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Abstract

This article presents a robotic pick-and-place system that is capable of grasping and recognizing both known and novel

objects in cluttered environments. The key new feature of the system is that it handles a wide range of object categories

without needing any task-specific training data for novel objects. To achieve this, it first uses an object-agnostic grasping

framework to map from visual observations to actions: inferring dense pixel-wise probability maps of the affordances for

four different grasping primitive actions. It then executes the action with the highest affordance and recognizes picked

objects with a cross-domain image classification framework that matches observed images to product images. Since prod-

uct images are readily available for a wide range of objects (e.g., from the web), the system works out-of-the-box for novel

objects without requiring any additional data collection or re-training. Exhaustive experimental results demonstrate that

our multi-affordance grasping achieves high success rates for a wide variety of objects in clutter, and our recognition

algorithm achieves high accuracy for both known and novel grasped objects. The approach was part of the MIT–

Princeton Team system that took first place in the stowing task at the 2017 Amazon Robotics Challenge. All code, data-

sets, and pre-trained models are available online at http://arc.cs.princeton.edu/
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1. Introduction

A human’s remarkable ability to grasp and recognize unfa-

miliar objects with little prior knowledge of them is a con-

stant inspiration for robotics research. This ability to grasp

the unknown is central to many applications: from picking

packages in a logistic center to bin-picking in a manufac-

turing plant; from unloading groceries at home to clearing

debris after a disaster. The main goal of this work is to

demonstrate that it is possible, and practical, for a robotic

system to pick and recognize novel objects with very lim-

ited prior information about them (e.g., with only a few

representative images scraped from the web).

Despite the interest of the research community, and

despite its practical value, robust manipulation and recogni-

tion of novel objects in cluttered environments still remains

a largely unsolved problem. Classical solutions for robotic

picking require recognition and pose estimation prior to

model-based grasp planning, or require object segmentation

to associate grasp detections with object identities. These

solutions tend to fall short when dealing with novel objects

in cluttered environments, because they rely on 3D object

models that are not available and/or on large amounts of

training data to achieve robust performance. Although there
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has been inspiring recent work on detecting grasps directly

from RGB-D pointclouds as well as learning-based recogni-

tion systems to handle the constraints of novel objects and

limited data, these methods have yet to be proven in the

constraints and accuracy required by a real task with heavy

clutter, severe occlusions, and object variability.

In this article, we propose a system that picks and recog-

nizes objects in cluttered environments. We have designed

the system specifically to handle a wide range of objects

novel to the system without gathering any task-specific

training data from them.

To make this possible, our system consists of two com-

ponents. The first is a multi-affordance grasping framework

that uses fully convolutional networks (FCNs) to take in

visual observations of the scene and output dense predic-

tions (arranged with the same size and resolution as the

input data) measuring the affordance (or probability of

picking success) for four different grasping primitive

actions over a pixel-wise sampling of end-effector orienta-

tions and locations. The primitive action with the highest

inferred affordance value determines the picking action

executed by the robot. This picking framework operates

without a priori object segmentation and classification and,

hence, is agnostic to object identity.

The second component of the system is a cross-domain

image matching framework for recognizing grasped objects

by matching them to product images using a two-stream

convolutional network (ConvNet) architecture. This frame-

work adapts to novel objects without additional re-training.

Both components work hand-in-hand to achieve robust

picking performance of novel objects in heavy clutter.

We provide exhaustive experiments, ablation, and com-

parison to evaluate both components. We demonstrate that

our affordance-based algorithm for grasp planning achieves

high success rates for a wide variety of objects in clutter,

and the recognition algorithm achieves high accuracy for

known and novel grasped objects. These algorithms were

developed as part of the MIT–Princeton Team system that

took first place in the stowing task of the Amazon Robotics

Challenge (ARC), being the only system to have success-

fully stowed all known and novel objects from an unstruc-

tured tote into a storage system within the allotted time

frame. Figure 1 shows our robot in action during the

competition.

In summary, our main contributions are as follows.

� An affordance-based object-agnostic perception frame-

work to plan grasps using four primitive grasping

actions for fast and robust picking. This utilizes FCNs

for inferring dense pixel-wise affordances of each pri-

mitive (Section 4).
� A perception framework for recognizing both known

and novel objects using only product images without

extra data collection or re-training. This utilizes a two-

stream ConvNet to match images or picked objects to

product images (Section 5).

� A system combining these two frameworks for picking

novel objects in heavy clutter.

All code, datasets, and pre-trained models are available

online at http://arc.cs.princeton.edu. We also provide a

video summarizing our approach at https://youtu.be/6fG7

zwGfIkI.

2. Related work

In this section, we review works related to robotic picking

systems. Works specific to grasping (Section 4) and recog-

nition (Section 5) are in their respective sections.

2.1. Recognition followed by model-based

grasping

A large number of autonomous pick-and-place solutions

follow a standard two-step approach: object recognition

and pose estimation followed by model-based grasp plan-

ning. For example, Jonschkowski et al. (2016) designed

object segmentation methods over handcrafted image fea-

tures to compute suction proposals for picking objects with

a vacuum.

Fig. 1. Our picking system computing pixel-wise affordances

for grasping over visual observations of bins full of objects, (a)

grasping a towel and holding it up away from clutter, and

recognizing it by matching observed images of the towel (b) to

an available representative product image. The key contribution

is that the entire system works out of the box for novel objects

(unseen in training) without the need for any additional data

collection or re-training.
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More recent data-driven approaches (Hernandez et al.,

2016; Schwarz et al., 2017; Wong et al., 2017; Zeng et al.,

2017) use ConvNets to provide bounding box proposals or

segmentations, followed by geometric registration to esti-

mate object poses, which ultimately guide handcrafted

picking heuristics (Bicchi and Kumar, 2000; Miller et al.,

2003). Nieuwenhuisen et al. (2013) improved many aspects

of this pipeline by leveraging robot mobility, whereas Liu

et al. (2012) added a pose correction stage when the object

is in the gripper. These works typically require 3D models

of the objects during test time, and/or training data with the

physical objects themselves. This is practical for tightly

constrained pick-and-place scenarios, but is not easily scal-

able to applications that consistently encounter novel

objects, for which only limited data (i.e., product images

from the web) is available.

2.2. Recognition in parallel with object-agnostic

grasping

It is also possible to exploit local features of objects with-

out object identity to efficiently detect grasps (Gualtieri

et al., 2017; Lenz et al., 2015; Levine et al., 2018; Mahler

et al., 2017; Morales et al., 2004; Pinto et al., 2017; Pinto

and Gupta, 2016; Redmon and Angelova, 2015; ten Pas

and Platt, 2015). Since these methods are agnostic to object

identity, they better adapt to novel objects and experience

higher picking success rates in part by eliminating error

propagation from a prior recognition step. Matsumoto et al.

(2016) applied this idea in a full picking system by using a

ConvNet to compute grasp proposals, while in parallel

inferring semantic segmentations for a fixed set of known

objects. Although these pick-and-place systems use object-

agnostic grasping methods, they still require some form of

in-place object recognition in order to associate grasp pro-

posals with object identities, which is particularly challen-

ging when dealing with novel objects in clutter.

2.3. Active perception

The act of exploiting control strategies for acquiring data to

improve perception (Bajcsy and Campos, 1992; Chen

et al., 2011) can facilitate the recognition of novel objects

in clutter. For example, Jiang et al. (2016) described a

robotic system that actively rearranges objects in the scene

(by pushing) in order to improve recognition accuracy.

