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Abstract The optimal allocation of resources for maximizing influence, spread of
information or coverage, has gained attention in the past years, in particular in ma-
chine learning and data mining. But in applications, the parameters of the problem are
rarely known exactly, and using wrong parameters can lead to undesirable outcomes.
We hence revisit a continuous version of the Budget Allocation or Bipartite Influ-
ence Maximization problem introduced by Alon et al. [3] from a robust optimization
perspective, where an adversary may choose the least favorable parameters within a
confidence set. The resulting problem is a nonconvex-concave saddle point problem
(or game). We show that this nonconvex problem can be solved exactly by leverag-
ing connections to continuous submodular functions, and by solving a constrained
submodular minimization problem. Although constrained submodular minimization
is hard in general, here, we establish conditions under which such a problem can be
solved to arbitrary precision €.

1 Introduction

The optimal allocation of resources for maximizing influence, spread of information
or coverage, has gained attention in the past few years, in particular in machine learn-
ing and data mining [25,44,22,37,16].

Formally, in the Budget Allocation Problem, one is given a bipartite influence
graph between channels S and people 7', and the task is to assign a budget y(s) to
each channel s in S with the goal of maximizing the expected number of influenced
people Z(y). Each edge (s,¢) € E between channel s and person ¢ is weighted with a
probability py that, e.g., an advertisement on radio station s will influence person ¢
to buy some product. The budget y(s) controls how many independent attempts are
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2 Matthew Staib, Stefanie Jegelka

made via the channel s to influence the people in 7. The probability that a customer
t is influenced when the advertising budget is y is

L) =1-[Tpeelt =Pl (1)

and hence the expected number of influenced people is Z(y) = Y,cr I (y). We write
Z(y;p) = Z(y) to make the dependence on the probabilities py explicit. The total
budget y must remain within some feasible set ) which may encode e.g. a total budget
limit Y’ csy(s) < C. We allow the budgets y to be continuous, as in [14].

Since its introduction in [3], several works have extended the formulation of Bud-
get Allocation and provided algorithms [14,40,54,67,68]. Budget Allocation may
also be viewed as influence maximization on a bipartite graph, where information
spreads as in the Independent Cascade model. For integer y, Budget Allocation and
Influence Maximization are NP-hard. Yet, constant-factor approximations are possi-
ble, and build on the fact that the influence function is submodular in the binary case,
and DR-submodular in the integer case [67,40]. If y is continuous, the problem is a
concave maximization problem.

The formulation of Budget Allocation assumes that the transmission probabilities
are known exactly. But this is rarely true in practice. Typically, the probabilities py,
and possibly the graph itself, must be inferred from observations [36,27,59,26,60].
In Section 6 we will see that a misspecification or point estimate of parameters py can
lead to much reduced outcomes. A more realistic assumption is to know confidence
intervals for the py. Realizing this severe deficiency, recent work studied robust ver-
sions of Influence Maximization, where a budget y must be chosen that maximizes
the worst-case approximation ratio over a set of possible influence functions [41,20,
52]. The resulting optimization problem is hard but admits bicriteria approximations.

In this work, we revisit Budget Allocation under uncertainty from the perspective
of robust optimization [11,9]. We maximize the worst-case influence — not approxi-
mation ratio — for p in a confidence set centered around the “best guess” (e.g., pos-
terior mean). This avoids pitfalls of the approximation ratio formulation (which can
be misled to return poor worst-case budgets, as demonstrated in Appendix A), while
also allowing us to formulate the problem as a max-min game:

N Z(y;p), (2)
where an “adversary” can arbitrarily manipulate p within the confidence set P. With
p fixed, Z(y; p) is concave in y. However, the influence function Z(y; p) is not convex,
and not even quasiconvex, in the adversary’s variables py,.

The new, key insight we exploit in this work is that Z(y; p) has the property
of continuous submodularity in p — in contrast to previously exploited submodular
maximization in y — and can hence be minimized by generalizing techniques from
discrete submodular optimization [5]. The techniques in [5], however, are restricted
to box constraints, and do not directly apply to our confidence sets. In fact, general
constrained submodular minimization is hard [69,33,42]. We make the following
contributions:

1. We provide the first results for continuous submodular minimization with box
constraints and one more “nice” constraint, and checkable conditions under which
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Robust Budget Allocation via Submodular Functions 3

the algorithm is guaranteed to return a global optimum. In other words, we have a
provable algorithm for a new class of constrained nonconvex minimization prob-
lems that should be of interest more broadly.

2. Leveraging the above result, we present an algorithm with optimality bounds for
Robust Budget Allocation in the nonconvex adversarial scenario (2).

1.1 Background and Related Work

We begin with some background material and, along the way, discuss related work.

1.1.1 Submodularity over the integer lattice and continuous domains

Submodularity is perhaps best known as a property of set functions. A function F :
2V — R defined on subsets S C V of a ground set V is submodular if for all sets
S,T CV,itholds that F(S)+ F(T) > F(SNT)+ F(SUT). If the reverse inequality
holds, then the function is supermodular. A similar definition extends to functions
defined over a distributive lattice £, e.g., the integer lattice. Such a function f is
submodular if for all x,y € L, it holds that

F)+10) = f(xVy)+ fxAy). 3)

For the integer lattice and vectors x,y, x Vy denotes the coordinate-wise maximum
and x Ay the coordinate-wise minimum. Submodularity has also been considered on
continuous domains X C R?, where, if f is also twice-differentiable, the property
of submodularity means that all off-diagonal entries of the the Hessian are nonposi-

tive, i.e., 5 X{ ((9?, < 0 for all i # j [70, Theorem 3.2]. These functions may be convex,

concave, or neither.

Submodular functions on lattices can be minimized by a reduction to set func-
tions, more precisely, ring families [15]. Combinatorial algorithms for submodular
optimization on lattices are discussed in [45]. More recently, [5] extended results
based on the convex Lovész extension, by building on connections to optimal trans-
port. The subclass of Li-convex functions admits strongly polynomial time minimiza-
tion [56,47,57], but does not apply in our setting.

Similarly, results for submodular maximization extend to integer lattices, e.g.
[38]. Stronger results are possible if the submodular function also satisfies dimin-
ishing returns: for all x <y (coordinate-wise) and i such that y 4+ ¢; € X, it holds
that f(x+e;) — f(x) > f(y+e;) — f(y). For such DR-submodular functions, many
approximation results for the set function case extend [14,68,67]. In particular, [30]
show a generic reduction to set function optimization that they apply to maximiza-
tion. In fact, it also applies to minimization:

Proposition 1 A DR-submodular function f defined on [T}, [ki] can be minimized in

strongly polynomial time O(n*log* k -log?(nlogk) - EO + n*log* k - 10g®") (nlogk)),
where k = max; k; and EO is the time for evaluating f. Here, [k;] = {0,1,...,k;—1}.
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4 Matthew Staib, Stefanie Jegelka

Proof The function f can be reduced to a submodular set function g : 2" — R via
[30], where |V| = O(nlogk). The function g can be evaluated via mapping from 2"
to the domain of f, and then evaluating f, in time O(nlogk - EO). We can directly
substitute these complexities into the runtime bound from [51].

In particular, the time complexity is logarithmic in k. For general lattice submodular
functions, this is not possible without further assumptions.

