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Abstract

The data-driven discovery of partial differential equations (PDEs) consistent with spatiotem-
poral data is experiencing a rebirth in machine learning research. Training deep neural networks
to learn such data-driven partial differential operators requires extensive spatiotemporal data.
For learning coarse-scale PDEs from computational fine-scale simulation data, the training data
collection process can be prohibitively expensive. We propose to transformatively facilitate this
training data collection process by linking machine learning (here, neural networks) with mod-
ern multiscale scientific computation (here, equation-free numerics). These equation-free tech-
niques operate over sparse collections of small, appropriately coupled, space-time subdomains
(“patches”), parsimoniously producing the required macro-scale training data. Our illustrative
example involves the discovery of effective homogenized equations in one and two dimensions,
for problems with fine-scale material property variations. The approach holds promise towards
making the discovery of accurate, macro-scale effective materials PDE models possible by effi-
ciently summarizing the physics embodied in “the best” fine-scale simulation models available.
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1 Introduction

Evolutionary models of materials dynamic behavior, in the form of Partial Differential Equa-
tions (PDEs), embodying conservation laws supplemented by appropriate closures, traditionally
form the backbone of computational materials modeling. The requisite closures were initially
mostly phenomenological, guided by experimentation, but in recent years such closures increas-
ingly come from fine-scale, microscopic, possibly even ab initio computations. One of the signal
promises of machine learning in its early days, and increasingly more so today, is the discovery of
such evolutionary PDEs from spatiotemporal data — whether from physical observations or from
computational observations obtained through fine-scale models.

Yet materials problems are inherently multiscale: fine-scale models typically operate at the
atomistic level; but the questions asked, and the answers required, are usually macroscopic in
nature [e.g. 1], and the models that describe macroscopic materials physics are coarse-scale, effective
PDEs in terms of macroscopic observables.

When the macroscopic Quantities-of-Interest (QoI), or the “right variables”, in terms of which
an effective macroscopic PDE can be written, are known, there already exist data-driven, machine-
learning-assisted techniques that will successfully approximate a PDE for the QoI evolution from
macroscopic spatiotemporal observations. These techniques are based on the simple observation
that the law of the PDE is a functional relation (a constraint) between local space and time
derivatives of the field(s) of interest: for simple diffusion, the time derivative of the local density
is a function of its second-order space derivative. From detailed spatiotemporal data, one can thus
acquire extensive sampling of instantiations of this relation: every space-time point in a movie
provides a training data point for a machine learning model that can learn a PDE right-hand-side
(i.e., a differential operator) consistent with the observed movie, typically assuming the PDE is
homogeneous in space-time. Such neural-network-based techniques were certainly proposed and
implemented in the 1990s for ODEs [e.g. 2, 3] and PDEs [e.g. 4]. Interestingly, several neural net
architectural features (recurrent networks, convolutional networks) that proved broadly successful
later, arose naturally in the work described in these references. The field has exploded recently,
and tools beyond deep neural networks (e.g., Gaussian Processes as well as Sparse Regression and
Reservoir Computing) have been brought to the task [5, 6, 7, 8, 9, 10]. Gray box techniques (where
part of the equation is known [e.g. 11, 12, 13]) as well as machine-learning techniques for solving
known PDEs are increasingly successful [14, 15, 16, 17].

These approaches can learn approximate macroscopic PDEs based on data of macroscopic
field evolution. The data may come from macroscopic measurements of physical experiments,
or from coarse-grained observations of fine-scale simulations (e.g., running molecular dynamics,
kinetic Monte Carlo or agent-based models, and observing the evolution of macroscopic, hydrody-
namic level fields, such as densities, momenta or stresses). We recently discussed the learning of
coarse-grained PDEs based on fine-scale simulators: the “inner”, fine-scale simulator was a Lattice-
Boltzmann (LB) model, while the “outer”, coarse-grained fields were two concentration fields for a
system of coupled reaction-diffusion equations [18]. The fine-scale LB simulation was performed
“for all space and all times” over the domain of interest, which could lead to considerable computa-
tional effort. The goal of this paper it to alleviate, as much as possible, the extensive computational
needs for the collection of the requisite macro-scale training data. Here we work on coarse-graining
a class of problems different than the more “inner atomistic simulation” class illustrated by the LB
example: we are interested in discovering coarse effective PDEs for materials that have micro-scale
variations in their properties. In this case the “inner simulator” is the PDE that resolves that com-
plete fine-scale material properties, while the coarse-grained PDE is the so-called “homogenized
PDE” — a PDE that governs the effective, long-wavelength material response. One may loosely
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think of this as a PDE for the locally averaged (over the fine-scale variations) material response.
In applied mathematics, this problem is the purview of homogenization theory [19] (see also [20]):
using asymptotic techniques, and under specific assumptions, one can derive a closed-form analyti-
cal expression for the homogenized PDE. The homogenized PDE solution is the part of the original
solution that does not exhibit micro-scale variation. Therefore, the homogenized PDE is the right
effective coarse-scale PDE for materials with microscopic heterogeneity. However, the analytical
derivation of homogenized PDEs is typically based on assumptions and/or asymptotic arguments
that may not be valid for many practical problems. In such (frequent!) cases, the data-driven
discovery of a useful approximate effective PDE, may be the only practical alternative. Our plan in
this paper is to mitigate this “training data collection” computation expense by taking advantage
of modern multiscale scientific computing approaches (in particular, equation-free techniques) that
are based on precisely the same assumption: that an effective equation exists, yet it is not available
in closed form.