Other works (Jayaraman and Grauman, 2016; Wu et al.,

2015) explored next-best-view-based approaches to

improve recognition, segmentation, and pose estimation

results. Inspired by these works, our system uses a form of

active perception by using a grasp-first-then-recognize

paradigm where we leverage object-agnostic grasping to

isolate each object from clutter in order to significantly

improve recognition accuracy for novel objects.

3. System overview

We present a robotic pick-and-place system that grasps and

recognizes both known and novel objects in cluttered envir-

onments. We refer to ‘‘known’’ objects as those that are

provided to the system at training time, both as physical

objects and as representative product images (images of

objects available on the web), whereas ‘‘novel’’ objects are

provided only at test time in the form of representative

product images.

The pick-and-place task presents us with two main per-

ception challenges: (1) find accessible grasps of objects in

clutter; and (2) match the identity of grasped objects to

product images. Our approach and contributions to these

two challenges are described in detail in Sections 4 and 5,

respectively. For context, in this section we briefly describe

the system that will use those two capabilities.

3.1. Overall approach

The system follows a grasp-first-then-recognize workflow.

For each pick-and-place operation, it first uses FCNs to

infer the pixel-wise affordances of four different grasping pri-

mitive actions: from suction to parallel-jaw grasps (Section

4). It then selects the grasping primitive action with the high-

est affordance, picks up one object, isolates it from the clut-

ter, holds it up in front of cameras, recognizes its category,

and places it in the appropriate bin. Although the object rec-

ognition algorithm is trained only on known objects, it is able

to recognize novel objects through a learned cross-domain

image matching embedding between observed images of

held objects and product images (Section 5).

3.2. Advantages

This system design has several advantages. First, the

affordance-based grasping algorithm is model-free and

agnostic to object identities and generalizes to novel objects

without re-training. Second, the category recognition algo-

rithm works without task-specific data collection or re-

training for novel objects, which makes it scalable for

applications in warehouse automation and service robots

where the range of observed object categories is large and

dynamic. Third, our grasping framework supports multiple

grasping modes with a multi-functional gripper and, thus,

handles a wide variety of objects. Finally, the entire pro-

cessing pipeline requires only a few forward passes through

deep networks and, thus, executes quickly (run-times are

reported in Table 1).

3.3. System setup

Our system features a six-degree-of-freedom (6DOF) ABB

IRB 1600id robot arm next to four picking work cells. The

robot arm’s end-effector is a multi-functional gripper with

two fingers for parallel-jaw grasps and a retractable suction

Zeng et al 3



cup (Figure 3). This gripper was designed to function in

cluttered environments: finger and suction cup length are

specifically chosen such that the bulk of the gripper body

does not need to enter the cluttered space.

Each work cell has a storage bin and four statically

mounted RealSense SR300 RGB-D cameras (Figure 2):

two cameras overlooking the storage bins are used to infer

grasp affordances, whereas the other two pointing upwards

towards the robot gripper are used to recognize objects in

the gripper. For the two cameras used to infer grasp affor-

dances, we find that placing them at opposite viewpoints of

the storage bins provides good visual coverage of the

objects in the bin. Adding a third camera did not signifi-

cantly improve visual coverage. For the other two cameras

used for object recognition, having them at opposite view-

points enables us to immediately reconstruct a near-

complete 3D point cloud of the object while it is being held

in the gripper. These 3D point clouds are useful for plan-

ning object placements in the storage system.

Although our experiments were performed with this

setup, the system was designed to be flexible for picking

and placing between any number of reachable work cells

and camera locations. Furthermore, all manipulation and

recognition algorithms in this paper were designed to be

easily adapted to other system setups.

4. Challenge I: Planning grasps with multi-

affordance grasping

The goal of the first step in our system is to robustly grasp

objects from a cluttered scene without relying on their

object identities or poses. To this end, we define a set of

four grasping primitive actions that are complementary to

each other in terms of utility across different object types

and scenarios, empirically broadening the variety of objects

and orientations that can be picked with at least one primi-

tive. Given RGB-D images of the cluttered scene at test

time, we infer the dense pixel-wise affordances for all four

primitives. A task planner then selects and executes the pri-

mitive with the highest affordance.

4.1. Grasping primitives

We define four grasping primitives to achieve robust pick-

ing for typical household objects. Figure 4 shows example

motions for each primitive. Each of them is implemented as

a set of guarded moves with collision avoidance using force

sensors below the work cells. They also have quick success

or failure feedback mechanisms using either flow sensing

for suction or force sensing for grasping. Robot arm motion

planning is automatically executed within each primitive

Fig. 2. The bin and camera setup. Our system consists of four

units (top), where each unit has a bin with four stationary

cameras: two overlooking the bin (bottom-left) are used for

inferring grasp affordances whereas the other two (bottom-right)

are used for recognizing grasped objects.

Fig. 3. Multi-functional gripper with a retractable mechanism

that enables quick and automatic switching between suction

(pink) and grasping (blue).

Table 1. Grasp planning run-times (s).

Method Time

Lenz et al. (2015) 13.5
Zeng et al. (2017) 10–15
Hernandez et al. (2016) 5–40a

Schwarz et al. (2017) 0.9–3.3
Dex-Net 2.0 (Mahler et al., 2017) 0.8
Matsumoto et al. (2016) 0.2
Redmon and Angelova (2015) 0.07
Ours (suction) 0.06
Ours (grasping) 0.05× nb

aTimes reported from Matsumoto et al. (2016) derived from Hernandez et

al. (2016).
bn = number of possible grasp angles (in our case n = 16).
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with stable inverse kinematic-based controllers (Diankov,

2010). These primitives are as follows.

Suction down grasps objects with a vacuum gripper verti-

cally. This primitive is particularly robust for objects with

large and flat suctionable surfaces (e.g., boxes, books,

wrapped objects), and performs well in heavy clutter.

Suction side grasps objects from the side by approaching

with a vacuum gripper tilted at a fixed angle. This primitive

is robust to thin and flat objects resting against walls, which

may not have suctionable surfaces from the top.

Grasp down grasps objects vertically using the two-finger

parallel-jaw gripper. This primitive is complementary to the

suction primitives in that it is able to pick up objects with

smaller, irregular surfaces (e.g., small tools, deformable

objects), or made of semi-porous materials that prevent a

good suction seal (e.g., cloth).

Flush grasp retrieves unsuctionable objects that are flushed

against a wall. The primitive is similar to grasp down, but

with the additional behavior of using a flexible spatula to

slide one finger in between the target object and the wall.

4.2. Learning affordances with FCNs

Given the set of pre-defined grasping primitives and RGB-

D images of the scene, we train FCNs (Long et al., 2015)

to infer the affordances for each primitive across a dense

pixel-wise sampling of end-effector orientations and loca-

tions (i.e., each pixel correlates to a different position on

which to execute the primitive). Our approach relies on the

assumption that graspable regions can be deduced from

local geometry and visual appearance. This is inspired by

recent data-driven methods for grasp planning (Gualtieri

et al., 2017; Lenz et al., 2015; Levine et al., 2018; Mahler

et al., 2017; Morales et al., 2004; Pinto et al., 2017; Pinto

and Gupta, 2016; Redmon and Angelova, 2015; Saxena

et al., 2008), which do not rely on object identities or state

estimation.

4.2.1. Inferring suction affordances. We define suction

points as 3D positions where the vacuum gripper’s suction

cup should come into contact with the object’s surface in

order to successfully grasp it. Good suction points should

be located on suctionable (e.g., non-porous) surfaces, and

near the target object’s center of mass to avoid an unstable

suction seal (e.g., particularly for heavy objects). Each suc-

tion proposal is defined as a suction point, its local surface

normal (computed from the projected 3D point cloud), and

its affordance value. Each pixel of an RGB-D image (with

a valid depth value) maps surjectively to a suction point.