1.1.2 Related Problems

A sister problem of Budget Allocation is Influence Maximization on general graphs,
where a set of seed nodes is selected to start a propagation process. The influence
function is still monotone submodular and amenable to the greedy algorithm [44],
but it cannot be evaluated explicitly and requires approximation [21]. Stochastic Cov-
erage [34] is a version of Set Cover where the covering sets S; C V are random. A
variant of Budget Allocation can be written as stochastic coverage with multiplicity.
Stochastic Coverage has mainly been studied in the online or adaptive setting, where
logarithmic approximation factors can be achieved [35,24,2].

Our objective function (2) is a signomial in p, i.e., a linear combination of mono-
mials of the form [];x;". General signomial optimization is NP-hard [23], but cer-
tain subclasses are tractable: posynomials with all nonnegative coefficients can be
minimized via Geometric Programming [17], and signomials with a single negative
coefficient admit sum of squares-like relaxations [19]. Our problem, a constrained
posynomial maximization, is not in general a geometric program. Some work ad-
dresses this setting via monomial approximation [63,29], but, to our knowledge, our
algorithm is the first that solves this problem to arbitrary accuracy.

1.1.3 Robust Optimization

Two prominent strategies of addressing uncertainty in parameters of optimization
problems are stochastic and robust optimization. If the distribution of the parame-
ters is known (stochastic optimization), formulations such as value-at-risk (VaR) and
conditional value-at-risk (CVaR) [65,66] apply. In contrast, robust optimization [9,
11] assumes that the parameters (of the cost function and constraints) can vary arbi-
trarily within a known confidence set U, and the aim is to optimize the worst-case
setting:

min sup {g(y;u)s.t. Ay < b}. 4)

Y u,Abeld

Here, we will only have uncertainty in the cost function.

In this paper we are principally concerned with robust maximization of the con-
tinuous influence function Z(y), but mention some results for the discrete case. While
there exist results for robust and CVaR optimization of modular (linear) functions [61,
12], submodular objectives do not in general admit such optimization [53], but vari-
ants and relaxations admit approximations [74,72]. The brittleness of submodular
optimization under noise has been studied in [6,7,39].

© 2019 Springer Science+Business Media, LLC, part of Springer Nature.



Robust Budget Allocation via Submodular Functions 5

Approximations for robust submodular and influence optimization have been stud-
ied in [48,41,20,52], where an adversary can pick among a finite set of objective
functions or remove selected elements [62].

2 Robust and Stochastic Budget Allocation

The unknown parameters in Budget Allocation are the transmission probabilities pg
or edge weights in a graph. If these are estimated from data, we may have posterior
distributions or, a weaker assumption, confidence sets for the parameters. For ease of
notation, we will work with the failure probabilities x;; = 1 — py, instead of the py
directly, and write Z(y;x) instead of Z(y; p).

2.1 Stochastic Optimization

If a (posterior) distribution of the parameters is known, a simple strategy is to use
expectations. For example, we can place a uniform prior on x, and observe ny in-
dependent observations drawn from Ber(xy ). If we observe o, failures and f; suc-
cesses, the resulting posterior distribution on the variable X, is Beta(1 4 g, L + By ).
Given such a posterior, we may optimize
max Z(y;E[X]) &) or max E[Z(y;X)]. (6)
yey yey
Proposition 2 Problems (5) and (6) are concave maximization problems over the
(convex) set Y and can be solved exactly.

Concavity of (6) follows since it is an expectation over concave functions, and it can
be solved by stochastic gradient ascent or by explicitly computing gradients.

Merely maximizing expectation does not explicitly account for volatility and
hence risk. One option is to penalize variance [10, 11,4]:

min —E[Z(y;X)]+ &+/ Var(Z(y; X)), (7)

YEY
but in our case this CVaR formulation seems difficult.

Fact 1 For y in the nonnegative orthant, the term +/ Var(Z(y; X)) need not be convex
or concave, and need not be submodular or supermodular.

This observation does not rule out a solution, but the apparent difficulties further
motivate a robust formulation that, as we will see, is amenable to optimization.

2.2 Robust Optimization

The focus of this work is the robust version of Budget Allocation, where we allow
an adversary to arbitrarily set the parameters x within an uncertainty set X. This

© 2019 Springer Science+Business Media, LLC, part of Springer Nature.



6 Matthew Staib, Stefanie Jegelka

uncertainty set may result, for instance, from a known distribution, or simply from
assumed bounds. Formally, we solve

max min Z(y;x), 8
yEJ)J( xeX (y x) ( )

where Y C Ri is a convex set with an efficient projection oracle, and X is an un-
certainty set containing an estimate £. In the sequel, we use uncertainty sets X =
{x € Box(l,u) : R(x) < B}, where R is a distance (or divergence) from the estimate
%, and Box(Z, u) is the box [(s e [ls, ust]- The intervals [Iy, uy] can be thought of as
either confidence intervals around £, or, if [, uy] = [0, 1], they enforce that each x
is a valid probability.

Common examples of uncertainty sets used in Robust Optimization are Ellip-
soidal and D-norm uncertainty sets [11]. Our algorithm in Section 4 applies to both.

Ellipsoidal uncertainty. The ellipsoidal or quadratic uncertainty set is defined by

X2(y) = {x € Box(0, 1) : (x— 7= (x—) < 7},

where X is the covariance of the random vector X of probabilities distributed ac-
cording to our Beta posteriors. In our case, since the distributions on each x, are
independent, X! is actually diagonal. Writing £ = diag(c?), we have

X2(y) = {x €Box(0,1): ¥ Ry(xy) < y},

(s,r)€EE

N -2
where Ry (x) = (xg — £5)2 0 2.
D-norm uncertainty. The D-norm uncertainty set is similar to an ¢;-ball around
%, and is defined as

XP(y) :{x: e € Box(0, 1) s.t. xg =&y + (ug — X5t )yt Z e < }/}.
(s,r)eE

Essentially, we allow an adversary to increase X5 up to some upper bound ug, subject
to some total budget y across all terms x,,. The set X (y) can be rewritten as

XP(y) = {x €Box(f,u): Y Ry(xy) < V}7

(s;)€E

where Ry (x) = (x5 — £5) /(s — £y) is the fraction of the interval [£,uy] we have
used when increasing x.

The min-max formulation max,cy min,c x Z(y;x) has several benefits: the model
is not tied to a specific learning algorithm for the probabilities x as long as we can
choose a suitable confidence set. Moreover, this formulation allows to fully hedge
against a worst-case scenario.

© 2019 Springer Science+Business Media, LLC, part of Springer Nature.
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Algorithm 1 Subgradient Ascent

Input: suboptimality tolerance € > 0, initial feasible budget y(0> ey
Output: e-optimal budget y for Problem (8)

repeat

2% — argmine x I(y(k) ) & Find worst-case x for y(¥)
g —v I( (k) x( ) > Gradient with respect to y of min,e x Z(y;x) at y = y¥)
Lo — T ( ) > Lower bound on optimal value

U ®) — max‘ey Z(y; %% ) > Upper bound on optimal value

YO — (U® — L&) /)1g®|[3 > Polyak’s stepsize rule

plet) projy(y(“> + ¢ gk)

k—k+1

until UK — L0 < ¢

3 Robust Budget Allocation: Main Ideas

Next, we address in two main steps how to solve Problem (8), first the outer and then
the inner optimization problem. As noted above, the function Z(y;x) is concave as
a function of y for fixed x. As a pointwise minimum of concave functions, F(y) :=
min,ex Z(y;x) is concave. Hence, if we can compute subgradients of F(y), we can
solve our max-min-problem via the subgradient method, as outlined in Algorithm 1.

