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1 Introduction

In this paper, we present new evidence connecting financial intermediary constraints to

asset prices. We propose to measure the tightness of intermediary constraints based on

how the intermediaries manage their aggregate tail risk exposures. Using data on the

trading activities between public investors and financial intermediaries in the market

of deep out-of-the-money put options on the S&P 500 index (abbreviated as DOTM

SPX puts), we exploit the price-quantity relations to identify periods when shocks to

intermediary constraints are likely to be the main driver of the variations in the net amount

of trading between public investors and financial intermediaries. This then enables us to

infer tightness of intermediary constraints from the option trading quantities. We show

that a tightening of intermediary constraint according to our measure is associated with

increasing option expensiveness, rising risk premia for a wide range of financial assets,

deterioration in funding liquidity, as well as deleveraging by broker-dealers.

To construct the constraint measure, we start by computing the net amount of DOTM

SPX puts that public investors in aggregate purchase each month (henceforth referred to

as PNBO), which also reflects the net amount of the same options that broker-dealers

and market-makers sell in that month. While it is well known that financial intermediaries

are net sellers of these types of options during normal times, we find that PNBO varies

significantly over time and tends to fall/turn negative during times of market distress.

Periods when PNBO is low could be periods of weak supply by intermediaries (due

to tight constraints) or weak demand by public investors. One needs to separate these

two effects in order to link PNBO to intermediary constraints. We propose to exploit the

relation between the quantities of trading, as measured by PNBO, and prices (expensive-

ness of SPX options), as measured by the variance premium. Positive comovements in

prices and quantities are consistent with the presence of demand shocks, while negative

comovements are consistent with the presence of supply shocks.1 We summarize the daily

1We assume public investors’ demand curve is downward sloping, and financial intermediaries’ supply
curve is upward sloping. These assumptions apply when both groups are (effectively) risk averse and
cannot fully unload the inventory risks through hedging. Notice that the presence of one type of shocks
does not rule out the presence of the other.
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price-quantity relations each month. Those months with negative price-quantity relations

on average are likely to be the periods when supply shocks are the main driver of the

quantity of trading. Then, we take low PNBO in a month with negative price-quantity

relation as indicative of tight intermediary constraints.

In monthly data from January 1991 to December 2012, PNBO is significantly negatively

related to option expensiveness, and this negative relation becomes stronger when jump

risk in the market is higher. In daily data, the correlation between PNBO and our measure

of option expensiveness is negative in 159 out of 264 months. These results highlight the

significant role that supply shocks play in the market of DOTM SPX puts.

In those periods with a negative price-quantity relation, PNBO significantly predicts

future market excess returns. A one-standard deviation decrease in PNBO (normalized

PNBO) in a month with negative price-quantity relation is on average associated with

a 4.3% (3%) increase in the subsequent 3-month log market excess return. The R2 of

the regression is 24.7% (12.3%). The predictive power of PNBO is even stronger in the

months when market jump risk is above the median level (in addition to the negative

price-quantity relation), but becomes much weaker in the months when the price-quantity

relations are positive. Besides equity, a lower PNBO also predicts higher future excess

returns for high-yield corporate bonds, an aggregate hedge fund portfolio, a carry trade

portfolio, and a commodity index, and it predicts lower future excess returns on long-term

Treasuries and (pay-fix) SPX variance swaps.

The predictability results survive an extensive list of robustness checks. They include

different statistical methods for determining the significance of the predictive power,

exclusion of the 2008-09 financial crisis and extreme observations of PNBO, different ways

to define option moneyness, and an alternative quantity measure based on end-of-period

open interest instead of trading volume, among others. In addition, we consider an

alternative method for identifying periods of weak supply based on Rigobon (2003) (see

also Sentana and Fiorentini (2001)). Using the reduced-form econometric assumptions of

this method, we extract supply shocks to intermediaries and confirm the ability of the

inferred supply shocks to predict future stock returns.
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The return predictability results are consistent with the intermediary asset pricing

theories, where a reduction in the risk-sharing capacity of the financial intermediaries

causes the aggregate risk premium in the economy to rise. An alternative explanation of

the predictability results is that PNBO is merely a proxy for standard macro/financial

factors that simultaneously drive the aggregate risk premium and intermediary constraints.

If this alternative explanation is true, then the inclusion of proper risk factors into the

predictability regression should drive away the predictive power of our constraint measure.

We find that the predictive power of our measure is unaffected by the inclusion of a long list

of return predictors in the literature, including various price ratios, consumption-wealth

ratio, variance risk premium, default spread, term spread, and several tail risk measures.

While these results do not lead to the rejection of the alternative explanation (there can

always be omitted risk factors), they are at least consistent with intermediary constraints

having a unique effect on the aggregate risk premium.

Our intermediary constraint measure is significantly related to the funding condition

measures of Fontaine and Garcia (2012) (extracted from the Treasury market) and Adrian,

Etula, and Muir (2014) (based on the growth rate of broker-dealer leverage). At the same

time, we also find that our constraint measure provides unique information about the

aggregate risk premium not contained in the other funding liquidity measures.

Our results suggest that when financial intermediaries switch from sellers of DOTM SPX

puts to buyers (e.g., in the months following the Lehman Brothers bankruptcy in 2008), it

is likely that the tightening of constraints are forcing the intermediaries to aggressively

hedge their tail risk exposures, rather than the intermediaries accommodating an increase

in public investors’ demand to sell crash insurance. Examples of shocks to intermediary

constraints include stricter regulatory requirements on banks’ tail risk exposures (e.g.,

due to the Dodd-Frank Act or Basel III), or losses incurred by the intermediaries. To

further examine the risk sharing mechanism, we try to identify who among the public

investors (retail or institutional) are the “liquidity providers” during times of distress:

reducing the net amount of crash insurance acquired from financial intermediaries or even

providing insurance to the latter group. We answer this question by comparing public

investors’ demand in the markets of SPX vs. SPY options. SPY options are options on the
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SPDR S&P 500 ETF Trust, which has a significantly higher percentage of retail customers

than SPX options. Our results suggest that institutional public investors are the liquidity

providers during periods of distress.

Our paper builds on and extends the work of Garleanu, Pedersen, and Poteshman

(2009) (henceforth GPP) to incorporate the impact of supply shocks into the options

market. In a partial equilibrium setting, GPP demonstrate how exogenous public demand

shocks affect option prices when risk-averse dealers have to bear the inventory risks. In

their model, the dealers’ intermediation capacity is fixed, and the model implies a positive

relation between the public demand for options and the option premium. Unlike GPP, we

consider shocks to the intermediary constraint and the endogenous relations among public

demand for options, option pricing, and aggregate market risk premium.2 In the empirical

analysis, we try to separate the effects of public demand shocks and shocks to intermediary

constraints, and show that the latter is linked to the time-varying risk premia for a wide

range of financial assets. Our empirical strategy based on the price-quantity dynamics is

motivated by Cohen, Diether, and Malloy (2007), who use a similar strategy to identify

demand and supply shocks in the equity shorting market.

The recent financial crisis has highlighted the importance of understanding the potential

impact of intermediary constraints on the financial markets and the real economy. Following

the seminal contributions by Bernanke and Gertler (1989), Kiyotaki and Moore (1997),

and Bernanke, Gertler, and Gilchrist (1999), recent theoretical developments include

Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009), Geanakoplos (2009), He

and Krishnamurthy (2013), Adrian and Boyarchenko (2012), Brunnermeier and Sannikov

(2014), among others.

In contrast to the fast growing body of theoretical work, there is relatively little

empirical work on measuring intermediary constraints and studying their aggregate effects

on asset prices. The notable exceptions include Adrian, Moench, and Shin (2010) and

Adrian, Etula, and Muir (2014), who show that changes in aggregate broker-dealer leverage

is linked to the time series and cross section of asset returns. Our paper demonstrates a

2We present a general equilibrium model in the Online Appendix, which captures time-varying
intermediary constraints in reduced form and is quite tractable.
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new venue (the crash insurance market) to capture intermediary constraint variations and

study their effects on asset prices. Moreover, compared to intermediary leverage changes,

our measure has the advantage of being forward-looking and available at higher (daily and

monthly instead of quarterly) frequency.

The ability of option volume to predict returns has been examined in other contexts.

Pan and Poteshman (2006) show that option volume predicts near future individual stock

returns (up to 2 weeks). They find the source of this predictability to be the nonpublic

information possessed by option traders. Our evidence of return predictability applies to

the market index and to longer horizons (up to 4 months), and we argue that the source

of this predictability is time-varying intermediary constraints.

Finally, several studies have examined the role that derivatives markets play in the

aggregate economy. Buraschi and Jiltsov (2006) study option pricing and trading volume

when investors have incomplete and heterogeneous information. Bates (2008) shows how

options can be used to complete the markets in the presence of crash risk. Longstaff and

Wang (2012) show that the credit market plays an important role in facilitating risk sharing

among heterogeneous investors. Chen, Joslin, and Tran (2012) show that the market risk

premium is highly sensitive to the amount of sharing of tail risks in equilibrium.

2 Research Design

Our goal is to measure how constrained financial intermediaries are through the ways

they manage their exposures to aggregate tail risks. The market of DOTM SPX put

options are well-suited for this purpose. First, this market is large in terms of the economic

exposures it provides for aggregate tail risks.3 Second, compared to other over-the-counter

derivatives that also provide exposures to aggregate tail risks, the exchange-traded SPX

options have the advantages of better liquidity and almost no counterparty risk (other than

exchange failure). Third, the Options Clearing Corporation (OCC) classifies exchange

3For example, based on the data in December 2012, Johnson, Liang, and Liu (2016) estimate that
the change in value of index options outstanding is on the order of trillions of dollars following a severe
market crash, the majority of which contributed by out-of-money SPX puts.
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option transactions by investor types, which allows us to determine the net exposures of

the financial intermediaries and is essential for constructing our measure.

Specifically, the OCC classifies each option transaction into one of three categories

based on who initiates the trade. They include public investors, firm investors, and

market-makers. Transactions initiated by public investors include those initiated by retail

investors and those by institutional investors such as hedge funds. Trades initiated by firm

investors are those that securities broker-dealers (who are not designated market-makers)

make for their own accounts or for another broker-dealer. Since we focus on financial

intermediaries as a whole, it is natural to merge firm investors and market-makers as one

group and observe how they trade against public investors.

We classify DOTM puts as those with strike-to-price ratio K/S ≤ 0.85. For robustness,

we also consider different strike-to-price cutoffs, as well as cutoffs that adjust for option

maturity and the volatility of the S&P 500 index (which is similar to cutoffs based on

option delta). Another feature of option transaction is that an order can either be an

open order (to open new positions) or a close order (to close existing positions). We will

focus on open orders, because they are less likely to be mechanically influenced by existing

positions (see Pan and Poteshman, 2006).