We train a fully convolutional residual network

(ResNet-101 (He et al., 2016)) that takes a 640× 480

RGB-D image as input and outputs a densely labeled

pixel-wise map (with the same image size and resolution as

the input) of affordance values between 0 and 1. Values

closer to one imply a more preferable suction location.

Visualizations of these densely labeled affordance maps are

shown as heat maps in the first row of Figure 5. Our net-

work architecture is multi-modal, where the color data

(RGB) is fed into one ResNet-101 tower, and three-channel

depth (DDD, cloned across channels, normalized by sub-

tracting the mean and dividing by the standard deviation) is

fed into another ResNet-101 tower. The depth is cloned

across channels so that we can use the ResNet weights pre-

trained on three-channel (RGB) color images from

ImageNet (Deng et al., 2009) to process depth information.

Features from the ends of both towers are concatenated

across channels, followed by three additional spatial convo-

lution layers to merge the features; then spatially bilinearly

upsampled and softmaxed to output a binary probability

map representing the inferred affordances.

Our FCN is trained over a manually annotated dataset of

RGB-D images of cluttered scenes with diverse objects,

where pixels are densely labeled positive, negative, or nei-

ther. Pixel regions labeled as neither are trained with 0 loss

backpropagation. We train our FCNs by stochastic gradient

descent with momentum, using fixed learning rates of 10�3

and momentum of 0.99. Our models are trained in Torch/

Fig. 4. Multiple motion primitives for suction and grasping to ensure successful picking for a wide variety of objects in any orientation.
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Lua with an NVIDIA Titan X on an Intel Core i7-3770K

clocked at 3.5 GHz. Training takes about 10 hours.

During testing, we feed each captured RGB-D image

through our trained network to generate dense suction affor-

dances for each view of the scene. As a post-processing

step, we use calibrated camera intrinsics and poses to proj-

ect the RGB-D data and aggregate the affordances onto a

combined 3D point cloud. We then compute surface nor-

mals for each 3D point (using a local region around it),

which are used to classify which suction primitive (down or

side) to use for the point.

To handle objects that lack depth information, e.g.,

finely meshed objects or transparent objects, we use a sim-

ple hole-filling algorithm (Silberman et al., 2012) on the

depth images, and project inferred affordance values onto

the hallucinated depth. We filter out suction points from

the background by performing background subtraction

(Zeng et al., 2017) between the captured RGB-D image of

the scene with objects and an RGB-D image of the scene

without objects (captured automatically before any objects

are placed into the picking work cells).

4.2.2. Inferring grasp affordances. Grasp proposals are

represented by (1) a 3D position which defines the middle

point between the two fingers during top-down parallel-jaw

grasping, (2) an angle that defines the orientation of the

gripper around the vertical axis along the direction of grav-

ity, *3) the width between the gripper fingers during the

grasp, and (4) its affordance value.

Two RGB-D views of the scene are aggregated into a

registered 3D point cloud, which is then orthographically

back-projected upwards in the gravity direction to obtain a

‘‘heightmap’’ image representation of the scene with both

color (RGB) and height-from-bottom (D) channels. Each

pixel of the heightmap represents a 2 mm × 2 mm vertical

column of 3D space in the scene. Each pixel also correlates

bijectively to a grasp proposal whose 3D position is natu-

rally computed from the spatial 2D position of the pixel

relative to the heightmap image and the height value at that

pixel. The gripper orientation of the grasp proposal is

always kept horizontal with respect to the frame of the

heightmap.

Analogous to our deep network inferring suction affor-

dances, we feed this RGB-D heightmap as input to a fully

convolutional ResNet-101 (He et al., 2016), which densely

infers affordance values (between 0 and 1) for each pixel,

thereby for all top-down parallel-jaw grasping primitives exe-

cuted with a horizontally orientated gripper across all 3D

locations in heightmap of the scene sampled at pixel resolu-

tion. Visualizations of these densely labeled affordance maps

are shown as heat maps in the second row of Figure 5. By

rotating the heightmap of the scene with n different angles

prior to feeding as input to the FCN, we can account for n

different gripper orientations around the vertical axis. For our

system n = 16; hence, we compute affordances for all top-

down parallel-jaw grasping primitives with 16 forward passes

of our FCN to generate 16 output affordance maps.

We train our FCN over a manually annotated dataset of

RGB-D heightmaps, where each positive and negative

grasp label is represented by a pixel on the heightmap as

well as an angle indicating the preferred gripper orientation.

We trained this FCN with the same optimization parameters

as that of the FCN used for inferring suction affordances.

During post-processing, the width between the gripper

fingers for each grasp proposal is determined by using the

local geometry of the 3D point cloud. We also use the loca-

tion of each proposal relative to the bin to classify which

grasping primitive (down or flush) should be used: flush

Fig. 5. Learning pixel-wise affordances for suction and grasping. Given multi-view RGB-D images, we infer pixel-wise suction

affordances for each image with an FCN (top row). The inferred affordance value at each pixel describes the utility of suction at that

pixel’s projected 3D location. We aggregate the inferred affordances onto a 3D point cloud, where each point corresponds to a suction

proposal (down or side based on surface normals). In parallel, we merge RGB-D images into an orthographic RGB-D heightmap of the

scene, rotate it by 16 different angles, and feed them each through another FCN (bottom row) to estimate the pixel-wise affordances of

horizontal grasps for each heightmap. This effectively produces affordance maps for 16 different top-down grasping angles, from

which we generate grasp down and flush grasp proposals. The suction or grasp proposal with the highest affordance value is executed.
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grasp is executed for pixels located near the sides of the

bins; grasp down is executed for all other pixels. To handle

objects without depth, we triangulate no-depth regions in

the heightmap using both RGB-D camera views of the

scene, and fill in these regions with synthetic height values

of 3 cm prior to feeding into the FCN. We filter out inferred

grasp proposals in the background by using background

subtraction with the RGB-D heightmap of an empty work

cell.

4.3. Other architectures for parallel-jaw grasping

A significant challenge during the development of our sys-

tem was designing a deep network architecture for inferring

dense affordances for parallel-jaw grasping that (1) sup-

ports various gripper orientations and (2) could converge

during training with less than 2,000 manually labeled

images. It took several iterations of network architecture

designs before discovering the one that worked (described

previously). Here, we briefly review some deprecated archi-

tectures and their primary drawbacks.

Parallel trunks and branches (n copies). This design con-

sists of n separate FCNs, each responsible for inferring the

output affordances for one of n grasping angles. Each FCN

shares the same architecture: a multi-modal trunk (with

color (RGB) and depth (DDD) data fed into two ResNet-

101 towers pre-trained on ImageNet, where features at the

ends of both towers are concatenated across channels), fol-

lowed by three additional spatial convolution layers to

merge the features; then spatially bilinearly upsampled and

softmaxed to output an affordance map. This design is sim-

ilar to our final network design, but with two key differ-

ences: (1) there are multiple FCNs, one for each grasping

angle; and (2) the input data is not rotated prior to feeding

as input to the FCNs. This design is sample inefficient,

because each network during training is optimized to learn

a different set of visual features to support a specific grasp-

ing angle, thus requiring a substantial amount of training

samples with that specific grasping angle to converge. Our

small manually annotated dataset is characterized by an

unequal distribution of training samples across different

grasping angles, some of which have fewer than 100 train-

ing samples. Hence, only a few of the FCNs (for grasping

angles of which have more than 1,000 training samples)

are able to converge during training. Furthermore, attaining

the capacity to pre-load all n FCNs into GPU memory for

test time requires multiple GPUs.

