerators, with spatial or temporal
multi-precision design.

The contribution of this paper has four aspects:

1. Automation: We propose an automated framework for
quantization, which does not require domain experts
and rule-based heuristics. It frees the human labor from
exploring the vast search space of choosing bitwidths.

2. Hardware-Aware: Our framework involves the hard-
ware architecture into the loop so that it can directly
reduce the latency, energy and storage on the target
hardware instead of relying on proxy signals.

3. Specialization: For different hardware architectures,
our framework can offer a specialized quantization pol-
icy that’s exactly tailored for the target hardware archi-
tecture to optimize latency and energy.

4. Design Insights: We interpreted the different quantiza-
tion polices learned for different hardware architectures.
Taking both computation and memory access into ac-
count, the interpretation offers insights on both neural
network architecture and hardware architecture design.

2. Related Work
Quantization. There have been extensive explorations on
compressing and accelerating deep neural networks using
quantization. Han et al. [8] quantized the network weights
to reduce the model size by rule-based strategies: e.g., they
used human heuristics to determine the bitwidths for con-
volution and fully-connected layers. Courbariaux et al. [4]
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Figure 2: An overview of our Hardware-Aware Automated Quantization (HAQ) framework. We leverage the reinforcement
learning to automatically search over the huge quantization design space with hardware in the loop. The agent propose an
optimal bitwidth allocation policy given the amount of computation resources (i.e., latency, power, and model size). Our RL
agent integrates the hardware accelerator into the exploration loop so that it can obtain the direct feedback from the hardware,
instead of relying on indirect proxy signals.

binarized the network weights into {−1,+1}; Rastegari et
al. [23] and Zhou et al. [32] binarized each convolution filter
into {−w,+w}; Zhu et al. [34] mapped the network weights
into {−wN, 0,+wP} using two bits; Zhou et al. [33] used
one bit for network weights and two bits for activations; Ja-
cob et al. [14] made use of 8-bit integers for both weights and
activations. We refer the reader to the survey paper by Kr-
ishnamoorthi et al. [16] for a more detailed overview. These
conventional quantization methods either simply assign the
same number of bits to all layers or require domain experts to
determine the bitwidths for different layers, while our frame-
work automates this design process, and our learning-based
policy outperforms rule-based strategies.

AutoML. Many researchers aimed to improve the perfor-
mance of deep neural networks by searching the network
architectures: Zoph et al. [35] proposed the Neural Architec-
ture Search (NAS) to explore and design the transformable
network building blocks, and their network architecture out-
performs several human designed networks; Liu et al. [19]
introduced the Progressive NAS to accelerate the architecture
search by 5× using sequential model-based optimization;
Pham et al. [22] introduced the Efficient NAS to speed up
the exploration by 1000× using parameter sharing; Cai et
al. [1] introduced the path-level network transformation to
effectively search the tree-structured architecture space. Mo-
tivated by these AutoML frameworks, He et al. [10] lever-
aged the reinforcement learning to automatically prune the
convolution channels. Our framework further explores the
automated quantization for network weights and activations,
and it takes the hardware architectures into consideration.

Efficient Models. To facilitate the efficient deployment,
researchers designed hardware-friendly approaches to slim
neural network models. For instance, the coarse-grained
channel pruning methods [11, 20] prune away the entire
channel of convolution kernels to achieve speedup. Recently,
researchers have explicitly optimized for various aspects of
hardware properties, including the inference latency and en-
ergy: Yang et al. [30] proposed the energy-aware pruning
to directly optimize the energy consumption of neural net-
works; Yang et al. [31] reduced the inference time of neural
networks on the mobile devices through a lookup table. Nev-
ertheless, these methods are still rule-based and mostly focus
on pruning. Our framework automates the quantization pro-
cess by taking hardware-specific metric as direct rewards
using a learning based method.

3. Approach

We model the quantization task as a reinforcement learn-
ing problem (Figure 2). We use the actor-critic model with
DDPG agent to give the action: bits for each layer. We
collect hardware counters as constraints, together with ac-
curacy as rewards to search the optimal quantization policy.
We have three hardware environments that covers edge and
cloud, spatial and temporal architectures for mixed-precision
accelerator. Below describes the details of the RL formula-
tion.

