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While mean-field approximations, such as the
nuclear shell model, provide a good description
of many bulk nuclear properties, they fail to cap-
ture the important effects of nucleon-nucleon cor-
relations. Specifically, effective nuclear models
struggle to describe the short-distance and high-
momentum components of the nuclear many-
body wave function. Here we study these compo-
nents using the effective pair-based Generalized
Contact Formalism (GCF) and ab-initio Quan-
tum Monte Carlo (QMC) calculations of nuclei
from deuteron to 40Ca. We observe a universal
factorization of the many-body nuclear wave func-
tion at short-distance into a strongly-interacting
pair and a weakly-interacting residual system.
The residual system distribution is consistent
with that of an un-correlated system, showing
that short-distance correlation effects are pre-
dominantly embedded in two-body correlations.
We further find that the GCF accurately repro-
duces the many-body QMC calculations for both
short distance and high momentum, supporting
the dominance of two-nucleon short-range cor-
related (SRC) pairs in these components of the
many-body wave function. Spin- and isospin-
dependent “nuclear contact terms” are extracted
in both coordinate and momentum space for dif-
ferent realistic nuclear potentials. The contact co-
efficient ratio between two different nuclei shows
very little dependence upon the nuclear interac-
tion model. These findings thus allow extending
the application of mean-field approximations to
SRC pair formation by showing that the relative
abundance of short-range pairs in the nucleus is a
long-range (i.e., mean-field) quantity that is insen-
sitive to the short-distance nature of the nuclear
force.

Short-range correlations emerge from pairs of nucle-
ons having large relative momentum compared to their
center-of-mass (c.m.) momentum and to the typical nu-

clear Fermi momentum kF ≈ 250 MeV/c [1]. At mo-
menta just above kF (300 ≤ k ≤ 600 MeV/c), they
are primarily due to proton-neutron (pn) pairs and are
thought to dominate the nuclear wave function [1–5].
At larger momentum, the fraction of proton-proton (pp)
pairs increases, possibly due to their sensitivity to the re-
pulsive core of the nuclear interaction [6, 7]. SRCs have
significant implications for the internal structure of nu-
cleons bound in nuclei [1, 8, 9], neutrinoless double beta
decay matrix elements [10–12], nuclear charge radii [13],
and neutron star properties [14, 15]. Therefore, under-
standing their formation mechanisms and specific charac-
teristics is required for obtaining a complete description
of atomic nuclei.

As nucleons in SRC pairs have significant spatial over-
lap and are far off their mass-shell (E2− p2 < m2), their
theoretical description poses a significant challenge. Ab-
initio many-body calculations using different interaction
models produce wave functions that differ significantly
at short distances and high momenta [16, 17] (Extended
Data Fig. 1). This is generally referred to as “scale and
scheme dependence”, where “scheme” refers to the type of
interaction (e.g., phenomenological or derived from Chi-
ral Effective Field Theory, χEFT), and “scale” refers to
the regulation cut-off inherent to EFT models. This de-
pendence raises important questions about the model de-
pendence of the interpretation of SRC measurements and
of their implications.

To address this, we employ the pair-based GCF [18, 19]
to study the scale and scheme dependence of different
SRC properties, as extracted from many-body ab-initio
QMC calculations of nuclei from A = 2 to 40 [16, 17, 20–
23] performed using different realistic nuclear interaction
models.

The GCF exploits the scale separation between the
strong interaction among the nucleons in an SRC pair
and the pair’s weaker interaction with its surround-
ings [18, 19, 24]. Using this scale separation, the two-
nucleon density in either coordinate or momentum space
(i.e., probability of finding two nucleons with relative and
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Figure 1: QMC two-nucleon coordinate-space densities calculated using different NN+3N potentials. Left: 16O relative-
distance densities ρ

16O
NN (R, r) for pn (top) and pp (bottom) pairs for different regions in the nucleus (i.e., different values of

R) for two different interactions: AV4’+UIXc and N2LO(1.0 fm). Right: Relative-distance densities for pn pairs for several
nuclei (colored lines) integrated over R and compared with the two-body universal function |ϕs=1

pn |2 (black lines). For each
interaction, all calculations are scaled to have the same value at ∼ 1 fm, thus highlighting their same short-distance behavior
for all nuclei. The difference between NN distributions in the same nucleus obtained using different interactions, as shown
by the four panels, indicates the scale and scheme dependence of the many-body calculations. Equivalent pp distributions are
presented in Extended Data Fig. 4.

