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Abstract—This paper presents the first hardware implementa-
tion of the Datagram Transport Layer Security (DTLS) protocol
to enable end-to-end security for the Internet of Things (IoT).
A key component of this design is a reconfigurable prime field
elliptic curve cryptography (ECC) accelerator, which is 238× and
9× more energy-efficient compared to software and state-of-the-
art hardware respectively. Our full hardware implementation of
the DTLS 1.3 protocol provides 438× improvement in energy-
efficiency over software, along with code size and data memory
usage as low as 8 KB and 3 KB respectively. The cryptographic
accelerators are coupled with an on-chip low-power RISC-V
processor to benchmark applications beyond DTLS with up to
two orders of magnitude energy savings. The test chip, fabricated
in 65 nm CMOS, demonstrates hardware-accelerated DTLS
sessions while consuming 44.08 µJ per handshake, and 0.89 nJ
per byte of encrypted data at 16 MHz and 0.8 V.

Index Terms—Cryptographic accelerator, Elliptic Curve Cryp-
tography (ECC), Advanced Encryption Standard (AES), AES-
GCM, Secure Hash Algorithm (SHA), Transport Layer Security
(TLS), DTLS, Internet of Things (IoT), RISC-V, micro-processor,
low-power, side-channel, hardware security.

I. INTRODUCTION

THE Internet of Things (IoT) is an ever-growing network
of wireless electronic devices always connected to the

Internet - collecting, processing and communicating data.
While the IoT promises to enable fundamentally new appli-
cations, it is important to guarantee that the communication
channel between each sensor node and the cloud server is
secure, even in the presence of untrusted and potentially
malicious network infrastructure [1]. This is called end-to-
end security, and protocols such as Datagram Transport Layer
Security (DTLS) [2], [3] enable the establishment of mutually
authenticated confidential channels between IoT sensor nodes
and the cloud. DTLS employs elliptic curve-based public key
cryptographic techniques to authenticate the two end points
and establish shared secret keys, which are then used to
encrypt application data. TLS version 1.3 has recently been
standardized by the Internet Engineering Task Force (IETF),
and is considered to be one of the most suited protocols for
securing the IoT [1]. While this makes DTLS an ideal solution
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for IoT, the associated computational cost makes software-
only implementations prohibitively expensive for resource-
constrained embedded devices [4]. IoT devices are usually
powered by batteries, which are expected to last several
years, or through energy harvesting. Moreover, commercially
available IoT platforms use micro-controllers with limited
instruction and data memory. Therefore, it is essential to have
a DTLS implementation which not only has minimal energy
consumption but also comes with a small memory footprint. To
address these challenges, we present the first hardware imple-
mentation [5] of DTLS 1.3, based on version 18 of the protocol
draft [3]. Our reconfigurable elliptic curve cryptography (ECC)
accelerator enables two orders of magnitude energy savings,
while a dedicated DTLS engine offloads protocol control flow
to hardware reducing program code and memory usage by an
order of magnitude. An on-chip RISC-V processor exercises
the flexibility of the cryptographic accelerators to demonstrate
security applications beyond DTLS.

An overview of the DTLS protocol is presented in Section
II, along with our high-level system architecture. Section III
describes the RISC-V processor, Section IV provides architec-
tural details of the energy-efficient cryptographic primitives
and Section V describes the design of the DTLS engine.
Measurement results from the test chip are presented in
Section VI, and Section VII provides concluding remarks.

II. SYSTEM ARCHITECTURE

A. Transport Layer Security

The DTLS protocol can be divided into two major phases -
handshake and application data (Fig. 1). The handshake starts
with the client (sensor node) and the server agreeing upon
protocol parameters such as the cryptographic algorithms to be
used. Next, a Diffie-Hellman key exchange [6] is performed
to establish a shared secret over the untrusted channel. The
subsequent handshake messages are completely encrypted
using keys derived from this shared secret. Following this,
the client and the server authenticate each other through
digital certificate verification. Finally, the two parties verify
the integrity of the information exchanged in the above steps,
to prevent man-in-the-middle attacks. At this point, a mutually
authenticated confidential channel has been established be-
tween the client and the server. This channel can then be used,
in the application data phase, to exchange data encrypted under
a new set of keys derived from the handshake parameters.

https://dx.doi.org/10.1109/JSSC.2019.2915203
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Fig. 1. Overview of the DTLS handshake protocol with digital certificate-
based mutual authentication and key exchange (dashed arrows indicate that
the messages are encrypted).