3.1. Observation (State Space)

Our agent processes the neural network in a layer-wise
manner. For each layer, our agent takes two steps: one for
weights, and one for activations. In this paper, we introduce
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a ten-dimensional feature vector Ok as our observation:

If the kth layer is a convolution layer, the state Ok is

Ok = (k, cin, cout, skernel, sstride, sfeat, nparams, idw, iw/a, ak−1),
(1)

where k is the layer index, cin is #input channels, cout is
#output channels, skernel is kernel size, sstride is the stride,
sfeat is the input feature map size, nparams is #parameters,
idw is a binary indicator for depthwise convolution, iw/a is a
binary indicator for weight/activation, and ak−1 is the action
from the last time step.

If the kth layer is a fully-connected layer, the state Ok is

Ok = (k, hin, hout, 1, 0, sfeat, nparams, 0, iw/a, ak−1), (2)

where k is the layer index, hin is #input hidden units, hout is
#output hidden units, sfeat is the size of input feature vector,
nparams is #parameters, iw/a is a binary indicator for weight/
activation, and ak−1 is the action from the last step.

For each dimension in the observation vector Ok, we
normalize it into [0, 1] to make them in the same scale.

3.2. Action Space

We use a continuous action space to determine the
bitwidth. The reason that we do not use a discrete action
space is because it loses the relative order: e.g., 2-bit quan-
tization is more aggressive than 4-bit and even more than
8-bit. At the kth time step, we take the continuous action ak
(which is in the range of [0, 1]), and round it into the discrete
bitwidth value bk:

bk = round(bmin − 0.5 + ak × (bmax − bmin + 1)), (3)

where bmin and bmax denote the min and max bitwidth (in our
experiments, we set bmin to 2 and bmax to 8).

Resource Constraints. In real-world applications, we
have limited computation budgets (i.e., latency, energy, and
model size). We would like to find the quantization policy
with the best performance given the constraint.

We encourage our agent to meet the computation budget
by limiting the action space. After our RL agent gives actions
{ak} to all layers, we measure the amount of resources
that will be used by the quantized model. The feedback is
directly obtained from the hardware accelerator, which we
will discuss in Section 3.3. If the current policy exceeds
our resource budget (on latency, energy or model size), we
will sequentially decrease the bitwidth of each layer until the
constraint is finally satisfied.

3.3. Direct Feedback from Hardware Accelerators

An intuitive feedback to our RL agent can be FLOPs or
the model size. However, as these proxy signals are indirect,
they are not equal to the performance (i.e., latency, energy

consumption) on the hardware. Cache locality, number of
kernel calls, memory bandwidth all matters. Proxy feed-
back can not model these hardware functionality to find the
specialized strategies (see Table 1).

Instead, we use direct latency and energy feedback from
the hardware accelerator as resource constraints, which en-
ables our RL agent to determine the bitwidth allocation pol-
icy from the subtle differences between different layers: e.g.,
vanilla convolution has more data reuse and better locality,
while depthwise convolution [3] has less reuse and worse
locality, which makes it memory bounded. Such difference
impacts the optimal quantization policy.

3.4. Quantization

We linearly quantize the weights and activations of each
layer using the action ak given by our agent, as linearly
quantized model only needs fixed point arithmetic unit which
is more efficient to implement on the hardware.

Specifically, for each weight value w in the kth layer, we
first truncate it into the range of [−c, c], and we then quantize
it linearly into ak bits:

quantize(w, ak, c) = round(clamp(w, c)/s)× s, (4)

where clamp(·, x) is to truncate the values into [−x, x], and
the scaling factor s is defined as s = c/(2ak−1 − 1). In this
paper, we choose the value of c by finding the optimal value
x that minimizes the KL-divergence between the original
weight distributionWk and the quantized weight distribution
quantize(Wk, ak, x):

c = argmin
x

DKL(Wk || quantize(Wk, ak, x)), (5)

where DKL(· || ·) is the KL-divergence that characterizes the
distance between two distributions. As for activations, we
quantize the values similarly except that we truncate them
into the range of [0, c], not [−c, c] since the activation values
(which are the outputs of the ReLU layers) are non-negative.