c.m. momenta q and Q respectively, or with separation
r and distance R from the nucleus c.m. [16]) can be ex-
pressed at small separation or high relative momentum
as [19]:

ρAα,NN (R, r) = CAα,NN (R)× |ϕαNN (r)|2,
nAα,NN (Q, q) = C̃Aα,NN (Q)× |ϕ̃αNN (q)|2, (1)

where A denotes the nucleus, NN the nucleon pair (pn,
pp, nn), and α stands for the quantum state (spin 0 or 1).
ϕαNN are universal two-body wave functions, given by the
zero-energy solution of the two-body Schrödinger equa-
tion, and ϕ̃αNN are their Fourier transforms. ϕαNN are
universal in the weak sense, i.e., they are nucleus inde-
pendent but not model independent. Nucleus-dependent
“nuclear contact coefficients” are given by

CAα,NN ≡
∫
dR CAα,NN (R),

C̃Aα,NN ≡
1

(2π)3

∫
dQ C̃Aα,NN (Q), (2)

and define the number of NN -SRC pairs in nucleus A.
The GCF construction relates short-distance and high-

momentum physics such that CAα,NN = C̃Aα,NN . Previ-
ous studies [19] showed the validity of this equality using
QMC calculations of ρAα,NN (r) ≡

∫
dR ρAα,NN (R, r) and

nAα,NN (q) ≡
∫
dQ nAα,NN (Q, q) for A = 2 to 40 using the

AV18 [25]+UX interaction. More recently, Refs. [23, 26]
analyzed QMC calculations of ρANN (r)/ρdNN (r) ratios ob-
tained using three additional interactions (without sepa-

rating different spin-isospin channels), showing first evi-
dence for short distances scale-and-scheme independence.

Here we study the GCF applicability for modeling nu-
clear systems using new QMC calculations of ρAα,NN (r,R)

and nAα,NN (q,Q), projected into spin-isospin channels,
for different nuclei and NN potentials (AV18+UX,
AV4’+UIXc, N2LO (1.0 fm), N2LO (1.2 fm), and NV2+3-
Ia*). See Methods for details.

Fig. 1 (left) shows the relative-distance densities of np-

and pp-pairs in Oxygen ρ
16O
NN (R, r) for different values of

R and for two different interactions: AV4’+UIXc and
N2LO(1.0 fm). All densities were scaled to the same value
at r = 1 fm. This highlights the similarities of the differ-
ent distributions at r ≤ 1 for all values of R, showcasing
the existence of short-distance factorization.

Calculations of ρANN (R, r) are computational demand-
ing and are not available for all nuclei and interactions.
We thus explore the nucleus and interaction indepen-
dence of the short-distance factorization using ρANN (r) =∫
dR ρANN (R, r) calculations. Fig. 1 (right) shows the

pn-pair densities ρApn(r) for four interactions and differ-
ent nuclei. While the short-distance behavior of ρApn(r)
is different for each interaction, it is the same for all nu-
clei, and can thus be described by the GCF’s two-body
universal functions. This validates the factorization of
Eq. (1) in position space.

The equivalent study of two-nucleon momentum dis-
tributions nANN (q) is more delicate. nANN (Q, q) include
combinatorial contributions from all possible pairs of nu-
cleons, not just nucleon pairs in SRC states. Two nu-
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Figure 2: QMC two-nucleon momentum-space distributions calculated using different NN+3N potentials. All the curves are
normalized to unity at high momentum (4.5 fm−1 and 3.5 fm−1 for phenomenological and chiral interactions respectively). Left:
4He relative-momentum distributions n

4He

NN (Q, q) integrated over center-of-mass momentum Q between 0 and Qmax and divided
by the one-body momentum distribution. Scaling onset is observed close to q ≈ kF for Qmax between zero and kF and is
pushed to higher q values with increasing Qmax. Right: two-nucleon relative-momentum distribution ratios, nApn(q)/|ϕ̃s=1

pn (q)|2,
integrated over Q. Scaling is clearly observed at high-momenta, starting at 3.5 − 4 fm−1 for the phenomenological potentials,
and at 2−2.5 fm−1 for the chiral interactions. The N2LO 1.0 fm and 1.2 fm distributions are only shown up to 4.4 and 3.8 fm−1

respectively, above which statistics is poor and regulator/cutoff artifacts dominate. Equivalent pp distributions are presented
in Extended Data Fig. 4.

cleons each belonging to a different SRC pair have high
individual momenta that can add to give both high rela-
tive and high c.m. momenta. In coordinate-space calcu-
lations these non-SRC pairs are suppressed by requiring
small pair separation. In momentum space, excluding
such pairs requires either low c.m. momenta or much
higher relative momenta [19].

