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Abstract

Turbulent motions in the convective envelope of red giants excite a rich spectrum of solar-like oscillation modes.
Observations by CoRoT and Kepler have shown that the mode amplitudes increase dramatically as the stars ascend
the red giant branch, i.e., as the frequency of maximum power, νmax, decreases. Most studies nonetheless assume
that the modes are well described by the linearized fluid equations. We investigate to what extent the linear
approximation is justified as a function of stellar massM and νmax, focusing on dipole mixed modes with frequency
near νmax. A useful measure of a mode’s nonlinearity is the product of its radial wavenumber and its radial
displacement, krξr (i.e., its shear). We show that x nµ -kr r max

9 2, implying that the nonlinearity of mixed modes
increases significantly as a star evolves. The modes are weakly nonlinear ( x > -k 10r r

3) for n m150 Hzmax and
strongly nonlinear ( x >k 1r r ) for n m30 Hzmax , with only a mild dependence on M over the range we consider
(1.0–2.0 Me). A weakly nonlinear mixed mode can excite secondary waves in the stellar core through the
parametric instability, resulting in enhanced, but partial, damping of the mode. By contrast, a strongly nonlinear
mode breaks as it propagates through the core and is fully damped there. Evaluating the impact of nonlinear effects
on observables such as mode amplitudes and linewidths requires large mode network simulations. We plan to carry
out such calculations in the future and investigate whether nonlinear damping can explain why some red giants
exhibit dipole modes with unusually small amplitudes, known as depressed modes.

Key words: asteroseismology – stars: evolution – stars: interiors – stars: oscillations (including pulsations) – waves

1. Introduction

The detection of solar-like oscillations by the CoRoT (Baglin
et al. 2006) and Kepler (Borucki et al. 2010) space missions has
yielded a wealth of information about the internal and global
properties of thousands of red giants (see reviews by Chaplin &
Miglio 2013; Hekker & Christensen-Dalsgaard 2017). High-
lights include powerful scaling relations that connect seismic
parameters to fundamental stellar parameters (e.g., mass, radii,
and luminosity) and the detection of mixed modes, which
behave like acoustic waves in the convective envelope and
internal gravity waves in the radiative core. Measurements of
mixed-mode period spacings make it possible to distinguish
between hydrogen- and helium-burning red giants (Bedding
et al. 2011; Mosser et al. 2011; Stello et al. 2013; Mosser et al.
2014) and constrain the core rotation profile (Beck et al. 2012;
Deheuvels et al. 2012, 2014; Mosser et al. 2012b).

The propagation and damping of solar-like oscillations is
usually described in terms of the linearized fluid equations.
This approximation, in which waves propagate without
interacting, greatly simplifies the analysis of the wave
dynamics. In the Sun, acoustic waves (p-modes) have
sufficiently small amplitude that the linear approximation is
well justified throughout most of the star (Christensen-
Dalsgaard 2002). The exceptions are the uppermost regions
of the convective zone and the optically thin region above the
photosphere, where the Mach numbers approach one (Kumar &
Goldreich 1989). However, since there is very little mass in
these regions, nonlinear mode interactions do not contribute
significantly to the mode damping (Kumar & Goldreich 1989)
and barely modify the mode frequencies and linewidths
(Kumar et al. 1994).

In this paper we argue that, unlike the case for main-
sequence stars, nonlinear effects may become important as stars

ascend the red giant branch (RGB). There are two reasons.
First, mode amplitudes are observed to increase as stars ascend
the RGB, increasing the size of nonlinear effects. Second, for
the case of dipole (angular degree ℓ= 1) mixed modes, a new
type of nonlinear interaction may become important, namely
the steepening of the gravity wave near the center. We
investigate the onset of three-wave interactions in the weakly
nonlinear limit, as well as the strongly nonlinear limit in which
the wave may overturn the stratification near the center, causing
the wave to break and deposit its energy there.
Throughout the study, we focus on the stability of low-ℓmixed

modes because the observations do not have the spatial resolution
to detect modes with ℓ3. We are particularly interested in the
stability of pressure-dominated mixed modes (p-m modes) since
such modes have detectable surface amplitudes and yet propagate
deep within the stellar core where nonlinear mode interactions can
be important.
Our calculations rely on RGB models constructed with the

MESA stellar evolution code (Paxton et al. 2011, 2013,
2015, 2018). We consider models with mass M=[1.0, 2.0]
Me and n m [ ]10, 200 Hzmax , which coincide with the range
observed by CoRoT and Kepler. We find that the nonlinear
mode parameters are not especially sensitive toM and therefore
focus on representative models with M={1.2, 1.6, 2.0}. We
find eigenmodes of the stellar models with the GYRE oscillation
code (Townsend & Teitler 2013; Townsend et al. 2018), and
normalize the spatial eigenfunctions x ( )xa such that

*ò xw r =∣ ∣d x Ea a
2 3 2 , where wa is the eigenfrequency and ρ

is the density. We express mode energy in units of

* ºE GM R2 , where R is the stellar radius.
The paper is organized as follows. In Section 2, we estimate

the energy of mixed modes as a function of stellar mass M and
position on the RGB, or equivalently νmax, the frequency of
maximum power. In Section 3, we calculate the maximum
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shear of mixed modes, which provides a measure of their
nonlinearity. In Section 4 we consider the weakly nonlinear
regime and study the amplitude equations describing nonlinear
three-mode interactions. We summarize our results in Section 5
and briefly discuss the possibility that the observed depressed
modes are due to nonlinear damping.