Equation-free multiscale computation comprises a suite of scientific computing techniques for
solving macroscopic evolution equations based on parsimonious use of fine-scale simulators without
ever deriving the macroscopic equations in closed form [21, 22]. Equation-free algorithms like
coarse projective integration, gap-tooth and patch dynamics, as well as coarse bifurcation and
stability analysis, are templated on established numerical techniques; the new element is that
the quantities required for scientific computation (time derivatives, action of Jacobians) are not
obtained from closed-form function evaluations, but rather from brief bursts of well-designed fine-
scale simulation over short time intervals and small spatial domains. It is precisely this “closure
on demand” property of equation-free computation that will help us collect the macroscopic data
required for macroscopic PDE learning /approximation with significantly less computational effort.
Such parsimonious design of micro-scale computations to collect macro-information adequate for
learning, is the main ingredient of our work.

The rest of this paper is structured as follows. We start in Section 2 by describing homoge-
nization problems arising from the modeling of materials with micro-scale property variation. The
equation-free methods we use are described in Section 3; they help us collect large-space/long-time
data at the homogenized level from minimal (small-space/short-time) finely resolved direct material
simulation. We then use the collected macro-data to learn the effective, macro-scale, homogenized
equation through the use of two neural network architecture variations. Section 4 describes our
approach to data-driven PDE learning and the neural network architectures. In Section 5, we apply
our framework to two illustrative problems. In each problem we compare the data-driven effective
model we identify with analytically obtainable homogenized equations, thus establishing the utility
but also highlighting some limitations of our approach. We conclude in Section 6 with a brief
discussion of possible extensions and applications of our approach and some thoughts on the im-
portant issue of data-driven coarse variable selection for problems where even the appropriate QoI
must be discovered from the data. A python implementation of our framework and the illustrative
examples in Section 5 is available at https://github.com/arbabiha/homogenization_via_ML.
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2 Homogenization problem

In many physical or engineering modeling problems, the properties of the material under in-
vestigation have variations (i.e., heterogeneity) at small spatial scales, while we are interested in
predicting the response of the material at much larger scales. The homogenization technique is
an asymptotic applied mathematics method that, under certain technical assumptions, derives
(approximate) effective equations for the material response at large length scales. Here, we briefly
review this technique through the example of diffusion in a material with heterogeneous diffusivity—
comprehensive discussions are given elsewhere [19, 23].

Consider the unsteady diffusion problem for u(x, t) in the one-dimensional spatial domain [0, 1]
with homogeneous Dirichlet boundary conditions:

∂tu(x, t) = ∂x

[
a
(x
ε

)
∂xu(x, t)

]
,

u(x, 0) = u0(x) ∈ L2([0, 1]), (1)
u(0, t) = u(1, t) = 0,

where the diffusivity a(·) is space-dependent, and periodic in its argument. We are interested in the
case of ε� 1, that is, the diffusivity has very rapid spatial oscillations. This is the detailed problem.
Since ε is very small compared to the length scales of interest (e.g., the size of the domain), the
goal of homogenization is to find an effective homogenized PDE that has no explicit dependence
on ε, but its solution usefully approximates the solution to the detailed problem in its large-scale
features. The classical approach to derive such a PDE is to expand the solution of the detailed
problem in powers of ε,

u(x, t) = uh(x, t) +
∞∑

j=1

εjuj(x, x/ε, t), (2)

where the functions uj , j = 1, 2, . . ., are periodic in their second argument. The first term in the
expansion, uh(x, t), is the homogenized solution and, to errors O(ε2), it satisfies the homogenized
PDE

∂tuh(x, t) = ∂x [a∗∂xuh(x, t)] ,

uh(x, 0) = u0(x) ∈ L2([0, 1]), (3)
uh(0, t) = uh(1, t) = 0,

where the effective diffusivity constant is

a∗ =
∫ 1

0
a(y)

[
1− d

dy
χ(y)

]
dy. (4)