This can be seen by examining the q dependence
of the ratio of the integrated two-body density to

the one-body density in 4He, [
∫ Qmax

0
(n

4He
np (Q, q) +

2n
4He
pp (Q, q))dQ]/n

4He
p (q), for different values of Qmax,

see Fig. 2 (left). Here n
4He
p (q) is the probability den-

sity of finding a proton in the nucleus with momentum
q. The ratio should scale (be constant with q) when both
the one- and two-body densities are dominated by the
same correlated SRC pairs. As can be seen, for Qmax
values up to kF (the characteristic c.m. momentum scale
of SRC pairs [3, 24]) the ratio indeed starts scaling at
q ∼ kF . For larger Qmax values, scaling starts at higher
q values, due to the inclusion of uncorrelated pairs.

Fig. 2 (right) shows the nApn(q)/|ϕ̃s=1
pn (q)|2 ratio for

a variety of nuclei and interactions. As expected from
Eq. (1), these ratios scale (i.e., are constant) at high mo-
menta. For pn pairs the scaling is clear. For pp pairs
(Extended data Fig. 4) it is less pronounced, but it is
still visible starting at slightly higher momenta than the
equivalent pn scaling.

Having established the GCF factorization of Eq. (1),
we turn to examine the nuclear contact terms CAα,NN .

These encapsulate the many-body dynamics driving the
formation of SRC pairs. They should be scale separated
from the correlated two-body part and thus be less sen-
sitive to the short-distance NN interaction.

Fig. 3 shows C
16O
NN (R) for np- and pp-SRC pairs in

oxygen, obtained using Eq. (1). The QMC contact dis-
tributions are in good agreement with calculations of un-
correlated pairs obtained from single-nucleon density dis-
tributions (see Methods for details). This agreement is
insensitive to the pair separation integration limit from 0
to 1 fm. This shows that the density ditribution of SRC

pairs (i.e. shape of C
16O
NN (R)) only depends on the nuclear

mean field, with minimal sensitivity to the short-distance
NN interaction.

To further corroborate this finding and its relevance
for other nuclei, we examine the ratio of two-nucleon dis-
tributions in nucleus A relative to a reference nucleus
A0, i.e., ρAα,NN (r)/ρA0

α,NN (r) and nAα,NN (q)/nA0

α,NN (q).
According to Eq. (1), for small-r (large-q) these ra-
tios should be independent of r (q) and equal to
CAα,NN/C

A0

α,NN (C̃Aα,NN/C̃
A0

α,NN ). They thus allow study-
ing the A-dependence of the contacts, independent from
the universal functions.

Fig. 4 shows CAs=1,pn/C
d
s=1,pn and CAα,NN/C

4He
α,NN for

all available nuclei and interactions. The contact ra-
tios for a given nucleus are consistent within uncer-
tainties, i.e., are largely scale- and scheme-independent.
They are also the same for both short-distance and high-
momentum pairs. The fact that models with very differ-
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Figure 3: Absolute contact distributions C
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α,NN (R) obtained
from QMC two-nucleon coordinate-space densities integrated
over r from zero to 1 fm for pn (red) and pp (blue) pairs. The
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of the QMC distributions. See text for details.

ent short-range physics, including the tensor-less AV4’,
all lead to the same contact-term ratios supports our
conclusion that these ratios are determined by mean-field
physics (i.e., by the average field of the other A − 2 nu-
cleons) and are insensitive to the details of the NN in-
teraction at short-distance.

This insensitivity can simplify calculations of heavier
nuclei, that are very difficult with “hard” interactions
such as AV18. The contact term CA0

α,NN can be calcu-
lated for d or 4He using the “hard” interaction. It can
then be extrapolated to heavier nuclei by multiplying by
the appropriate contact-term ratio CAα,NN/C

A0

α,NN (where
A0 = d or 4He) calculated using “soft” interactions that
are easier to compute.