2. Energy of Mixed Modes

By characterizing the power excess of ;1200 Kepler red
giants, Mosser et al. (2012a) showed that the bolometric
oscillation amplitudes on the RGB are ∼10–100 times larger
than the Sun’s, and increase dramatically as the stars evolve
along the RGB (see also Vrard et al. 2018). The amplitudes are
larger because the convective motions are especially vigorous
in the low density envelope of red giants (see, e.g., Kjeldsen &
Bedding 1995; Samadi et al. 2007). Recent 3D hydrodynamical
models are broadly consistent with the observations, and find
that the mode excitation rate,  , is a strong function of a star’s
luminosity-to-mass ratio, scaling as  µ ( )L M 2.6 (Samadi
et al. 2007, 2012).

The time-averaged linear energy of a solar-like oscillation
 g= =E 2 va a a a a,lin

2, where a is the time-averaged power
supplied to the mode by turbulent convection, γa is the linear
damping rate of the mode, = MIa a is the mode mass, Ia is
the dimensionless mode inertia, and va

2 is the mean-squared
surface velocity (see, e.g., Belkacem et al. 2006). The linear
energy of a p-m mode  g=E E 2a,lin 0 0 0, where E0 is the
time-averaged linear energy of the neighboring radial mode
(ℓ= 0) of frequency ν0; νa, with subscript 0 denoting radial
modes. The p-m mode and radial mode have nearly equal
energy because both are damped primarily in the convective
envelope, which implies that their work integrals are nearly
equal and therefore  g ga a 0 0 (Dupret et al. 2009;
Grosjean et al. 2014). Moreover,    a a 0 0 because
their structures are nearly the same in the convective envelope,

where the driving occurs (Dupret et al. 2009; Benomar et al.
2014; Grosjean et al. 2014).
By fitting the frequency spectra of more than 5000 red

giants, Vrard et al. (2018) determine the linewidths Γ0=γ0/π
of radial modes with ν0;νmax (see also Corsaro et al. 2015;
Handberg et al. 2017). They find n mG »( ) –0.05 0.2 Hz0 max
over the range  [ ]M M0.8, 2.5 and n m [ ]10, 200 Hzmax .
Samadi et al. (2012) estimate  n( )M,0 max from their 3D
hydrodynamical models of mode excitation in the upper
layers of red giants. They find  n =( )M Bx, s

0 max , where
=  ( )( )x L L M M , = ´-

+ -B 4.2 10 erg s0.8
1.0 22 1, and =s

2.60 0.08. Thus,
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(in units of GM R2 ), where Teff is the effective temperature and
we used the scaling relations µL R T2

eff
4 and n µ - -MR Tmax

2
eff

1 2

with solar reference values of n m= 3101 Hzmax, and
=T 5777Keff, (Kjeldsen & Bedding 1995; Stello et al. 2009;

Huber et al. 2010). We include a correction factor β because
Samadi et al. (2012) find that the observed bolometric amplitudes
A0 are ≈1.5 times larger than those predicted by their
hydrodynamical models and suggest that it could be due to their
models underestimating 0 by a factor of β2.
We can also express this result in terms of the bolometric

amplitude z zµ µ ( )A A v Ea,lin 0 0 0 0
1 2, where ζ is a

dimensionless coefficient. Samadi et al. (2012) find
z  ( )x0.59 0.07 k and  = -Cy p

0 , where n n= D D y ,
nD is the large frequency separation, k=0.25±0.05,
= ´-

+C 8.0 10 g2.1
2.8 24 , and p=2.0±0.1. This gives
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where we used the relation nD µ ( )M R3 1 2 and solar reference
values n mD = 134.9 Hz, = A 2.53 0.11 ppm0, , and

=  -
v 18.5 1.5 cm s 1 (Samadi et al. 2012). Equation (2)
agrees well with the observed bolometric amplitudes measured
by Vrard et al. (2018; see their Figure 6).