A subgradient g, € dF (y) at y is given by the gradient of Z(y;x*) for the minimiz-
ing x* € argminye v Z(y;x), i.e., gy = V,Z(y;x*). Hence, we must be able to compute
x* for any y. We also obtain a duality gap: for any x’,y’ we have

minZ(y';x) < maxminZ(y;x) < maxZ(y;x'). 9
minZ(y )_yeyxex v )_yey (v:x") )

This means we can estimate the optimal value Z7* and use it in Polyak’s stepsize rule
for the subgradient method [64].

What remains to be addressed is how to compute x*. Z(y;x) is not convex in x,
and not even quasiconvex. For example, standard methods [71, Chapter 12] imply
that f(x1,x0,x3) = 1 —x1xp — /X3 is not quasiconvex on Ri. Moreover, the above-
mentioned signomial optimization techniques do not apply for an exact solution ei-
ther. So, it is not immediately clear that we can solve the inner optimization problem.

The key insight we will be using is that Z (y;x) has a different beneficial property:
while not convex, Z(y;x) as a function of x is continuous submodular.

Lemma 1 Suppose we have n > 1 differentiable functions f; : R — Ry, for i =
1,...,n, either all nonincreasing or all nondecreasing. Then, f(x) =TI, fi(xi) is
a continuous supermodular function from R" to R..

Proof For n = 1, the resulting function is modular and therefore supermodular. In the
case n > 2, we simply need to compute derivatives. The mixed derivatives are

af
axlaxj f -xl f] xj kglfk Xk (10)

By monotonicity, f; and f]’- have the same sign, so their product is nonnegative, and
since each f; is nonnegative, the entire expression is nonnegative. Hence, f(x) is
continuous supermodular by Theorem 3.2 of [70].

© 2019 Springer Science+Business Media, LLC, part of Springer Nature.



8 Matthew Staib, Stefanie Jegelka

Corollary 1 The influence function Z(y;x) defined in Section 2 is continuous sub-
modular in x over the nonnegative orthant, for each’y > 0.

Proof Since submodularity is preserved under summation, it suffices to show that
each function I (y) is continuous submodular. By Lemma 1, since f;(z) = 2’ is

nonnegative and monotone nondecreasing for y(s) > 0, the product [is.)ee st(s) is
continuous supermodular in x. Flipping the sign and adding a constant term yields
I (y), which is hence continuous submodular.

We further conjecture that the functions Z (y;x) enjoy another beneficial property,
beyond submodularity:

Conjecture 1 Strong duality holds, i.e.,

Qg}{ggﬂ(m) —)rcrél)rgr){lgl(y,x)- (11)
If strong duality holds, then the duality gap max,cy Z(y;x*) — mineex Z(y*;x) in
Equation (9) is zero at optimality. If Z(y;x) were quasiconvex in x, strong duality
would hold by Sion’s min-max theorem, but this is not the case. In practice, we ob-
serve that the duality gap always converges to zero.

We have seen the functions Z(y;x) enjoy nice structural properties, but it is still
not clear how to solve the inner problem. Bach [5] demonstrates how to minimize
a continuous submodular function H(x) subject to box constraints x € Box(Z,u), up
to an arbitrary suboptimality gap € > 0. The constraint set /" in our Robust Bud-
get Allocation problem, however, has box constraints with an additional constraint
R(x) < B. This case is not addressed in any previous work. Fortunately, for a large
class of functions R, there is still an efficient algorithm for continuous submodular
minimization, which we present in the next section.

4 Constrained Continuous Submodular Function Minimization

The previous section shows that, to solve Robust Budget Allocation, we need an
algorithm for minimizing a monotone continuous submodular function H(x) subject
to box constraints x € Box(Z,u) and a constraint R(x) < B:

minimize H (x)
s.t. R(x) <B (12)
x € Box(l,u).

If H and R were convex, the constrained problem would be equivalent to solving,
with the right Lagrange multipler A* > 0:

minimize H(x) + A*R(x)

s.t. x € Box(I,u). (3)

Although H and R are not necessarily convex here, it turns out that a similar approach
indeed applies. The property of submodularity then enables a special relaxation that

© 2019 Springer Science+Business Media, LLC, part of Springer Nature.



Robust Budget Allocation via Submodular Functions 9

allows one to obtain a solution for all possible values of A via a single convex opti-
mization problem. The main idea of our approach bears similarity with [58] for the
set function case, but our setting with continuous functions and various uncertainty
sets is more general, and requires more argumentation. We present our theoretical
results here, and defer implementation details to the appendix.

4.1 Forming an Equivalent Convex Problem

Following [5], we discretize the problem; for a sufficiently fine discretization, we will
achieve arbitrary accuracy. This discretization will in turn lead to a convex relaxation.
Let A be an interpolation mapping that maps the discrete set [T, [k;] into Box(l,u) =
T [li,ui] via the componentwise interpolation functions A; : [k;] — [l;,u;]. We say
A;is O-fineif Aj(x;+1)—A;(x;) < forall x; € {0,1,...,k; —2}. We will further say
the full interpolation function A is d-fine if each A; is -fine.

This mapping yields functions H® : [T",[k] — R and R® : [T, [ki] — R via
H%(x) = H(A(x)) and R®(x) = R(A(x)). H® is submodular on the integer lattice.
This construction reduces Problem (13) to a submodular minimization problem over
the integer lattice:

minimize H®(x) + AR% (x)

s.t. x e ITL, [k (14

Motivated by convex optimization, one may hope that there exists a A whose asso-
ciated minimizer x(A) yields a nearly optimal solution for the corresponding con-
strained Problem (12) in the lattice case, where H® and R® replace H and R. . Theo-
rem 2 below states that, under a condition, this is indeed the case. Moreover, a second
benefit of submodularity is that we can find the entire solution path for Problem (14)
by solving a single optimization problem.

Lemma 2 Suppose H is continuous submodular, and suppose the regularizer R is
strictly increasing and separable: R(x) = Y| Ri(x;). Then we can recover a mini-
mizer x(A) for the induced discrete Problem (14) for any A € R by solving a single
convex optimization problem.

To formally prove Lemma 2, we need to go into more detail. The convex optimization
problem arises from a relaxation £, that is an analogue of the Lovdsz extension of set
functions to continuous submodular functions [5]. The basic idea for the extension
h) is: instead of fixing a value for each coordinate of x, we give a distribution over
values, and | is the expected function value under that distribution. As a corollary,
h) coincides with H® on lattice points.

Instead of specifying a full joint distribution over all coordinates, we will only
need to give coordinatewise marginals ;. It is also convenient to represent the distri-
butions ; via their (reversed) cumulative distributions functions p;. The best joint dis-
tribution follows directly from these marginals: it is the solution to a multi-marginal
optimal transport problem between the marginals, where the transport cost is the orig-
inal submodular function H or H®. Formally /| can be defined as:

© 2019 Springer Science+Business Media, LLC, part of Springer Nature.



10 Matthew Staib, Stefanie Jegelka

Definition 1 ([5]) Write X' =[], &, and let H : X — R be a submodular function
(discrete or continuous). We define the generalized Lovdsz extension of H by:

RP1ee P =h (Lo fhy) == inf /de x 5

o) =Ry o)1= inf [ H () dY(x) (15)

where P(X,{w;}) is the set of measures ¥ whose marginals match the g, for all
coordinates i.