Experimentally, measured inclusive (e, e′) scattering
cross-section ratios at large momentum-transfer (Q2 >
1.5 GeV2) for nucleus A relative to the deuteron are used
to determine an SRC scaling coefficient a2(A/d). This co-
efficient is traditionally interpreted as the relative abun-
dance of SRC pairs in the measured nuclei [27]. In addi-
tion, it is claimed that comparisons of a2(A/d) measure-
ments over a range of symmetric and asymmetric nuclei
are sensitive to the nature of the nuclear interaction.

Theoretically, Refs. [23, 26] showed that the relative
abundance of short-distance NN pairs in nucleus A rel-
ative to the deuteron (i.e., ρA(r)/ρd(r) for r → 0, where
ρA(r) includes allNN pairs) is insensitive to the choice of
nuclear interaction, and is consistent with the measured
a2(A/d) for all nuclei considered. This raised doubts
about the sensitivity of a2(A/d) to the nuclear interac-
tion. However, the connection between the measured
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Figure 4: Ratios of spin-1 pn contact terms for different nu-
clei to deuteron (top) or 4He (middle), and of spin-0 pp con-
tact terms for different nuclei to 4He (bottom). The contact
terms ratios were extracted using different NN+3N poten-
tials in both coordinate (squares) and momentum (circles)
space. The contact values for 3H in the spin-0 pp panel corre-
sponds to Cs=0

nn (3H), as there are no pp pairs in this nucleus.
All the contacts CαNN (A) are divided by A/2 and multiplied
by 100. Error bars show the combined statistical and extrac-
tion systematical uncertainties at the 1σ or 68% confidence
level.

a2(A/d) and the calculated pair-distance distributions
needs to be justified, as the universal function of Eq. 1
does not automatically cancel in the A/d ratio when all
SRC channels are included [28]. Our observation that the
calculated contact ratios are independent of the nuclear
interaction in both coordinate and momentum space and
for each pair quantum state separately bolsters and ex-
tends these observations.

Exclusive measurements of two-nucleon knockout
A(e, e′NN) [2–7] on the other hand are sensitive to
the nuclear interaction model [6, 7] (see Extended Data
Fig. 5). The GCF factorization, and the contact terms
we extract, are key for relating measurements of nucleon
knockout to different nuclear interaction models and ab-
initio many-body calculations [6, 29, 30].

Ref. [31] recently claimed a difference between the scal-
ing of SRC pairs with high relative momenta, dominated
by pn pairs, and pairs with small separation, having a
combinatorial enhancement of pp pairs. This distinc-
tion questions the relation between SRC pairs and the
modification of the internal structure of nucleons bound
in nuclei, extractions of the free neutron structure from
nuclear deep inelastic scattering measurements, and the
determination of spin-flavor symmetry breaking mecha-
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nisms in QCD [9]. Our observation that both coordinate-
and momentum-space contacts exhibit the same scaling
show that the speculations of Ref. [31] are inconsistent
with QMC wave functions [32].

Finally we examine the individual contacts. Fig. 5 and
Extended Data Table II show the contacts extracted by
fitting Eq. (1) to the individual two-nucleon QMC densi-
ties for different nuclei in either coordinate or momentum
space. As can be seen, the extracted spin-1 pn contacts
are scale- and scheme-independent (i.e., the same) for all
interactions examined here, except for the AV4’+UIXc,
as expected given its lack of a tensor force.

For spin-0 pp contacts our results are more complex.
The contacts extracted for phenomenological potentials
agree with each other but are higher than those extracted
for chiral potentials. This is understood to result from
the cutoffs employed in chiral interactions, that have a
larger impact on the spin-0 pp channel due to the lack
of a tensor force that otherwise would fill the minimum
in the momentum distribution around 2 fm−1 (Extended
Data Fig. 2).

Furthermore, the k-space N2LO contacts disagree with
their equivalent in r-space. As the NV2+3-Ia* contacts
do not show such a discrepancy, this issue is specific to
the N2LO potentials and is not an inherent feature of
chiral potentials.