3. Nonlinearity of Mixed Modes

A dimensionless local measure of nonlinearity is the shear
x x¯ ¯d dr kr a r a r a, , , , where kr a, is the radial wavenumber

and x x=¯ Er a a r a,
1 2

, is the radial displacement in physical units.
A perturbation at radius r is strongly nonlinear if

x( ) ¯ ( )k r r 1r a r a, , , i.e., if the wavelength is smaller than the
displacement, since such a wave is likely to overturn and break
rather than continue to propagate (similar to ocean waves
approaching the shore). In the core, p-m modes are supported
by the local buoyancy and wL - k N r Rr a a a,

1 for
n na max, where N(r) is the Brunt–Väisälä frequency. Since

Figure 1. Profiles of N/2π and x̄kr a r a, , of p-m mixed modes (black and blue
oscillatory lines) for = M M1.6 RGB models. The six N/2π curves are at
different evolutionary stages, corresponding to n = {230, 137, 104, 81, 53,max

m}30 Hz from bottom to top. The black (blue) mixed mode is from the
n m= 30 Hzmax ( m104 Hz) model, with ℓa=1, n na max and Ea given by
Equation (1).
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the wavelengths are small, conservation of Wentzel–Kramers–
Brillouin (WKB) flux implies that the radial displacement
within the propagation region x µ -rr a,

2 and the asymptotic
eigenmode relations give x w» L - -∣ ∣k K rr r a a a,

1 2, where =K

* p rD( )E C P 20
2 1 2, C=N/r, and òpD =

-( )P Nd r2 ln0
2 1

(see, e.g., Aerts et al. 2010; Hekker & Christensen-
Dalsgaard 2017).

On the RGB, C and K are both nearly constant deep within
the core. Figure 1 shows N(r) for an = M M1.6 model at six
different ages, corresponding to n = {230, 137, 104, 81,max

m}53, 30 Hz. Although the core contracts with age, we see that
for  r R0.01 , the slope of the N(r) profile is nearly constant
with radius, with = - -

{ }C R4.1, 4.7, 5.0, 5.3, 5.7, 6.4 s 1 1,
respectively. Figure 1 also shows two profiles of x̄kr a r a, , for
ℓa=1, n na max p-m mixed modes at νmax=30 and
104 μHz found with GYRE. The numerical results agree well
with the asymptotic expression.

The shear peaks near the mode’s inner turning point ra,
which is located where w ( )N r Cra a a. For values char-
acteristic of the RGB models (  »E 10 erg48 , r » -10 g cm5 3,
» - -

C R5 s 1 1, D =P 100 s0 ), n» -
r R10a a

4
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where in the second line we plugged in a value of Ea

corresponding to the median linear energy Ea,lin given by
Equation (1). Although the asymptotic eigenmode expressions
strictly apply only within the propagation region and not near
ra, they approximate the magnitude and scaling of x∣ ¯ ∣kr a r a, , max

very well.
Since the linear energy of mixed modes near νmax scales

approximately as nµ -Ea a,lin
3, the maximum shear increases

significantly as the star evolves ( x nµ -∣ ¯ ∣kr a r a a, , max
9 2). Figure 2

shows the numerically calculated maximum shear as a function
of νmax for p-m modes of the M=1.2Me and 2.0Me models.
To calculate the maximum shear, we use GYRE to find modes
with ℓa=1, n na max and from these numerical solutions we
compute the maximum of x xd dr kr a r a r a, , , for each mode.
We then use Equation (1) to calculate Ea,lin. We take β=1.5,

mG = 0.1 Hz0 , and the median values for B and s. The analytic
expression for x∣ ¯ ∣kr a r a, , max given by Equation (3) agrees with
the numerical result to within a factor of ≈2 over the range
of M and νmax shown in Figure 2. We find that for

 n m50 150 Hzmax , the mixed modes are weakly nonlinear
(  x -¯k0.1 10r a r a, ,

3). However, for n m30 Hzmax they
become strongly nonlinear in the core ( x̄k 1r a r a, , ).

Despite the uncertainties in Ea,lin (due to uncertainties and
observational scatter in the parameters that determine the
energy), the steep n-

max
9 2 dependence implies that there is a

narrow nmax window where the modes transition from weakly
nonlinear to strongly nonlinear. A strongly nonlinear mixed
mode will overturn the local stratification in the core and break.

Since they do not reflect at ra, they are ingoing traveling waves
rather than standing waves. This phenomenon can also occur in
the context of dynamical tides, where it can lead to rapid, tide-
induced orbital evolution (see, e.g., Goodman & Dickson 1998;
Barker & Ogilvie 2010; Weinberg et al. 2017). In the present
context, the breaking wave is directly observed.
As a star evolves, radiative damping in the core becomes so

strong that it can dissipate all the energy from a mode in less
than its group travel time across the star. For gravity-dominated
mixed modes (g-m modes), this transition occurs at
n m» 30 Hzmax (Dupret et al. 2009; Grosjean et al. 2014),
similar to where wave breaking occurs. However, for p-m
modes a significant portion of their energy remains trapped in
the envelope and is not lost to radiative damping.