We construct a measure of the public net buying-to-open volume for DOTM SPX puts

(abbreviated as PNBO). In period t (e.g., a day or a month), PNBOt is defined as

PBNOt ≡ public total open-buy volumet − public total open-sell volumet. (1)

PNBO represents the amount of new DOTM SPX puts bought (sold if negative) by public

investors in a period. Due to the growth in size of the options market, there could be a

time trend in the level or volatility of PNBO. Thus, we also consider normalizing PNBO

by the average monthly volume of all SPX options traded by public investors over the past
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three months,4

PNBONt ≡
PNBOt

Average monthly public SPX volume over past 3 months
. (2)

While PNBON helps address the potential issue with growth in the size of market,

PNBO has the advantage in that it better captures the actual magnitude of the tail risk

exposures being transferred between public investors and intermediaries, which matters for

measuring the degree of intermediary constraints. Considering this tradeoff, we conduct

all of our main analyses using both PNBO and PNBON .

It is well documented (see e.g., Bollen and Whaley, 2004) that, during normal times,

public investors are net buyers of index puts while financial intermediaries are net sellers.

All else equal, when financial intermediaries become more constrained, their willingness

to supply crash insurance to the market will be reduced. It is thus tempting to infer

how constrained financial intermediaries are based on the net amount of crash insurance

they sell to public investors each period, as captured by PNBO. However, besides weak

supply from constrained intermediaries, weak public demand can also cause the equilibrium

amount of crash insurance traded between public investors and intermediaries to be low.

The challenge is to separate the effects of supply from demand.

We address this problem in two ways, (1) by exploiting the price-quantity relation

to identify periods of “supply environments,” when variations in PNBO are likely to be

mainly driven by shocks to intermediary constraints, and (2) by the method of Rigobon

(2003), which achieves identification by exploiting the heteroskedasticity of demand and

supply shocks.

Before presenting the identification methodology, we briefly explain our “price” measure,

i.e., the expensiveness of SPX options. One would ideally like to calculate the difference

between the market price of an option and its hypothetical price without any market

frictions. The latter is not observable and can only be approximated by adopting a specific

pricing model. For simplicity and robustness, we use the variance premium (V P ) in

4For robustness check, we also define PNBON using past 12-month average public trading volume in
the denominator, which generates similar results.
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Bekaert and Hoerova (2014) as a proxy for overall expensiveness of SPX options, which is

the difference between VIX2 and the expected physical variance of the return of the S&P

500 index.5

2.1 Identification through the price-quantity relation

Our first empirical strategy is motivated by Cohen, Diether, and Malloy (2007) (CDM),

who identify shifts in demand vs. supply in the securities shorting market by examining the

relation between the changes in the loan fee (price) and the changes in the percentage of

outstanding shares on loan (quantity). In their setting, a simultaneous increase (decrease)

in the price and quantity indicates at least an increase (decrease) in shorting demand,

whereas an increase (decrease) in price coupled with a decrease (increase) in quantity

indicates at least a decrease (increase) in shorting supply.

The same logic applies to the options market. The demand pressure theory of GPP

predicts that a positive exogenous shock to the public demand for DOTM SPX puts forces

risk-averse dealers to bear more inventory risks. As a result, the dealers will raise the

price of the option (a move along the upward-sloping supply curve). Thus, demand shocks

generate a positive relation between changes in prices and quantities. Alternatively, if

there are intermediation shocks that tighten the constraints facing financial intermediaries

(e.g., due to loss of capital or higher capital requirements), they will become less willing

to provide crash insurance to public investors. Then, the premium for the DOTM SPX

puts rises while the equilibrium quantity of such options traded falls (a move along the

downward-sloping demand curve).

Different from CDM, we would like to identify periods of weak and strong supply

(level), instead of negative or positive supply shocks (changes). For this reason, we cannot

directly apply their identification strategy. However, the ability to identify supply and

demand shocks is still useful for our setting. Consider a month with low PNBO. If the

5The expected physical variance one month ahead (22 trading days) is computed using Model 8 in

Bekaert and Hoerova (2014): Ed

[
RV

(22)
d+1

]
= 3.730 + 0.108

V IX2
d

12 + 0.199RV
(−22)
d + 0.33 22

5 RV
(−5)
d + 0.107 ·

22RV
(−1)
d , where RV

(−j)
d is the sum of daily realized variances from day d− j + 1 to day d. The daily

realized variance sums squared 5-minute intraday S&P500 returns and the squared close-to-open return.
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price-quantity relations on a daily basis suggest mainly supply shocks in that month, then

the low PNBO is more likely to be driven by weak supply instead of weak demand.

Based on this idea, we run the following regression using daily data in each month t:

V Pi(t) = aV P,t + bV P,t PNBOi(t) + dV P,t Ji(t) + εvi(t), (3)

where i(t) denotes day i in month t. The presence of jumps in the underlying stock index

can affect V P even when markets are frictionless. Thus, when examining the relation

between V P and PBNO, we control for the level of jump risk J in the S&P 500 index

based on the measure of Andersen, Bollerslev, and Diebold (2007).

A negative coefficient bV P,t < 0 in month t suggests that supply shocks are the dominant

driver of price-quantity relations in that month, and we expect PNBO to be informative

about the variation in intermediary constraints during such times. The fact that bV P,t < 0

does not identify any particular supply shock, nor does it rule out the presence of demand

shocks in the same month. It does indicate that supply shocks are likely to be more

significant relative to demand shocks. Similarly, bV P,t > 0 does not rule out the presence

of supply shocks in a month, but demand shocks are likely to be more significant. During

such periods, we do not expect PNBO to be informative about supply conditions.

Furthermore, we expect high jump risk to amplify the effect of shocks to intermediary

constraints on the equilibrium quantity of options traded. This is because a main reason

that intermediary constraint matters for their supply of DOTM index puts is the difficulty

to hedge the market jump risk embedded in their inventory positions. If public demand

does not become more volatile during such times, variations in PNBO will be more

informative about shocks to intermediary constraints when jump risk is high. Whether

this assumption is valid or not is an empirical question.

In summary, in a month when the price-quantity relation is on average negative

(bV P,t < 0), we expect small (or negative) value for PNBOt (cumulative net-buying by

public investors for the month) to indicate tight intermediary constraints.
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2.2 Identification through heteroskedasticity

Besides the identification of “supply environments” based on the price-quantity relation,

an alternative method to identify supply shocks is through econometric identification.

One method suited for our study is identification through heteroskedasticity of Rigobon

(2003).6 Rigobon (2003) considers a standard linear supply-demand relationship between

prices (pt) and quantities (qt):

pt = b+ βqt + εt, (demand equation) (4a)

qt = a+ αpt + ηt, (supply equation) (4b)

where the volatilities of the supply and demand shocks are σε and ση, respectively. In

general, the residuals will be correlated with the independent variables in each equation

and the parameters will not be identified. Rigobon (2003) solves this identification problem

by considering regime-dependent heteroscedasticity of (ε, η). Supposing that there are

two regimes and the relative volatilities of the supply and demand shocks vary across the

regimes, the supply and demand equations can be identified.

In parallel to our empirical strategy motivated by CDM, we also identify demand and

supply shocks following the method of Rigobon (2003). There is suggestive evidence that

in the market for DOTM SPX puts supply shocks are more volatile relative to demand

shocks during the period of the U.S. financial crisis and the European sovereign debt crisis.

We thus date the low and high-supply volatility regimes accordingly, and use the price

and quantity measures discussed above to estimate the supply-demand system in (4a–4b).

The two identification methods presented in Section 2.1 and 2.2 have their respective

advantages. On the one hand, the Rigobon method has the advantage of being based

on a clean set of parametric assumptions, which helps with precise identification of the

supply equation and supply shocks. However, these assumptions might be restrictive and

potentially inconsistent with the data (e.g., the assumption about the linear relations

between prices and quantities, the number of volatility regimes, and whether other

6We thank an anonymous referee for this suggestion.
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parameters might change across these regimes, etc). On the other hand, the method based

on price-quantity relation does not identify the supply environment or supply shocks as

cleanly, but it imposes weaker assumptions on the demand and supply curve that likely

makes the results more robust.

After constructing our measures of intermediary constraints, we investigate how these

measures are linked to asset prices. According to the theory of financial intermediary

constraints (see e.g., Gromb and Vayanos (2002) and He and Krishnamurthy (2013)),

variations in the aggregate intermediary constraints not only affect option prices, but also

drive the risk premia of other financial assets. This theory implies that low PNBOt, when

occurring in a period dominated by supply shocks, should imply high future expected

excess returns on the market portfolio. That is, we expect b−r < 0 in the following predictive

regression:

rt+j→t+k = ar + b−r I{bV P,t<0} PNBOt + b+r I{bV P,t≥0} PNBOt + cr I{bV P,t<0} + εt+j→t+k (5)

where r denotes log market excess return, and the notation t+ j → t+ k indicates the

leading period from t+ j to t+ k (k > j ≥ 0). Similarly, we expect η̂t extracted from the

supply-demand system in (4a–4b) to predict future market excess returns as well,

rt+j→t+k = as + bsη̂t + εt+j→t+k (6)

where we expect bs ≤ 0. Besides the market portfolio, the predictability should apply to

other risky assets as well.

Finally, the empirical strategy and testable hypotheses above are mainly based on

economic intuition. In the Online Appendix, we present a dynamic general equilibrium

model featuring time-varying intermediary constraints. The model not only helps formalize

the main intuition, but generates more rigorous predictions about how intermediary

constraints affect the equilibrium price-quantity dynamics in the crash insurance market,

the aggregate risk premium, and intermediary leverage. Moreover, we can use the calibrated

model to examine the quantitative effects of intermediary constraints on asset prices.
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3 Empirical Results

We now present the empirical evidence connecting the option trading activities to the

constraints of the financial intermediaries and the risk premia in financial markets.

3.1 Data

Figure 1 plots the monthly time series of PNBO and its normalized version PNBON .

Consistent with the finding of Pan and Poteshman (2006) and GPP, the net public purchase

of DOTM SPX puts was positive for the majority of the months prior to the financial

crisis in 2008, suggesting that broker-dealers and market-makers were mainly supplying

crash insurance to public investors. A few notable exceptions include the period around

the Asian financial crisis (December 1997), Russian default and the financial crisis in Latin

America (November 1998 to January 1999), the Iraq War (April 2003), and two months in

2005 (March and November 2005).7

However, starting in 2007, PNBO became significantly more volatile.8 It turned

negative during the quant crisis in August 2007, when a host of quant-driven hedge

funds experienced significant losses. It then rose significantly and peaked in October

2008, following the Lehman Brothers bankruptcy. As market conditions continued to

deteriorate, PNBO plunged rapidly and turned significantly negative in the following

months. Following a series of government interventions, PNBO bottomed in April 2009,

rebounded briefly, and then dropped again in December 2009 when the Greek debt crisis

escalated. During the period from November 2008 to December 2012, public investors on

average sold 44,000 DOTM SPX puts to open new positions each month. In contrast, they

bought on average 17,000 DOTM SPX puts each month in the period from 1991 to 2007.