3.5. Reward Function

After quantization, we retrain the quantized model for
one more epoch to recover the performance. As we have
already imposed the resource constraints (latency, energy) by
limiting the action space (Section 3.2), we define our reward
functionR to be only related to the accuracy:

R = λ× (accquant − accorigin), (6)

where accorigin is the top-1 classification accuracy of the full-
precision model on the training set, accquant is the accuracy
of the quantized model after finetuning, and λ is a scaling
factor which is set to 0.1 in our experiments.
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3.6. Agent

For the RL agent, we leverage the deep deterministic
policy gradient (DDPG) [17], which is an off-policy actor-
critic algorithm for continuous control problem. In our envi-
ronment, one step means that our agent makes an action
to decide the number of bits assigned to the weights or
activations of a specific layer, while one episode is com-
posed of multiple steps, where our RL agent makes actions
to all layers. We apply a variant form of the Bellman’s
Equation, where each transition in an episode is defined
as Tk = (Ok, ak,R, Ok+1). During exploration, the Q-
function is computed as

Q̂k = Rk − B + γ ×Q(Ok+1, w(Ok+1) | θQ), (7)

and the loss function can be approximated by

L =
1

Ns

Ns∑
k=1

(Q̂k −Q(Ok, ak | θQ))2, (8)

where Ns denotes the number of steps in this episode, and
the baseline B is defined as an exponential moving average
of all previous rewards in order to reduce the variance of the
gradient estimation. The discount factor γ is set to 1 since we
assume that the action made for each layer should contribute
equally to the final result. Moreover, as the number of steps
is always finite (bounded by the number of layers), the sum
of the rewards will not explode.

3.7. Implementation Details

In this section, we present the implementation details
about RL exploration and finetuning quantized models.

Agent. The DDPG agent consists of an actor network and
a critic network. Both using the same network architec-
ture: they take the state vector and the action from the last
time step as inputs and feed them into two separate fully-
connected layers with hidden sizes of 400. After that, we
add the two hidden vectors together and go through another
two fully-connected layers with hidden sizes of {300, 1}. As
for the actor network, we use an additional sigmoid function
to project the output into the range of [0, 1].

Exploration. Optimization of the DDPG agent is carried
out using ADAM [15] with β1 = 0.9 and β2 = 0.999. We
use a fixed learning rate of 10−4 for the actor network and
10−3 for the critic network. During exploration, we employ
the following stochastic process of the noise:

w′(Ok) ∼ Ntrunc(w(Ok | θwk ), σ2, 0, 1), (9)

where Ntrunc(µ, σ, a, b) is the truncated normal distribution,
and w is the model weights. The noise σ is initialized as 0.5,
and after each episode, the noise is decayed exponentially
with a decay rate of 0.99.

Hardware Batch PE Array AXI port Block RAM

Edge Zynq-7020 1 8×8 4×64b 140×36Kb
Cloud VU9P 16 16×16 4×256b 2160×36Kb

Table 2: The configurations of edge and cloud accelerators.

Finetuning. During exploration, we finetune the quantized
model for one epoch to help recover the performance (using
SGD with a fixed learning rate of 10−3 and momentum of
0.9). We randomly select 100 categories from ImageNet [5]
to accelerate the model finetuning during exploration. After
exploration, we quantize the model with our best policy and
finetune it on the full dataset.

4. Experiments

We conduct extensive experiments to demonstrate the
consistent effectiveness of our framework for multiple objec-
tives: latency, energy, and model size.

Datasets and Models. Our experiments are performed on
the ImageNet [5] dataset. As our focus is on more efficient
models, we extensively study the quantization of MobileNet-
V1 [12] and MobileNet-V2 [24]. Both MobileNets are in-
spired from the depthwise separable convolutions [3] and re-
place the regular convolutions with the pointwise and depth-
wise convolutions: MobileNet-V1 stacks multiple “depth-
wise – pointwise” blocks repeatedly; while MobileNet-V2
uses the “pointwise – depthwise – pointwise” blocks as its
basic building primitives.