Importantly, /| is convex if and only if H is submodular [5, Theorem 1]. This makes
optimizing h| tractable. To prove Lemma 2 we will use a specific correspondence
between a discrete submodular function H% and its extension /:

Theorem 1 (Theorem 4 from [5]) Let H 5. " |ki] — R be a submodular function
with generalized Lovdsz extension h|. Also let a;y, be strictly convex functions for all
i=1,...,n and each y; € [k;|. The set R'I refers to the set of ordered vectors z € R
that satisfy z; > zp > -+ > z, and the notation p;(x;) denotes the x;-th coordinate of
the vector p;. The vector p; should still be understood as a discrete reverse cumulative
distribution function, as stated earlier. For convenience we also write p = py,..., Py.
Then the two problems

minimize H(x) + Y7, Yooy ah,(A)

16
s.t. x e T, ki 1o
and 1
minimize A (p)+Xr, xi;l aix;[Pi(xi)] A7)
s.t. pell, R

are equivalent. Specifically, one recovers a solution to Problem (16) for any A: find
p* which solves Problem (17) and, for each component i, choose x; to be the maximal
value for which p} (x;) > A.

With Theorem 1 in hand, we are finally ready to prove Lemma 2. Our high-level
strategy is to convert Problem (14) into the form of Problem (16). Per Theorem 1, we
can solve Problem (16) and hence Problem (14) simultaneously for all A, simply by
solving the single convex Problem (17).

Proof (Lemma 2) The discretized form of the regularizer R? is also separable and can
be written R% (x) = Y7 R?(x). For each i = 1,...,n and each y; € [k;] with y; > 1,
define ay, (1) = 212+ [RO(y7) — R (y; — 1)], s0 that al (1) = 1 - [R (y;) — RO (y; — ).
Since we assumed R(x) is strictly increasing, the coefficient of 2 in each ay, (¢) is
strictly positive, so that each a;y, (7) is strictly convex. Then,

AR (x) = A | RB(O)+ Y, (RO() — RO G- 1>)] 18)
yizl
= AR?(0)+ Z dy,(4), (19)
yi=l1

© 2019 Springer Science+Business Media, LLC, part of Springer Nature.



Robust Budget Allocation via Submodular Functions 11

so that the discretized version of the minimization problem (14) can be written as

minimize H®(x) +AR%(0) + YL, Z;i::l a, (A)

s.t. x €T, [k 20)

Since the term R%(0) does not depend on the variable x, this minimization is equiva-

lent to
minimize H®(x) + YL, 1 iy (A)

21
st xell, k. @
This problem is in the precise form where we can apply Theorem 1 to show equiva-
lence between Problems (16) and (17), so we are done. O

Problem (17) can be solved by Frank-Wolfe methods [31,28,49,43]. This is be-
cause the greedy algorithm for computing subgradients of the Lovész extension can
be generalized, and yields a linear optimization oracle for the dual of Problem (17).
We detail the relationship between Problems (14) and (17), as well as how to imple-
ment the Frank-Wolfe methods, in Appendix C.1.

4.2 Bounding Solution Quality for the Constrained Problem

We now have a tractable convex formulation, Equation (17), of the regularized prob-
lem. But it is not yet clear if we can also recover a good solution to the original
constrained problem.

Let p* be the optimal solution for Problem (17). For any A, we obtain a rounded
solution x(A) for Problem (14) by thresholding: we set x(4); = max{j | 1 < j <
ki—1, p(j) > A}, or zero if p}(j) < A for all j. Each x(A1') is the optimal solution
for Problem (14) with A = A’. We use the largest parameterized solution x(1) that is
still feasible, i.e. the solution x(1*) where 1* solves

min H%(x(1))
st. A>0 (22)
R%(x(A)) < B.

This A* can be found efficiently via binary search or a linear scan.

Theorem 2 Let H be continuous submodular and monotone decreasing, with {e.-
Lipschitz constant G, and let R be strictly increasing and separable. Assume all en-
tries p; () of the optimal solution p* of Problem (17) are distinct. Let X' = A(x(1%))
be the thresholding corresponding to the optimal solution A* of Problem (22), mapped
back into the original continuous domain X. Then X' is feasible for the continuous
Problem (12), and is a 2G8-approximate solution:
H(x') <2G5+ min H(x).
xeBox(l,u), R(x)<B

Theorem 2 implies an algorithm for solving Problem (12) to €-optimality: (1) set
0 = €/G, (2) compute p* that solves Problem (17), (3) find the optimal thresholding
of p* by determining the smallest A* for which R®(x(1*)) < B, and (4) map x(A*)
back into continuous space via the interpolation mapping A.
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Proof (Theorem 2) The general idea of this proof is to first show that the best integer-
valued point x; that solves

Xy € argmin  H%(x)
x€[T, [lc,v]:R‘s (x)<B

is also nearly a minimizer of the continuous version of the problem, due to the fine-
ness of the discretization. Then, we show that the solutions traced out by x(1) get
very close to x};. These two results are simply combined via the triangle inequality.

We begin with a Lemma bounding the optimal discrete solution by the optimal
continuous solution:

Lemma 3 With x); defined as above,

S /ux < . )
H°(x;) <Géb +x€Xr:r11e1(r;)§BH (x) (23)

Proof Consider x* € argmin,c x.g(x)<p H (x). If x* corresponds to an integral point in

the discretized domain, then H (x*) = H%(x") and we are done. Else, since our dis-
cretization is 8-fine, we can find a discrete point xgoor With x* — 8 < A(Xfigor) < X*
elementwise. Algorithmically, xgo0r is @ kind of elementwise floor of x* with respect
to the discretization. There are two implications of the bound between A (xgoor) and
x*: first, by monotonicity, R® (xfioor) < B, i.e. A(Xfoor) is feasible for the original con-
tinuous problem; second, we must have ||x* — A (xgoor ) || < 8. Applying the Lipschitz
property of H and then the optimality of x);, we have

G8 > H(A(xnoor)) — H (x*) = H® (xnoor) — H(x") = H? (x}) — H (x"),
from which (23) follows. O

The next step in proving our suboptimality bound is to bound the suboptimality
of our thresholded solutions relative to the true discrete solution:

Lemma 4 Define A_ and A, by

A€ argmin H%(x(A)) and A, € argmax H%(x(1)).
A>0:R8 (x(1))<B A>0:R%(x(1))>B

Then, we can bound the discrete optimal value H® (x) on both sides by
H (x(Ay)) < H(x) < HO(x(2)). (24)
Proof Note that

min H%(x)= min max{H%(x)+A(R®(x)—B)}, 25
xe[T, [kil:R® () <B @ el (ki) Azo{ @+ AR ) )} *)
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since either the term R? (x) — B does not contribute, or it blows up when x is infeasible.
Continuing, we can bound:

: 6 o . s 5 B
e s es ) el T {H@+AR ) -] (26)
(@) . 5 )
e el {H0+AR @ -B)} 27)
() S S B
*TSB‘{H (x(2)) + A (R°(x(2)) B)} 28)
0)
(Z max {H(S(x(l))Jrl(R‘s(x()L))fB)} (29)
A>0:R8 (x(1))>B
d
(Z) max  H%(x(1)) (30)
A>0:R8 (x(1))>B
9 (x(24)), an

where (a) uses weak duality, (b) plugs in the definition of x(4), (c) shrinks the set
of candidate A, (d) bounds the regularizing term by zero, and (e) is the definition of
x(A4). We can also bound the optimal value of H® (x*) from the other side:

H%(x) = min H(x)<  min  H%(x(A)) =H%(x(1_)) (32)
xe[T2, [ki]:R® (x)<B A>0:R8 (x(1))<B

because the set of x(A) parameterized by A is a subset of the full set {x € [T} [k] :
R%(x) < B}. O

Corollary 2 In the same setting as Lemma 4, it holds that

HO(x(A-)) <G8-+HO(x3).