One reason that the PNBO series appears more volatile in the latter part of the sample

is that the options market (e.g., in terms of total trading volume) has grown significantly

7The GM and Ford downgrades in May 2005 might be related to the negative PNBO in 2005.
8One potential concern is that the volatility of PNBO may be non-stationary. If we apply the structural

break test of Andrews (1993) to the monthly realized volatility (computed from daily PNBO), we find
evidence for a break in the time trend in volatility at τ = March 2007 (Fmax = 50.4 > Fcrit,1% = 15.56).
Subsequent to this break, the point estimate of the time trend is negative, indicating that volatilities
declined (or at least didn’t continue to increase) from this point.
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Figure 1: Time Series of net public purchase for DOTM SPX puts. PNBO is the net
amount of deep-out-of-the-money (DOTM )(with K/S ≤ 0.85) SPX puts public investors buying-to-open
each month. PNBON is PNBO normalized by average of previous 3-month total volume from public
investors.“Asian” (1997/10): period around the Asian financial crisis. “Russian” (1998/11): period around
Russian default. “Iraq” (2003/04): start of the Iraq War. “Quant” (2007/08): the crisis of quant-strategy
hedge funds. “Bear Sterns” (2008/03): acquisition of Bear Sterns by JPMorgan. “Lehman” (2008/09):
Lehman bankruptcy. “TARP” (2008/10): establishment of TARP. “TALF1” (2008/11): creation of
TALF. “BoA” (2009/01): Treasury, Fed, and FDIC assistance to Bank of America. “TALF2” (2009/02):
increase of TALF to $1 trillion. “Euro” (2009/12): escalation of Greek debt crisis. “GB1” (2010/04):
Greece seeks financial support from euro and IMF. “EFSF” (2010/05): establishment of EFSM and EFSF;
110 billion bailout package to Greece agreed. “GB2” (2010/09): a second Greek bailout installment.
“Voluntary” (2011/06): Merkel agrees to voluntary Greece bondholder role. “Referendum” (2011/10):
further escalation of Euro debt crisis with the call for a Greek referendum.
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over time. As the bottom panel of Figure 1 shows, after normalizing PNBO with the

total SPX volume (see the definition in (2)), the PNBON series no longer demonstrates

visible trend in volatility.

Table 1 reports the summary statistics of the option volume and pricing variables

and their correlation coefficients. From January 1991 to December 2012, the public net

buying-to-open volume of DOTM SPX puts (PNBO) is close to 10,000 contracts per

month on average (each contract has a notional size of 100 times the index). In comparison,

the average total open interest for all DOTM SPX puts is around 0.9 million contracts

during the period from January 1996 to December 2012, which highlights the significant

difference between PNBO and open interest. The option volume measures have relatively

modest autocorrelations at monthly frequency (0.61 for PNBO and 0.48 for PNBON)

compared to standard return predictors such as dividend yield and term spread. The

correlation matrix in Panel B shows that the various quantity measures are negatively

related to variance premium (V P ). In addition, both PNBO and PNBON are negatively

correlated with the unemployment rate (see Table IA1 in the Internet Appendix).

Figure 2 provides information about the trading volume of SPX options at different

moneyness. Over our entire sample, put options account for 63% of the total trading

volume of SPX options. Among put options, out-of-the-money puts account for over 75%

of the total trading volume; in particular, DOTM puts (with K/S < 0.85) account for

23% of the total volume. These statistics demonstrate the importance of the market for

DOTM SPX puts.

While financial intermediaries can partially hedge the risks of their option inventories

through dynamic hedging, the hedge is imperfect and costly. This is especially true for

DOTM SPX puts, because they are highly sensitive to jump risk that are difficult to

hedge. To demonstrate this point, we regress put option returns on the returns of the

corresponding hedging portfolios at both weekly and daily horizons. We consider both

delta hedging (using the S&P 500 index) and delta-gamma hedging.9 The R2 of these

regressions demonstrate how effective the hedging methods are.

9We restrict the options to be between 15 and 90 days to maturity to ensure liquidity. For delta-gamma
hedging, we use at-the-money puts expiring in the following month in addition to the S&P500 index.
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Table 1: Summary Statistics and Correlation Coefficients

This table reports the summary statistics for the SPX options volume from public investors and

pricing variables in the empirical analysis. PNBO: public net open-buying volume of DOTM

puts (K/S ≤ 0.85). PNBON : PNBO normalized by average monthly public SPX volume over

past 12 months (in million contracts). PNBOND: public net open-buying volume of all SPX

options excluding DOTM puts. PNOI: public net open interest for DOTM SPX puts (in million

contracts). PNOIN : PNOI normalized by the total public open interest of all options (long

and short). J : monthly average of the daily physical jump risk measure by Andersen, Bollerslev,

and Diebold (2007). V P : variance premium based on Bekaert and Hoerova (2014). AC(1) is the

first order autocorrelation for monthly time series; pp-test is the p-value for the Phillips-Perron

test for unit root. Sample period: 1991/01 – 2012/12.

Panel A: Summary Statistics

mean median std AC(1) pp-test

PNBO (103 contracts) 10.00 9.67 51.12 0.61 0.00
PNBON (%) 0.56 0.53 1.07 0.48 0.00
PNBOND (103 contracts) 138.08 117.10 113.64 0.76 0.01
PNOI (103 contracts) 28.79 19.85 63.21 0.74 0.00
PNOIN (%) 0.18 0.15 0.36 0.70 0.00
J (%) 12.14 10.81 6.17 0.62 0.00
V P 19.37 14.56 21.66 0.54 0.00

Panel B: Correlation

PNBO PNBON PNBOND PNOI PNOIN J

PNBON 0.71
PNBOND 0.21 0.04
PNOI 0.67 0.48 0.33
PNOIN 0.58 0.59 0.23 0.90
J 0.03 0.03 0.08 0.16 0.12
V P −0.22 −0.15 −0.06 −0.07 −0.09 0.54
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Figure 2: Percentage of total put and call volumes at different moneyness. This
figure plots the total fraction of volume for calls and puts at different levels of moneyness
(measure by strike price, K, divided by spot price S). The height of each bar indicates
the fraction of the total market volume at that moneyness level, while the colors indicate
the breakdown within the strike between public (blue) and private (red) orders.

As Table 2 shows, with daily (weekly) rebalancing, delta hedging can capture around

72% (76%) of the return variation of ATM SPX puts, but only 41% (34%) of the return

variation of DOTM puts. With delta-gamma hedging, the R2 for ATM puts can exceed

90%, but it is still below 60% for DOTM puts. These results imply that when holding

non-zero inventories of DOTM SPX puts, financial intermediaries will be exposed to

significant inventory risks even after dynamically hedging these positions. It is because of

such inventory risks that financial intermediaries become more reluctant to supply crash

insurance to the public investors when they are more constrained.
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Table 2: Explaining Options Returns with Hedging Portfolios

This table shows the R2 from regressing option returns on hedging portfolios returns. The

dependent variables are the returns of put options with different moneyness. delta denotes the

returns on the delta hedging portfolio for the corresponding put option. delt+gam denotes the

returns on the delta-gamma hedging portfolio. Sample period: 1996 – 2012.

K
S
< 0.85 0.85 < K

S
< 0.95 0.95 < K

S
< 0.99 0.99 < K

S
< 1.01

delta delt+gam delta delt+gam delta delt+gam delta delt+gam
Weekly R2 0.34 0.54 0.45 0.75 0.59 0.86 0.76 0.91
Daily R2 0.41 0.59 0.46 0.74 0.56 0.82 0.72 0.87

3.2 Option volume and the expensiveness of SPX options

We start by investigating the link between PNBO and the expensiveness of SPX options as

proxied by the variance premium (V P ) in Bekaert and Hoerova (2014). Before constructing

the measure bV P,t in Equation (3) for the price-quantity relation based on daily data, we

first examine the relation between PNBO and V P at monthly frequency.

Table 3 reports the results. In both the cases of PNBO and PNBON , the coefficient

bV P is negative and statistically significant, consistent with the hypothesis that shocks to

intermediary constraints generate a negative relation between the equilibrium quantities

of DOTM SPX puts that public investors purchase and the expensiveness of SPX options.

The coefficient (-94.60) in the univariate regression suggests that a one standard deviation

decrease in PNBO is associated with an increase in V P of 4.82, a 25% increase relative to

the average variance premium. Similarly, a one standard deviation decrease in PNBON

is associated with a 3.15 unit increase in V P .

After adding the interaction between PNBO and the jump risk measure J into the

regression, the coefficient cV P of the interaction term is significantly negative, which

implies that PNBO and V P are more likely to be negatively related during times of

high jump risk, and that their relation can turn positive when jump risk is sufficiently

low. To understand the economic magnitude of the coefficient cV P , we can compare how

the marginal effect of PNBO on V P , bV P + cV PJ , changes for different levels of jump

risk. Our estimates imply that a one standard deviation decrease in PNBO is associated
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Table 3: PNBO and SPX Option Expensiveness

The dependent variable is V P . We use three different measures of the public net-buying volumes:

PNBO, PNBON , and PNBOND (public net buying volume of all SPX options excluding

deep-out-of-the-money puts). Standard errors in parentheses are computed based on Newey and

West (1987) with 6 lags. (∗∗∗,∗∗ ,∗ ) denote significance at 1%, 5%, and 10%, respectively. Sample

period: 1991/01 – 2012/12.

V Pt = aV P + bV P PNBOt + cV P Jt × PNBOt + dV P Jt + εvt

PNBO PNBON PNBOND

aV P 20.32∗∗∗ -2.83 -4.80 21.05∗∗∗ -1.88 -5.92 20.96∗∗∗ -1.13 -7.08
(2.60) (3.05) (3.17) (3.32) (3.35) (3.45) (3.35) (4.23) (7.40)

bV P -94.60∗∗ -101.57∗∗∗ 13.16 -2.94∗∗ -3.24∗∗∗ 4.51 -11.48 -20.22 11.43
(40.18) (24.13) (27.09) (1.39) (1.40) (2.80) (18.16) (13.73) (29.18)

cV P -6.83∗∗∗ -0.57∗∗ -2.33
(1.81) (0.24) (2.85)

dV P 1.91∗∗∗ 2.05∗∗∗ 1.90∗∗∗ 2.20∗∗∗ 1.92∗∗∗ 2.38∗∗∗

(0.31) (0.32) (0.35) (0.34) (0.38) (0.75)
R2 4.6 34.1 36.8 1.7 30.9 34.5 0.0 29.5 30.1

with an increase in V P of 1.41 when J is one standard deviation below its mean, while

the increase in V P is 5.71 when J is one standard deviation above its mean. Similar

calculations show that the marginal effect of PNBON on V P is even more sensitive to

J . The result is again consistent with the intermediary constraint theory, as the effects

of shocks to intermediary constraints on the supply of DOTM SPX puts by financial

intermediaries tend to strengthen when the aggregate tail risk is high.