4.1. Latency-Constrained Quantization

We first evaluate our framework under latency constraints
on two representative hardware architectures: spatial and
temporal architectures for multi-precision CNN. We show
that it’s beneficial to have specialized quantization policies
for different hardware architectures. We systematically inter-
pret the policy given by AI to guide future human designs.

Temporal Architecture. Bit-Serial Matrix Multiplication
Overlay (BISMO) proposed by Yaman et al. [26] is a classic
temporal design of neural network accelerator on FPGA. It
introduces bit-serial multipliers which are fed with one-bit
digits from 256 weights and corresponding activations in
parallel at one time and accumulates their partial products
by shifting over time.

Spatial Architecture. BitFusion architecture proposed by
Hardik et al. [25] is a state-of-the-art spatial ASIC design for
neural network accelerator. It employs a 2D systolic array of
Fusion Units which spatially sum the shifted partial products
of two-bit elements from weights and activations.
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Edge Accelerator Cloud Accelerator

MobileNet-V1 MobileNet-V2 MobileNet-V1 MobileNet-V2

Bitwidths Acc.-1 Acc.-5 Latency Acc.-1 Acc.-5 Latency Acc.-1 Acc.-5 Latency Acc.-1 Acc.-5 Latency

PACT [2] 4 bits 62.44 84.19 45.45 ms 61.39 83.72 52.15 ms 62.44 84.19 57.49 ms 61.39 83.72 74.46 ms
Ours flexible 67.40 87.90 45.51 ms 66.99 87.33 52.12 ms 65.33 86.60 57.40 ms 67.01 87.46 73.97 ms

PACT [2] 5 bits 67.00 87.65 57.75 ms 68.84 88.58 66.94 ms 67.00 87.65 77.52 ms 68.84 88.58 99.43 ms
Ours flexible 70.58 89.77 57.70 ms 70.90 89.91 66.92 ms 69.97 89.37 77.49 ms 69.45 88.94 99.07 ms

PACT [2] 6 bits 70.46 89.59 70.67 ms 71.25 90.00 82.49 ms 70.46 89.59 99.86 ms 71.25 90.00 127.07 ms
Ours flexible 71.20 90.19 70.35 ms 71.89 90.36 82.34 ms 71.20 90.08 99.66 ms 71.85 90.24 127.03 ms

Original 8 bits 70.82 89.85 96.20 ms 71.81 90.25 115.84 ms 70.82 89.85 151.09 ms 71.81 90.25 189.82 ms

Table 3: Latency-constrained quantization on BISMO (edge accelerator and cloud accelerator) on ImageNet. Our framework
can reduce the latency by 1.4× to 1.95× with negligible loss of accuracy compared with the fixed bitwidth (8 bits) quantization.

Table 1

V1-edge-w V1-edge-a V1-cloud-w V1-cloud-a

5 5 6 6

8 8 5 5

7 4 8 5

7 7 6 4

6 4 5 4

7 7 6 4

6 4 6 4

7 7 7 4

6 4 5 4

7 7 7 4

6 4 4 4

7 7 7 4

7 4 5 4

7 6 7 4

7 4 5 4

7 6 7 4

7 4 5 4

7 6 7 4

7 4 5 4

7 7 7 4

7 4 4 4

7 7 7 4

7 4 5 4

7 6 7 7

7 6 6 6

7 5 7 7

7 7 8 8

Table 2

V1-edge-w edge-a DW-weight-bit PW-weight-bit V1-edge-a DW-activation-bit PW-activation-bit Cloud-w cloud-a DW-weight-bit