Proof Via Lemma 4 we can bound the optimal value of H® (x}) on either side by
optimization problems where we seek an optimal A > 0 for the parameterization

x(A):
H(x(Ay)) < H(x) < HO(x(2)). (33)

Recall that x(4) comes from thresholding the values of p* by A, and that we as-
sume that the elements of p* are unique. Hence, as we increase A, the compo-
nents of x decrease, in steps of one. Combining this with the strict monotonicity
of R, we see that Hx(7L+) —x( _)|]e < 1. By the Lipschitz properties of H®, it fol-
lows that |H° (x S (x(Ay)) —HO (x(A _))| < G8&. Since H ®(x) lies in the interval between

H%(x(.)) and H5 (x(A_)), it follows that |H® (x}) — H® (x(1_))| < G&. 0

With the above technical results in place, we can easily prove Theorem 2:
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14 Matthew Staib, Stefanie Jegelka

Proof (Theorem 2) We now combine Lemma 3 and Corollary 4.2. We have that

H() 2 H (x(A)) (34)
0) s
< G5+ H®(x%) (35)
()
< Gdo+ <G5 + min H(x)> (36)
xeBox(l,u), R(x)<B
—2GS+ min  H(x), (37)

x€Box(l,u), R(x)<B

where (a) is the definition of X/, (b) follows from Lemma 3 and (c) follows from
Corollary 4.2. O

4.2.1 Computable Optimality Bounds

Beyond the theoretical guarantee of Theorem 2, for any problem instance and candi-
date solution x’, we can compute bounds on the gap between H(x') and H°(x}):

1. The discrete point x(4. ) yields the bound
H() < [H(X) = H® (x(2))] + HC (x)). (38)
2. The Lagrangian yields the bound
H(X') < A*(B—R(X))+H5(x}). (39)

The first bound is a simple consequence of Lemma 4:

HO(x(A1)) < H (x)) (40)
— 0< —HO(x(A,)) +H3(x)) (41)
— H(X)<HX)—Hx(A))+H®(x). (42)

As for the Lagrangian bound, since x(A*) is a minimizer for the regularized function
HO(x) +A*(R®(x) — B), it follows that

H® (x(A*)) + A" (R®(x(A*)) — B) < H(x)) + A*(R%(x}) — B). (43)

Rearranging, and observing that Ré(x:}) < B because x; is feasible, it holds that

H(x') = H(x(17)) (44)
< HO(x)) + A% (R (x) — R®(x(17))) (45)
<H®(x})+A*(B—R(X)). (46)

One can also combine either of these bounds with the result from the proof of
Theorem 2 that H% (x) < G& + H(x*) yielding e.g.

H(X) <GS+ A*(B—R(X))+H(x"). (47)
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4.2.2 Improvements

The requirement in Theorem 2 that the elements of p* be distinct may seem some-
what restrictive, but as long as p* has distinct elements in the neighborhood of our
particular A*, this bound still holds. We see in Section 6.1.1 that in practice, p* al-
most always has distinct elements in the regime we care about, and the bounds of
Remark 4.2.1 are very good.

If H is DR-submodular and R is affine in each coordinate, then Problem (14) can
be represented more compactly via the reduction of [30], and hence problem (12)
can be solved more efficiently. In particular, the influence function Z(y;x) is DR-
submodular in x when for each s, y(s) = 0 or y(s) > 1.

4.2.3 Application to Robust Budget Allocation

The above algorithm directly applies to Robust Allocation with the uncertainty sets
in Section 2.2. The ellipsoidal uncertainty set X< corresponds to the constraint that
Y(s.)cE Rat (xg) < ¥ with Ry (x) = (xg —)?s;)zG;Z, and x € Box(0,1). By the mono-
tonicity of Z(x,y), there is never incentive to reduce any xy below £y, so we can
replace Box(0, 1) with Box(%, 1). On this interval, each Ry is strictly increasing, and
Theorem 2 applies.

For D-norm sets, we have Ry (x ) = (xg — £y )/ (ttsr — £/ ). Since each Ry, is mono-
tone, Theorem 2 applies.

4.2.4 Runtime and Alternatives

The core part of the algorithm uses Frank-Wolfe to optimize the regularized con-
vex extension, Problem (17). This convex problem can be solved to -suboptimality
in time O(e~'n?86 3~ !|T|*lognd~"), where « is the minimum derivative of the
functions R; (see Appendix C.2 for details). Suppose that the optimal solution p*
to Problem (17) has distinct elements separated by 1; then choosing € = n%aé /8
results in an exact solution to the discrete regularized Problem (14) in total time
oM~ 2n?8*a2|T|*lognd ).

Noting that H 8 + AR% is submodular for all A, one could instead perform bi-
nary search over A, each time converting the objective into a submodular set function
via Birkhoff’s theorem and solving submodular minimization e.g. via a fast, recent
method [18,51]. However, we are not aware of a practical implementation of the al-
gorithm in [51]. The algorithm in [18] yields a solution only in expectation. This ap-
proach also requires care in the precision of the search over A, whereas our approach
solves for all A simultaneously, and picks directly from the O(n§~!) elements of p*.

A host of alternate approaches are also possible, e.g. a generalization of the min-
imum norm point algorithm [73,32] which is also suggested by [S]. However such
development is out of scope for this paper: our focus is on developing a convex for-
mulation, rather than optimizing the algorithm.
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5 Simple examples where our approach is optimal

Next, we take a view beyond Budget Allocation, and theoretically and empirically
evaluate the optimality of our constrained submodular minimization algorithm on
two classes of nonconvex problem where the optimal solution can be computed. For
one class, the algorithm provably yields the global optimal solution. For the other
class, the algorithm empirically yields solutions that are very close to globally optimal
solutions from a specialized SDP relaxation.

5.1 Separable problems

First, we assume that the objective function H(x) and constraint function R(x) are
continuous submodular and separable. Some such problems admit simple analytic
solutions despite nonconvexity. Our approach will recover these solutions. To under-
stand how our method behaves when the objective and constraints are separable, the
following structural result about the convex extension will be useful.

Lemma 5 (also appears informally in [5]) Suppose the objective is separable: H(x) =
1 Hi(xi). Then the convex extension h| (U1, ..., Uy,) is also separable:

:ula ,,Lln Zhll .ul (48)

where h;| is the extension for H;.

Note that this separability also holds for any block-separable structure.

Proof First we write out the definition of the convex extension /| ():

Wiy, )=  inf H(x)d 49
Wbt = inke ] H ) (49)
£ Hi(xi) dy( 50
yepl?ré{u, /Z (v)dyx 0
inf / () dy( 51)

VePX{u, ,Z{ 7 (

Each integral of H;(x;) only depends on the marginal of ¥, which by definition is ;.
Since this is the only dependence on 7, the infimum is now unnecessary:
I»Lla -5 Hp) Z/ -xl ) du( xz Z h:i ;). (52)
i=1 i=1
O
Write AH;(x;) = H;(x;) — H;(x; — 1) and similarly for R;(x;). Using Lemma 5 we
can prove the following structural result:
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Proposition 3 Suppose H(x) and R(x) are both separable as above. Consider the
regularized problem:

minimize hl( )+Z 1ZX_1alxl(pl(xl))

53
s.t. p eIl R 43

If Qi(x;) := AR; (( )) is nondecreasing in x; for all i, then the optimal solution for Prob-
lem (53) is given by p;*(x;) = —Qi(x;).