4. Nonlinear Mode Interactions

In the previous section we found that mixed modes are
weakly nonlinear over a broad portion of the lower RGB
(n m» [ ]50, 200 Hzmax ) before becoming strongly nonlinear as
the star evolves up the RGB. Weakly nonlinear waves can
excite secondary waves through nonlinear mode interactions.
Whether a weakly nonlinear primary wave (a parent mode) is
unstable to secondary waves (daughter modes) depends on the
parent’s amplitude, the strength of the nonlinear interactions,
and the damping rates and frequency detunings. In this section
we assess the stability of weakly nonlinear mixed modes as a
function of M and νmax. We focus on the stability of ℓ=1 p-m
parent modes with n na max coupled to resonant g-m daughter
modes.
To account for weakly nonlinear effects, we expand the

Lagrangian displacement field as a sum of linear eigenmodes
x x= å( ) ( ) ( )x xt q t, a a and keep terms up to  x( )2 . The

Figure 2. Maximum shear x̄kr a r a, , of p-m mixed modes found using GYRE
(solid lines) as a function of νmax for = M M1.2 (blue curves with crosses)
and 2.0 Me (black curves with squares). Also shown are the nonlinear coupling
coefficient κabc (dashed-dotted lines) and linear damping coefficient α (dashed
lines; in units of - -10 s12 1). The modes are (ℓa, ℓb, ℓc)=(1, 2, 3) with n na max

and n n n+ b c a.
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equation of motion for x ( )x t, can then be written as a set of
coupled, nonlinear amplitude equations (Dziembowski 1982;
Kumar & Goodman 1996; Wu & Goldreich 2001; Schenk et al.
2002; Weinberg et al. 2012),

* * *ååg w w w k+ + = +˙ ( ) ( )q q q f t q q¨ 2 , 4a a a a a a a a
b c

abc b c
2 2 2

where ωa and γa are the eigenfrequency and linear damping rate
of mode a, and the asterisks denote complex conjugation. The
linear forcing fa(t) accounts for the stochastic excitation of
mode a due to turbulent motions at the top of the convective
envelope. The sum containing the dimensionless three-mode
coupling coefficient κabc accounts for the nonlinear interaction
between mode a and other modes b c, . The modes couple only
if they satisfy the angular selection rules  - +∣ ∣ℓ ℓ ℓ ℓ ℓb c a b c

with + +ℓ ℓ ℓa b c being even and + + =m m m 0a b c (ℓ is the
angular degree and m is the azimuthal order).

We study the stability of weakly nonlinear mixed modes by
analyzing Equation (4) for simple three-mode systems. In
Section 4.1 we describe our treatment of the linear stochastic
forcing fa(t). In Section 4.2 we present analytic estimates of the
stability criterion and daughter growth rates and show example
numerical solutions of Equation (4). In Section 4.3 we evaluate
the various mode parameters that enter the stability analysis. In
Section 4.4 we use these results to determine the stability of
mixed modes as a function of M and νmax.

4.1. Linear Stochastic Forcing

The modes are excited by the large number of granules in the
upper regions of the convection zone, which each impart small,
independent impulses. The most strongly excited modes are
those with periods comparable to the eddy turnover time
w t~-

a
1

eddy (Goldreich & Kumar 1988). Since the size of each
granule is of the order of a scale height H, there are
approximately ( )R H 12 granules, and the mean time
between impulses is t wD ~ -( )t H R aeddy

2 1. Chang &
Gough (1998) estimate that in the Sun ~( )R H 102 5 and
t ~ 15minuteseddy , which implies D ~ -t 10 s3 , i.e., about 105

impulses per mode period. In red giants, the impulse rate can be
even larger. By contrast, the damping rate of the mode is on a
much longer timescale, g t- a

1
eddy.

Similar to previous studies (e.g., Kumar et al. 1988; Chang
& Gough 1998), we model the stochastic forcing as a Poisson
process involving a random sequence of impulses at times tj.
We assume that the time between consecutive impulses,
D = -+t t tj j1 , is an independent random variable whose
probability density is given by m mD = - D( ) ( )p t texp , where
μ is the mean number of impulses per unit time. The mode
forcing fa(t) is the sum of all the individual impulses,

å y=( ) ( ) ( )f t f c t , 5a a
j

j j0,

where we assume each impulse has a Gaussian time
dependence of y t= - -( ) [ ( ) ]t t texp 2j j

2 2 . Since we expect
the correlation time of each impulse to be t t~ eddy, we set
w t = 1a . The amplitude = +c c icj j r j i, , is complex with cj,r
and cj,i drawn from a Gaussian probability distribution centered
on zero with a standard deviation of one. The constant f a0, sets
the overall scale of the mode amplitude. While the discussion
above suggests μ>105 per mode period, we find that our

numerical results are insensitive to μ as long as we set
μ10 per mode period.
One realization of this random process corresponds to a set of

tj and cj. Each realization, , will produce a different solution,
 ( )( )q ta , to Equation (4) for the parent amplitude. The ensemble

average, which we denote by angle brackets, corresponds to the
average of all these realizations. This ensemble average can be
carried out either by averaging many numerical simulations, or
in analytic work by directly averaging over the Poisson
distribution for the tj and the Gaussian distribution for the cj.
In addition, single realizations that include very large numbers of
events are expected to approximate the ensemble average. Hence
even though single realization results are shown in Figure 3, over
long timescales we expect the results to be comparable to
ensemble averaging.
In the absence of nonlinear coupling, qa(t) satisfies the

equation of a damped linear oscillator forced by a stationary
random function for which different events are uncorrelated.
The ensemble average of the parent energy, which we denote as
Ea,lin, is

w t
m
g

º á ñ »
⎛
⎝⎜

⎞
⎠⎟∣ ( )∣ ( ) ( )E q t f

2
. 6a a a a

a
,lin

2
0,

2

This expression can be understood as follows. Integrating the
forcing wµf a a0, over the impulse time τ gives an amplitude of

w tf a a0, for one impulse. Over the damping time g-
a

1, there are
m ga impulses which add randomly, giving the result in
Equation (6).