2 5 2 -3 0 5 2 3 0 6 6 -4

3 2 8 0 -6 2 8 0 6 5 5 0

4 7 2 -5 0 4 2 2 0 7 5 -5

5 2 7 0 -5 2 7 0 5 6 5 0

6 6 2 -4 0 4 2 2 0 6 5 -4

7 2 7 0 -5 2 7 0 5 5 5 0

8 6 2 -4 0 4 2 2 0 6 5 -4

9 2 7 0 -5 2 7 0 5 5 5 0

10 6 2 -4 0 4 2 2 0 6 5 -4

11 2 7 0 -5 2 7 0 5 5 5 0

12 6 2 -4 0 4 2 2 0 6 5 -4

13 2 7 0 -5 2 7 0 5 5 5 0

14 7 2 -5 0 4 2 2 0 6 4 -4

15 2 7 0 -5 2 6 0 4 5 5 0

16 7 2 -5 0 4 2 2 0 6 4 -4

17 2 7 0 -5 2 6 0 4 5 5 0

18 7 2 -5 0 4 2 2 0 6 4 -4

19 2 7 0 -5 2 6 0 4 5 5 0

20 7 2 -5 0 4 2 2 0 6 4 -4

21 2 7 0 -5 2 7 0 5 5 5 0

22 7 2 -5 0 4 2 2 0 7 4 -5

23 2 7 0 -5 2 7 0 5 5 5 0

24 7 2 -5 0 4 2 2 0 7 5 -5

25 2 7 0 -5 2 6 0 4 5 5 0

26 7 2 -5 0 6 2 4 0 8 4 -6

27 2 7 0 -5 2 5 0 3 5 4 0

2 2 -2 -2 4 5 0

Table 3

V2-edge-w V2-edge-a V2-cloud-w V2-cloud-a

5 5 5 5

3 5 4 7

3 5 4 7

4 5 6 6

4 7 4 6

5 7 4 5

7 4 5 3

4 7 4 5

4 7 5 5

7 6 5 5

6 7 4 5
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Table 4
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Figure 3: Quantization policy under latency constraints for
MobileNet-V1. On edge accelerator, our RL agent allocates
less activation bits to the depthwise convolutions, which
echos that the depthwise convolutions are memory bounded
and the activations dominates the memory access. On cloud
accelerator, our agent allocates more bits to the depthwise
convolutions and allocates less bits to the pointwise convolu-
tions, as cloud device has more memory bandwidth and high
parallelism, the network appears to be computation bounded.

4.1.1 Quantization policy for BISMO Architecture

Inferencing neural networks on edge devices and cloud
severs can be quite different: batch size, memory bandwidth,
peak FLOPs, etc. We use Xilinx Zynq-7020 FPGA [29] as
our edge device and Xilinx VU9P [28] as our cloud device.

Table 2 shows our experiment configurations on these two
platforms along with their available resources.

As for comparison, we adopt the PACT [2] as our baseline,
which uses the same number of bits for all layers except for
the first layer which extracts the low level features, they
use 8 bits for both weights and activations as it has fewer
parameters and is very sensitive to errors. We follow a
similar setup for the first layer (8 bits), and explore the
bitwidth allocation policy for all the other layers. Under the
same latency, HAQ consistently achieved better accuracy
than the baseline on both the cloud and the edge (Table 3).
With similar accuracy, HAQ can reduce the latency by 1.4×
to 1.95× compared with the baseline.

Interpreting the quantization policy. Our agent gave
quite different quantization policy for edge and cloud ac-
celerators (Figure 3). For the activations, the depthwise con-
volution layers are assigned less bitwidth than the pointwise
layers on the edge; while on the cloud device, the bitwidth
of these two types of layers are similar. For weights, the
bitwidth of these types of layers are nearly the same on the
edge; while on the cloud, the depthwise convolution layers
got more bitwidth than the pointwise convolution layers.

We explain the difference of quantization policy between
edge and cloud by the roofline model [27]. Many previous
works use FLOPs or BitOPs as metrics to measure compu-
tation complexity. However, they are not able to directly
reflect the latency, since there are many other factors influ-
encing the hardware performance, such as memory access
cost and degree of parallelism [24, 20]. Taking computation
and memory access into account, the roofline model assumes
that applications are either computation-bound or memory
bandwidth-bound, if not fitting in on-chip caches, depending
on their operation intensity. Operation intensity is measured
as operations (MACs in neural networks) per byte accessed.
A lower operation intensity indicates suffering more from
the memory access.
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Table 1
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11 2 7 0 -5 2 7 0 5 5 5 0

12 6 2 -4 0 4 2 2 0 6 5 -4
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Figure 4: Quantization policy under latency constraints for MobileNet-V2 on BISMO. Similar to Figure 3, depthwise layer is
assigned with fewer bits on the edge accelerator, and pointwise layer is assigned with fewer bits on the cloud accelerator.