Examining the pp two-body universal functions we see
that they are very similar for NV2+3-Ia* and N2LO(1.0)
(Extended Data Fig. 2). In contrast, the 4He pp mo-

mentum distributions differ at high-momenta for the two
potentials. This is most likely due to the combined ef-
fect of their different regulators, lower order in the chiral
expansion, and lack of intermediate deltas in the N2LO
potential that enhances three-body effects that are ab-
sent in the GCF formulation of Eq. (1).

These regulator and three-body effects make it difficult
to identifying a clear high-momentum scaling plateau in
the spin-0 pp channel for N2LO potentials. See Methods
for details.

Indeed, when three-body forces and correlations are
excluded from the calculation the k- and r-space N2LO
contacts are the same. Furthermore, the fact that the
contact ratios of nucleus A to 4He are the same in r-
and k-space for all channels and interactions (including
for N2LO pp pairs) implies that the effect leading to the
N2LO pp r-k discrepancy cancels in the ratio, and there-
fore does not extend beyond the three-body level. We
thus can conclude that (A) the many-body (A ≥ 3) nu-
clear dynamics of the contact coefficients is the same for
both coordinate and momentum space and is independent
of the details of the NN interaction model. and (B) any
corrections that are missing in Eq. (1), and cause the
N2LO discrepancy, do not involve terms that go beyond
the three-body level, which is why they cancel in the ra-
tios of heavy nuclei to light ones.

To conclude, the analysis presented here validates the
scale-separated description of SRCs in atomic nuclei, as
evident from the accurate reproduction of the many-body
QMC calculations at short-distances and high-momenta
provided by the GCF. We identify strong separation be-
tween the hard and soft dynamics of SRCs, where SRC
abundances, and therefore their formation mechanisms,
are observed to be governed by soft (mean-field like) nu-
clear dynamics, while their relative momentum distribu-
tion is a scale- and scheme-dependent property of the
nuclear interaction. These findings have direct implica-
tions for experimental studies of SRCs [6, 30] and the in-
terpretation of future measurements of SRC abundances
and distributions in nuclei.
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Methods

Universal function normalization. While the nor-
malizations of two-nucleon densities are well defined by
the total number of nucleons in the nucleus, the individ-
ual normalizations of CAα,NN and |ϕαNN |2 are not. We
therefore choose to normalize |ϕ̃αNN (q)|2 such that its
integral above qs = 1.3 fm−1(≈ kF ) equals unity [19],∫
qs

4π
(2π)3 q

2dq|ϕ̃αNN (q)|2 = 1. This defines the normaliza-
tion of ϕαNN (r) via a Fourier transform and that of CAα,NN
and C̃Aα,NN via Eq. (1).

Nucleon-Nucleon interaction models. The phe-
nomenological AV18 [25] and AV4’ [33] potentials are
“hard interactions”, with a significant probability for
nucleons to have high momentum (k > 3 fm−1 ≈
600 MeV/c). Their derivation is similar, with AV4’ be-
ing a reprojection of AV18 into four spin-isospin channels,
not including the tensor interaction. Both potentials are
supported by 3N forces that provide a good description
of all nuclei considered in this work [20, 23].

The N2LO [22, 34, 35] and NV2+3-Ia* [36–38] inter-
actions are fundamentally different, as they are based on
a chiral perturbation expansion. The short-distance reg-
ulators used in these potentials make them softer, i.e.,
their single-nucleon momentum distributions have less
high-momentum strength as compared to AV18 and AV4’
(see Extended Data Figs. 1 and 2). The N2LO interac-
tions include operators up to third order in the chiral ex-
pansion. The NV2+3-Ia* interaction considers nucleons
plus explicit intermediate deltas, and includes all terms
up to third order plus leading order N3LO terms.

All NN potentials used in this work have accompany-
ing 3N potentials (three-body forces or 3BF) optimized
to properly describe properties of light nuclei, such as
binding energies, n-α scattering, and β-decay rates.

QMC calculations. The QMC calculations used in
this work include both Variational Monte Carlo (VMC)
and Diffusion Monte Carlo (DMC) techniques. For each
potential, a fully correlated many-body wave function
is constructed and optimized in order to minimize the
variational energy expectation value. Such a trial wave
function is then propagated in imaginary time via DMC
techniques, in order to project it onto the true ground
state of the system and, therefore, to gain access to
ground-state properties. Many physical quantities, such
as two-nucleon distributions, can be extracted from both
VMC and DMC calculations [22]. However, momentum-
space calculations are currently available from VMC
calculations only [16, 17], therefore for consistency we
only present VMC results. At short distance, VMC
coordinate-space distributions are almost identical to the
DMC results. We use the differences as a measure of the
QMC uncertainty (Extended Data Fig. 3).