In contrast, when we replace PNBO with the public net buying volume for all other

SPX options excluding DOTM puts (PNBOND), not only are the R2 of the regressions

smaller, but the regression coefficients bV P and cV P are no longer significantly different

from zero. As we have demonstrated in Table 2, DOTM SPX puts are more difficult

to hedge and hence expose intermediaries to higher inventory risks. Thus, the trading

activities of DOTM SPX puts are likely to be more informative about the fluctuations in

intermediary constraints compared to those for other options.

Garleanu, Pedersen, and Poteshman (2009) shows that exogenous public demand

shocks can generate a positive relation between net public demand for index options and

18



measures of option expensiveness. They find support for this prediction using data from

October 1997 to December 2001. Bollen and Whaley (2004) also find evidence of the

effects of public demand pressure on option pricing in daily data.

Our results above are not a rejection of the effect of demand shocks on option prices.

In Section 4.5, we replicate the results of Table 2 in GPP and show that the different time

periods is the main reason for the opposite signs of the price-quantity relation in the two

papers. Conceptually, the demand pressure theory and the intermediary constraint theory

share the common assumption of constrained intermediaries, and both can be at work in

the data. For instance, our results in Table 3 show that the price-quantity relation is more

likely to be negative (positive) when the jump risk in the market is high (low), indicating

that the supply (demand) effects tend to become dominant under such conditions.

Next, we estimate the monthly price-quantity relation measure bV P,t from regression (3)

using daily data. The fact that demand effects and supply effects are both present in

the data is again evident. Out of 264 months, the coefficient bV P,t is negative in 159

(significant at 5% level in 44 of them), and positive in 105 (significant at 5% level in 24

of them). These statistics suggest that, according to the price-quantity relation, shocks

to intermediary constraints are present in a significant part of our sample period. The

months that have significantly negative price-quantity relations include periods in the

Asian financial crisis, Russian default, the 2008 financial crisis, and several episodes during

the European debt crisis.10

3.3 Option volume and risk premia

We now examine the predictions from Section 2 linking PNBO and risk premia in the

financial markets.

For initial exploration, we run the basic univariate return-forecasting regression using

PNBO and PNBON . Table 4 shows that PNBO has strong predictive power for future

market excess returns up to 4 months ahead. The coefficient estimate br for predicting

10Table A1 in the Appendix provides more details, as well as a comparison between our strategy and a
direct application of the CDM method to identify supply environments.
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Table 4: Return Forecasts with PNBO

This table reports the results of the return forecasting regressions using PNBO and PNBON .

rt+j→t+k represents log market excess return from month t+ j to t+ k (k > j ≥ 0). Standard

errors in parentheses are computed based on Hodrick (1992). (∗∗∗,∗∗ ,∗ ) denote significance at

1%, 5%, and 10%, respectively. Sample period: 1991/01 – 2012/12.

rt+j→t+k = ar + br PNBOt + εt+j→t+k

Horizon br σ(br) R2 br σ(br) R2

PNBO PNBON

rt→t+1 -24.26∗∗∗ (7.04) 7.7 -0.92∗∗∗ (0.32) 4.8
rt+1→t+2 -19.03∗∗∗ (6.79) 4.8 -0.65∗∗ (0.28) 2.5
rt+2→t+3 -23.86∗∗∗ (7.64) 7.5 -0.75∗∗∗ (0.29) 3.2
rt+3→t+4 -18.05∗∗ (7.65) 4.3 -0.62∗∗ (0.29) 2.2
rt→t+3 -67.16∗∗∗ (18.96) 18.0 -2.32∗∗∗ (0.75) 9.4

one-month ahead market excess returns is −24.26 (t-stat of -3.45),11 with R2 of 7.7%.

For 4-month ahead returns (rt+3→t+4), the coefficient estimate is −18.05 and statistically

significant (t-stat of -2.36), and R2 drops to 4.3%. From 5 months out, the predictive

coefficient is no longer statistically significant. When we aggregate the effect for the

cumulative market excess returns in the next 3 months, the coefficient br is −67.16 (t-

stat of -3.54) and R2 is 18.0%. The economic significance that this coefficient estimate

implies is striking. A one-standard deviation decrease in PNBO is associated with a 3.4%

(non-annualized) increase in the future 3-month market excess return.

Figure 1 indicates that non-stationarity might be a potential concern for PNBO. The

autocorrelation of PNBO is only 0.61 and a Phillips-Perron test strongly rejects the

null of a unit root (see Table 1). However, non-stationarity may arise elsewhere, e.g.,

through the 2nd moment. For this reason, we also use the normalized PNBO to predict

market excess returns. Table 4 shows that, like PNBO, PNBON also predicts future

market returns negatively. The coefficient estimate br remains statistically significant

11All the standard errors for the return-forecasting regressions are based on Hodrick (1992). We provide
additional results on statistical inference in Table IA2 in the Internet Appendix, including Newey and
West (1987) standard errors with long lags, bootstrapped confidence intervals, and the test statistic of
Muller (2014). See Ang and Bekaert (2007) for further discussion on long-horizon statistical inference.
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up to 4 months ahead, but with lower R2 than PNBO at all horizons. The difference

in R2 between PNBON and PNBO shows that we should interpret the high R2 for

PNBO with caution, which could partially be due to its volatility trend. As for economic

significance, a one-standard deviation decrease in PNBON is associated with a 2.5%

increase in the future 3-month market excess return.

While PNBO shows predictive power for market risk premia in the full sample, theories

of intermediary constraints imply that the predictive power should be concentrated in

periods when variations in PNBO are mainly driven by changes in supply conditions.

In Section 2, we have proposed to identify supply environments based on the negative

price-quantity relation (bV P,t < 0), and we expect high level of jump risks (Jt) to also help

with identifying such environments under certain assumptions. Next, we examine how the

predictive power of PNBO changes in the sub-samples identified by bV P,t and Jt.

Table 5 shows that the predictive power of both PNBO and PNBON are indeed

stronger (in terms of both economic and statistical significance) during the periods of

negative price-quantity relation and during periods of high jump risks.12 For example,

when bV P,t < 0, a one-standard deviation decrease in PNBO (PNBON) is associated

with a 4.1% (3.0%) increase in the future 3-month market excess return. The coefficient

for PNBO becomes considerably smaller in the sub-sample when bV P,t is positive, and it

becomes insignificant for PNBON .

We then further split the full sample into 4 sub-sample periods based on the two

criteria (bV P,t < (≥)0, Jt < (≥)J̄).13 Table 5 shows that for both PNBO and PNBON ,

the predictive power is the strongest when bV P,t < 0 and the level of jump risk is high. If

bV P ≥ 0 and jump risk is low, then the coefficient br becomes positive and insignificant for

both measures, and the R2 drops to near zero.

In summary, the sub-sample results suggest that our strategy based on the price-

quantity relation does a good job identifying those periods when PNBO are connected to

12We set J̄ to the median for Jt in the full sample. This potentially introduces future information into
the return-forecasting regression. Our results are robust to changing J̄ to only using past information.

13While using the level of jump risk to split the sample is motivated by the difficulty to hedge tail risk,
the correlation between the two dummy variables of whether Jt and V Pt are above their respective sample
medians is 0.97 (the correlation between Jt and V Pt is 0.54), meaning we will obtain essentially the same
results if we split the samples based on V Pt.
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Table 5: Return Forecasts with PNBO: Sub-sample Results

This table reports the sub-sample results of the 3-month return forecasting regressions. Standard

errors in parentheses are computed based on Hodrick (1992). (∗∗∗,∗∗ ,∗ ) denote significance at

1%, 5%, and 10%, respectively. Sample period: 1991/01 – 2012/12.

rt→t+3 = ar + br PNBOt + εt+j→t+k

Sub-sample br σ(br) R2 br σ(br) R2 obs

PNBO PNBON

bV P,t < 0 -84.75∗∗∗ (26.16) 24.7 -2.67∗∗∗ (0.85) 12.3 159
bV P,t ≥ 0 -42.46∗∗ (19.65) 9.2 -1.58 (1.01) 4.3 105

Jt ≥ J̄ -87.49∗∗∗ (26.26) 26.8 -3.08∗∗∗ (0.98) 13.0 132
Jt < J̄ -33.80∗ (17.93) 6.0 -1.47∗ (0.81) 5.6 132

bV P,t < 0, Jt ≥ J̄ -114.11∗∗∗ (42.65) 32.4 -3.55∗∗∗ (1.19) 14.2 80
bV P,t < 0, Jt < J̄ -53.19∗∗∗ (18.61) 16.3 -1.95∗∗ (0.91) 12.1 79
bV P,t ≥ 0, Jt ≥ J̄ -60.98∗∗∗ (22.39) 20.8 -2.36∗∗ (1.16) 10.5 52
bV P,t ≥ 0, Jt < J̄ 17.53 (37.12) 1.3 0.50 (1.74) 0.4 53

variations in intermediary constraints and in turn the conditional market risk premia. For

the remainder of the paper, we use the regression specification (5), which summarizes the

sub-sample results succinctly.

To investigate whether the predictability results above are useful in forming real-

time forecasts, we follow Welch and Goyal (2008) and compute the out-of-sample R2

for PNBO and PNBON based on various sample-split dates, starting in January 1996

(implying a minimum estimation period of 5 years) and ending in December 2007 (with

a minimum evaluation period of 5 years). We consider the wide range of sample-split

dates because recent studies suggest that sample splits themselves can be data-mined

(Hansen and Timmermann (2012)). In forming the return forecasts, we first estimate the

predictability regression (5) during the estimation period (from date 1 to t), and then use

the estimated coefficients to forecast the 3-month future market excess return for t+ 1.

After obtaining all the return forecasts, we then compute the mean squared forecast errors

for the predictability model (MSEA) and the historical mean model (MSEN) in various
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Figure 3: Out-of-sample R2 and R2 from 5-year moving-window regressions.
This figures plots the out-of-sample R2 and R2 of 5-year moving windows from forecasting
3-month market excess returns based on the specification of (5). Panel A plots the out-
of-sample R2 as a function of the sample split date. Panel B plots the in-sample R2 as a
function of the end of 5-year moving windows.

evaluation periods that begin at the sample-split dates and end at the end of the full

sample. The out-of-sample R2 is given by

R̂2 = 1− MSEA
MSEN

.