The DTLS specification lists a set of recommended cryp-
tographic algorithms, also known as cipher suites, to be
used for performing the handshake and encrypting data. In
this work, we consider DTLS connections implementing the
TLS ECDHE ECDSA WITH AES 128 GCM SHA256 ci-
pher suite, where elliptic curve cryptography [7] is used for
endpoint authentication and key exchange, AES-128-GCM
(Advanced Encryption Standard in Galois/Counter Mode) [8],
[9] is used for authenticated encryption, and SHA2-256 (Se-
cure Hash Algorithm 2) [10] is used for message hashing,
key derivation and pseudo-random number generation. The
handshake phase involves ≈ 100 invocations each of the AES-
GCM and SHA primitives, which operate in blocks of 128 bits
and 512 bits respectively; one ECDHE (Elliptic Curve Diffie-
Hellman Key Exchange), and at least two ECDSA (Elliptic
Curve Digital Signature Algorithm) operations (one ECDSA-
Sign and at least one ECDSA-Verify). Once the handshake is
complete, encryption or decryption of application data requires
one invocation of AES-GCM per 128-bit block of data.

While the computation energy spent during each DTLS
handshake is constant for a given cipher suite, the energy
required during the application data phase is a direct function
of the application payload size. Let us denote the handshake
energy and the encrypted application data energy per byte of
payload as Ehandshake and Eappdata respectively, the session
duration (time interval between two consecutive handshakes)
as tsession and the application data period (time interval
between two consecutive application data transmissions) as
tappdata. Then, for N bytes of application payload, the total
computation energy during a session is given by

Etotal = Ehandshake + (N × tsession
tappdata

× Eappdata)

since the total number of data transmissions during a ses-
sion is tsession/tappdata. The fraction of energy spent in
handshake computations is Ehandshake/Etotal. The session

Fig. 2. DTLS computation energy breakdown and percentage of total compute
energy spent in handshake, for N = 32 bytes of application payload, session
duration tsession = 1 day and varying application data period tappdata.

Fig. 3. Contour plots showing the percentage of total compute energy spent
in handshake, for varying application payload size N and varying application
data period tappdata, for session duration of (a) 1 day and (b) 1 week.

duration tsession is dictated by security requirements of the
application – more frequent handshakes (to establish new
session keys), that is, smaller tsession, imply stronger security
guarantees, e.g., medical devices authenticate more often than
industrial sensors. The application data rate is calculated
as N/tappdata, which also depends on the application, e.g.,
industrial sensors typically send small packets of data every
hour while medical devices send large amounts of data every
minute or every second.

To understand the effect of application data rate on compute
energy, we consider Ehandshake = 150 mJ and Eappdata =
125 nJ as measured from an embedded software implemen-
tation of DTLS [4]. For devices handshaking once every day
and payload size of N = 32, the breakdown of computation
energy is shown in Fig. 2. We observe that the percentage of
energy spent in DTLS handshake is around 30% when data
is transmitted every second, and more than 99% when data is
transmitted every hour. To further analyze the effects of these
parameters, contour plots are shown in Fig. 3 for tsession = 1
day and tsession = 1 week. As expected, the handshake
energy becomes a larger fraction of total energy for smaller
N , larger tappdata and smaller tsession. We observe that the
total computation energy for a software implementation of
DTLS is of the order of 0.1-0.5 J, which is dominated by
either handshake computations or application data encryption
depending on the application parameters. Therefore, it is
essential to design energy-efficient hardware to accelerate both
handshake and application data computations for low-power
IoT devices secured by DTLS.
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Fig. 4. System block diagram with an overview of the hardware modules
implemented on the test chip.

B. Chip Overview

Fig. 4 shows the system block diagram. It consists of a
3-stage (IF: instruction fetch, EX: execute, WB: write back)
RISC-V processor [11] supporting the RV32I instruction set,
with 16 KB instruction cache and 64 KB data memory, and
an SD (Secure Digital) card used as backing store for larger
programs. A DTLS engine (DE), comprised of a protocol con-
troller, a dedicated 2 KB RAM, and AES-128-GCM, SHA2-
256 and prime field ECC primitives, accelerates both the
handshake and application data phases of the DTLS protocol.
Sleep mode is implemented on the RISC-V, to save power, by
gating its clock when cryptographic tasks are delegated to the
DE. The DE uses a dedicated hardware interrupt to wake the
processor on completion of these tasks. The DE is clocked by
a software-controlled divider to decouple the processor operat-
ing frequency from the long critical paths in the ECC accelera-
tor. A memory-mapped interface provides access to the DTLS
engine, through the DTLS RAM, not only for executing DTLS
protocol workloads but also for standalone computations in the
cryptographic accelerators. The same interface is also used to
communicate with peripherals such as GPIO (General Purpose
Input / Output), UART (Universal Asynchronous Receiver
/ Transmitter) and SPI (Serial Peripheral Interface) through
RISC-V software. This memory-mapped interface, along with
the accelerator interrupts, behaves very similarly to the Rocket
Custom Coprocessor (RoCC) interface used by the Rocket
RISC-V core [12] to interface with accelerators. However, the
memory-mapped approach does not require building custom
instructions, thus simplifying the software tool-chain.