Weights Activations Acc.-1 Acc.-5 Latency

PACT [2] 4 bits 4 bits 62.44 84.19 7.86 ms
Ours flexible flexible 67.45 87.85 7.86 ms

PACT [2] 6 bits 4 bits 67.51 87.84 11.10 ms
Ours flexible flexible 70.40 89.69 11.09 ms

PACT [2] 6 bits 6 bits 70.46 89.59 19.99 ms
Ours flexible flexible 70.90 89.95 19.98 ms

Original 8 bits 8 bits 70.82 89.85 20.08 ms

Table 4: Latency-constrained quantization on BitFusion
(MobileNet-V1 on ImageNet). Our framework can reduce
the latency by 2× with almost no loss of accuracy compared
with the fixed bitwidth (8 bits) quantization.

The bottom of Figure 3 shows the operation intensities
(OPs per Byte) of convolution layers in the MobileNet-V1.
Depthwise convolution is memory bounded, and the point-
wise convolution is computation bounded. Our experiments
show that when running MobileNet-V1 on the edge devices
with small batch size, its latency is dominated by the depth-
wise convolution layers. Since the feature maps take a major
proportion in the memory of depthwise convolution layers,
our agent gives the activations less bits. In contrast, when
running MobileNet-V1 on the cloud with large batch size,
our agent increases the bitwidth of depthwise convolution to
preserve the accuracy at low memory overhead since depth-
wise convolution only takes a small proportion of the total
weights. A similar phenomenon can be observed in Figure 4
on MobileNet-V2. Moreover, as the activation size in deeper
layers gets smaller, they get assigned more bits.

4.1.2 Quantization policy for BitFusion Architecture

In order to demonstrate the effectiveness of our frame-
work on different hardware architectures, we further compare

Weights Activations Acc.-1 Acc.-5 Energy

PACT [2] 4 bits 4 bits 62.44 84.19 13.47 mJ
Ours flexible flexible 64.78 85.85 13.69 mJ

PACT [2] 6 bits 4 bits 67.51 87.84 16.57 mJ
Ours flexible flexible 70.37 89.40 16.30 mJ

PACT [2] 6 bits 6 bits 70.46 89.59 26.80 mJ
Ours flexible flexible 70.90 89.73 26.67 mJ

Original 8 bits 8 bits 70.82 89.95 31.03 mJ

Table 5: Energy-constrained quantization on BitFusion
(MobileNet-V1 on ImageNet). Our framework reduces the
power consumption by 2× with nearly no loss of accuracy
compared with the fixed bitwidth quantization.

our framework with PACT [2] under the latency constraints
on the BitFusion [25] architecture (Table 4). Our frame-
work performs much better than the hand-craft policy with
the same latency. It can achieve almost no degradation of
accuracy with only half of the latency used by the original
MobileNet-V1 model (from 20.08 to 11.09 ms). Therefore,
our framework is flexible to provide specialized quantization
policy for different hardware platforms.

4.2. Energy-Constrained Quantization

We then evaluate our framework under the energy con-
straints. Similar to the latency-constrained experiments, we
compare our framework with PACT [2] that uses fixed num-
ber of bits without hardware feedback. From Table 5, we can
clearly see that our framework outperforms the rule-based
baseline: it achieves much better performance while consum-
ing similar amount of energy. In particular, our framework is
able to achieve almost no loss of accuracy with nearly half of
the energy consumption of the original MobileNet-V1 model
(from 31.03 to 16.57 mJ), which suggests that mixed preci-
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MobileNet-V1 MobileNet-V2 ResNet-50