In the above equation, χ(y) is the periodic solution to the so-called cell problem,

d

dy

[
a(y)

d

dy
χ

]
=

d

dy
a(y), (5)

which is usually accompanied by a normalization condition,
∫ 1

0
χ(y)dy = 0. (6)
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It is known that as ε → 0, the homogenized solution uh converges to the solution of the detailed
problem [19], and that at finite ε one can systematically find corrections to (3) for uh [24]. Unlike
the detailed field u, the homogenized solution does not have an explicit dependence on the fast-
varying variable x/ε, and hence it represents the large-scale component of the detailed solution.
When ε is small enough, one might consider approximating the homogenized solution by applying
a low-pass filter to the detailed solution (i.e., filtering out variations with wavelengths of order ε or
smaller). In this paper, we take the coarse scale (low-pass filtered, locally averaged) density to be
our effective macroscopic variable—which we expect approximates uh—and propose a framework
to discover its evolution PDE from data.

Application of the rigorous analytical homogenization process, outlined above, to PDEs suffers
from limitations because its validity requires somewhat stringent mathematical assumptions and
asymptotic limits. For example, in the general case of non-periodic heterogeneity, no simple effective
diffusivity formula can be derived; indeed, no systematic approach for deriving it yet exists [23]. On
the other hand, direct numerical simulation of heterogeneous materials requires a computational
power scaling as at least (1/ε)d, with d being the spatial dimension, which makes such problems
computationally prohibitive.

3 Equation-free approach for homogenization

The equation-free approach, introduced by Kevrekidis et al. [21], when applied to homogeniza-
tion problems [25, 22, 26, 27] provides a computational shortcut for approximating the homogenized
solutions of systems when we only know the detailed problem. The homogenized equation is as-
sumed to exist, yet not available in closed form. The basic idea behind the equation-free approach
is to exploit the implicitly assumed existence of the macro-scale dynamics to speed up the micro-
scale simulations and perform tasks like prediction, optimization or even bifurcation analysis at the
large-scale level. In the homogenization case, the micro-scale evolution is given by detailed, fine-
scale PDE and the macro-scale description is the effective PDE. When a mathematically obtained
homogenized PDE is available and accurate, we expect the equation-free numerics to accurately
approximate the solutions of this homogenized PDE.

Here, we utilize the equation-free approach for parsimonious generation of data: as explained
below, the equation-free methodology guides us to simulate the detailed problem only in a frac-
tion of space-time, to obtain training data for learning the effective (homogenized) equation, and
hence, it substantially reduces the computational complexity of collecting training data. In describ-
ing the equation-free approach for homogenization, we closely follow [22] and we refer the reader
to [26, 27, 28] for further analysis of this approach in the context of homogenization. A simplified
representation of the equation-free approach is visualized in Figure 1.

A basic algorithm in the equation-free toolbox for spatially distributed systems is the gap-tooth
scheme. In this approach, we populate the spatial domain with sparsely distributed small boxes
(subdomains, called teeth) that only cover a small fraction of the spatial domain. The width of
each tooth, h, is chosen to be considerably larger than ε but still small compared to the domain
size. The distance between the centers of the teeth, ∆x, is chosen large compared to h, so that the
teeth occupy a small fraction of the full space. We only simulate the detailed problem within the
teeth, with appropriately prescribed “coupling” boundary conditions (see below) and then define
the gap-tooth solution ug to be the detailed solution averaged over the tooth and reported at its
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Figure 1: Space-time grid of equation-free numerics. In the gap-tooth scheme (left) the
detailed problem is only simulated inside a sparse grid of teeth (boxes in the figure). The solution
within adjacent teeth is coupled by implicitly utilizing the assumption that there exists a macro-
scale variable which varies smoothly in the space. Similarly, in the patch dynamics, the simulation
is carried out in sparse set of small boxes (called patches), but the smoothness of the macro-scale
variable in time is leveraged to make the time grid sparse as well: the time derivative is estimated
over the interval δt and the solution is extrapolated over ∆t� δt using that estimate.
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midpoint. Let xi be the position of the ith tooth center; then

uig :=
1
h

∫ xi+h/2

xi−h/2
u(ξ, t)dξ, i = 1, . . . , N (7)

is the gap-tooth prediction/order-parameter/amplitude for the ith tooth, which approximates the
discretized macro-scale variable, denoted by U . In many scenarios [e.g. 29, 30, 31] we can prove that
such a macro-scale field U exists and is governed by an explicitly unknown PDE (here, hopefully,
the homogenized PDE), and that variations of U can be faithfully estimated using its value on
the grid of such teeth centers (rather than a highly resolved grid designed to capture the detailed,
ε-scale material property variations). Based on the assumption of the appropriateness of such a
macro-scale field behavior, artificial boundary conditions for each tooth have been devised for the
meaningfully coupled simulation of the micro-scale problem across all teeth [e.g. 29, 28]. These
teeth-edge conditions constitute an important ingredient of the gap-tooth scheme, as they couple
the dynamics of adjacent teeth and allow the global pattern of the solution to emerge from the
simulations in (seemingly) separate teeth. One typically assumes that the macro-scale field U
resembles a polynomial between teeth, that is,