III. RISC-V MICROPROCESSOR

The RISC-V processor on the test chip is a 32-bit core,
designed in Bluespec System Verilog, supporting the integer
subset of instructions (RV32I) with user and machine privilege
modes. The RISC-V core was designed to not only seamlessly
interface with the DTLS engine but also efficiently implement
the DTLS protocol in software. In order to support the large
instruction storage required by the DTLS software (detailed in
Section VI), an SD card is used as off-chip program memory
with the processor instruction cache reading program blocks
from the card through an on-chip SD controller.

The instruction cache, being backed by an SD card, has to
deal with a larger memory access granularity (512 bytes vs 64
bytes) and a longer memory access latency compared to typical
microprocessor caches backed by DRAM modules. To match
the access granularity of the SD card, the instruction cache
was designed with a block size of 512 bytes, and the cache
was made 4-way set associative with a tree-based pseudo-LRU
(least recently used) replacement policy to reduce the number
of cache misses. Apart from the 16 KB SRAM for storing
instruction words, the cache also contains an 84-byte register
array for storing tags. The tag array accesses only a single
way’s tag at a time, instead of all four tags, and the 16 KB
SRAM only accesses one 32-bit instruction at a time, thus
reducing access power. To reduce the overhead of accessing
one way at a time, the cache has an MRU (most recently
used) way predictor to estimate which way will be used for
each instruction fetch. This way predictor reuses the meta-data
from the replacement policy to determine the most recently
used way. To further reduce the cache access penalty, a register
is used to cache the last tag read from the tag array so that
the tag array is accessed only when switching cache lines.

The SD controller is designed to reduce miss latency by
using the SD bus protocol [13] where card data is accessed
4 bits at a time, instead of the bit-serial SPI mode. Both
SDHC and SDXC cards are supported, with clock frequencies
up to 25 MHz. The SD clock is generated from the system
clock through a clock divider configured externally (through
SD CFG). Memory-mapped SPI and GPIO peripherals on
the chip are used to interface with off-chip components. The
UART peripheral, driven by a custom software library, is used
to send debug messages to the host computer during testing.

The RISC-V core is also equipped with an interrupt con-
troller to handle interrupts from the cryptographic accelerators,
the peripherals as well as off-chip. The interrupts can be

TABLE I
COMPARISON OF OUR RISC-V CORE WITH STATE OF THE ART

Design Arch Tech Voltage Energy
(nm) (V) (pJ / cyc)

Duran et al., RISC-V
130 1.2 167

LASCAS 2017 [15] RV32IM
Uytterhoeven et al., RISC-V

28 0.38 8.81
ESSCIRC 2018 [16] RV32IM

This work RISC-V
65 0.8 40.36

RV32I
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Fig. 5. Processor clock gating during WFI (wait for interrupt).

individually enabled and programmed to be edge or level
triggered through software. Executing the wait for interrupt
(WFI) instruction gates the clock feeding the RISC-V core
and its instruction cache and data memory, as shown in Fig.
5, which enables power savings when the DTLS engine is ac-
celerating cryptographic computations. The interrupt controller
wakes them up when the appropriate interrupt is received.

When executing the Dhrystone benchmark, our RISC-V
processor consumes 40.36 µW/MHz at 0.8 V, and achieves
0.96 DMIPS/MHz which is comparable to the ARM Cortex-
M0 processor [14]. Table I compares the energy-efficiency
of our design with some recent embedded-scale processor
implementations.

IV. CRYPTOGRAPHIC PRIMITIVES

As discussed in Section II, DTLS requires not only sym-
metric cryptography primitives such as AES and SHA, but
also public key protocols using ECC. In this section, we
provide details of the energy-efficient implementations of these
primitives, including architectural optimizations, design space
exploration and on-chip characterization results.