Proof By Lemma 5 we have | (p) =Y./, h; (p;). In the single dimensional case, %; l’

the extension is very easy to compute, as it is given by h;| (1) = [, Hi(x;) di(x;). Wi

instead use the alternative characterization of ;| in terms of the reversed cumulatlve

distribution function p;. In the discrete case, we write p;(x;) = t;(x;) + t;(x; + 1) +
-+ pi(k; — 1), and so h;| (p;) is given by:

zl(pt = + Z Pz xl l Hz(xi_ 1)) (54)
xi=1
ki—1

0)+ Y pi(xi)AHi(x;). (55)
X,'=1

We assumed the constraint functions R(x) = Y | R;(x;) are separable over i.
As in the proof of Lemma 2, we convert each R; into strongly convex functions
aix;(t) = 3tAR;(x;). Since the convex extension & is now also separable, as are
the monotonicity constraints, we may separately consider n problems of the form:

minimize h;| (p;) + Zl;f;i aix, (pi(xi))

- 56
s.t. pi € R’f ! (56)
The first term /;| (p;) is also a sum over x;, so we may rewrite the objective as:
ki—1
Y pi(xi)AH (x;) + = Z pi(x))?AR;(x;) (57)
xi=1 x,*l
ki—1 1
= ¥ {p st + ool ar () . (58)
x,'=1
Completing the square, we may write
1
pi(xi)AH;(xi) + 5 [oi(x:)]*ARi(x;) (59)
AR,’()C,‘) AH,‘()C,‘) 2 AR,‘ AH[()C,‘) 2
4 (xi — . ) 60
2 (pl (X,) + AR,‘(_X,’) 2 AR,’(.X,') ( )
The last term is a constant that does not depend on p;, so we ignore it. Using, in
addition, the identity Q;(x;) = ﬁgj&‘f;, the problem we wish to solve is:

minimize ):],Z;{ AR;(x;) (pi(xi) + Qi(x))

- 61
s.t. pieR’f ! 6
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This is a weighted isotonic regression problem. We try to fit p;(x;) to the value
—Qi(x;), with associated weight AR;(x;). We assumed Q;(x;) is nondecreasing, so
—Qi(x;) is nonincreasing. Therefore setting p;" (x;) = —Q;(x;) is feasible and obtains
optimal objective value (zero). O

There are many situations in which Q;(x;) is nondecreasing, and therefore p;*(x;) =
—Qi(x;). We focus on a particularly simple one: let H;(x;) = a;x! and R;(x;) = rix?,
so that the overall optimization problem is

minimize Y, a;x?
s.t. Y, rixl <B (62)
0<x<1.

The problem might be nonconvex in its current form, but the transformation y; = rixf7
gives a convex problem:

minimize Y7, %’ Vi
s.t. 17y<B 63)
0<y<r

The constraint here is a scaled version of the simplex. An optimal solution can be
found by sorting tl.le ind‘ices SO %‘ < <L ‘;—: and saturating yy,y, ... in order until
the total budget B is achieved.

This procedure is precisely equivalent to what our algorithm will do, even without
the convex reparameterization. In our case,

, P (. y
Qi(x,.):&.w_& (64)

ri X 7()6,'71)1’ N\ T

is constant, hence nondecreasing. Therefore p; (x;) = — %’ solves Problem (53). Con-
sider now the thresholding step of our algorithm, where we search over A and take
p; (x;) only if p}(x;) > A. Since p;(x;) = p;* is constant, we will take entire coordi-
nates at a time: we will first find the coordinate i with —Q; = —%’_’ maximized, i.e. %’
minimized. We set x; = k; — 1 (which maps back to x; = 1 when we un-discretize).
Then we move onto the next best coordinate, and so on.

Proposition 3 confirms at least for this special case that our algorithm finds the
optimal solution. Moreover, we can find the optimal solution without using a more
specialized approach that depends on e.g. quadratic problem structure.

5.2 Non-separable quadratics and SDP relaxations

Reasoning about guaranteed performance gets more difficult as we move away from
separable problems. Even empirical evaluation becomes problematic in nonconvex
settings where all we can know about the globally optimal solution is the subopti-
mality bound returned by our algorithm. Before addressing these harder regimes, we
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study a harder class of nonconvex problems that still admit global optimality guaran-
tees. Specifically we look at a certain class of nonconvex quadratically-constrained
quadratic problems:

1 1
min  —x’ Ax+cTx min  —x' Ax+cTx
X 2 x 2
s.t. x€Box(0,1) & st P <xVi
1 1
ixT diag(r)x <B ExT diag(r)x < B,

where A has nonpositive off-diagonal entries. These problems are a useful benchmark
because they can be solved globally via an SDP relaxation [46]. Concretely:

Theorem 3 (Theorem 4 from [46]) Let A have nonpositive off-diagonal entries. Let
(X*,x*) be a solution to the SDP

.1 T
min 5 tr(AX)+c' x

s.t. diag(X) <x

%tr(diag(r)X) <B

X x
x

E

Taking 7* to be the elementwise square root of diag(X*) yields an optimal solution to
the original nonconvex problem.

We emphasize that this is a very special subclass of constrained submodular prob-
lems: the SDP approach only applies when both the objective and constraint are
quadratic, while our algorithm applies more broadly.

We compare our constrained submodular optimization algorithm to the SDP re-
laxation on random problems. For our algorithm, we discretize each coordinate into
k = 1000 pieces, and run only 300 iterations of Frank-Wolfe on the convex relax-
ation (17). The matrix A is set to M +M7T, where each entry of M is sampled uni-
formly in [—1,0]. The linear term c is set to zero, the constraint vector r is set to the
all ones vector, and we vary B. Figure 1 shows histograms of the gap in performance
between the two algorithms. For most instances our approach does nearly as well as
the globally optimal SDP solution.

In fact, if A is restricted to be a diagonal matrix (we take only its diagonal part),
our algorithm always achieved a relative suboptimality gap below 10~%. As predicted
by Proposition 3, for separable problems our algorithm is essentially optimal.

5.3 Evaluation of suboptimality bounds
In Section 4.2.1 we give solution-dependent suboptimality bounds for the algorithm.

These require only the discrete solution, (possibly) the optimal Lagrange multiplier,
the granularity 8 (chosen to be 0.001 in these experiments), and the /.. Lipschitz
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Fig. 1 Relative suboptimality of the submodular optimization solution (objective value fsbmod) VS the
globally optimal SDP solution (objective value fyqp). Quadratic constraints |Ix|[> < B with B = 0.1 (left)
and B =1 (right).

constant of H(x) = %xTAx. Since x < | elementwise, we can equivalently bound the
{.. norm of the linear map x — 117 Ax, which is just 1||17A||;. Since the bounds do
assume access to the optimal p* for Problem (17), it is important to run Frank-Wolfe
for enough iterations to get a good approximation to p*.