Figure 3. Mode energy as a function of time (main panel) for two examples of
a three-mode system involving a stochastically driven parent (gray line)
coupled to a resonant daughter pair (black and blue lines) with = =f f 0b c and
initial energies of = -E E 10b c

40. The examples differ only by
g p p n= ´ -( ), 2 10a a

4 , with the smaller ga corresponding to the more rapidly
growing daughter pair. The other parameters are m n= 100 a, ´E 2a,lin

-10 16, g g n-  10b c a
5 , wD D -  10b c a

5 , and k = ´3 10abc
3. The

dashed lines show the growth rate scalings given by Equation (9). The insets
zoom in on the parent mode and show, on a linear scale, the real parts of qa(t)
(gray lines) and ( )f t10 a (red lines) over durations of n-10 a

1 and n-100 a
1.

4
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Ensemble averaging products of first order amplitudes
requires the autocorrelation function of the forcing. For the
daughters, the random forcing function involves the parent
amplitude. For our model, the correlation function is
approximately

* wá ¢ ñ - ¢g- - ¢( ) ( ) [ ( )] ( )∣ ∣q t q t E e t tcos . 7a a a
t t

a,lin a

This correlation function oscillates at the parent frequency, and
has an exponential dependence with correlation time g-

a
1, the

damping time of the parent. The growth rate of the daughters
relies on the Fourier transform of this correlation function. We
define the power w( )Pa to be
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Hence the power is a Lorentzian with damping γa and detuning
w w- a (see, e.g., Christensen-Dalsgaard et al. 1989). We will
use this result when describing the nonlinear stability of parent
modes in Section 4.2

The two insets in Figure 3 show the real part of qa(t) and
10×fa(t) over a duration of n-10 a

1 and n-100 a
1, where

n w p= 2a a . On such timescales, qa(t) looks like a sinusoidal
oscillation with a slowly varying amplitude. The force varies
stochastically on a timescale of n» -

a
1 and has a characteristic

strength of ∣ ∣ ∣ ∣f qa a .

4.2. Nonlinear Stability

Consider a stochastically driven parent mode with n na max

that is coupled to a single, self-coupled daughter mode with a
frequency of n n 2b a . Observationally, the distribution of
mode energies can be fit by a Gaussian envelope with an FWHM
of dn n m ( )0.66 100 Hzenv max

0.88 (Mosser et al. 2012a). A
daughter mode with a frequency of n n n 2 2b a max
therefore has a linear energy that is only ∼1% that of its parent.
Thus, to a good approximation we can ignore the daughter’s linear
forcing and set fb=0. The amplitude equation then reduces to the
stochastic Mathieu equation (when ∣ ∣ ∣ ∣q qb a ), whose stability
has been studied extensively (see, e.g., Stratonovich &
Romanovskii 1965; Ariaratnam & Tam 1976; van Kampen
1992; Zhang et al. 1993; Poulin & Flierl 2008). In the regime
relevant to mixed modes in red giants, it can be shown that the
daughter’s average nonlinear growth rate is g- +sb b

w k w( )P2 2b abb a b
2 2 , i.e.,

g
w k
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where w wD = - 2b a b is the daughter detuning and we assume
g ga b c, (see Sections 4.3.1 and 4.3.2). Thus, the parent and
daughter are parametrically unstable (sb> 0) if the parent linear

energy, Ea,lin, is larger than a threshold energy of
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To understand the scaling with γa, note that at a given Ea,lin,
w gµ -( )P 2a b a

1 provided that gD ∣ ∣b a. Thus, as γa increases,
the parent’s power is less concentrated near w w 2a b and the
daughter driving is less effective, resulting in smaller sb and
larger Eth.
Our estimates above assume that only a single daughter pair

(N= 2) is parametrically excited. However, in studying tidal
flows, Weinberg et al. (2012) found that sets of N?2 daughters
can be collectively excited (see also Essick & Weinberg 2016),
and that the growth rate of collective sets is larger by a factor of N
(and Eth is smaller by a factor of N). If mixed-mode parents excite
collective sets of unstable daughters, then sb (Eth) can be
significantly larger (smaller) than the above estimates.
In Figure 3 we show two examples of parametrically

unstable three-mode systems in which a stochastically driven
parent is coupled to a resonant daughter pair with = =f f 0b c .
The examples differ only in the assumed value of γa. Although
there are two daughter modes rather than a single self-coupled
daughter, the daughters are similar (g gb c, w wb c). We find
that they grow in a stochastic fashion and have an instability
threshold and average growth rate that agrees reasonably well
with Equations (9) and (10). The stochastic nature of the
driving necessarily implies that the growth rates vary rapidly
with time, and numerically we find that different realizations
only approach the ensemble average over long timescales.
If the parent is driven harmonically rather than stochasti-

cally, the daughters satisfy the standard Mathieu equation.
They would then be subject to the usual parametric
subharmonic instability (PSI), with g w k- +s E2b b b abb a,lin