A. AES in Galois/Counter Mode (AES-GCM)

The DTLS protocol uses AES-128 in the GCM mode for
authenticated encryption with associated data (AEAD), that
is, it simultaneously guarantees confidentiality, integrity, and
authenticity of the data. The AES-128 cipher uses 128-bit keys
to encrypt 128-bit plain-text blocks over 10 iteration rounds,
with each round performing a set of linear and non-linear
transformations on the cipher’s internal state. The S-Box is
the most important non-linear component of AES, used both
in encryption and key expansion. In this work, we have used
the low-power low-area S-Box design proposed in [18].

Fig. 6. Comparison of AES architectures - A1: serial and A2: parallel.

Fig. 7. Simulated area and power breakdown of the 128-bit data-path 11-cycle
AES design.

To explore the effects of AES data-path size on area
and energy-efficiency, we implemented two different AES
architectures, as shown in Fig. 6:
• A1, with 8-bit data-path and one S-Box, processes the

state and the round key on separate cycles 8 bits at a
time, and takes 336 cycles to encrypt a block.

• A2, with 128-bit data-path and 20 S-Boxes, processes
the state and the round key together in a single cycle,
and takes 11 cycles to encrypt a block.

The 8-bit architecture A1 replicates the optimizations proposed
in [21] and [22] to reduce the number of temporary registers.
Fig. 6 compares the area, performance and energy-efficiency of
the two designs, as determined from post-synthesis simulations
in 65 nm LP process at 1.2 V. The 128-bit parallel design A2

TABLE II
COMPARISON OF OUR AES-128 WITH STATE OF THE ART

Design Tech Area Cycles Voltage Energy
(nm) (mm2) (kGE) / Block (V) (pJ / bit)

Hamalainen et al., EUROMICRO 2006 [19] a 130 - 3.2 160 1.2 37.5

Mathew et al., JSSC 2011 [20] 45 0.15 - 5
1.1 2.3
0.32 0.5

Mathew et al., JSSC 2015 [21] 22 0.0022 1.9 336
0.9 30.1
0.34 5.9

Zhang et al., VLSIC 2016 [22] 40 0.0043 2.3 336
0.9 8.9
0.47 2.2

This work 65 0.015 b 10.6 b 11 0.8 4.08 c

a Post-synthesis area and power reported in [19] b Area of final placed-and-routed design c Measured energy
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Fig. 8. (a) Implementation of GHASH Galois multiplier in hardware and (b)
effect of number of multiplier stages (nh) on area and energy.

is 4.6× more energy-efficient and 30× faster, at the cost of
3× increase in logic area. Fig. 7 shows the breakdown of
area and power consumption of different components of this
design. The S-Boxes account for a large fraction of area and
power, which reaffirms our choice of composite-field S-Box.

Table II compares our AES-128 design with state of the art,
both in terms of area and energy. Our design is smaller than the
128-bit data-path 2-stage pipelined AES design in [20], while
having comparable energy consumption, after accounting for
voltage and technology scaling. In comparison to [19], [21],
[22], which are all 8-bit data-path serial implementations, our
design is more energy-efficient, when accounting for voltage
and technology scaling, but at the cost of larger area. Note
that our AES could not be characterized at voltages smaller
than 0.8 V because all logic and SRAMs on our chip are
powered by a single supply rail. Also, our measured AES
energy includes leakage from the entire chip, since other
components were clock-gated but not power-gated.

AES-GCM uses the AES forward cipher for both encryption
and decryption, and a Galois multiplication-based special hash
function called GHASH for authentication [9]. AES-GCM
employs the counter mode of operation, which concatenates a
counter value with the initialization vector IV , and encrypts
it with the secret key using AES. The result of this encryption
is then XOR-ed with the plain-text to generate the cipher-text.
Like all counter modes, this essentially acts as a stream cipher,
therefore it is important to ensure that a different IV is used
for each stream that is encrypted.

The Galois multiplier in GHASH can be implemented in
hardware using one or more copies of the basic function
which we denote as h: Zi+1 = Zi ⊕ xi · Vi and Vi+1 =
(Vi >> 1) ⊕ {LSB(Vi)} · (11100001||0120), as shown in Fig.
8a. A Galois multiplier with nh stages requires 128/nh cycles
per multiplication, and the number of h-stages directly affects
area, cycles per operation and energy consumption. Multiple
Galois multipliers were synthesized to determine a suitable
architecture, and their area-energy products were plotted as
a function of the number of h-stages, as shown in Fig. 8b.