Un-correlated two-nucleon density calculations.
Un-correlated two-nucleon densities are given by a convo-

lution of the single-nucleon density distribution, ρ
16O
N (R),

with itself, C
16O
NN,un−corr.(R) ≡

∫ 1fm

0
dΩRdr ρ

16O
N (R +

r/2)ρ
16O
N (R − r/2), accounting for the Pauli exclusion

principle for pp pairs, following Ref. [39]. The two-body
density is normalized to the number of nucleon pairs in
the nucleus.

Nuclear contact extraction. The nuclear contact
terms were extracted independently for both coordinate
and momentum space by fitting the universal two-body
wave functions in coordinate and momentum-space to
the corresponding two-body coordinate density or mo-
mentum distribution. Since all the spin and isospin pro-
jections are not available for the two-body momentum
and coordinate densities, for Cs=0

pp we fit the total pp
distribution assuming that the dominant contribution
comes from spin=0 (S-wave) pairs. Furthermore, for
Cs=1
pn (Cs=0

pn ) we fit to the T = 0 (T = 1) pn distri-
butions assuming that the dominant contribution comes
from spin=1 (spin=0) pairs with the relevant angular
momentum.

The ratios were extracted independently for both co-
ordinate and momentum space by fitting the two-nucleon
density ratios at short distance or high momentum, re-
spectively [19].

The uncertainties shown include contributions from
sensitivity to the fit range, the effect of different two-body
correlations [22], the structure of the three-body contact
interaction (for N2LO potentials), and the difference be-
tween different QMC techniques, conservatively fixed at
10% (1σ). See Supplementary Materials for details.

N2LO high-momentum scaling. The nuclear con-
tact extraction is done systematically in the region
2.5 . q . 4.5 fm−1 for all NN channels and poten-
tials, as described above. Extended Data Fig. 7 shows
the two-nucleon relative-momentum distribution ratios,
nNN (q)/|ϕ̃NN (q)|2, in 4He for spin-1 pn and spin-0 pp
channels and different interactions. In order to resolve
possible higher-momentum effects, additional statistics
has been used to compute the two-body momentum dis-
tributions shown in the figure. Discontinuities in the ra-
tios are due to nodes in the corresponding universal func-
tions (see Extended Data Fig. 2). For the AV4’+UIXc

and NV2+3-Ia* interactions, plateaus are clearly iden-
tifiable in both the spin-1 pn and spin-0 pp channels,
and they consistently extend to very high momentum.
For N2LO interactions, in the spin-1 pn channel more
complex structures appear, but the contact values ex-
tracted at lower momentum remain consistent within un-
certainties. In the spin-0 pp channel, instead, a clear
high-momentum scaling is difficult to identify, leading to
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the apparent spin-0 pp r-k discrepancy for N2LO inter-
actions. This artifact is most likely related to regulator
and three-body artifacts, and induced by the occurrence
of multiple nearby nodes in the corresponding univer-
sal functions. The coordinate-space regulator employed
in the NV2+3-Ia* interaction has a Gaussian form [36],
that transforms in a Gaussian regulator in momentum
space. The N2LO interactions use a different local reg-
ulator [34], that does not keep the same functional form
when transformed to momentum space and can induce
wiggles at high momentum. When the universal func-
tion has a quick drop, like in such a wiggle or in a node,
the contribution of two-body SRCs is suddenly decreased,
and other contributions become non negligible, compli-
cating the overall picture and its interpretation.
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Extended Data

1 2 3 4 5
r [fm]

0.2
0.4
0.6
0.8

1
1.2

(r
)

A pnρ

AV18+UX
cAV4'+UIX

LO(1.0fm)2N
LO(1.2fm)2N

NV2+3-Ia*

He4

1 2 3 4 5
r [fm]

0.2
0.4
0.6
0.8

1
1.2

(r
)

A ppρ

He4

1 2 3 4 5
r [fm]

0.2
0.4
0.6
0.8

1
1.2

(r
)

A pnρ

O16

1 2 3 4 5
r [fm]