1 2

and g k w ( )E 2b abb bth
2, assuming gD ∣ ∣b b (see, e.g.,

Dziembowski 1982; Wu & Goldreich 2001). For parameter
values relevant to the coupling of mixed modes on the RGB,
the stochastic growth rate is smaller than the PSI rate by a
factor of w k g E 2 1b abb a a,lin

1 2 , and the stochastic energy
threshold is larger by a factor of 4γa/γb?1. In numerical
experiments, we find that if we choose (artificial) parameter
values such that w k gE 2 1b abb a a,lin

1 2 , then the daughter grows
at the PSI rate rather than the stochastic rate (the latter now
being the larger of the two rates). Indeed, for small enough γa
we expect to recover the PSI since Pa(ωa) is so narrowly
peaked that, as far as the resonant daughters are concerned, the
parent oscillates harmonically.

4.3. Mode Parameters

4.3.1. ga

As described in Section 2,  g ga a0 0 and
g p mG = » –0.05 0.2 Hz0 0 . For =ℓ 1a p-m modes, we find

using GYRE that the inertia ratio is    –0.1 0.5a0 . The
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exact value depends on how close a particular p-m mode is to
an acoustic cavity resonance. Those closest to a resonance are
the most p-mode-like and have    –0.3 0.5a0 , while
those p-m modes on either side of a resonance have
   –0.1 0.3a0 (Goupil et al. 2013; Deheuvels et al.
2015; Mosser et al. 2015). Thus, we estimate that

 g- - -10 10 sa
8 7 1, which agrees well with the available

measurements of individual p-m mode linewidths (Mosser et al.
2018).

4.3.2. gb c,

Since daughter g-m modes with ℓ 2b are well trapped in
the core, they undergo radiative damping in the core but
comparatively little damping in the convective envelope. As a

result, they tend to have much smaller damping rates than p-m
modes as long as n m30 Hzmax (Dupret et al. 2009; Grosjean
et al. 2014; Mosser et al. 2018).
We can estimate the contribution of the convective envelope

to the damping by computing g b0 0 as in Section 4.3.1.
For ℓb=2 g-m modes, we find    -10b0

3 at
n m 200 Hzmax for = M M1.2 and M=2.0Me; the inertia
ratio is even smaller for larger ℓb and at smaller νmax because as
the star evolves, the core contracts and the g-m modes become
even more strongly trapped in the g-mode cavity. Thus, for
modes with ℓb�2, the convective envelope contributes
 ´ - -5 10 s10 1 given that g p m» –0.05 0.2 Hz0 . As we
now describe, this is smaller than the contribution from
radiative damping in the core.
Using the non-adiabatic calculations in GYRE, which only

account for radiative damping, we find g a n» L -
b b b

2
,100
2 , where

L = +( )ℓ ℓ 1b b b
2 , n n m= 100 Hzb b,100 , and α is a model-

dependent constant. The quadratic scaling is a consequence of
the short-wavelength of the modes (see Hekker & Christensen-
Dalsgaard 2017). Values of a n( )M, max for = M M1.2
and M2.0 are shown in Figure 2. We find 0.05

a - -10 s 1010 1 over the M and nmax range of our models.
There is a strong dependence on nmax because as the star
evolves, the core contracts and N in the core increases (see
Equation (3) in Dupret et al. 2009). The dependence on M is
fairly weak and non-monotonic (α increases for  M M1.6
and then decreases, like the core density).
For example, a resonant daughter pair with =( ) ( )ℓ ℓ, 2, 3b c

coupled to a parent with n n m= 100 Hza max has g g ( ),b c
´ - -( )2, 5 10 s9 1 (since a - - 10 s10 1). For comparison,

Grosjean et al. (2014), who account for damping in both
the core and envelope, find that their models{ }E, B, F, G ( =M

{ }M1.0, 1.5, 1.7, 2.1 and n m= { }88, 97, 90, 66 Hzmax ) all
yield lifetimes of g-  2000 days1 (i.e., g ´ - - 6 10 s9 1) for
ℓ=2 modes with n n max. They do not show results for modes
with >ℓ 2, but their Figure 4 suggests that such modes might
have smaller γ than their ℓ=2 modes (since they are even more
strongly trapped in the core). Note too that their calculations
seem to overestimate the damping rates of radial modes by
a factor of ∼10 (they find lifetimes of g »- 3 days0

1 whereas
the observations by Vrard et al. (2018) suggest g- 20 days0

1 ,
i.e.,  mG 0.2 Hz0 ).