Panel A of Figure 3 shows the results. PNBO achieves an out-of-sample R2 above

10% for all the sample splits and remains above 20% from 2003 onward. PNBON has

an an out-of-sample R2 above 5% for all the sample splits and remains above 10% in the

later period. All of the out-of-sample R2 are significant at the 5% level (1% level since

2000) based on the MSE-F statistic by McCracken (2007).

Panel B of Figure 3 plots the in-sample R2 from the predictive regressions of PNBO

and PNBON using 5-year moving windows. The two R2s vary significantly over time.

They are low at the beginning of the sample. Both R2 rise to near 18% in the period around

the Asian financial crisis and Russian default in 1997-98. During the 2008-9 financial crisis

period, the R2 rise above 40%. These high R2 for the return-forecasting regressions would

translate into striking Sharpe ratios for investment strategies that try to exploit such
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predictability. For example, Cochrane (1999) shows that the best unconditional Sharpe

ratio s∗ for a market timing strategy is related to the predictability regression R2 by

s∗ =

√
s20 +R2

√
1−R2

,

where s0 is the unconditional Sharpe ratio of a buy-and-hold strategy. Assuming the

Sharpe ratio of the market portfolio is 0.5, then an R2 of 40% implies a Sharpe ratio for

the market timing strategy that exceeds 1. Such high Sharpe ratios could persist during

the financial crisis because of the presence of severe financial constraints that prevent

arbitrageurs from taking advantage of the investment opportunities.

Theories of intermediary constraints argue that variations in the constraints not only

will affect the risk premium of the market portfolio, but also the risk premia on any

financial assets for which the financial intermediaries are the marginal investor. Having

examined the ability of PNBO to predict future market excess returns, we now apply the

predictability regressions to other asset classes.

Among the assets we consider are (1) high-yield corporate bonds (based on the Barclays

U.S. Corporate High Yield total return index), (2) hedge funds (based on the HFRI fund-

weighted average return index), (3) carry trade (constructed by Lustig, Roussanov, and

Verdelhan, 2011, using the exchange rates of 15 developed countries), (4) commodity

(based on the Goldman Sachs commodity index excess return series), (5) the 10-year US

Treasury, and (6) variance swap for the S&P 500 index returns (with the excess return

defined as the log ratio of the realized annualized return variance over the swap rate; see

e.g., Carr and Wu, 2009).14

As benchmark, the first row of Table 6 restates the predictability results for equity

(market excess returns). It then shows that, our constraint measures predict the future

excess returns for a variety of assets besides equity. In periods with bV P,t < 0, PNBO

predicts negatively and statistically significantly (at least at the 10% level) the future

3-month returns of high yield bonds, hedge funds, carry trade, and commodity (for

14Data for the returns on high yield bonds, commodity, and hedge funds are from Datastream. Govern-
ment bond return data are from Global Financial Data.
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Table 6: Return Forecasts for Various Financial Assets

This table reports the results of forecasting future excess returns on a variety of assets. All

excess returns are in percentages except those for variance swap, which are divided by 100 for

scaling. Standard errors in parentheses are computed based on Hodrick (1992). (∗∗∗,∗∗ ,∗ ) denote

significance at 1%, 5%, and 10%, respectively. Sample period: 1991/01 – 2012/12.

rt→t+3 = ar + b−r I{bV P,t<0} PNBOt + b+r I{bV P,t≥0} PNBOt + cr I{bV P,t<0} + εt→t+3

Asset Class b−r b+r R2 b−r b+r R2

PNBO PNBON

Equity -84.75∗∗∗ -42.46∗∗ 19.8 -2.67∗∗∗ -1.58 9.9
(26.16) (19.65) (0.85) (1.01)

High Yield -55.23∗∗∗ -35.26∗∗ 22.2 -1.37∗∗∗ -1.99∗∗∗ 11.0
(21.37) (15.55) (0.50) (0.66)

Hedge Fund -32.48∗∗∗ -18.98∗ 11.6 -1.01∗∗∗ -0.40 5.4
(10.67) (9.82) (0.33) (0.44)

Carry Trade -38.34∗∗ -23.10 9.1 -0.47 -0.88 2.0
(18.13) (14.20) (0.43) (0.62)

Commodity -71.54∗ -43.70 8.1 -1.30 -1.80 2.3
(42.26) (30.19) (0.94) (1.34)

10-Year Treasury 20.57∗∗ 10.76 5.5 0.79∗∗ 0.37 3.8
(8.92) (10.65) (0.33) (0.45)

Variance Swap (×1%) 13.64∗∗∗ 4.82∗∗ 21.2 0.38∗∗∗ 0.25∗∗ 9.5
(4.02) (2.16) (0.11) (0.11)

PNBON , the coefficient b−r for carry trade and commodity returns are still negative but

insignificant). Thus, like the market portfolio, the risk premia on these assets tend to

rise when the intermediary constraints tighten. The predictive power of PNBO on these

asset returns is also economically significant. For example, in a supply environment, a one

standard deviation decrease of PNBO is associated with a 2.8% and 1.6% increase in the

subsequent 3-month expected excess returns of the high-yield bond index and the hedge

fund index, respectively.

Next, both for PNBO and PNBON , the predictive coefficient b−r is positive and

significant for the 3-month excess returns of the 10-year Treasury and the S&P 500

variance swap. Here, a one standard deviation decrease of PNBO in a supply environment

is associated with a 1% and 68% decrease in the subsequent 3-month expected excess
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returns of 10-year Treasuries and variance swaps, respectively. The result on Treasuries is

consistent with Fontaine and Garcia (2012), who find the deterioration in funding liquidity

predicts lower risk premia for Treasuries. Intuitively, when financial intermediaries become

constrained, Treasury values tend to rise (“flight to quality”) as does the volatility in the

market. Thus, Treasuries and (pay-fix) variance swaps provide a hedge against negative

shocks to intermediary constraints.

3.4 An alternative hypothesis

The above return predictability results have two alternative interpretations. It is possible

that financial intermediaries become more constrained when the market risk premium

rises (e.g., due to higher aggregate uncertainty in the real economy), which in turn reduces

their capacity to provide market crash insurance to public investors. As a result, a low

PNBO today would be associated with high future market returns, even though a tighter

intermediary constraint does not cause the market risk premium to rise in this case.

Alternatively, it is possible that intermediary constraints directly affect the aggregate

market risk premium, which is a central prediction in intermediary asset pricing theories.

To distinguish between these two interpretations, we compare PNBO against a number

of financial and macro variables that have been shown to predict market returns. If PNBO

is merely correlated with the standard risk factors and does not directly affect the risk

premium, then the inclusion of the proper risk factors into the predictability regression

should drive away the predictive power of PNBO. The variables we consider include the

difference between implied and historical volatility used in Bollerslev, Tauchen, and Zhou

(2009) (IV RV ), the log dividend yield (d− p) of the market portfolio, the log net payout

yield (lcrspnpy) by Boudoukh, Michaely, Richardson, and Roberts (2007), the Baa-Aaa

credit spread (DEF), the 10-year minus 3-month Treasury term spread (TERM), the tail

risk measure (Tail) by Kelly and Jiang (2014), the slope of the implied volatility curve

(IVSlope), and the consumption-wealth ratio measure (ĉay) by Lettau and Ludvigson

(2001). All the variables are available monthly except for ĉay, which is at quarterly

frequency.
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Table 7 shows that, with the inclusion of the various competing variables, the predictive

coefficient b−r remains significantly negative and remarkably stable in magnitude for both

PNBO and PNBON . Comparing the R2 from the regressions in Table 7 and the

regression with only PNBO (or PNBON) (first row, Table 6), we see that the incremental

explanatory power for future market excess returns mostly comes from PNBO (PNBON)

interacted with the price-quantity relation indicator.15

In summary, the results from Table 7 show that the option trading activities of public

investors and financial intermediaries contain unique information about the market risk

premium that is not captured by the standard macro and financial factors. This result is

consistent with the theories of intermediary constraints driving asset prices. Of course,

the evidence above does not prove that intermediary constraints actually drive aggregate

risk premia. It is possible that PNBO is correlated with other risk factors not considered

in our specifications.

3.5 Option volume and measures of funding constraints

We have presented evidence linking PNBO negatively with option expensiveness and

market risk premium when IbV P,t<0, which is consistent with the interpretation that low

PNBO is a sign of tight intermediary constraints. Thus, IbV P,t<0 × PNBONt can be

viewed as a measure of intermediary constraint. We now compare this measure to several

measures of financial intermediary funding constraints proposed in the literature.

These measures include the year-over-year change in broker-dealer leverage advocated

by Adrian, Moench, and Shin (2010) (∆lev), the fixed-income market based funding

liquidity measure by Fontaine and Garcia (2012) (FG), the TED spread (TED, the

difference between 3-month LIBOR and 3-month T-bill rate), and the LIBOR-OIS spread

(LIBOR-OIS, the difference between 3-month LIBOR and 3-month overnight indexed swap

15In theory, variation in risk premium due to intermediary constraints should affect variables such as
the dividend-price ratio. The reason that d − p does not show significant predictive power in Table 7
in the presence of PNBO could be that d − p is affected by both the variations in discount rates and
expected dividend growth, and that transitory fluctuations in the discount rate caused by fluctuations in
intermediary constraints have limited effects on prices.
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Table 7: Return Forecasts with PNBO and Other Predictors

The table reports the results of forecasting 3-month market excess returns with PNBO and

other predictors, including the difference between implied and historical volatility in Bollerslev,

Tauchen, and Zhou (2009) (IVRV), log dividend yield (d− p), log net payout yield (lcrspnpy),

Baa-Aaa credit spread (DEF), term spread (TERM), tail risk measure (Tail), implied volatility

slope (Slope) and the quarterly consumption-wealth ratio (ĉay). Standard errors (in parentheses)

are computed based on Hodrick (1992). (∗∗∗,∗∗ ,∗ ) denote significance at 1%, 5%, and 10%,

respectively. Sample period: 1991 – 2012, except for lcrspnpy and Tail (1991 – 2010), and

IVSlope (1996 – 2012).

rt→t+3 = ar + b−r I{bV P,t<0} PNBOt + b+r I{bV P,t≥0} PNBOt + cr I{bV P,t<0} + dr Xt + εt→t+3