0.2
0.4
0.6
0.8

1
1.2

(r
)

A ppρ
O16 1 2 3 4

]-1q [fm

3−10

2−10

1−10
1

10

210

310

410

(q
)

A pnn

He4

1 2 3 4
]-1q [fm

3−10

2−10

1−10

1

10

210

310

(q
)

A ppn

He4

1 2 3 4
]-1q [fm

3−10

2−10

1−10
1

10

210

310

410

(q
)

A pnn

O16

1 2 3 4
]-1q [fm

3−10

2−10

1−10
1

10

210

310

410

(q
)

A ppn

O16
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nuclei (colored lines) integrated over R and compared with the two-body universal functions (black lines). For each interaction,
all calculations are scaled to have the same value at ∼ 1 fm and show the same short-distance behavior for all nuclei. Right: same
as the left panel but for the two-nucleon momentum-space distribution ratios, nApn(q)/|ϕ̃s=1

pn (q)|2 (top) and nApp(q)/|ϕ̃s=0
pp (q)|2

(bottom), normalized to unity at q = 3.5 fm−1. Scaling is clearly observed at high momenta. The N2LO 1.0 fm and 1.2 fm
distributions are only shown up to 4.4 and 3.8 fm−1 respectively, above which statistics is poor and regulator/cutoff artifacts
dominate.
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Extended Data Fig. 7: 4He two-nucleon relative-momentum distribution ratios, nNN (q)/|ϕ̃NN (q)|2. Left: spin-1
pn. Right: spin-0 pp. All curves are divided by A/2 = 2 and multiplied by 100. Results for five potentials are shown:
AV18+UX, AV4’+UIXc, NV2+3-Ia*, N2LO R0 = 1.0 fm, and N2LO R0 = 1.2 fm. Horizontal lines with error bands correspond
to the extracted contacts (see Methods and Extended Data Table II). For N2LO potentials, results for one choice of three-body
contact operators is shown here.

Extended Data Table I: Nuclei and Models included in this study. QMC-calculated two-nucleon distributions for
different nuclei and NN+3N potentials. Checkmarks indicate calculations used in the current study. All calculations are
available for both coordinate and momentum space, except for 16O and 40Ca with AV18 (labeled with an ∗ below), for which
the UIX potential is used and results are only available in coordinate space [20]. Calculations with the N2LO (1.2 fm) potential
for heavier systems are not considered in this work due to the large regulator artifacts found for A ≥ 12 (see Ref. [22]).

Nucleus AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm) NV2+3-Ia*
[16, 25, 40] [23, 33] [22, 34, 35] [22, 34, 35] [36, 37]

d ! ! ! ! !
3H ! ! ! ! –
3He ! ! ! ! !
4He ! ! ! ! !
6Li ! ! ! ! !
12C ! ! ! – –
16O !∗ ! ! – –
40Ca !∗ ! – – –

∗ calculation only available for coordinate-space distributions.
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Extended Data Table II: Nuclear contacts values. The extracted contact values have been divided by A/2 and multiplied
by 100 to give the percent of nucleons above kF . For symmetric nuclei, Cs=0

nn = Cs=0
pp . In the case of 3He, Cs=0

nn = 0, as there
is only one neutron in this nucleus. In the case of 3H, Cs=0

pp = 0, as there is only one proton in this nucleus, and the values
shown under Cs=0

pp correspond to Cs=0
nn .

Cs=1
pn Cs=0

pp Cs=0
pn

r k r k r k

d

AV18 4.898 ± 0.080 4.764 ± 0.007
AV4’ 1.186 ± 0.034 1.165 ± 0.037

N2LO(1.0) 4.664 ± 0.009 4.691 ± 0.030
N2LO(1.2) 4.141 ± 0.010 4.244 ± 0.032
NV2+3-Ia* 3.878± 0.390 3.840 ± 0.398

3H

AV18 6.246 ± 0.856 6.441 ± 0.645 0.549 ± 0.055 0.590 ± 0.060 0.295 ± 0.119 0.311 ± 0.033
AV4’ 1.533 ± 0.154 1.515 ± 0.152 0.544 ± 0.055 0.532 ± 0.054 0.270 ± 0.027 0.281 ± 0.029