4.3.3. Db c,

The minimum daughter detuning is wD » - -∣ ∣ ℓ nb a b a
3 2, where

na is the radial order of the parent (Wu & Goldreich 2001). One
factor of na comes from the mean period spacing of mixed
modes and the other comes from the number of well-coupled
daughters given the width of maximum k∣ ∣abc (daughters with

-∣ ∣n n nb c a all have similar k ;abc Kumar & Goodman 1996;
Weinberg et al. 2012). The -ℓb

3 dependence (or -ℓb
2 if rotation

does not lift the m degeneracy) comes from the freedom in
choosing daughters allowed by the angular selection rules.
Mixed modes near νmax have short wavelengths in the core
and n» L Dn Pa a a 0 (Hekker & Christensen-Dalsgaard 2017).
We find  DP90 130 s0 for = [ ]M M1.0, 1.8 and
n m= [ ]50, 200 Hzmax (larger nmax and smaller M have larger
DP0). This implies that for ℓa=1, ℓb=2, and νmax
100μHz,  wD -∣ ∣ 10b a

5 , which agrees well with eigenmode
searches with GYRE. Given the γa estimate above, gD <∣ ∣b a
for n m100 Hzmax . Thus, the more evolved models always

Figure 4. Linear energy Ea,lin (green regions) and nonlinear threshold energy
Eth (blue regions) as a function of νmax for M=1.2 Me (top panel) and
M=2.0 Me (bottom panel). The factor of 4 range in Ea,lin at a given νmax

reflects the observed range of Γ0; the lower and upper envelopes correspond to
mG = 0.2 Hz0 and 0.05 μHz, respectively. The factor of 10 range in Eth

reflects the range of possible γa; the lower and upper envelopes correspond to
g = - -10 sa

8 1 and - -10 s7 1, respectively. The Eth curves assume
=( ) ( )ℓ ℓ ℓ, , 1, 2, 3a b c , n na max, and fortuitous detuning of gD ∣ ∣b a. The

dashed curve shows a portion of Eth assuming instead that wD = - -∣ ∣ ℓ nb a b a
3 2.

The vertical dotted line indicates the approximate νmax where mode a becomes
strongly nonlinear ( x >¯k 1r a r a, , ).
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have daughters with sufficiently small D∣ ∣b that detuning does
not limit their growth rate or Eth (see Equations (9) and (10)).

4.3.4. kabc

In order to calculate k n( )M,abc max , we search for eigenmode
triplets with GYRE and use the expression for κabc given in
Weinberg et al. (2012; see their (A55)-(A62)). The coupling
occurs primarily near the inner turning radius of the parent,
deep in the stellar core, since that is where the parent’s shear

xkr a r a, , peaks (see Section 3). Daughters with similar
wavenumber -∣ ∣k k kr b r c r a, , , are spatially resonant with
the parent and therefore couple strongly to it. Since deep in the
core N∝r, good spatial resonance and small detuning imply
w w L L + L ( )b a b b c , and similarly for ωc. For a given ℓa,
we use this condition and the angular selection rules to find
resonant daughters that maximize k∣ ∣abc .

Figure 2 shows the maximum k∣ ∣abc for = M M1.2 and
= M M2.0 as a function of νmax assuming n na max, resonant

daughters, and =( ) ( )ℓ ℓ ℓ, , 1, 2, 3a b c . We find k k n-abc a0 ,100
2 ,

where k  { }900, 1100, 14000 for = { }M M1.2, 1.6, 2.0 .
To understand the magnitude of κ0 and the n-

max
2 scaling, note that

while the exact expression for κabc is complicated and contains
many terms, Weinberg et al. (2012; see their Equation (43))
showed that the dominant terms scale with the parent shear and
imply òk p x» D( )T P Nk d r2 lnabc r a r a0

2
, , , where the angular

integral is »∣ ∣T 0.2 for low-degree modes. Using the asymptotic
relation for xkr a r a, , given in Section 3, we find k »abc

p nL D -( )TKC P 8a a
2

0
4 2. Plugging in characteristic values

from the stellar models (  »E 10 erg48 , r » -10 g cm5 3, »C
- -

R5 s 1 1,D =P 100 s0 ) gives k n» -10abc a
3

,100
2 for =( )ℓ ℓ ℓ, ,a b c

( )1, 2, 3 , in good agreement with the full κabc calculation.

4.4. Nonlinear Energy Threshold

From the estimates of the various mode parameters given in
Section 4.3, we can calculate the nonlinear energy threshold,

n( )E M,th max , and compare it to n( )E M,a,lin max (see
Equations (10) and (1)). Representative results are shown in
Figure 4 for = M M1.2 and = M M2.0 assuming a mixed-
mode parent with =ℓ 1a and n na max. The green region
shows the possible range of Ea,lin given the observed range of

mG » –0.05 0.2 Hz0 (Vrard et al. 2018). The additional
uncertainty in Ea,lin due to the uncertainty in 0 is not
accounted for in the figure, which assumes the median values
for B and s and β=1.5 (see Samadi et al. 2012). The blue
region shows the range of possible Eth given the order of
magnitude range in possible values of γa (Section 4.3.1). It
assumes that there are daughter modes with sufficiently small
detuning that gD ∣ ∣b a. The dashed curve shows Eth if instead
we adopt the likely value of the minimum detuning

wD = - -∣ ∣ ℓ nb a b a
3 2, assuming g = - -10 sa

8 1 (Section 4.3.3).
We find that stars with smaller νmax and larger M are more

likely to have an ℓa=1 p-m mode with energy Ea,lin above Eth.
Thus, mixed modes are more likely to be parametrically
unstable in more evolved, more massive stars. This is because

nµ -Ea,lin max
3.1 whereas nµ -Eth max

2 (approximately). Further-
more, at a given n m50 Hzmax , more massive stars have
smaller γb,c (i.e., α) and larger κabc (see Figure 2). Given the
range of plausible values of Ea,lin and Eth, a mixed mode could
be unstable out to n m100 Hzmax for = M M1.2 and