One trunk, split into n parallel branches. This design con-

sists of a single FCN architecture, which contains a multi-

modal ResNet-101 trunk followed by a split into n parallel,

individual branches, one for each grasping angle. Each

branch contains three spatial convolution layers followed

by spatial bilinearly upsampling and softmax to output

affordance maps. While more lightweight in terms of GPU

memory consumption ( i.e., the trunk is shared and only

the three-layer branches have multiple copies), this FCN

still runs into similar training convergence issues as the

previous architecture, where each branch during training is

optimized to learn a different set of visual features to sup-

port a specific grasping angle. The uneven distribution of

limited training samples in our dataset made it so that only

a few branches are able to converge during training.

One trunk, rotate, one branch. This design consists of a

single FCN architecture, which contains a multi-modal

ResNet-101 trunk, followed by a spatial transform layer

(Jaderberg et al., 2015) to rotate the intermediate feature

map from the trunk with respect to an input grasp angle

(such that the gripper orientation is aligned horizontally to

the feature map), followed by a branch with three spatial

convolution layers, spatially bilinearly upsampled, and soft-

maxed to output a single affordance map for the input grasp

angle. This design is even more lightweight than the previ-

ous architecture in terms of GPU memory consumption,

performs well with grasping angles for which there is a suf-

ficient amount of training samples, but continues to per-

forms poorly for grasping angles with very few training

samples (less than 100).

One trunk and branch (rotate n times). This is the final

network architecture design as proposed above, which dif-

fers from the previous design in that the rotation occurs

directly on the input image representation prior to feeding

through the FCN (rather than in the middle of the architec-

ture). This enables the entire network to share visual fea-

tures across different grasping orientations, enabling it to

generalize for grasping angles of which there are very few

training samples.

4.4. Task planner

Our task planner selects and executes the suction or grasp

proposal with the highest affordance value. Prior to this,

affordance values are scaled by a factor gc that is specific

to the proposals’ primitive action types c 2 fsd, ss, gd, fgg:
suction down (sd), suction side (ss), grasp down (gd), or

flush grasp (fg). The value of gc is determined by several

task-specific heuristics that induce more efficient picking

under competition settings at the ARC. Here we briefly

describe these heuristics.

Suction first, grasp later. We empirically find suction to be

more reliable than parallel-jaw grasping when picking in

scenarios with heavy clutter (10 or more objects). Among

several factors, the key reason is that suction is significantly

less intrusive than grasping. Hence, to reflect a greedy

picking strategy that initially favors suction over grasping,

ggd = 0:5 and gfg = 0:5 for the first 3 minutes of either

ARC task (stowing or picking).
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Avoid repeating unsuccessful attempts. It is possible for

the system to get stuck repeatedly executing the same (or

similar) suction or grasp proposal as no change is made to

the scene (and, hence, affordance estimates remain the

same). Therefore, after each unsuccessful suction or

parallel-jaw grasping attempt, the affordances of the pro-

posals (for the same primitive action) nearby within a

radius of 2 cm of the unsuccessful attempt are set to 0.

Encouraging exploration upon repeat failures. The plan-

ner re-weights grasping primitive actions gc depending on

how often they fail. For primitives that have been unsuc-

cessful for twice in the last 3 minutes, gc = 0:5; if unsuc-

cessful for more than three times, gc = 0:25. This not only

helps the system avoid repeating unsuccessful actions, but

also prevents it from excessively relying on any one primi-

tive that does not work as expected (e.g., in the case of an

unexpected hardware failure preventing suction air flow).

Leveraging dense affordances for speed picking. Our

FCNs densely infer affordances for all visible surfaces in

the scene, which enables the robot to attempt multiple dif-

ferent suction or grasping proposals (at least 3 cm apart

from each other) in quick succession until at least one of

them is successful (given by immediate feedback from flow

sensors or gripper finger width). This improves picking

efficiency.

5. Challenge II: Recognizing novel objects with

cross-domain image matching

After successfully grasping an object and isolating it from

clutter, the goal of the second step in our system is to recog-

nize the identity of the grasped object.

As we encounter both known and novel objects, and we

have only product images for the novel objects, we address

this recognition problem by retrieving the best match

among a set of product images. Of course, observed images

and product images can be captured in significantly differ-

ent environments in terms of lighting, object pose, back-

ground color, post-process editing, etc. Therefore, we

require an algorithm that is able to find the semantic corre-

spondences between images from these two different

domains. While this is a task that appears repeatedly in a

variety of research topics (e.g., domain adaptation, one-shot

learning, meta-learning, visual search, etc.), in this paper

we refer to it as a cross-domain image matching problem

(Bell and Bala, 2015; Saenko et al., 2010; Shrivastava

et al., 2011).

5.1. Metric learning for cross-domain image

matching

To perform the cross-domain image matching between

observed images and product images, we learn a metric

function that takes in an observed image and a candidate

product image and outputs a distance value that models

how likely the images are of the same object. The goal of

the metric function is to map both the observed image and

product image onto a meaningful feature embedding space

so that smaller ‘2 feature distances indicate higher similari-

ties. The product image with the smallest metric distance to

the observed image is the final matching result.

We model this metric function with a two-stream

ConvNet architecture where one stream computes features

for the observed images, and a different stream computes

features for the product images. We train the network by

feeding it a balanced 1:1 ratio of matching and non-

matching image pairs (one observed image and one prod-

uct image) from the set of known objects, and backpropa-

gate gradients from the distance ratio loss (triplet loss

(Hoffer et al., 2016)). This effectively optimizes the net-

work in a way that minimizes the ‘2 distances between fea-

tures of matching pairs while pulling apart the ‘2 distances

between features of non-matching pairs. By training over

enough examples of these image pairs across known

objects, the network learns a feature embedding that encap-

sulates object shape, color, and other visual discriminative

properties, which can generalize and be used to match

observed images of novel objects to their respective prod-

uct images (Figure 6).

5.1.1. Avoiding metric collapse by guided feature

embeddings. One issue commonly encountered in metric

learning occurs when the number of training object cate-

gories is small: the network can easily overfit its feature

space to capture only the small set of training categories,

making generalization to novel object categories difficult.

We refer to this problem as metric collapse. To avoid this

issue, we use a model pre-trained on ImageNet (Deng

et al., 2009) for the product image stream and train only

the stream that computes features for observed images.

ImageNet contains a large collection of images from many

categories, and models pre-trained on it have been shown

to produce relatively comprehensive and homogenous fea-

ture embeddings for transfer tasks (Huh et al., 2016), i.e.,

providing discriminating features for images of a wide

range of objects. Our training procedure trains the observed

image stream to produce features similar to the ImageNet

features of product images, i.e., it learns a mapping from

observed images to ImageNet features. Those features are

then suitable for direct comparison to features of product

images, even for novel objects not encountered during

training.

5.1.2. Using multiple product images. For many applica-

tions, there can be multiple product images per object.

However, with multiple product images, supervision of the

two-stream network can become confusing: on which pair

of matching observed and product images should the back-

propagated gradients be based? For example, matching an
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observed image of the front face of the object against a

product image of the back face of the object can easily con-

fuse network gradients. To solve this problem during train-

ing, we add a module called ‘‘multi-anchor switch’’ in the

network. Given an observed image, this module automati-

cally chooses which ‘‘anchor’’ product image to compare

against ( i.e., to compute loss and gradients for) based on

‘2 distance between deep features. We find that allowing

the network to select nearest-neighbor ‘‘anchor’’ product

images during training provides a significant boost in per-

formance in comparison with alternative methods such as

random sampling.

5.2. Two-stage framework for a mixture of known

and novel objects

In settings where both types of objects are present, we find

that training two different network models to handle known

and novel objects separately can yield higher overall match-

ing accuracies. One is trained to be good at ‘‘over-fitting’’ to

the known objects (K-net) and the other is trained to be bet-

ter at ‘‘generalizing’’ to novel objects (N-net).