Panel A: PNBO

I{bV P,t<0} PNBOt -77.22∗∗∗ -82.44∗∗∗ -94.46∗∗∗ -85.81∗∗∗ -87.33∗∗∗ -90.86∗∗∗ -75.80∗∗∗ -80.13∗∗∗ -62.70∗∗∗

(26.09) (26.66) (30.95) (26.61) (26.96) (31.35) (24.59) (31.40) (22.71)
I{bV P,t≥0} PNBOt -18.50 -37.81∗ -47.38∗∗ -44.73∗∗ -46.26∗∗ -47.54∗∗ -36.40∗ -14.42 -59.22

(20.16) (20.21) (22.76) (21.02) (20.32) (22.94) (19.84) (27.59) (37.45)
IVRV 0.10∗∗∗ 0.13∗∗∗

(0.04) (0.04)
d− p 3.54 11.39

(3.20) (7.75)
lcrspnpy 6.19 7.75

(4.89) (8.10)
DEF -1.58 -5.96

(3.03) (3.83)
Term -0.63 -0.63

(0.71) (0.83)
Tail 30.56 -52.06

(35.02) (47.76)
IVSlope 0.29 0.17

(0.26) (0.29)
ĉay 92.71∗∗

(46.30)
R2 25.2 21.3 22.9 20.4 20.6 20.8 22.4 39.2 19.9

Panel B: PNBON

I{bV P,t<0} PNBONt -2.50∗∗∗ -2.42∗∗∗ -2.47∗∗∗ -2.70∗∗∗ -2.65∗∗∗ -2.56∗∗∗ -2.63∗∗∗ -2.06∗∗∗ -2.07∗∗

(0.85) (0.85) (0.89) (0.86) (0.85) (0.89) (1.00) (1.08) (0.86)
I{bV P,t≥0} PNBONt -0.85 -1.20 -1.41 -1.78 -1.61 -1.60 -1.17 0.06 -4.81∗

(1.01) (1.05) (1.12) (1.08) (1.02) (1.11) (1.08) (1.32) (2.60)
IVRV 0.13∗∗∗ 0.15∗∗∗

(0.04) (0.04)
d− p 3.13 13.63

(3.17) (7.42)
lcrspnpy 3.13 1.51

(5.02) (7.92)
DEF -1.71 -5.57

(3.03) (3.89)
Term -0.27 -0.10

(0.67) (0.85)
Tail 26.94 -38.27

(34.87) (46.84)
IVSlope 0.36 0.33

(0.28) (0.31)
ĉay 108.03∗∗

(46.11)
R2 19.2 10.7 9.7 10.3 9.7 9.7 14.5 32.5 17.7

28



rate).16 TED spread and LIBOR-OIS spread measure the credit risk of banks.

We first run OLS regressions of our constraint measure on the funding constraint

measures in the literature. As Panel A of Table 8 shows, TED spread is significantly

positively related to IbV P,t<0 × PNBOt, but insignificantly related to IbV P,t<0 × PNBONt.

The positive relation between TED spread and IbV P,t<0 × PNBOt is mainly due to the

fact that PNBO rose significantly along with the TED spread during the early part of

the financial crisis. Subsequently, while PNBO becomes lower (and turned significantly

negative), the TED spread also fell and then remained at low levels. This result points

out a potential weakness of TED spread (and LIBOR-OIS) as a measure of funding

constraint. TED spread could become lower due to banks reducing their own credit risk

through deleveraging, reducing risk taking, and buying crash insurance, but that does not

necessarily imply banks are less constrained (could be the opposite).

Next, our constraint measure is significantly negatively related to the measure FG. This

is consistent with FG’s interpretation that financial intermediaries are more constrained

(low PNBO) in periods when the value of funding liquidity is high (high FG). In the

quarterly regression, our constraint measure is significantly positively related to the growth

rate in broker-dealer leverage ∆lev. That is, intermediary constraint tends to be tight

(low PNBO) when broker-dealers are de-leveraging (low ∆lev).17

In Panel B of Table 8, we further examine the ability of the various funding constraint

measures to predict aggregate market returns. Adrian, Moench, and Shin (2010) show

that ∆lev has strong predictive power for excess returns on stocks, corporate bonds, and

treasuries. In a univariate regression (unreported) with ∆lev, we find similar results in our

sample period. When joint with our constraint measure, the coefficient on ∆lev becomes

insignificant in the case of PNBO and marginally significant in the case of PNBON ,

while b−r remains significant. Similarly, when the other funding constraint measures are

used in place of ∆lev, the coefficient b−r is always highly significant. These results suggest

that relative to other funding constraint measures, our intermediary constraint measure

16We also examine the funding constraint measure by Hu, Pan, and Wang (2013) and the CBOE VIX
index (VIX). Neither of them is statistically significantly related to PNBO.

17He, Kelly, and Manela (2017) show that the leverage of commercial banks became higher during the
financial crisis while that of broker-dealers fell.
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Table 8: PNBO and Measures of Funding Constraints

Panel A reports the results of the OLS regressions of IbV P,t<0 × PNBOt on measures of funding

constraints. Panel B reports the results of return predictability regressions with PNBO and

funding constraint measures. TED is the TED spread; LIBOR-OIS is the spread between 3-month

LIBOR and overnight indexed swap rates; FG is the funding liquidity measure by Fontaine and

Garcia (2012); ∆lev is the broker-dealer balance sheet growth measure by Adrian, Moench, and

Shin (2010). Standard errors (in parentheses) are computed based on Newey and West (1987)

with 3 lags. (∗∗∗,∗∗ ,∗ ) denote significance at 1%, 5%, and 10%, respectively. Sample period: 1991

– 2012, except for the regressions with LIBOR-OIS (2002 – 2012).

Panel A: IbV P,t<0 × PNBOt = a+ b Xt + et

PNBO PNBON

TED 22.04∗∗ 0.56
(10.57) (147.30)

LIBOR-OIS 0.25 -0.17
(0.16) (2.04)

FG -4.89∗∗ -200.65∗∗∗

(2.32) (77.30)
∆lev 42.59∗∗ 50.86∗∗

(16.68) (23.18)
R2 4.3 2.9 1.5 8.9 0.0 0.0 4.4 3.4

Panel B: rt→t+3 = ar + b−r I{bV P,t<0} PNBOt + b+r I{bV P,t≥0} PNBOt + cr IbV P,t<0 + dr Xt + εt→t+3

PNBO PNBON

I{bV P,t<0} PNBOt -79.97∗∗∗ -75.91∗∗∗ -83.52∗∗∗ -53.78∗∗ -2.62∗∗∗ -3.81∗∗∗ -2.57∗∗∗ -1.63∗∗

(24.66) (23.94) (26.65) (22.47) (0.84) (1.23) (0.85) (0.83)
I{bV P,t≥0} PNBOt -34.84∗ -38.41∗∗ -42.00∗∗ -37.02 -1.38 -3.07∗∗ -1.50 -3.69

(19.34) (19.37) (19.65) (40.89) (1.02) (1.27) (1.01) (2.79)
TED -2.44 -4.83

(3.19) (3.25)
LIBOR-OIS -0.05 -0.08

(0.05) (0.05)
FG 0.50 0.24

(0.88) (0.86)
∆Lev -4.76 -5.82∗

(3.51) (3.41)
R2 20.4 34.9 19.6 19.9 14.4 33.1 9.6 18.9
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contains unique information about conditional market risk premia.

3.6 Econometric identification of supply shocks

Since equilibrium prices and quantities are jointly determined by supply and demand, a key

element in establishing a causal link between supply and risk premia would be a method of

identifying exogenous shocks to supply. Rigobon (2003) solves the identification problem

in the supply and demand equations (4a–4b) through heteroscedasticity. We implement

this method using V P as the price variable and PNBO (or PNBON) as the quantity

variable. Following Rigobon (2003) (who uses crisis periods in debt markets to identify

movement in bond markets in Latin America), we consider the high supply volatility

(relative to demand volatility) regime for our identification as the period from September

2008 (the Lehman default) to November 2011 (cancellation of Greek referendum). The

second regime is the remainder of our sample.

The results of the estimation are shown in Table 9. We see when using either PNBO

or PNBON as the quantity measure, there is a statistically significant positive (negative)

slope for the supply (demand) curve. The point estimates indicate that a one-standard

deviation increase in the variance premium (an increase of 21.7) is associated with an

increased quantity of 103,000 deep out-of-the-money put contracts, which represents an

increase of 2.02 standard deviations to the equilibrium quantity. In terms of the normalized

measure PNBON , a one-standard deviation increase in the variance premium results in

an increased quantity of 5.8% times the trailing 3-month volume of SPX options.

Table 10 reproduces the predictability results of Table 4 replacing PNBO and PNBON

with the extracted supply shocks and normalized supply shocks.18 The extracted supply

shock is strongly related to PNBO with a correlation of 0.71. Overall, the predictability

with the extracted shocks is very similar to what we found with PNBO and PNBON ,

which reinforces our interpretation of the results.

However, we temper this evidence with a caveat based on the assumptions of the

18In the regression, we use the Hodrick (1992) standard errors to be consistent with the remainder of
the paper, which do not correct for the error in variables associated with uncertainty in the parameters
used to extract the supply shocks.
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Table 9: Supply-demand estimation

This table reports parameter estimates from estimation of the supply-demand system given by

Demand: V Pt = b+ β · PNBOt + εt,

Supply: PNBOt = a+ α · V Pt + ηt,

using the econometric identification of Rigobon (2003). The η and ε are uncorrelated with

regime-dependent volatilities. We set the high supply volatility regime to be from September

2009 to November 2011. Standard errors are computed by bootstrap. Sample period: 1991/01 –

2012/12. (∗∗∗,∗∗ ,∗ ) denote significance at 1%, 5%, and 10%, respectively; 1-sided p-values are

computed for α and β.

PNBO PNBON

b 25.9∗∗∗ (3.96) 55.5∗ (34.8)
β −0.0823∗ (0.0541) −4.63∗∗ (2.37)
a −655∗ (340) −63.4 (53.5)
α 0.00477∗∗ (0.00276) 0.269∗∗ (0.12)

methodology and its application to our setting. The method used here to identify supply

shocks assumes linear and stationary supply/demand relationships, and zero correlation

between supply and demand shocks.19 The results are likely sensitive to these assumptions.

4 Robustness Checks

In this section, we report the results of several robustness checks for our main results.