νmax130 μHz for M=2.0Me. It could be unstable out to
even larger νmax (especially for M= 2.0Me) if there are
daughters that happen to have especially small detuning of

gD ∣ ∣b a or if there are collective sets of unstable daughters
(Section 4.2). As shown in Figure 2, the modes become
strongly nonlinear for νmax30μHz and the weakly non-
linear stability calculation is no longer applicable (i.e., to the
left of the vertical dotted line in Figure 4).

5. Discussion

The amplitudes of mixed modes increase dramatically as a
star evolves up the RGB (as νmax decreases). The maximum
shear of the modes x̄kr r provides a measure of their
nonlinearity. By calibrating to the observed bolometric
amplitudes, we showed that the maximum shear
x nµ -¯kr r max

9 2. Thus, the nonlinearity increases rapidly with
decreasing νmax. We found that the modes are weakly nonlinear
( x » -¯k 10r r

3) by νmax≈150 μHz and strongly nonlinear
( x »¯k 1r r ) by νmax≈30μHz, nearly independent of M.
As a mixed mode propagates through the core, its shear

increases as x µ -¯k rr r
2, reaching a peak near the inner turning

point at n m» -
( )r R10 100 Hz4

max . A strongly nonlinear
wave will break and deposit all of its energy and angular
momentum as it approaches the turning point. By contrast, a
weakly nonlinear wave will, if unstable, excite secondary waves
within the core, but only lose a portion of its energy and angular
momentum before reflecting at the turning point and propagating
back outward. Although we defer a study of the observational
consequences of these effects to future work, strongly nonlinear
waves likely have reduced amplitudes and broadened linewidths.
To a lesser extent, the same might be true of weakly nonlinear
waves, although here the calculation is more involved as it
depends on the details of the nonlinear saturation by secondary
waves. A full understanding likely requires a large mode
network calculation of the type carried out in the context of
neutron star r-mode instabilities (Arras et al. 2003; Brink et al.
2005; Bondarescu et al. 2009) and dynamical tides in hot-Jupiter
systems (Essick & Weinberg 2016).
Interestingly, some red giants exhibit dipole modes with

unexpectedly low amplitudes, known as depressed modes
(Mosser et al. 2012a, 2017; García et al. 2014; Stello et al.
2016a). Although the prevalence of depressed modes depends
on M and νmax, these two parameters alone do not predict
whether a star’s dipole modes are depressed. This suggests that
an additional stellar property plays a role. Fuller et al. (2015)
proposed that some red giants have strong internal magnetic
fields that scatter and trap oscillation-mode energy within the
core (the magnetic greenhouse effect). Stello et al. (2016a) find
that this mechanism can account for the lack of depressed
modes of higher angular degrees (quadrupole and octupole).
However, Mosser et al. (2017) measure the visibilities of
depressed modes and find that they are not fully damped in the
core, contrary to the predictions of the magnetic greenhouse
effect.
Since weakly nonlinear, unstable mixed modes are only

partially damped in the core, perhaps the observations by
Mosser et al. (2017) indicate that depressed modes are a
consequence of weakly nonlinear effects rather than magnetic
effects. Given that mixed modes lie near the parametric
instability threshold over a large range of νmax (see Figure 4),
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their amplitudes may be sensitive to details of the individual
mode parameters (e.g., mode linewidths, daughter detunings,
coupling coefficients) and the complicated, time-dependent
nonlinear mode dynamics. This could explain why depressed
modes are found to occur over a large range of νmax and yet
two otherwise similar stars (similar M and νmax) might not both
exhibit depressed modes. We found that higher mass stars are
more likely to be above the parametric instability threshold for

n m50 Hzmax (compare the top and bottom panels of
Figure 4), which is also consistent with observations (Stello
et al. 2016b).

Since the nonlinear interactions occur within the core, the
degree of amplitude attenuation will depend on the fraction of
mode energy that gets transmitted from the acoustic cavity,
where the modes are excited, into the g-mode cavity (similar to
the magnetic greenhouse effect). Even if a mode is damped in
the core by nonlinearities, the amplitude attenuation at the
surface will be small if the transmitted fraction is small. This
might explain why the visibility of depressed modes increases
as νmax decreases and as the angular degree ℓ increases (Mosser
et al. 2012a, 2017; Stello et al. 2016a). Mode network
calculations are needed in order to assess this explanation.

This work was supported in part by NASA ATP grant
NNX14AB40G. We thank the referee for valuable comments
on the manuscript.
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