U(x, tn) ≈ pki (x, tn), x ∈ [xi − h/2, xi + h/2] (8)

with pki denoting a polynomial of even degree k within the ith tooth. The coefficients of this
polynomial are determined so that it results in the same box averages as the detailed solution
within tooth i and k/2 teeth to its left and right (see [22] for the explicit formula of pki ). Now, for
simulating the detailed solution within the tooth i during the entire duration of the next time step,
we may use, as the tooth-edge Neumann condition, the slope of the polynomial [28], that is,

1
ε

∫ xi+h/2+ε

xi+h/2−ε
∂ξu(ξ, t)dξ = ∂xp

k
i

∣∣
xi+h/2

,

1
ε

∫ xi−h/2+ε

xi−h/2−ε
∂ξu(ξ, t)dξ = ∂xp

k
i

∣∣
xi−h/2. (9)

In this way, the detailed evolution in ith tooth is informed by the polynomial approximation of
the macro-scale field near that tooth, which in turn, is informed by the value of the macro-scale
field in the neighboring teeth. Further analysis of the gap-tooth scheme and a discussion of its
convergence and accuracy can be found in [26, 28]. In particular, it was shown that the gap-tooth
solution scheme leads to a finite-difference approximation of the homogenized PDE itself.

A more advanced algorithm in the equation-free toolkit is patch dynamics with buffers[22]. In
this scheme, the simulations of the detailed problem is performed not only in a fraction of space, but
also in a fraction of time. This is made possible through the use of (coarse) projective integration
[32, 33]: the gap-tooth simulations of the detailed problem are carried out over a few short time
steps, and the result is used to compute an estimate of the time-derivative for the macro-scale
variable, ∂tU . This estimate is then used to take a large time step in the simulation of U . Taking
large time steps for U is plausible, because we have assumed the existence of a macro-scale closure
for U , which justifies using coarser grids in time compared to those necessary for the accurate
simulation of the detailed problem. However, and similar to the gap-tooth scheme, the macro-scale
closure is not available, and thus cannot be explicitly used in the algorithm. Instead, the quantities
required for scientific computation (like the time derivatives here) are estimated from judiciously
designed partial simulations of the detailed problem.
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The grid setup for patch dynamics with buffers is similar to the gap-tooth scheme, except that
we extend each patch to width H > h, with a buffer zone around each tooth. The buffers provide an
alternative way of imposing meaningful coupling boundary conditions across neighboring teeth [31].
Detailed simulations are also performed in the buffer zones, yet the patch dynamics solution reports
averages over the tooth itself. The role of the buffer zone is thus to “protect” the core solution
within the tooth from the disturbances caused by the boundary conditions on the buffers. Now the
teeth exchange information through the process of lifting defined below.

To round off our brief outline of the patch dynamics scheme, we define two more notions in multi-
scale computation. Firstly, the restriction operator is a function that maps the detailed solution
within patches to the macro-scale variable. Here, the restriction operator is simply averaging over
each tooth in (7). Secondly, the lifting operator is a (one-to-many) mapping from the macro-scale
field to a consistent detailed solution profile. The lifting operator is not unique, since there are
many detailed profiles that have the same average. A standard choice for lifting in homogenization
is a polynomial expansion similar to (8) within the ith tooth and its surrounding buffer zone. In
the explicit form, this polynomial can be written as

ui(x) =
d∑

k=0

Dk
i (U)

(x− xi)k
k!

, x ∈
[
xi − H

2 , xi + H
2

]
, (10)

where Dk
i (U) is the finite-difference approximation for the kth spatial derivative at the ith tooth.

A time step of the patch dynamics simulation is performed as follows: given the current state
of the macro-state field U ti , i = 1, . . . , N , the state of the detailed solution within each tooth and
its buffer is constructed using the lifting in (10). Then the detailed equation is marched forward in
the teeth and their buffers. The new macro-state U t+δti , i = 1, . . . , N , is computed by averaging
in (7). Then, the time-derivative of the macro-state in each tooth is estimated as

d

dt
Ui(t) ≈

U t+δti − U ti
δt

. (11)

Next we perform a projective integration step: we use the above estimate within any time-stepping
method (like forward Euler or Runge–Kutta), to march U forward in (long) time, and in particular,
use a large time step ∆t � δt to approximate the new macro-state U t+∆t

i , i = 1, 2, . . . , N . The
patch dynamics scheme, effectively, requires us to simulate the detailed problem only in a fraction
of space (i.e., teeth and buffer) and a fraction of time (i.e., brief sequences of short time steps for
computing the gap-tooth estimate (11)). Samaey et al. [27] discussed in detail this patch dynamics
algorithm for homogenization including its convergence and choice of boundary conditions.