4.1 Financial crisis

One potential concern regarding the predictive power of PNBO is that it might be driven

by a small number of outliers, in particular the 2008-09 financial crisis. To address this

concern, Table 11 reports the results of the return-forecasting regressions in two sub-

samples: pre-crisis (1991/01-2007/11) and post-crisis (2009/06-2012/12). The predictive

powers of PNBO and PNBON remain statistically significant in both sub-samples. The

19One could easily imagine non-linear relationships (such as a dependency on the level of jump risk) or
slope coefficients that vary with the volatility regime, as well as non-zero correlation between supply and
demand shocks due to exogenous factors simultaneously driving supply and demand.
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Table 10: Return Forecasts with supply shocks

This table reports the results of the return forecasting regressions using supply shocks extracted

using the econometric identification of Rigobon (2003). We set the high supply volatility regime

to be from September 2009 to November 2011. rt+j→t+k represents log market excess return

from month t+ j to t+ k (k > j ≥ 0). Standard errors (in parentheses) are computed based on

Hodrick (1992). (∗∗∗,∗∗ ,∗ ) denote significance at 1%, 5%, and 10%, respectively. Sample period:

1991/01 – 2012/12.

rt+j→t+k = as + bsη̂t + εt+j→t+k

Horizon br σ(br) R2 br σ(br) R2

PNBO supply shocks PNBON supply shocks

rt→t+1 -5.80∗ ( 3.25) 2.7 -0.19∗∗ ( 0.08) 2.8
rt+1→t+2 -5.23 ( 3.30) 2.2 -0.14∗∗ ( 0.07) 1.7
rt+2→t+3 -7.92∗∗∗ ( 2.83) 5.1 -0.06 ( 0.06) 0.3
rt+3→t+4 -6.32∗∗ ( 3.02) 3.2 -0.02 ( 0.06) 0.0
rt→t+3 -18.80∗∗ ( 7.48) 8.8 -0.39∗∗ ( 0.16) 3.8

economic significance of the predictive power is weaker in the pre-crisis period than in the

full sample (in terms of smaller magnitude of b−r and lower R2), but it is quite strong in the

post-crisis period. Thus, the predictive power of our measure of intermediary constraint

is not just a crisis phenomenon. The weaker predictive power for PNBO in the earlier

sample period could be due to the fact that intermediary constraints are not as significant

and volatile in the first half of the sample. Another reason might be that the SPX options

market was less developed in the early periods and did not play as important a role in

facilitating risk sharing as it does today.

4.2 Moneyness

Next, we examine how the predictive power of PNBO changes based on option moneyness.

Our baseline definition of DOTM puts uses a simple cutoff rule K/S ≤ 0.85. Panel A

of Figure 4 plots the coefficient b−r and the confidence intervals as we change this cutoff

value for SPX puts. The coefficient b−r in the return forecast regression is significantly

negative for a wide range of moneyness cutoffs. The point estimate of b−r does become

more negative as the cutoff becomes smaller. Because DOTM puts are more difficult to
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Table 11: Return Forecasting Outside the Financial Crisis

This table reports the 3-month return forecasting results outside the financial crisis. Standard

errors (in parentheses) are computed based on Hodrick (1992). (∗∗∗,∗∗ ,∗ ) denote significance at

1%, 5%, and 10%, respectively. Pre-crisis: 1991/01 - 2007/11. Post-crisis: 2009/06 - 2012/12.

rt→t+3 = ar + b−r I{bV P,t<0} PNBOt + b+r I{bV P,t≥0} PNBOt + cr I{bV P,t<0} + εt→t+3

b−r b+r R2 b−r b+r R2

PNBO PNBON

Pre-crisis -66.50∗∗ 21.91 3.8 -1.85∗∗ -0.12 5.3
(27.53) (22.90) (0.92) (1.12)

Post-crisis -50.88∗∗ -15.73 17.4 -4.87∗∗ -1.02 19.6
(25.72) (33.42) (2.39) (3.61)

hedge than ATM puts, they expose financial intermediaries to more inventory risks. Hence,

PNBO measure based on DOTM puts should be more informative about intermediary

constraints and in turn the aggregate risk premium than PNBO based on ATM puts. At

the same time, because far out-of-money options are less liquid, the PNBO series becomes

more noisy when we further reduce the cutoff, which widens the confidence interval on b−r .

In contrast, Panel B shows that for essentially all moneyness cutoffs, PNBO based on

SPX call options does not predict market returns.

A feature of our definition of DOTM puts above is that a constant strike-to-price cutoff

implies different actual moneyness (e.g., as measured by option delta) for options with

different maturities. A 15% drop in price over one month might seem very extreme in

calm periods, but it is more likely when market volatility is high. For this reason, we

also examine a maturity-adjusted moneyness definition. Specifically, we classify a put

option as DOTM when K/S ≤ 1 + kσt
√
T , where k is a constant, σt is the daily S&P

return volatility in the previous 30 trading days, and T is the days to maturity for the

option. This is similar to using option delta to define moneyness, but does not require

a particular pricing model to compute the delta. Panel C of Figure 4 shows that this

alternative classification of DOTM puts produces qualitatively similar results as our simple

cutoff rule. Panel D shows again that PNBO based on SPX calls and this alternative
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Figure 4: Predictive power of PNBO at different moneyness. This figure plots the
point estimate and 95% confidence interval (based on Hodrick (1992) standard errors)
for the coefficient b−r from regression (5) forecasting 3-month market excess returns. In
Panels A and B, option moneyness is measured by the level of strike-to-price ratio K/S.
In Panels C and D, option moneyness is measured by K/S relative to daily volatility of
S&P returns scaled by the square root of days to maturity (see Section 4.2).

moneyness cutoff does not predict returns.

4.3 Volume vs. open interest

In our construction of PNBO, we focus on the net amount of new DOTM index puts

that public investors buy in a period. An alternative way to gauge the economic exposure

for public investors and financial intermediaries is to examine the net open interest for

the two groups. Between new volume and open interest, which one better represents the

degree of intermediary constraints?

We use the volume-based measure in our main analysis for a few reasons. The first

reason is data limitation, as CBOE does not provide daily long and short open interest
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data after 2001. Second, when financial intermediaries become constrained, it is likely

easier (e.g., due to transaction costs) to adjust the quantity of new DOTM puts traded

than to change their established positions. That would make the volume-based measure

more sensitive to changes in intermediary constraints than open interest-based measure.

Third, taking on an option position that is originally near the money but later becomes

DOTM due to market movements is different from taking on a new DOTM option. In the

former case, the intermediaries can put on hedges against tail risk over time, which again

means these positions are less sensitive to changes in intermediary constraints.

Nonetheless, we provide two robustness checks. First, we examine an alternative

measure based on the end-of-month public net open interest for DOTM SPX puts (PNOI).

The results are discussed below. Second, we construct a PNBO measure using only one-

month options, for which the monthly measures of net volume and open interest are

equivalent. We find that the main results hold for the measure based on short-dated

options (see Table IA4 in the Internet Appendix).

For the period of 1991 to 2001, we use daily long and short open interest provided by

CBOE to compute PNOI. From 2001 onward, we compute daily net open interest from

the volume information as follows:

NOIK,Td = NOIK,Td−1 + openBuyK,T
d − openSellK,Td + closeBuyK,T

d − closeSellK,Td , (7)

where NOIK,Td is the public investor net open interest of options with strike price K and

maturity T on day d, openBuy is the public investor buying volume from initiating long

positions, openSell is the selling volume from initiating short, closeBuy is the buying

volume from closing existing short positions, and closeSell is the selling volume from closing

existing long positions. We then aggregate NOIK,Td to compute daily net open interest of

DOTM puts (PNOI). We also consider a normalized version of PNOI (PNOIN), which

is PNOI divided by the sum of public long and short open interest for all SPX options.

Table 1 shows that the end-of-month PNOI is around 29,000 contracts on average,

and PNOI has higher autocorrelation than PNBO. Table 12 shows that, like PNBO,

PNOI predicts future market excess returns negatively in the periods with bV P,t < 0, with
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Table 12: Return Forecasts with PNOI

This table reports the results of the return forecasting regressions using PNOI and PNOIN .

Standard errors (in parentheses) are computed based on Hodrick (1992). (∗∗∗,∗∗ ,∗ ) denote

significance at 1%, 5%, and 10%, respectively. Sample period: 1991/01 – 2012/12.

rt+j→t+k = ar + b−r I{bV P,t<0} PNOIt + b+r I{bV P,t≥0} PNOIt + crI{bV P,t<0} + εt+j→t+k

Horizon b−r b+r R2 b−r b+r R2

PNOI PNOIN

rt→t+1 -25.10∗∗∗ -11.72 8.1 -3.71∗∗∗ -1.23 5.6
(8.65) (7.93) (1.11) (1.17)

rt+1→t+2 -19.79∗∗ -1.65 5.3 -2.11∗ -0.25 2.7
(9.59) (4.72) (1.17) (0.99)

rt+2→t+3 -19.34∗∗ -4.67 4.5 -2.21∗∗ -0.26 2.0
(7.73) (7.66) (0.97) (1.19)

rt+3→t+4 -9.75 -17.17∗ 4.2 -1.32 -2.32∗ 2.4
(6.85) (9.18) (0.96) (1.29)

rt→t+3 -64.22∗∗∗ -18.05 14.7 -8.03∗∗∗ -1.74 7.8
(23.47) (13.50) (2.68) (2.28)

significant coefficient b−r up to 3 months in the future. The R2 of the regressions are also

similar to PNBO. Additional sub-sample results for PNOI are provided in Table IA5.

4.4 Public investors: retail vs. institutional

As Figure 1 shows, while financial intermediaries typically sell DOTM SPX puts to public

investors during normal times, the roles are often reversed during crisis times, most notably

during the 2008-09 financial crisis. To understand the risk sharing mechanism between

financial intermediaries and public investors, it is informative to find out who among the

public investors are the “liquidity providers,” reducing the demand for crash insurance

or even providing insurance to the intermediaries when the latter become constrained.

The SPX volume data from CBOE do not provide further information about the types of

public investors behind a given transaction (e.g., retail vs. institutional investors). We

tackle this question by comparing the trading activities of the public investors in SPX
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options with those in SPY options.

While SPX and SPY options have essentially identical underlying asset, it is well

known among practitioners that institutional investors account for a significantly higher

percentage of the trading volume of SPX options than do SPY options. Compared to

retail investors, institutional investors prefer SPX options due to a larger contract size (10

times as large as SPY), cash settlement, more favorable tax treatment, as well as being

more capable of trading in between the relatively wide bid-ask spreads of SPX options

due to stronger bargaining power. We construct PNBOSPY for SPY options using the

same procedure as PNBO, which covers the period from 2005/05 to 2012/12. While SPX

options trade exclusively on the CBOE, SPY options are cross-listed at several option

exchanges. PNBOSPY aggregates the volume from the CBOE and International Securities

Exchange (ISE), which account for about half of the total trading volume for SPY options.

Figure 5 compares the PNBOSPY and PNBOSPX (equivalent to PNBO) series.