Weights Acc.-1 Acc.-5 Model Size Acc.-1 Acc.-5 Model Size Acc.-1 Acc.-5 Model Size

Han et al. [8] 2 bits 37.62 64.31 1.09 MB 58.07 81.24 0.96 MB 68.95 88.68 6.32 MB
Ours flexible 57.14 81.87 1.09 MB 66.75 87.32 0.95 MB 70.63 89.93 6.30 MB

Han et al. [8] 3 bits 65.93 86.85 1.60 MB 68.00 87.96 1.38 MB 75.10 92.33 9.36 MB
Ours flexible 67.66 88.21 1.58 MB 70.90 89.76 1.38 MB 75.30 92.45 9.22 MB

Han et al. [8] 4 bits 71.14 89.84 2.10 MB 71.24 89.93 1.79 MB 76.15 92.88 12.40 MB
Ours flexible 71.74 90.36 2.07 MB 71.47 90.23 1.79 MB 76.14 92.89 12.14 MB

Original 32 bits 70.90 89.90 16.14 MB 71.87 90.32 13.37 MB 76.15 92.86 97.49 MB

Table 6: Model size-constrained quantization on ImageNet. Compared with Deep Compression [7], our framework achieves
higher accuracy under similar model size (especially under high compression ratio).
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Table 4

V2-edge-w V2-edge-w #weight bit 
(depthwise)

#weight bit 
(pointwise)

V2-edge-a V2-edge-a #activation bit 
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(pointwise)

V2-cloud-w V2-cloud-w #weight bit 
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#weight bit 
(pointwise)
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Figure 5: Quantization policy under model size constraints for MobileNet-V2. Our RL agent allocates more bits to the
depthwise convolutions, since depthwise convolutions have fewer number of parameters.

sion with hardware-aware, specialized quantization policy
can indeed help reduce the energy consumption.

4.3. Model Size-Constrained Quantization

Finally, we evaluate our framework under the model size
constraints. Following Han et al. [8], we employ the k-means
algorithm to quantize the values into k different centroids
instead of using the linear quantization for compression,
since k-means quantization can be more effective reducing
the model size.

We compare our framework with Deep Compression [8]
on MobileNets and ResNet-50. From Table 6, we can see
that our framework performs much better than Deep Com-
pression: it achieves higher accuracy with the same model
size. For compact models like MobileNets, Deep Compres-
sion significantly degrades the performance especially under
aggressive quantization, while our framework can preserve
the accuracy much better. For instance, when Deep Com-
pression quantizes the weights of MobileNet-V1 to 2 bits,
the accuracy drops significantly from 70.90 to 37.62; while
our framework can still achieve 57.14 of accuracy with the
same model size. The reason is our framework makes full
use of the mixed precision by systematically searching the
optimal quantization policy.

Discussions. In Figure 5, we visualize the bitwidth allo-
cation strategy for MobileNet-V2. From this figure, we

can observe that our framework assigns more bitwidths to
the weights in depthwise convolution layers than pointwise
convolution layers. Intuitively, this is because the number
of parameters in the former is much smaller than the latter.
Comparing Figure 4 and Figure 5, the policies are drasti-
cally different under different optimization objectives (fewer
bitwiths for depthwise convolutions under latency optimiza-
tion, more bitwidths for depthwise convolutions under model
size optimization). Our framework succeeds in learning to
adjust its bitwidth policy under different constraints.

5. Conclusion
In this paper, we propose Hardware-Aware Automated

Quantization (HAQ), an automated framework for quanti-
zation which does not require any domain experts and rule-
based heuristics. We provide a learning based method that
can search the quantization policy with hardware feedback.
Compared with indirect proxy signals, our framework can
offer a specialized quantization solution for different hard-
ware platforms. Extensive experiments demonstrate that our
framework performs better than conventional rule-based ap-
proaches for multiple objectives: latency, energy and model
size. Our framework reveals that the optimal policies on
different hardware architectures are drastically different, and
we interpreted the implication of those policies. We believe
the insights will inspire the future software and hardware
co-design for efficient deployment of deep neural networks.
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