Yet, how do we know which network to use for a given

image? To address this issue, we execute our recognition

pipeline in two stages: a ‘‘recollection’’ stage that deter-

mines whether the observed object is known or novel, and

a ‘‘hypothesis’’ stage that uses the appropriate network

model based on the first stage’s output to perform image

matching.

First, the recollection stage infers whether the input

observed image from test time is that of a known object

that has appeared during training. Intuitively, an observed

image is of a novel object if and only if its deep features

cannot match to that of any images of known objects. We

explicitly model this conditional by thresholding on the

nearest-neighbor distance to product image features of

known objects. In other words, if the ‘2 distance between

the K-net features of an observed image and the nearest-

neighbor product image of a known object is greater than

some threshold k, then the observed images is a novel

object. Note that the novel object network can also identify

known objects, but with lower performance.

In the hypothesis stage, we perform object recognition

based on one of two network models: K-net for known

objects and N-net for novel objects. The K-net and N-net

share the same network architecture. However, during train-

ing the K-net has an ‘‘auxiliary classification’’ loss for the

known objects. This loss is implemented by feeding in the

K-net features into three fully connected layers, followed

by an n-way softmax loss where n is the number of known

object classes. These layers are present in K-net during

training then removed during testing. Training with this

classification loss increases the accuracy of known objects

at test time to near-perfect performance, and also boosts up

the accuracy of the recollection stage, but fails to maintain

Fig. 6. Recognition framework for novel objects. We train a two-stream convolutional neural network where one stream computes

2,048-dimensional feature vectors for product images whereas the other stream computes 2,048-dimensional feature vectors for

observed images, and optimize both streams so that features are more similar for images of the same object and dissimilar otherwise.

During testing, product images of both known and novel objects are mapped onto a common feature space. We recognize observed

images by mapping them to the same feature space and finding the nearest neighbor match.

Table 2. Recognition evaluation (accuracy (%) of top-1 match)

Method K versus N Known Novel Mixed

Nearest neighbor 69.2 27.2 52.6 35.0
Siamese (Koch et al., 2015) 70.3 76.9 68.2 74.2
Two-stream 70.8 85.3 75.1 82.2
Two-stream + GE 69.2 64.3 79.8 69.0
Two-stream + GE + MP (N-net) 69.2 56.8 82.1 64.6
N-net + AC (K-net) 93.2 99.7 29.5 78.1
Two-stage K-net + N-net 93.2 93.6 77.5 88.6
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the accuracy of novel objects. On the other hand, without

the restriction of the classification loss, N-net has a lower

accuracy for known objects, but maintains a better accuracy

for novel objects.

By adding the recollection stage, we can exploit both the

high accuracy of known objects with K-net and good accu-

racy of novel objects with N-net, though incurring a cost in

accuracy from erroneous known vs novel classification. We

find that this two-stage system overall provides higher total

matching accuracy for recognizing both known and novel

objects (mixed) than all other baselines (Table 2).

6. Experiments

In this section, we evaluate our affordance-based grasping

framework, our recognition algorithm over both known and

novel objects, as well as our full system in the context of

the 2017 ARC.

6.1. Evaluating multi-affordance grasping

6.1.1. Datasets. To generate datasets for learning

affordance-based grasping, we designed a simple labeling

interface that prompts users to manually annotate good and

bad suction and grasp proposals over RGB-D images col-

lected from the real system. For suction, users who have

had experience working with our suction gripper are asked

to annotate pixels of suctionable and non-suctionable areas

on raw RGB-D images overlooking cluttered bins full of

various objects. Similarly, users with experience using our

parallel-jaw gripper are asked to sparsely annotate positive

and negative grasps over re-projected heightmaps of clut-

tered bins, where each grasp is represented by a pixel on

the heightmap and an angle corresponding to the orienta-

tion (parallel-jaw motion) of the gripper. On the interface,

users directly paint labels on the images with wide-area cir-

cular (suction) or rectangular (grasping) brushstrokes. The

diameter and angle of the strokes can be adjusted with hot-

keys. The color of the strokes are green for positive labels

and red for negative labels. Examples of images and labels

from this dataset can be found in Figure 7. During training,

we further augment each grasp label by adding additional

labels via small jittering (less than 1.6 cm). In total, the

grasping dataset contains 1,837 RGB-D images with pixel-

wise suction and grasp labels. We use a 4:1 training/testing

split of these images to train and evaluate different grasping

models.

Although this grasping dataset is small for training a

deep network from scratch, we find that it is sufficient for

fine-tuning our architecture with ResNets pre-trained on

ImageNet. An alternative method would be to generate a

large dataset of annotations using synthetic data and simu-

lation, as in Mahler et al. (2017). However, then we would

have to bridge the domain gap between synthetic and real

3D data, which is difficult for arbitrary real-world objects

(see further discussion on this point in the comparison with

Dex-Net in Table 3). Manual annotations make it easier to

embed in the dataset information about material properties

that are difficult to capture in simulation ( e.g., porous

objects are non-suctionable, heavy objects are easier to

grasp than to suction).

6.1.2. Evaluation. In the context of our grasping frame-

work, a method is robust if it is able to consistently find at

least one suction or grasp proposal that works. To reflect

this, our evaluation metric is the precision of inferred pro-

posals versus manual annotations. For suction, a proposal

is considered a true positive if its pixel center is manually

labeled as a suctionable area (false positive if manually

labeled as an non-suctionable area). For grasping, a pro-

posal is considered a true positive if its pixel center is

nearby within 4 pixels and 11.258 from a positive grasp

label (false positive if nearby a negative grasp label). We

report the precision of our inferred proposals for different

confidence percentiles across the testing split of our grasp-

ing dataset in Table 3. We compare our method with a

heuristic baseline algorithm as well as with a state-of-the-

art grasping algorithm Dex-Net (Mahler et al., 2017, 2018)

Fig. 7. Images and annotations from the grasping dataset with

labels for suction (top two rows) and parallel-jaw grasping

(bottom two rows). Positive labels appear in green while negative

labels appear in red.
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versions 2.0 (parallel-jaw grasping) and 3.0 (suction) for

which code is available. We use Dex-Net weights pre-

trained on their original simulation-based dataset. As

reported in Mahler et al. (2017, 2018, 2019), fine-tuning

Dex-Net on real data does not lead to substantial increases

in performance.

The heuristic baseline algorithm computes suction affor-

dances by estimating surface normal variance over the

observed 3D point cloud (lower variance = higher affor-

dance), and computes anti-podal grasps by detecting hill-

like geometric structures in the 3D point cloud with shape

analysis. Baselines details and code are available on our

project webpage (http://arc.cs.princeton.edu). The heuristic

algorithm for parallel-jaw grasping was highly fine-tuned

to the competition scenario, making it quite competitive

with our trained grasping ResNets. We did not compare

with the other network architectures for parallel-jaw grasp-

ing described in Section 4 because those models could not

completely converge during training.

The top-1 proposal from the baseline algorithm performs

quite well for parallel jaw grasping, but performs poorly for

suction. This suggests that relying on simple geometric cues

from the 3D surfaces of objects can be quite effective for

grasping, but less so for suction. This is likely because suc-

cessful suction picking not only depends on finding smooth

surfaces, but also highly depends on the mass distribution

and porousness of objects: both attributes of which are less

apparent from local geometry alone. Suctioning close to the

edge of a large and heavy object may cause the object to

twist off due to external wrench from gravity, while suction-

ing a porous object may prevent a strong suction contact

seal.