For each quadratic experiment from the previous section, we compute the best
available suboptimality bound. Here, even 300 iterations were easily sufficient to
approximate p* for this purpose. For the quadratic problems, the bounds from Sec-
tion 4.2.1 were typically ~ 0.1 for B = 0.1 and ~ 0.01 for B = 1. The computed
bounds were always an upper bound on the true suboptimality in our experiments.

6 Robust Budget Allocation Experiments

After testing the core submodular minimization subroutine, we return to the moti-
vating application of Robust Budget Allocation. We evaluate our algorithm on both
synthetic test data and a real-world bidding dataset from Yahoo! Webscope [1] to
demonstrate that our method yields real improvements. For all experiments, we used
Algorithm 1 as the outer loop. For the inner submodular minimization step, we im-
plemented the pairwise Frank-Wolfe algorithm of [50]. In all cases, the feasible set
of budgets Vis {y € RS : L csy(s) < C} where the specific budget C depends on the
experiment. Our code is available at git.io/vHXkO.

6.1 Synthetic

On the synthetic data, we probe two questions: (1) how often does the distinctness
condition of Theorem 2 hold, so that we are guaranteed an optimal solution; and
(2) what is the gain of using a robust versus non-robust solution in an adversarial
setting? For both settings, we set |S| = 6 and |T'| = 2 and discretize with 6 = 0.001.
We generated true probabilties py,, created Beta posteriors, and built both Ellipsoidal
uncertainty sets X2 (y) and D-norm sets X (7).
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Fig. 2 Visualization of the sorted values of p;*(j) (blue dots) with comparison to the particular Lagrange
multiplier A* (orange line). In most regimes there are no duplicate values, so that Theorem 2 applies. The
theorem only needs distinctness at A*.

6.1.1 Optimality

Theorem 2 and Remark 4.2.2 demand that the values p; () be distinct at our chosen
Lagrange multiplier A* and, under this condition, guarantee optimality. We illustrate
this in four examples: for Ellipsoidal or a D-norm uncertainty set, and a total influence
budget C € {0.4,4}. Figure 2 shows all elements of p* in sorted order, as well as a
horizontal line indicating our Lagrange multiplier A* which serves as a threshold.
Despite some plateaus, the entries p;*(j) are distinct in most regimes, in particular
around A*, the regime that is needed for our results. Moreover, in practice (on the
Yahoo data) we observe later in Figure 4 that both solution-dependent bounds from
Remark 4.2.1 are very good, and all solutions are optimal within a very small gap.

6.1.2 Robustness and Quality

Next, we probe the effect of a robust versus non-robust solution for different uncer-
tainty sets and budgets y of the adversary. We compare our robust solution with using
a point estimate for x, i.e., Ynom € argmax,cy Z(y;X), treating estimates as ground
truth, and the stochastic solution yexpect € argmax .y, E[Z(y;X)] as per Section 2.1.
These two optimization problems were solved via standard first-order methods using
TFOCS [8].

Figure 3 demonstrates that indeed, the alternative budgets are sensitive to the
adversary and the robustly-chosen budget yopust performs better, even in cases where
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Fig. 3 Comparison of worst-case expected influences for D-norm uncertainty sets X2(y) (left) and el-
lipsoidal uncertainty sets X'?(y) (right), for different total budget bounds C. For any particular adversary
budget ¥, we compare min.¢ x (y) Z. (y;x) for each candidate allocation y.

the other budgets achieve zero influence. When the total budget C is large, Yexpect
performs nearly as well as yyopust, but when resources are scarce (C is small) and the
actual choice seems to matter more, Yyohust performs far better.

6.2 Yahoo! data

To evaluate our method on real-world data, we formulate a Budget Allocation in-
stance on advertiser bidding data from Yahoo! Webscope [1]. This dataset logs bids
on 1000 different phrases by advertising accounts. We map the phrases to channels
S and the accounts to customers 7', with an edge between s and ¢ if a corresponding
bid was made. For each pair (s,7), we draw the associated transmission probability
Ps uniformly from [0,0.4]. We bias these towards zero because we expect people not
to be easily influenced by advertising in the real world. We then generate an estimate
P and build up a posterior by generating ny samples from Ber(py ), where ny is the
number of bids between s and ¢ in the dataset.

This transformation yields a bipartite graph with |S| = 1000, |T| = 10475, and
more than 50,000 edges that we use for Budget Allocation. In our experiments, the
typical gap between the naive ypom and robust yopuse Was 100-500 expected influenced
people. We plot convergence of the outer loop in Figure 4, where we observe fast
convergence of both primal influence value and the dual bound.
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Fig. 4 Convergence properties of our algorithm on real data. In the first plot, ‘p’ and ‘d’ refer to primal
and dual values, with dual gap shown on the second plot. The third plot demonstrates that the problem-
dependent suboptimality bounds of Remark 4.2.1 (x for x(A; ) and L for Lagrangian) are very small (good)
for all inner iterations of this run.

6.3 Comparison to first-order methods

Given the success of first-order methods on

nonconvex problems in practice, it is natu- 10500

ral to compare these to our method for find- Fw

ing the worst-case vector x. On one of our L 9500 ———
Yahoo problem instances with D-norm un- g

certainty set, we compared our submodular c§

minimization scheme to Frank-Wolfe with — 8500

fixed stepsize as in [49], implementing the

linear oracle using MOSEK [55]. Interest- 7500

ingly, from various initializations, Frank- 0 40 80
Wolfe finds an optimal solution, as veri- Iteration

fied by comparing to the guaranteed solu- Fig. 5 Convergence properties of Frank-

Wolfe (FW), versus the optimal value at-

tion of our algorithm. Note that, due to non- tained with our scheme (SEM).

convexity, there are no formal guarantees

for Frank-Wolfe to be optimal here, moti-

vating the question of global convergence properties of Frank-Wolfe in the presence
of submodularity.

It is important to note that there are many cases where first-order methods are in-
efficient or do not apply to our setup. These methods require either a projection oracle
onto or linear optimization oracle over the feasible set X’ defined by ¢, u and R(x). The
D-norm set admits a linear optimization oracle via linear programming, but we are
not aware of any efficient linear optimization oracle for Ellipsoidal uncertainty, nor
projection oracle for either set, that does not require quadratic programming. Even
more, our algorithm applies for nonconvex functions R(x) which induce nonconvex
feasible sets X. Such nonconvex sets may not even admit a unique projection, while
our algorithm achieves provable solutions.
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7 Conclusion

We address the issue of uncertain parameters (or, model mis-specification) in Bud-
get Allocation or Bipartite Influence Maximization [3] from a robust optimization
perspective. The resulting Robust Budget Allocation is a nonconvex-concave saddle
point problem. Although the inner optimization problem is nonconvex, we show how
continuous submodularity can be leveraged to solve the problem to arbitrary accuracy
€, as can be verified with the proposed bounds on the duality gap. In particular, our
approach extends continuous submodular minimization methods [5] to more general
constraint sets, introducing a mechanism to solve a new class of constrained noncon-
vex optimization problems. Our method provably performs well on a class of separa-
ble nonconvex problems, and empirically well on nonconvex quadratics. For Robust
Budget Allocation, we confirm on synthetic and real data that our method finds high-
quality solutions that are robust to parameters varying arbitrarily in an uncertainty
set, and scales up to graphs with over 50,000 edges.