4 Learning of effective PDEs from data

The key contribution of this work is exploiting the equation-free approach for parsimonious gen-
eration of training data in learning effective homogenized PDEs. In general, although homogenized
equations may exist for heterogeneous materials, there may be no systematic way to analytically
discover them (for example in the case of non-periodic heterogeneity [23]). In such cases, one seems
restricted to fully simulating the detailed problem, and then performing coarse-grained observations
of it (e.g., via averaging or low-pass filtering) to obtain training data.

Here, we use the equation-free approach as the alternative, as it only requires simulation of the
detailed problem only in a fraction of the total space and time domain. Figure 2 shows sample
snapshots of data produced in an example by solving the homogenized PDE, the detailed PDE, and

8



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 The Minerals, Metals & Materials Society.

the patch dynamics approximation of the effective PDE for the one-dimensional diffusion problem
in Section 5.1. In this example, the patch dynamics allows us to simulate the detailed problem in
less than 8% of the space and 0.1% of time domain, effectively reducing the space-time grid size by
a factor of 104. We now use the data so produced to train neural nets that learn the time-evolution
(i.e. the effective operator) of the effective (homogenized) system. To validate the approach, we
evaluate the performance of the trained neural nets via comparison with the homogenized equations
which are known in closed form for our test examples. We remind the reader that such closures
are, in general, not available.

We consider two neural network learning approaches for discovering the homogenized PDE from
the data. In the first architecture, we try to discover the functional form of the law of the PDE,
i.e., the relation between spatial and temporal derivatives of the coarse field at every macro-scale
space-time point:

∂tU = F
(
U, ∂xU, ∂xxU, . . .). (12)

The particular combination of derivatives required for successful learning of the homogenized equa-
tion may be unknown a priori. In previous work [18], we successfully utilized learning approaches
such as diffusion maps and Gaussian process regression to identify a minimal subset of spatial
derivatives that suffices to learn an effective model. Assuming that we have included a sufficient
set of spatial derivative terms as input, the learning problem amounts to regressing the function F
on its arguments (i.e., learning the right-hand-side differential operator [34, 35]) from data.

In the second approach, we model the law of the PDE directly in a discretized form: as a
relation between the time derivative of the field at a point of interest and the values of the field at
a number of points in the neighborhood of the point of interest. This can be thought of as a form
of spatial discretization of the effective PDE for the macro-scale variable

d

dt
U(xj) = G

(
U(xj), U(xj−1), U(xj+1), . . .). (13)

where xj ’s denote points on a spatial grid around the point of interest ordered by the index j.
The stencil for this learning problem should be large enough to contain sufficient information for
successfully approximating the local dU/dt.

The above two architectures appear very similar: they employ the local profile in the neighbor-
hood of the grid point of interest either (a) in the form of observed/estimated spatial derivative
values at that point, or (b) in the form of a grid of neighboring field values, in order to approxi-
mate time evolution. Both approaches are capable of learning PDEs with spatially homogeneous
character with various terms such as diffusion, reaction, linear or nonlinear advection and source or
sink terms. The two approaches can be formally related to each other when the observed dynamics
(possibly after fast initial transients) lie on a low-dimensional manifold, for example on a finite-
dimensional inertial manifold [36, 37]. Theoretical justification for the second approach can also
be provided through the center-manifold-based work in [38] towards the “holistic discretization”,
which has been taken advantage of in enhancing patch dynamics simulations [39, 22].

A practical advantage of the second approach is that it avoids the “off-line” estimation of
spatial derivatives, which could be sensitive to noise and computational directional preferences (e.g.,
upwinding for advection problems); the obvious price to pay—along with the loss of translational
invariance due to discretization—is the dependence of the learned network parameters on the
particularly selected grid. Therefore, the learned model has to be retrained or adjusted for new
spatial grids in the second architecture. This second approach has already been utilized in learning
data-driven discretization schemes [e.g. 13].

We use the neural network architectures shown in Figure 3(a) and (b), respectively, to regress F
andG. The first network consists of three fully connected layers with a Rectifying Linear Unit (ReLU)
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Figure 2: A sample snapshot from different computational implementations of the one-
dimensional heterogeneous diffusion problem in Section 5.1. The top left panel demon-
strates the agreement between the fully resolved, the homogenized, and the patch dynamics solution
observed at large-scales. The bottom two panels show magnifications revealing the ε-scale varia-
tions of the solution for the fully resolved and the patch dynamics simulation (ε = 10−5). Instead of
the fully resolved simulation, we use a patch dynamics sparse simulation (104× smaller space-time
grid) to collect data for learning the effective dynamics. This particular snapshot is produced from
an initial condition of the form (23) after running the simulations for 0.05 time units.
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as the activation function in the first two layers. Recall that the action of a fully connected linear
layer can be written as

zout = Azin + b, b, zout ∈ Rn, zin ∈ Rm, A ∈ Rn×m. (14)

On the other hand the action of ReLU layer is given by

zout = max(0, zin). (15)

Therefore our network represents a function of the form

zout = A(3) max
(
A(2) max

(
A(1)zin + b(1), 0

)
+ b(2), 0

)
+ b(3) (16)

where the superscripts are the index of the fully connected layer. Entries of the matrices A(i), i =
1, 2, 3 and the bias vectors b(i), i = 1, 2, 3 are the parameters of the network which are to be
optimized in the learning process.