N2LO(1.0) 6.237 ± 0.718 6.885 ± 0.789 0.282 ± 0.032 0.521 ± 0.060 0.140 ± 0.015 0.255 ± 0.063
N2LO(1.2) 5.980 ± 0.695 6.111 ± 1.011 0.277 ± 0.033 0.687 ± 0.119 0.139 ± 0.017 0.337 ± 0.061

3He

AV18 6.851 ± 0.822 6.249 ± 0.625 0.536 ± 0.054 0.570 ± 0.058 0.161 ± 0.092 0.325 ± 0.034
AV4’ 1.527 ± 0.153 1.466 ± 0.147 0.515 ± 0.052 0.515 ± 0.052 0.265 ± 0.027 0.264 ± 0.028

N2LO(1.0) 6.113 ± 0.719 6.703 ± 0.702 0.259 ± 0.032 0.454 ± 0.069 0.135 ± 0.016 0.264 ± 0.047
N2LO(1.2) 5.705 ± 0.870 5.717 ± 0.730 0.239 ± 0.041 0.547 ± 0.079 0.127 ± 0.022 0.307 ± 0.057
NV2+3-Ia* 4.637 ± 0.573 4.885 ± 0.491 0.310 ± 0.031 0.336 ± 0.034 0.234 ± 0.053 0.233 ± 0.024

4He

AV18 11.605 ± 1.161 12.274 ± 1.232 0.567 ± 0.057 0.655 ± 0.071 0.567 ± 0.057 0.687 ± 0.075
AV4’ 2.685 ± 0.272 2.995 ± 0.300 0.564 ± 0.057 0.542 ± 0.055 0.578 ± 0.059 0.564 ± 0.057

N2LO(1.0) 10.508 ± 1.308 12.372 ± 1.372 0.243 ± 0.040 0.655 ± 0.093 0.253 ± 0.043 0.703 ± 0.096
N2LO(1.2) 11.111 ± 2.595 10.446 ± 2.223 0.263 ± 0.059 0.851 ± 0.102 0.281 ± 0.062 0.934 ± 0.133
NV2+3-Ia* 9.200 ± 0.928 10.143 ± 1.022 0.333 ± 0.034 0.355 ± 0.039 0.333 ± 0.034 0.504 ± 0.059

6Li

AV18 10.140 ± 1.015 10.492 ± 1.056 0.415 ± 0.042 0.485 ± 0.058 0.415 ± 0.042 0.529 ± 0.071
AV4’ 2.248 ± 0.225 2.205 ± 0.222 0.380 ± 0.038 0.380 ± 0.038 0.387 ± 0.039 0.369 ± 0.039

N2LO(1.0) 8.434 ± 1.026 9.444 ± 1.141 0.173 ± 0.020 0.501 ± 0.074 0.180 ± 0.021 0.540 ± 0.086
N2LO(1.2) 9.011 ± 1.478 8.650 ± 1.545 0.185 ± 0.031 0.668 ± 0.104 0.197 ± 0.034 0.749 ± 0.168
NV2+3-Ia* 0.250 ± 0.025 0.282 ± 0.032

12C

AV18 13.135 ± 1.324 15.876 ± 1.770 0.716 ± 0.075 1.140 ± 0.210 0.716 ± 0.075 1.244 ± 0.319
AV4’ 2.458 ± 0.249 2.676 ± 0.272 0.547 ± 0.055 0.653 ± 0.067 0.559 ± 0.056 0.558 ± 0.069

N2LO(1.0) 10.434 ± 1.044 10.643 ± 1.094 0.308 ± 0.033 0.870 ± 0.095 0.318 ± 0.034 0.988 ± 0.161

16O

AV18 11.372 ± 1.158 0.676 ± 0.072 0.676 ± 0.072
AV4’ 2.910 ± 0.293 2.911 ± 0.307 0.658 ± 0.066 0.784 ± 0.084 0.675 ± 0.068 0.702 ± 0.086

N2LO(1.0) 9.103 ± 1.020 10.338 ± 1.310 0.270 ± 0.034 0.781 ± 0.173 0.275 ± 0.033 0.928 ± 0.365

40Ca
AV18 11.570 ± 1.196 0.723 ± 0.081 0.723 ± 0.081
AV4’ 3.284 ± 0.339 4.476 ± 0.460 0.834 ± 0.084 1.329 ± 0.144 0.854 ± 0.086 1.357 ± 0.164
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