There are many compelling directions for further study. The uncertainty sets we
use are standard in the robust optimization literature, but have not been applied to
e.g. Robust Influence Maximization; it would be interesting to generalize our ideas
to general graphs. Finally, despite the inherent nonconvexity of our problem, first-
order methods are often able to find a globally optimal solution. Explaining this phe-
nomenon requires further study of the geometry of constrained monotone submodular
minimization.
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A Worst-Case Approximation Ratio versus True Worst-Case

Consider the function f(x; 0) defined on {0,1} x {0, 1}, with values given by:

1 x=0 v J1 x=0
f(x,O)—{oﬁ le, f(x,1>—{2 =l (©9)

We wish to choose x to maximize f(x; 0) robustly with respect to adversarial choices of 6. If 6 were fixed,
we could directly choose xj to maximize f(x; ). In particular, x; = 0 and x} = 1. Of course, we want to
deal with worst-case 6. One option is to maximize the worst-case approximation ratio:

max min fx:0)

X ) f(xg,e)

(66)

One can verify that the best x according to this criterion is x = 1, with worst-case approximation ratio 0.6
and worst-case function value 0.6. In this paper, we optimize the worst-case of the actual function value:

max meinf(x; 0). (67)
X
This criterion will select x = 0, which has a worse worst-case approximation ratio of 0.5, but actually

guarantees a function value of 1, significantly better than the 0.6 achieved by the other formulation of
robustness.

B DR-submodularity and L!-convexity

A function is Li-convex if it satisfies a discrete version of midpoint convexity, i.e. for all x,y it holds that

re+r00= 1 ([552] )+ (|552]). (©8)

where the floor |- | and ceiling [-] functions are interpreted elementwise.

Remark 1 An Li-convex function need not be DR-submodular, and vice-versa. Hence algorithms for op-
timizing one type may not apply for the other.
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Proof Consider fi(x;,x2) = —x% —2x1xp and fo(x1,x2) = x% +x%, both defined on {0,1,2} x {0,1,2}.
The function f; is DR-submodular but violates discrete midpoint convexity for the pair of points (0,0) and
(2,2), while f> is L*-convex but does not have diminishing returns in either dimension.

Intuitively-speaking, Li-convex functions look like discretizations of convex functions. The contin-
uous objective function Z(x,y) we consider need not be convex, hence its discretization need not be Li-
convex, and we cannot use those tools. However, in some regimes (namely if each y(s) € {0} U [1,00)), it
happens that Z(x,y) is DR-submodular in x.

C Constrained Continuous Submodular Function Minimization

C.1 Solving the Optimization Problem

Here, we describe how to solve the convex problem (17) to which we reduced the original constrained
submodular minimization problem. Bach [5], at the beginning of Section 5.2, states that this surrogate
problem can be optimized via the Frank-Wolfe method and its variants. However, [5] only elaborates on
the simpler version of Problem (17) without the extra functions a;y;. Here we detail how Frank-Wolfe
algorithms can be used to solve the more general parametric regularized problem. Our aim is to spell out
very clearly the applicability of Frank-Wolfe to this problem, for the ease of practitioners.

Bach [5] notes that by duality, Problem (17) is equivalent to:

n ki—1 n ki—1
mink_ th(P) *H(O)JFZ Z ai; [Pi(xi)] = mink‘ | max (p,w) +Z Z i [Pi(xi)]
pelly Ry~ i=1xi=1 pelly Rji ! weBtH) fy o
n k=1
— max & min (P4 Y an o)
wEB(H) pell™, R’Ii*] i:zlxigl
= Wrex};a()l(i)f(w).

Here, the base polytope B(H ) happens to be the convex hull of all vectors w which could be output by the
greedy algorithm in [5].

It is the dual problem, where we maximize over w, which is amenable to Frank-Wolfe. For Frank-
Wolfe methods, we need two oracles: an oracle which, given w, returns V f(w); and an oracle which, given
V f(w), produces a point s which solves the linear optimization problem max,ep ) (s, V£ (w)).

Per [5], an optimizer of the linear problem can be computed directly from the greedy algorithm. For
the gradient oracle, recall that we can find a subgradient of g(x) = min, (x,y) at the point xy by finding
¥(xo) which is optimal for the inner problem, and then computing VA (x,y(xo)). Moreover, if such y(xo)
is the unique optimizer, then the resulting vector is indeed the gradient of g(x) at xo. Hence, in our case,
it suffices to first find p(w) which solves the inner problem, and then V f(w) is simply p(w) because the
inner function is linear in w. Since each function a;y, is strictly convex, the minimizer p(w) is unique,
confirming that we indeed get a gradient of f, and that f is differentiable.

Of course, we still need to compute the minimizer p(w). For a given w, we want to solve

n ki1
mink'il(p,w) + Z Z aix, [pi (xi)]
perly,R" im1xi=1

There are no constraints coupling the vectors p;, and the objective is similarly separable, so we can inde-
pendently solve n problems of the form

k—1
min (p,w)+ ) a;(p;).
pert™! j=1
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Recall that each function ajy, (f) takes the form %tzr,-yi for some ryy, > 0. Let D = diag(r), the (k—1) x
(k— 1) matrix with diagonal entries r;. Our problem can then be written as

lkfl N 1
min (p,w)+ = ) r;jp7 = min {(p,w)+ =(Dp,
peRF(p ) 2; iP] peRf]m )+5(Dp. p)

|
= min (D'7p, D~'/?w)+ 3(D'/*p, D'p).
peR’I*‘ 2

Completing the square, the above problem is equivalent to

k—1
min [D'2p +D'?w|3 = min Z’(rjl-/zpjJrrj_l/zwj)2
pery™! peri! 51
k—1 . )
= min er(Pj+r; w;j)°.
PRI j=1

This last expression is precisely the problem which is called weighted isotonic regression: we are fitting p
to diag(r~!)w, with weights r, subject to a monotonicity constraint. Weighted isotonic regression is solved
efficiently via the Pool Adjacent Violators algorithm of [13].

C.2 Runtime

Frank-Wolfe returns an e-suboptimal solution in O(g~!D?L) iterations, where D is the diameter of the
feasible region, and L is the Lipschitz constant for the gradient of the objective [43]. Our optimization
problem is max, sy f(w) as defined in the previous section. Each w € B(H) has O(nd ~1) coordinates

of the form H® (x4 ¢;) — H®(x). Since H? is an expected influence in the range [0, T], we can bound the
magnitude of each coordinate of w by T and hence D*> by O(n86~'T?). If « is the minimum derivative
of the functions R;, then the smallest coefficient of the functions a;y, (¢) is bounded below by o8. Hence
the objective is the conjugate of an ad-strongly convex function, and therefore has =!8 ~!-Lipschitz
gradient. Combining these, we arrive at the O(e~'n8~2a~'T?) iteration bound. The most expensive step
in each iteration is computing the subgradient, which requires sorting the O(n8~") elements of p in time
O(n6~"logn8~"). Hence the total runtime of Frank-Wolfe is O(e~'n?8 3~ T?lognd ).

As specified in the main text, relating an approximate solution of (17) to a solution of (14) is nontrivial.
Assume p* has distinct elements separated by 7, and chose € to be less than 28 /8. If p is £-suboptimal,
then by otd-strong convexity we must have ||p — p*||2 < 1/2, and therefore ||p — p* ||l < 17/2. Since the
smallest consecutive gap between elements of p* is 7, this implies that p and p* have the same ordering,
and therefore admit the same solution x after thresholding. Accounting for this choice in €, we have an
exact solution to (14) in total runtime of O(n 2n?8 *a2T?lognd~").
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