The second network consists of three convolutional layers, with ReLU activation layers in be-
tween.Let us recall the mathematical description of a (linear) convolution layer action. Assume
each layer consists of nk kernels of size 2n+ 1. Let Clpq denote the q-th kernel in the layer. Then
the action of the layer on an input with p channels is given by

zoutiq =
∑

p

n∑

j=−n
Cjpqz

in
i+jp + bq, q = 1, . . . , nk, (17)

which, in the shorthand form is written as

zout = C ∗ zin. (18)

As such, our network represents the function

zout = C(3) ∗
(
C(2) ∗max(C(1) ∗ zin + b(1), 0) + b(2), 0

)
+ b(3) (19)

where the superscripts are the index of the convolutional layer in the network. The entries of
the tensors C(i), i = 1, 2, 3 and vectors b(i), i = 1, 2, 3 are to be learned from data. The first
convolutional layer, with a sufficiently large kernel size, effectively acts as a finite-difference model
of the spatial derivatives. Here, we set the kernel size of the next two layers to be one, which
makes them, in effect, fully connected layers. This general type of shallow architecture has been
demonstrated to suffice for capturing the nonlinearity of PDEs arising in fluid mechanics [13].
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(a)

(b)

Figure 3: Neural network architectures for approximate PDE discovery. (a) A neural net
architecture for learning the functional form of the PDE differential operator: there are three fully
connected layers with 32 nodes and the first two layers have ReLU nonlinearity. (b) A neural net
architecture for learning the PDE in its discretized form: there are three convolutional layers with
32 filters and ReLU activations in between. The last two convolution layers have kernels of size
one and, in effect, act as fully connected layers.
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5 Results

5.1 One-dimensional heterogeneous diffusion

In the first example, we consider the one-dimensional heterogeneous diffusion problem from [27].
The detailed evolution is governed by the PDE

∂tu(x, t) = ∂x

[
a
(x
ε

)
∂xu(x, t)

]
, a

(x
ε

)
= 1.1 + sin

(
2π
x

ε

)
(20)

on the domain [0, 1] with ε = 10−5 and time-independent Dirichlet boundary conditions of

u(0, t) = u(0, 0), u(1, t) = u(1, 0). (21)

The corresponding homogenized equation is known to be

∂tuh(x, t) = ∂x [a∗∂xuh(x, t)] , a∗ ≈ 0.45825686, (22)

with similar boundary conditions.
To generate the training data, we use the patch dynamics scheme for (20) using 10 uniformly

spaced teeth in the spatial domain (∆x = 0.1). Each tooth has a width of h = 10−4 and it is
surrounded by a buffer zone of width H = 8×10−3. The detailed simulation within each tooth and
its buffer is carried out using a central finite-difference scheme with spatial resolution of δx = 10−7

and time step size of δt = 10−6 with Dirichlet boundary conditions imposed on the buffer zone
boundaries. The macroscopic time step for advancing the macro-state variable is ∆t = 10−3.
Therefore, we are only solving the detailed problem in 8% of the spatial domain and 0.1% of the
time domain. Figure 2 shows sample snapshots of u for this problem arising during the computation
using various alternative methods.

We simulate 8 trajectories of the system with initial conditions of the form

u(x, 0) =
20∑

j=1

aj sin(2πljx+ φj) (23)

where aj , lj and φj are randomly drawn from uniform distributions on [−1, 1], [0, 4] and [0, 2π],
respectively. We simulate each trajectory over the time interval of [0, 1] and record snapshots of u
and ∂tu every δts = 10−3. We train both neural net architectures using the ADAM optimizer [40]
with batch sizes of 64 and learning rate of 10−3. For the optimization objective, we use the Mean
Squared Error (MSE) of the network output (i.e., ∂tu). In this example, we use a second-order
finite-difference method with stencil size of three to estimate the spatial derivatives required as
inputs by the first architecture, and a corresponding kernel size of three in the first convolutional
layer of the second architecture.