Dex-Net also performs competitively on our benchmark

with strong suction and grasp proposals across top 1% con-

fidence thresholds, but with more false positives across top-

1 proposals. By visualizing Dex-Net top-1 failure cases in

Figure 8, we can observe several interesting failure modes

that do not occur as frequently with our method. For suc-

tion, there are two common types of failures. The first

involves false-positive suction predictions on heavy objects.

For example, shown in the top-left image of Figure 8, the

heavy (2 kg) bag of Epsom salt can only be successfully

suctioned near its center of mass (i.e., near the green circle),

which is located towards the bottom of the bag. Dex-Net is

expectedly unaware of this, and often makes predictions on

the bag but farther from the center of mass (e.g., the red cir-

cle shows Dex-Net’s top-1 prediction). The second type of

failure mode involves false-positive predictions on unsuc-

tionable objects with mesh-like porous containers. For

example, in the bottom-left image of Figure 8, Dex-Net

makes suction predictions (e.g., red circle) on a mesh bag

of marbles; however, the only region of the object that is

suctionable is its product tag (e.g., green circle).

For parallel-jaw grasping, Dex-Net most commonly

experiences two other types of failure modes. The first is

that it frequently predicts false-positive grasps on the edges

of long heavy objects: regions where the object would slip

due to external wrench from gravity. This is because Dex-

Net assumes objects to be lightweight to conform to the

payload (\0:25 kg) of the ABB YuMi robot where it is

usually tested. The second failure mode is that Dex-Net

often predicts false-positive grasps on areas with very noisy

depth data. This is likely because Dex-Net is trained in

simulation with rendered depth data, so Dex-Net’s perfor-

mance is less optimal without higher-quality 3D cameras (

e.g., industrial Photoneo cameras).

Table 3. Multi-affordance grasping performance.

Primitive Method Top-1 Top 1% Top 5% Top 10%

Suction Baseline 35.2 55.4 46.7 38.5
Dex-Net 69.3 71.8 62.5 53.4
ConvNet 92.4 83.4 66.0 52.0

Grasping Baseline 92.5 90.7 87.2 73.8
Dex-Net 80.4 87.5 79.7 76.9
ConvNet 96.7 91.9 87.6 84.1

Precision (%) of grasp proposals across different confidence percentiles.

Fig. 8. Common Dex-Net failure modes for suction (left column)

and parallel-jaw grasping (right column). Dex-Net’s top-1

predictions are labeled in red, whereas our method’s top-1

predictions are labeled in green. Our method is more likely to

predict grasps near objects’ center of mass (e.g., bag of salt (top

left) and water bottle (top right)), more likely to avoid unsuctionable

areas such as porous surfaces (e.g., mesh bag of marbles (bottom

left)), and less susceptible to noisy depth data (bottom right).
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Overall, these observations show that Dex-Net is a com-

petitive grasping algorithm trained from simulation, but

falls short in our application setup owing to the domain

gap between synthetic and real data. Specifically, the dis-

crepancy between the ø 90% grasping success achieved

by Dex-Net in their reported experiments (Mahler et al.,

2017, 2018, 2019) versus the 80% on our dataset is likely

due to two reasons: our dataset consists of (1) a larger spec-

trum of objects, e.g., heavier than 0.25 kg; and (2) noisier

RGB-D data, i.e., less similar to simulated data, from sub-

stantially more cost-effective commodity 3D sensors.

6.1.3. Speed. Our suction and grasp affordance algorithms

were designed to achieve fast run-time speeds during test

time by densely inferring affordances over images of the

entire scene. Table 1 compares our run-time speeds with

several state-of-the-art alternatives for grasp planning. Our

numbers measure the time of each FCN forward pass,

reported with an NVIDIA Titan X on an Intel Core i7-

3770K clocked at 3.5 GHz, excluding time for image cap-

ture and other system-related overhead. Our FCNs run at a

fraction of the time required by most other methods, while

also being significantly deeper (with 101 layers) than all

other deep learning methods.

6.2. Evaluating novel object recognition

We evaluate our recognition algorithms using a 1 versus 20

classification benchmark. Each test sample in the bench-

mark contains 20 possible object classes, where 10 are

known and 10 are novel, chosen at random. During each

test sample, we feed to the recognition algorithm the prod-

uct images for all 20 objects as well as an observed image

of a grasped object. In Table 2, we measure performance in

terms of average percentage accuracy of the top-1 nearest-

neighbor product image match of the grasped object. We

evaluate our method against a baseline algorithm, a state-

of-the-art network architecture for both visual search (Bell

and Bala, 2015) and one-shot learning without retraining

(Koch et al., 2015), and several variations of our method.

The latter provides an ablation study to show the improve-

ments in performance with every added component.

Nearest neighbor. This is a baseline algorithm where we

compute features of product images and observed images

using a ResNet-50 pre-trained on ImageNet, and use

nearest-neighbor matching with ‘2 distance. For nearest-

neighbor evaluation, the difference between the matching

accuracy for known objects and novel objects reflects the

natural difference in distribution of objects in the testing

set, the novel objects are more distinguishable from each

other using ImageNet features alone than known objects.

Siamese network with weight sharing. This is a re-

implementation of the work of Bell and Bala (2015) for

visual search and Koch et al. (2015) for one-shot recognition

without re-training. We use a Siamese ResNet-50 pre-trained

on ImageNet and optimized over training pairs in a Siamese

fashion. The main difference between this method and ours

is that the weights between the networks computing deep fea-

tures for product images and observed images are shared.

Two-stream network without weight sharing. This is a

two-stream network, where the networks’ weights for prod-

uct images and observed images are not shared. Without

weight sharing the network has more flexibility to learn the

mapping function and, thus, achieves higher matching accu-

racy. All the models described later in this section use this

two-stream network without weight sharing.

Two-stream + guided-embedding (GE). This includes a

guided feature embedding with ImageNet features for the

product image stream. We find this model has better perfor-

mance for novel objects than for known objects.

Two-stream + guided-embedding (GE) + multi-prod-

uct-images (MP). By adding a multi-anchor switch, we see

more improvements to accuracy for novel objects. This is

the final network architecture for N-net.

Two-stream + guided-embedding (GE) + multi-prod-

uct-images (MP) + auxiliary classification (AC). By add-

ing an auxiliary classification, we achieve near-perfect

accuracy of known objects for later models, however, at the

cost of lower accuracy for novel objects. This also improves

known versus novel (K versus N) classification accuracy

for the recollection stage. This is the final network architec-

ture for K-net.

Two-stage system. As described in Section 5, we com-

bine the two different models, one that is good at known

objects (K-net) and the other that is good at novel objects

(N-net), in the two-stage system. This is our final recogni-

tion algorithm, and it achieves better performance than any

single model for test cases with a mixture of known and

novel objects.

6.3. Full system evaluation in the ARC

To evaluate the performance of our system as a whole, we

used it as part of our MIT–Princeton entry for the 2017

ARC, where state-of-the-art pick-and-place solutions com-

peted in the context of a warehouse automation task.

Participants were tasked with designing a fully autonomous

robot system to grasp and recognize a large variety of dif-

ferent objects from unstructured bins. The objects were

characterized by a number of difficult-to-handle properties.

Unlike earlier versions of the competition (Correll et al.,

2016), half of the objects were novel to the robot in the

2017 edition by the time of the competition. The physical

objects as well as related item data (i.e., product images,

weight, 3D scans), were given to teams just 30 minutes

before the competition. While other teams used the 30 min-

utes to collect training data for the new objects and re-train

models, our unique system did not require any of that dur-

ing those 30 minutes.