During the period of 2005/05 to 2012/01, PNBOSPY is positive in the majority of the

months. From 2008/09 to 2010/12, PNBOSPX is negative in 22 out of 28 months, whereas

PNBOSPY is negative in just 7 of the 28 months.

A systematic way to examine the difference in how the equilibrium quantities of

trading in the two markets are connected to the intermediary constraints and market

risk premium is through the regressions of (3) and (5). These results are reported in the

Online Appendix, and we summarize the main findings here. Unlike SPX, the PNBO

measure based on SPY is insignificantly (positively) related to the variance premium

on average, and does not predict future market excess returns. The contrast between

SPX and SPY suggests that institutional investors and retail investors respond differently

to the changes in intermediary constraints. In particular, when constrained financial

intermediaries start buying crash insurance, they appear to be buying the insurance from

the public (institutional) investors in the SPX market and not from the public (retail)

investors in the SPY market.20

20Notice that this difference in public investor trading behaviors between the two markets does not
necessarily imply arbitrage.
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Figure 5: Comparing PNBO for SPX and SPY options. This figure plots the public
net buying-to-open volume for deep-out-of-the-money (with K/S ≤ 0.85) puts in the
market for SPX options and SPY options for the period of 2005/05 to 2012/12.

4.5 Comparison with GPP

Our results on the price-quantity relation in the DOTM SPX puts market is related to

Garleanu, Pedersen, and Poteshman (2009). However, our results differ from GPP in

several aspects. First, we have a longer sample period, from 1991 to 2012, while theirs is

from 1996 to 2001. Second, our PNBO measure uses contemporaneous public net-buying

volume, while GPP use public net open interest,21 which is the accumulation of past

net-buying volumes. Third, our PNBO measure focuses on DOTM SPX puts, whereas

GPP use options of all moneyness (which is similar to the sum of PNBO and PNBOND

in this regard). In this section, we first replicate the main results of GPP (in Table 2,

p4287), and then examine the differences between the two studies.

The dependent variable in Table 13, option expensiveness, is the same as the one used

in GPP Table 2, i.e., the average implied volatility of ATM options minus a reference

model-implied volatility used in Bates (2006).22 GPP regress the option expensiveness

21GPP aggregate the net demand of both public investors and firm investors, and refer to it as the
non-market-maker demand.

22We thank David Bates for sharing the data on this measure.
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Table 13: Comparison with GPP Table 2

The table reports the results from regressing option expensiveness, measured by the average

implied volatility of ATM options minus a reference model-implied volatility used in Bates (2006),

on measures of option demand. NetDemand and JumpRisk are the equal- and vega-weighted

public net open interest (or net volume) for all SPX options. t-stats are computed based on

Newey and West (1987) standard errors with 10 lags. (∗∗∗,∗∗ ,∗ ) denote significance at 1%, 5%,

and 10%, respectively.

Net Open Interest Net Volume

Replicated Results GPP Results
NetDemand JumpRisk NetDemand JumpRisk NetDemand JumpRisk

1996/01-1996/10 2.1×10−7 4.5×10−6 2.1×10−7 6.4×10−6 1.6×10−8 -5.1×10−6

t-stat (0.72) (0.49) (0.87) (0.79) (0.10) (-0.23)

1997/10-2001/12 3.8×10−7∗∗ 2.6×10−5∗∗∗ 3.8×10−7 3.2×10−5∗∗∗ 4.7×10−6∗∗ 4.9×10−5∗∗

t-stat (2.17) (2.80) (1.55) (3.68) (2.25) (2.57)

2002/01-2012/12 -9.9×10−8∗∗∗ -7.8×10−6∗∗ -6.7×10−7∗∗ -5.2×10−5∗∗∗

t-stat (-3.13) (-2.40) (-2.35) (-3.32)

on several measures of SPX non-market-maker demand pressure, including the equal-

weighted public open interest (NetDemand), and public open interest weighted by jump

risk (JumpRisk). They find the regression coefficients to be positive in the period from

1997/10 to 2001/12.

In Table 13, we obtain very similar results to GPP for the two sub-samples 1996/01-

1996/10 and 1997/10-2001/12 for the open interest-based measures. We also construct

two net volume-based measures and again find that they are positively related to option

expensiveness in the period from 1997/10 to 2001/12.

Next, for the period 2002-2012, we use daily volume data to extend the net open

interest measures (constructed using the procedure described in Section 4.3). In this

subsample, We find that the coefficients on both the open interest and volume-based

measures become negative and statistically significant. This finding is consistent with our

finding of a negative price-quantity relation in the full sample (see Table 3). The changing

signs of the price-quantity relation in different sub-samples suggest that the effects of

demand shocks and supply shocks are both present in the SPX option market.
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5 Conclusion

We provide evidence that the trading activities of financial intermediaries in the market

of DOTM SPX put options are informative about the degree of intermediary constraints.

In periods when supply shocks are likely to be the main force behind the variations in

the price-quantity relation in the DOTM SPX put market, our public investor net-buying

volume measure, PNBO, has strong predictive power for future market excess returns

and the returns for a range of other financial assets. The predictive power of PNBO is

stronger during periods when the market jump risk is high, and it is stronger for DOTM

puts. PNBO is also associated with several funding liquidity measures in the literature.

Moreover, the information that PNBO contains about the market risk premium is not

captured by the standard financial and macro variables. These results suggest that time-

varying intermediary constraints are driving the supply of crash insurance by financial

intermediaries and the risk premia in financial markets.
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Appendix

A Physical Jump Risk

The construction of the jump risk measure J follows Bekaert and Hoerova (2014) and

Corsi, Pirino, and Reno (2010), which we briefly outline here. The monthly jump J is the

average of daily jump Jd, which is defined as

Jdt = max[RV d
t − TBPV d

t , 0], (A1)

where RV d
t is the S&P500 daily realized variance (based on 5-minute returns), and TBPV d

t

stands for threshold bipower variation, which is defined as follows (see Corsi, Pirino, and

Reno, 2010, equation (2.14)):

TBPV d
t =

1

0.79792

N∑
j=2

|rj−1 · rj| · Ir2j−1≤ϑj−1
· Ir2j≤ϑj . (A2)

Here, rj is the jth 5-minute return on day t; ϑj is a stochastic threshold,

ϑj = c2ϑ · V̂j, (A3)

where cϑ is a scale-free constant (set to 3), and V̂j is an auxiliary estimator of variance,

which is estimated through the following iteration,

V̂ Z
j =

∑L
i=−L,i 6=−1,0,1K

(
i
L

)
r2j+iI{r2j+i≤c2ϑ·V̂

Z−1
j+i }∑L

i=−L,i 6=−1,0,1K
(
i
L

)
I{r2j+i≤c2ϑ·V̂

Z−1
j+i }

, Z = 1, 2, ... (A4)

The starting value is V̂ 0
j = +∞. In each iteration step, large returns are eliminated based

on the condition r2j > c2ϑ · V̂ Z−1
j , and the iteration stops when there are no more large

returns to remove. The bandwidth parameter L determines the number of adjacent returns

included in the estimation of the local variance around point j (with the observation

at j and the two adjacent ones excluded). We set L = 25 and use a Gaussian kernel

K(y) = (1/
√

2π) exp(−y2/2).

B Additional Empirical Results

To check whether our supply-environment indicator IbV P,t<0 does a good job identifying

important events of supply shocks, Table A1 shows the value of our indicator during a set

of months in which significant events have occurred in the financial markets, and which are

likely associated with either positive or negative supply shocks for financial intermediaries.
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In addition, Table A1 also reports the value of the indicators based on sign of bV P,t and

the CDM method from November 2007 to June 2009, the period of the 2008 financial

crisis. Outside the 2008 crisis, the strategy based on the sign of bV P,t identifies the major

events seven times out of ten, whereas the CDM strategy identifies two events. Inside the

2008 crisis, the two indicators both pick up 12 out of 20 months.

Additional empirical results and robustness checks are provided in the Internet Ap-

pendix. They include (1) a table of correlations between PNBO and various macroe-

conomic and financial variables (Table IA2); (2) systematic analysis of the statistical

significance for the return-forecasting regressions using PBNO and PNBON (Table

IA3); (3) return-forecasting regression with PNBO1month (and PNBON1month), which is

PNBO constructed using only options with one month or less to maturity (Table IA4); (4)

sub-sample return-forecasting regressions with PNOI (Table IA5); (5) return-forecasting

regression with PNB (and PNBN), which is the public net buy volume for DOTM

SPX puts including both open and close transactions (Table IA6); (6) return-forecasting

regression using a modified CDM method (Table IA7); (7) return-forecasting regression

using bV P + cV PJt as indicator (Table IA8); (8) sub-sample return-forecasting regressions

with the log dividend-price ratio (Table IA9).
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Table A1: Indicators of Supply Environment

This table reports the indicators of supply environment based on the sign of bV P,t and based on

the Cohen, Diether, and Malloy (2007) (CDM) method. The months listed include those

associated with major events in the global financial markets. They also include the pe-

riod of 2007/11 to 2009/06, the period of the 2008 financial crisis. For more details of the

events during the 2008 financial crisis, see the Federal Reserve Bank of St. Louis webpage

(https://www.stlouisfed.org/financial-crisis/full-timeline).

Month IbV P,t<0 CDM Events

1997/10 0 0 Asian financial crisis
1998/11 1 0 Russian financial crisis
2003/04 1 0 Start of the Iraq War
2007/08 0 1 Quant crisis

2007/11 1 1 Liquidity deterioration in interbank funding market
2007/12 1 0 Creation of TAF
2008/01 1 0 Bank of America acquisition of Countrywide
2008/02 0 0 Northern Rock taken into state ownership
2008/03 0 1 Sale of Bear Sterns to JPMorgan
2008/04 1 1 FOMC rate cut
2008/05 0 1 FOMC expands the list of eligible collateral for TSLF
2008/06 1 0 S&P downgrade of AMBAC and MBIA
2008/07 1 1 Failure of IndyMac
2008/08 1 1 FOMC maintains federal funds rate target
2008/09 1 1 Lehman Bankruptcy
2008/10 0 0 Establishment of TARP
2008/11 1 0 Creation of TALF
2008/12 1 1 Fed extension of liquidity facility
2009/01 0 1 Treasury, Fed, FDIC assistance to BofA
2009/02 1 1 Increase of TALF to $1 trillion
2009/03 0 1
2009/04 0 0
2009/05 1 1
2009/06 0 0 Large banks’ repayments of bailout funds

2009/12 1 0 Escalation of Greek debt crisis
2010/04 0 0 Greece seeks financial support
2010/05 1 0 Establishment of EFSM and EFSF
2010/09 1 1 Second Greek bailout installment
2011/06 1 0 Merkel agrees to Greece bondholder role
2011/10 1 0 Call for a Greek referendum
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