To validate the learned models, we compare their performance to that of the known homogenized
model in two test trajectories that have initial conditions of the form (23) but have not been used
in the training. The (converged) homogenized solution to which we compare is computed using a
second-order finite-difference discretization of (22) on a grid size of dx = 5× 10−3 and lsode time
stepper. As the error measure, we use the relative Mean Squared Error (rMSE) between the two
snapshots, defined as

rMSE(v) =

∑
j ‖vj − v

j
h‖2∑

j ‖v
j
h − vh‖2

(24)
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Figure 4: Prediction of the RHS of an effective PDE via patch dynamics and neural
nets. “Truth” here denotes the solution of the homogenized equation on a fine grid.

where vj denotes the jth snapshot predicted by the neural net and vjh is the associated snapshot from
the homogenized model. As shown in Figure 4, both architectures are quite successful in accurately
representing the RHS of the homogenized PDE, even though the training data is generated on a
much coarser grid than the fully resolved data.

Next, we use the learned models to simulate a trajectory with a new initial condition from (23).
We use the BDF method [41] as the time stepper on the same macroscopic grid. Comparison to
the solution of the homogenized PDE (right column of Figure 5), suggests that the learned models
exhibit, in addition to accuracy, the stability properties required for time integration of the effective
equations.
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Figure 5: Integration of a trajectory from an unseen initial condition via patch dynamics and neural
nets. “Truth” here denotes the solution of the homogenized equation on a sufficiently resolved grid.
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5.2 Diffusion in two dimensions with lattice heterogeneity

In this example [31, 29], we consider diffusion on a two-dimensional periodic domain with
lattice-type micro-scale heterogeneity. We define a two-dimensional lattice, indexed by (i, j), with
the same spacing h in both directions on the bi-periodic domain [0, 2π)2. The evolution of the
micro-scale field ui,j is given by

u̇i,j =
[
κxi,j(ui+1,j − ui,j) + κxi−1,j(ui−1,j − ui,j) + κyi,j(ui,j+1 − ui,j) + κyi,j−1(ui,j−1 − ui,j)

]
/h2

(25)

where κxi−1,j is the diffusivity at half lattice point (i+1/2, j) and κyi−1,j is the diffusivity at half lattice
point (i, j + 1/2). We assume that the heterogeneous diffusivity is 3-periodic in both directions
and, in particular, given as

κx =




1.0566 0.6668 1.1568
6.5894 0.8683 2.4174
0.9473 1.1407 1.6610


 , κy =




3.6355 0.4470 2.3896
0.8628 4.8558 0.2833
4.5025 1.5865 0.5679


 . (26)

It is known [31] that there exists a homogenized equation, namely,

∂tuh = 1.2644∂xxuh + 1.3398∂yyuh (27)

which provides an approximation to the evolution of u at large length scales.
We use the gap-tooth scheme for parsimoniously simulating the micro-scale system. We use a

uniformly spaced 16×16 grid of square teeth, each one with sides of H = 4h = 0.0524. These spatial
patches approximately cover 1% of the space. We solve (25) for the micro-scaled grid points that
are contained within our spatial patches under the appropriate boundary conditions for each patch.
The macro-scale solution is then computed by averaging u on the interior points of the patch. Here,
the simulation is performed for all times (no projective integration “jumps” are used); in equation-
free terms this is a gap-tooth scheme, and the savings come only from the spatial sparsity of the
simulation. The spatial patch boundary conditions are carefully chosen to couple the macro-scale
solution on neighboring patches and approximately retrieve the global coarse pattern that would
appear from simulating the fully resolved micro-scale system, as detailed elsewhere [31].

We simulate 100 trajectories where the initial conditions are given by

u(x, 0) =
10∑

j=1

aj sin(lxj x+ φxj ) sin(lyj y + φyj ) (28)

and the parameters aj ∈ [−1, 1], (lxj , l
y
j ) ∈ {1, 2, 3, 4, 5}2, and (φxj , φ

y
j ) ∈ [0, 2π]2 are drawn randomly

from uniform distributions on their domain. We simulate the trajectories over t ∈ [0, 1] and collect
100 snapshots of each at sampling intervals of 0.01. We use data from 85 trajectories (i.e., 8500
snapshots) to train our networks. The training parameters are chosen similar to the one-dimensional
problem. In this example, we use FFT to estimate the spatial derivatives for the first neural net
architecture, thus improving the estimates of the input to the neural net.

In this example our scheme, trained with gap-tooth simulation data averaged over a sparse grid
of teeth, is less successful in providing an accurate closed evolution equation. Our neural networks
(with various depths) cannot drive the MSE significantly below a few percent. We believe that this
shortcoming can be rationalized: Figure 6 shows sample snapshots of ∂tu from the homogenized
solution, which we take as the truth here, and the prediction error of our best trained neural net-
works. All the trajectories in this example converge to steady state where ∂tu = 0. We observe that
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Figure 6: Performance of models in estimating 2D PDE’s right-hand-side. The relative
error of prediction is small for snapshots with large magnitude of ∂tu (e.g., first row) and large for
small magnitudes of ∂tu (e.g., bottom row).

the relative prediction error becomes typically larger for snapshots with smaller magnitude of ∂tu.
A rationalization of this observation is that the choice of loss function (e.g., MSE in this work)
emphasizes accurate prediction for large-magnitude snapshots, and that for the small-amplitude
data used here, it might be expected that the relative error would then be large. Therefore, the
learned estimation of the time-derivative near the steady state is less accurate than estimates for
states away from steady state.