6.3.1. Setup. Our system setup for the competition features

several differences. We incorporated weight sensors to our
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system, using them as a guard to signal stop for grasping

primitive behaviors during execution. We also used the

measured weights of objects provided by Amazon to boost

recognition accuracy to near-perfect performance as well as

to prevent double-picking. Green screens made the back-

ground more uniform to further boost accuracy of the sys-

tem in the recognition phase. For inferring affordances,

Table 3 shows that our data-driven methods with ConvNets

provide more precise affordances for both suction and

grasping than the baseline algorithms. For the case of

parallel-jaw grasping, however, we did not have time to

develop a fully stable network architecture before the day

of the competition, so we decided to avoid risks and use the

baseline grasping algorithm. The ConvNet-based approach

became stable with the reduction to inferring only horizon-

tal grasps and rotating the input heightmaps.

6.3.2. State tracking and estimation. We also designed a

state tracking and estimation algorithm for the full system

in order to perform competitively in the picking task of the

ARC, where the goal is to pick target objects out of a stor-

age system (e.g., shelves, separate work cells) and place

them into specific boxes for order fulfillment.

The goal of our state tracking algorithm is to track all

the objects’ identities, 6D poses, amodal bounding boxes,

and support relationships in each bin (bini) of the storage

system. This information is then used by the task planner

during the picking task to prioritize certain pick proposals

(close to, or above target objects) over others. Our state

tracking algorithm is built around the assumption that: (1)

the state of the objects in the storage system only changes

when there is an external force (robot or human) that inter-

acts with the storage system; (2) we have knowledge of all

external interactions in terms of their action type, object

category, and specific storage bin. The action types include:

� add (objecti, bini): add objecti to bini;
� remove (objecti, bini): remove objecti from bini;
� move (objecti, bini): update objecti’s location in bini

(assumes objecti is already in bini);
� touch (bini): update all object poses in bini.

When adding an object into the storage system ( e.g.,

during the stowing task), we first use the recognition algo-

rithm described in Section 5 to identify the object’s class

category before placing it into a bin. Then our state track-

ing algorithm captures RGB-D images of the storage system

at time t (before the object is placed) and at time t + 1 (after

the object is placed). The difference between the RGB-D

images captured at t + 1 and t provides an estimate for the

visible surfaces of the newly placed object (i.e., near the pixel

regions with the largest change). 3D models of the objects

(either constructed from the same RGB-D data captured dur-

ing recognition for novel objects or given by another system

for known objects) are aligned to these visible surfaces via

ICP-based pose estimation (Zeng et al., 2017). To reduce the

uncertainty and noise of these pose estimates, the placing pri-

mitive actions are gently executed, i.e., the robot arm holding

the object moves down slowly until contact between the

object and storage system is detected with weight sensors,

upon which then the gripper releases the object.

For the remove operation, we first verify the object’s

identity using the recognition algorithm described in

Section 5. We then remove the object ID (objecti) from the

list of tracked objects in bini.

The move operation is called whenever the robot attempts

to remove an object from a storage bin but fails due to grasp-

ing failure. When this operation is called the system will com-

pare the depth images captured before and after the robot’s

interaction to identify the moved object’s new point cloud.

The system will then re-estimate the object’s pose using the

ICP-based method used during the add operation.

The touch operation is used to detect and compensate

for unintentional state changes during robot interactions.

This operation is called whenever the robot attempts to

add, remove, or move an object in a storage bin. When this

operation is called, the system will compare and compute the

correspondence of the color image before and after the inter-

action using scale-invariant feature transform (SIFT)-flow

(Liu et al., 2011), ignoring the region of newly added or

removed objects. If the difference between the two images is

larger than a threshold, we will update each object’s 6D pose

by aligning its 3D model to its new corresponding point

cloud (obtained from the SIFT-flow) using ICP.

Combined with our affordance prediction algorithm

described in Section 4, we are able to label each grasping or

suction proposal with corresponding object identities using

their tracked 6D poses from the state tracker. The task planner

can then prioritize certain grasp proposals (close to, or above

target objects) with heuristics based on this information.

6.3.3. Results. During the 2017 ARC final stowing task,

we had a 58.3% pick success with suction, 75% pick suc-

cess with grasping, and 100% recognition accuracy during

the stow task of the ARC, stowing all 20 objects within 24

suction attempts and 8 grasp attempts. Our system took first

place in the stowing task, being the only system to have

successfully stowed all known and novel objects and to

have finished the task well within the allotted time frame.

Overall, the pick success rates of all teams in the ARC

(62% on average reported by Morrison et al. (2018)) are

generally lower than those reported in related work for

grasping. We attribute this mostly to the fact that the com-

petition uses bins full of objects that contain significantly

more clutter and variety than the scenarios presented in

more controlled experiments in prior work. Among the

competing teams, we successfully picked the most objects

in the stow and final tasks, and our average picking speed

was the highest (Morrison et al., 2018).

6.3.4. Postmortem. Our system did not perform as well

during the finals task of the ARC owing to a lack of
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sufficient failure recovery. On the systems side, the percep-

tion node that fetches data from all RGB-D cameras lost

connection to one of our RGB-D cameras for recognition

and stalled during the middle of our stowing run for the

ARC finals, which forced us to call for a hard reset during

the competition. The perception node would have benefited

from being able to restart and recover from disconnections.

On the algorithms side, our state tracking system is particu-

larly sensitive to drastic changes in the state (i.e., when mul-

tiple objects switch locations), which causes it to lose track

without recovery. In hindsight, the tracking would have

benefited from some form of simultaneous object segmen-

tation in the bin that works for novel objects and is robust

to clutter. Adopting the pixel-wise deep metric learning

method of the ACRV team described by Milan et al. (2018)

would be worth exploring as part of future work.

7. Discussion and future work

Interest in robust and versatile robotic pick-and-place is

almost as old as robotics. Robot grasping and object recog-

nition have been two of the main drivers of robotic research.

Yet, the reality in industry is that most automated picking

systems are restricted to known objects, in controlled con-

figurations, with specialized hardware.

We present a system to pick and recognize novel objects

with very limited prior information about them (a handful

of product images). The system first uses an object-agnostic

affordance-based algorithm to plan grasps out of four differ-

ent grasping primitive actions, and then recognizes grasped

objects by matching them to their product images. We eval-

uate both components and demonstrate their combination

in a robot system that picks and recognizes novel objects in

heavy clutter, and that took first place in the stowing task of

the 2017 ARC. Here we present of the most salient fea-

tures/limitations of the system.

7.1. Object-agnostic manipulation

The system finds grasp affordances directly in the RGB-D

image. This proved faster and more reliable than doing object

segmentation and state estimation prior to grasp planning

(Zeng et al., 2017). The ConvNet learns the visual features

that make a region of an image graspable or suctionable. It

also seems to learn more complex rules, e.g., that tags are

often easier to suction that the object itself, or that the center

of a long object is preferable than its ends. It would be inter-

esting to explore the limits of the approach. For example,

learning affordances for more complex behaviors, e.g., scoop-

ing an object against a wall, which require a more global

understanding of the geometry of the environment.

7.2. Pick first, ask questions later

The standard grasping pipeline is to first recognize and then

plan a grasp. In this paper, we demonstrate that it is possible

and sometimes beneficial to reverse the order. Our system

leverages object-agnostic picking to remove the need for state

estimation in clutter. Isolating the picked object drastically

increases object recognition reliability, especially for novel

objects. We conjecture that ‘‘pick first, ask questions later’’ is

a good approach for applications such as bin-picking, empty-

ing a bag of groceries, or clearing debris. It is, however, not

suited to all applications: nominally, when we need to pick a

particular object. In that case, the described system needs to

be augmented with state tracking/estimation algorithms that

are robust to clutter and can handle novel objects.