Figure 7 shows sample snapshots of a trajectory integrated using the PDEs discovered by the
neural nets and their comparison with the corresponding homogenized solution. The neural net
solutions closely follow the homogenized solution early in the integration interval (at large solu-
tion amplitudes) and their error is comparable to that of the training data (i.e., gap-tooth versus
homogenized). However, as the true trajectory approaches the steady state, and the solution ampli-
tude decays, the relative error of the learned models grows—the time derivative is less accurately
estimated in that region, and that error accumulates in the trajectory over time (Figure 8(a)).
Interestingly, however, the qualitative state-space behavior of the discovered models is visibly ac-
curately recovered, and close to truth: Figure 8(b) shows a projection of the solution trajectories
from the homogenized solution and from the neural-nets-identified PDE in the solution state space.
This projection is realized by observing the six largest coefficients of the Fourier expansion for the
solutions. The trajectories from the learned models, regardless of time parametrization, are visibly
close to the homogenized solution trajectory, and only start to deviate in a small neighborhood of
the origin. We then credibly argue that the overall identification process is successful: the trajec-
tories of the learned models quantitatively shadow the true ones to the neighborhood of the final
steady state, and even there they have the right long term/stability characteristics.
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Figure 7: Performance of learned models in integrating a test trajectory. The neural net
models (trained via gap-tooth data) follow the homogenized solution closely at the beginning but
yet lag behind the final decay to steady state.
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(a)

(b)

Figure 8: Qualitative behavior of learned models (a) The mean squared error (MSE) of
test trajectories and (b) a state space viewpoint showing the six largest Fourier amplitudes of the
solution trajectory.
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6 Conclusion

Machine learning techniques have proven successful in learning PDEs that approximate the
observed evolution of complex systems from spatiotemporal data. Despite this initial success, an
outstanding challenge for identifying models of the effective dynamics of multiscale/multiphysics
systems is the computational burden of generating the training data from detailed computational
models embodying our best understanding of the fine-scale physics. In this work, we proposed link-
ing established multiscale scientific computing algorithms (and, in particular, using the equation-
free approach, with modern neural network algorithms for learning effective PDEs. We illustrated
the combination of these two “computational technologies” for learning homogenized equations for
materials with micro-scale property heterogeneities, enabled by parsimonious training data collec-
tion. The advantage of our approach lies precisely in the efficient compilation of training data: the
equation-free approach (and other similar approaches [e.g. 42]) requires simulation of the detailed
problem in only a small fraction of the space-time domain and dramatically reduces the amount of
computational effort for collecting the requisite training data. We demonstrated our approach in
the case of heterogeneous diffusion and validated our results using the analytically known homog-
enized solutions. Our approach can be readily extended to problems with more complex material
behavior (non-periodic heterogeneity and drift terms) where the there are no established methods
to derive closed-form solutions (assuming such equations exist).

Throughout this paper, we assumed the appropriate macro-scale field variable is known. In-
deed, guided by the classical homogenization theory, we took the target macro-scale variable (i.e.,
homogenized equation field) to be a low-pass filtered version of the micro-scale variable (the fully
resolved solution), and used the averaging-over-tooth operation within the equation-free approach
to transform fine-scale data to training data for the macroscopic model (what in equation-free
terminology is called “the restriction operator”). An important research direction involves the
data-driven identification of the right observables, i.e. the variables in terms of which the PDE
to be learned should be formulated. Whether through manifold learning techniques, like diffusion
maps (e.g., in the “variable free” computational efforts) [43, 44, 45] or through deep-learning tools
like (possibly variational) auto-encoders, and Wasserstein GANs [46, 2, 47], this possibility will,
we expect, greatly enhance the range of phenomena for which useful data-driven models can be
derived. Physically informing such models [e.g. 15] and providing explainable descriptions of their
predictions is a complementary, but equally important, challenge. One can even contemplate the
case of “emergent PDEs”, where not only the dependent variables and the operators, but even the
independent variables themselves (the right “space” and even the right “time” for the PDE) are
obtained in a data-driven manner [48, 49].

Acknowledgements

The authors declare that they have no conflict of interest in publication of this paper. This
work was partially supported by a US ARO MURI (through UCSB), by DARPA, and by the
Australian Research Council grant DP200103097. Discussions with Dr. T. Bertalan are gratefully
acknowledged.
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A python Implementation of our framework and the data for producing the figures in this paper
is available at https://github.com/arbabiha/homogenization_via_ML.
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