7.3. Towards scalable solutions

Our system is designed to pick and recognize novel objects

without extra data collection or re-training. This is a step

forward towards robotic solutions that scale to the chal-

lenges of service robots and warehouse automation, where

the daily number of novel objects ranges from the tens to

the thousands, making data-collection and re-training cum-

bersome in one case and impossible in the other. It is inter-

esting to consider what data, in addition to product images,

is available that could be used for recognition using out-of-

the-box algorithms such as ours.

7.4. Limited to accessible grasps

The system we present in this work is limited to picking

objects that can be directly perceived and grasped by one of

the primitive picking motions. Real scenarios, especially

when targeting the grasp of a particular object, often require

plans that deliberately sequence different primitive motions.

For example, when removing an object to pick the one

below, or when separating two objects before grasping one.

This points to a more complex picking policy with a plan-

ning horizon that includes preparatory primitive motions

such as pushing whose value is difficult to reward/label in a

supervised fashion. Reinforcement learning of policies that

sequence primitive picking motions is a promising alterna-

tive approach that we have started to explore in Zeng et al.

(2018a).

7.5. Open-loop versus closed-loop grasping

Most existing grasping approaches, whether model-based

or data-driven are for the most part, based on open-loop

executions of planned grasps. Our system is no different.

The robot decides what to do and executes it almost blindly,

except for simple feedback to enable guarded moves such

as move until contact. Indeed, the most common failure

modes are when small errors in the estimated affordances

lead to fingers landing on top of an object rather than on

the sides, or lead to a deficient suction latch, or lead to a

grasp that is only marginally stable and likely to fail when

the robot lifts the object. It is unlikely that the picking error

rate can be trimmed to industrial grade without the use of

explicit feedback for closed-loop grasping during the

approach–grasp–retrieve operation. Understanding how to

14 The International Journal of Robotics Research 00(0)



make an effective use of tactile feedback is a promising

direction that we have started to explore (Donlon et al.,

2018; Hogan et al., 2018).
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Jonschkowski R, Eppner C, Höfer S, Martn-Martn R and Brock O

(2016) Probabilistic multi-class segmentation for the Amazon

Picking Challenge. In: IEEE/RSJ International Conference on

Intelligent Robots and Systems.

Koch G, Zemel R and Salakhutdinov R (2015) Siamese neural net-

works for one-shot image recognition. In: International Con-

ference on Machine Learning Workshop.

Lenz I, Lee H and Saxena A (2015) Deep learning for detecting

robotic grasps. The International Journal of Robotics Research

34(4–5): 705–724.

Levine S, Pastor P, Krizhevsky A, Ibarz J and Quillen D (2016)

Learning Hand–Eye Coordination for Robotic Grasping with

Large-scale Data Collection. Dharma Vihar, Khandagiri: Inter-

national Society for Engineers and Researchers.

Liu C, Yuen J and Torralba A (2011) SIFT flow: Dense correspon-

dence across scenes and its applications. IEEE Transactions on

Pattern Analysis and Machine Intelligence 33(5): 978–994.

Liu MY, Tuzel O, Veeraraghavan A, Taguchi Y, Marks TK and

Chellappa R (2012) Fast object localization and pose estima-

tion in heavy clutter for robotic bin picking. The International

Journal of Robotics Research 31(8): 951–973.

Long J, Shelhamer E and Darrell T (2015) Fully convolutional

networks for semantic segmentation. In: IEEE Conference on

Computer Vision and Pattern Recognition.

Mahler J, Liang J, Niyaz S, et al. (2017) Dex-Net 2.0: Deep learn-

ing to plan robust grasps with synthetic point clouds and analy-

tic grasp metrics. In: Robotics: Science and Systems.

Mahler J, Matl M, Liu X, Li A, Gealy D and Goldberg K (2018)

Dex-Net 3.0: Computing robust robot vacuum suction grasp tar-

gets in point clouds using a new analytic model and deep learning.

In: IEEE International Conference on Robotics and Automation.

Mahler J, Matl M, Satish V, et al. (2019) Learning ambidextrous

robot grasping policies. Science Robotics 4(26): eaau4984.

Matsumoto E, Saito M, Kume A and Tan J (2016) End-to-end

learning of object grasp poses in the Amazon Robotics Chal-

lenge. In: IEEE International Conference on Robotics and

Automation.

Milan A, Pham T, Vijay K, et al. (2018) Semantic segmentation

from limited training data. In: IEEE International Conference

on Robotics and Automation.

Miller A, Knoop S, Christensen H and Allen PK (2003) Auto-

matic grasp planning using shape primitives. In: IEEE Interna-

tional Conference on Robotics and Automation.

Morales A, Chinellato E, Fagg AH and Del Pobil AP (2004)

Using experience for assessing grasp reliability. In: Interna-

tional Conference on Humanoid Robots.

Morrison D, Tow A, McTaggart M, et al. (2018) CartMan: The

low-cost Cartesian manipulator that won the Amazon Robotics

Zeng et al 15



Challenge. In: IEEE International Conference on Robotics and

Automation.

Nieuwenhuisen M, Droeschel D, Holz D, et al. (2013) Mobile bin

picking with an anthropomorphic service robot. In: IEEE Inter-

national Conference on Robotics and Automation.

Pinto L, Davidson J and Gupta A (2017) Supervision via competi-

tion: Robot adversaries for learning tasks. In: IEEE Interna-

tional Conference on Robotics and Automation.

Pinto L and Gupta A (2016) Supersizing self-supervision: Learn-

ing to grasp from 50k tries and 700 robot hours. In: IEEE

International Conference on Robotics and Automation.

Redmon J and Angelova A (2015) Real-time grasp detection using

convolutional neural networks. In: IEEE International Confer-

ence on Robotics and Automation.

Saenko K, Kulis B, Fritz M and Darrell T (2010) Adapting visual

category models to new domains. In: European Conference on

Computer Vision.

Saxena A, Driemeyer J and Ng AY (2008) Robotic grasping of

novel objects using vision. The International Journal of

Robotics Research 27(2): 157–173.

Schwarz M, Milan A, Lenz C, et al. (2017) Nimbro picking: Ver-

satile part handling for warehouse automation. In: IEEE Inter-

national Conference on Robotics and Automation.

Shrivastava A, Malisiewicz T, Gupta A and Efros AA (2011)

Data-driven visual similarity for cross-domain image match-

ing. ACM Transactions on Graphics 30(6): 154.

Silberman N, Hoiem D, Kohli P and Fergus R (2012) Indoor seg-

mentation and support inference from RGBD images. In: Eur-

opean Conference on Computer Vision.

ten Pas A and Platt R (2015) Using geometry to detect grasp poses

in 3D point clouds. In: International Symposium on Robotics

Research.

Wong JM, Kee V, Le T, et al. (2017) SegICP: Integrated deep

semantic segmentation and pose estimation. arXiv Preprint

arXiv:1703.01661.

Wu K, Ranasinghe R and Dissanayake G (2015) Active recogni-

tion and pose estimation of household objects in clutter. In:

IEEE International Conference on Robotics and Automation.

Zeng A, Song S, Welker S, Lee J, Rodriguez A and Funkhouser T

(2018a) Learning synergies between pushing and grasping with

self-supervised deep reinforcement learning. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems.

Zeng A, Song S, Yu KT, et al. (2018b) Robotic pick-and-place of

novel objects in clutter with multi-affordance grasping and

cross-domain image matching. In: IEEE International Confer-

ence on Robotics and Automation.

Zeng A, Yu KT, Song S, et al. (2017) Multi-view self-supervised

deep learning for 6D pose estimation in the Amazon Picking

Challenge. In: IEEE International Conference on Robotics

and Automation.

16 The International Journal of Robotics Research 00(0)