We observed that a 32-cycle design, with nh = 4, has the
lowest area-energy product, hence this version was used in
our AES-GCM implementation. Since AES-GCM involves
computing GHASH on the cipher-text, our design performs
encryption and Galois multiplications in parallel, at 32 cycles
per 128-bit data block. For m blocks of associated data and
n blocks of plain-text (cipher-text), it takes 54 + 32 · (m+ n)
cycles to encrypt (decrypt) and generate (verify) the GCM tag,
where the fixed 54-cycle overhead accounts for computing the
hash key, hashing the data length, computing the tag as well
as configuring the key, IV and other encryption parameters.
The final placed-and-routed design occupies 29.9 kGE area,
including the 10.6 kGE AES, of which about 25% is attributed
to registers used to store input/output data, keys, intermediate
states and configuration values. Energy consumption of our
design is 11.88 pJ/bit at 0.8 V.

B. Secure Hash Algorithm (SHA2)

The SHA2-256 hash algorithm compresses messages of
arbitrary lengths (< 264 bits) and generates a unique 256-bit
message digest. Since SHA2-256 operates on 512-bit blocks,
the input message is padded to a multiple of 512 bits. The
internal state of the hash function is initialized according to
the SHA2 specification [10]. The Message Schedule takes 512-
bit blocks of the padded message and sends 32-bit words Wt

to the main SHA2-256 Round function, along with a round
constant Kt. Each 512-bit block is digested over 64 iterations
of the round function, and the state is updated. This continues
till the entire message has been processed, and the final value
of the state is the message digest.

Fig. 9 shows details of the round function. The internal state
consists of 16 32-bit registers H0−H7 and a−h. The Σ0, Σ1,
Maj and Ch functions are specified in [10], while � denotes
32-bit addition modulo 232, that is, the final carry is ignored.
H ′0−H ′7 and a′−h′ denote the updated state values after one
iteration. Although the state of the hash function is defined
by H0 − H7, a − h and the message schedule, we note that
H0−H7 completely define the SHA2-256 state after every 64
iterations of the round, that is, after every 512-bit block has
been processed. This property can be exploited to implement
efficient running hashes, as will be discussed in Section V.

The critical paths in the round function were implemented
using a combination of carry-save and ripple-carry adders to
reduce latency. Messages are sent to the SHA2 core one byte

Fig. 9. Implementation of SHA2-256 round function in hardware.
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at a time, and a counter is used to track the input data length,
which is used by the SHA2 core to perform message padding.
The SHA2-256 core computes a′ − h′ in parallel to achieve
increased energy-efficiency. Our final design occupies 18.2
kGE, and takes 65 cycles to process a 512-bit input block,
while consuming 4.43 pJ/bit at 0.8 V.

C. Reconfigurable Prime Field ECC
Elliptic curve cryptography (ECC) is used in DTLS for both

key exchange and digital signature protocols. We consider two
types of elliptic curves over finite fields Fp of large prime
characteristic p – short Weierstrass curves (y2 = x3 + ax+ b)
and Montgomery curves (by2 = x3 + ax2 + x). All other
prime curves (for p 6= 2, 3) can be transformed into the
short Weierstrass form with a simple change of variables [7].
ECC-based protocols can choose from a large set of standard
curves, e.g., NIST, Curve25519, Brainpool, SEC and ANSSI.
While existing literature in ECC hardware mostly focus on
implementing a single family of curves [23], [24], [25], [26], a
similar approach is not suitable for DTLS because the standard
allows a much wider choice of curves. This provides the
motivation for our reconfigurable prime field ECC design,
and we support curves over any prime up to 256 bits, which
correspond to at most 128 bits of security.

The fundamental operations used in ECC are point addition
(R = P + Q), and point doubling (R = P + P ). Repeated
additions of a point P with itself is called “elliptic curve scalar
multiplication” (ECSM). For any scalar k, the multiple kP
is computed as a series of point doubling (DBL) and point
addition (ADD) operations, which can be decomposed into
arithmetic in the finite field Fp. This makes efficient modular
arithmetic integral to both software and hardware implemen-
tations of ECC. Fig. 10 describes our energy-efficient ECSM
hardware, which can be configured with prime p of variable
length t (up to 256 bits) and curve parameters a and b. Given
scalar k and point P (x, y), it generates Q = kP .

One of the key components of our design is an efficient
modular multiplier, shown in Fig. 10. In order to support
arbitrary prime fields, it performs multiplication with inter-
leaved modular reduction [27]. Three adders are used for
this computation, one for addition and two for reduction.
The reduction uses conditional subtractions, all performed in
the same cycle so that the modular multiplication is constant
time and there is no potential timing side-channel. The same
circuitry can be re-used for modular addition.

While most ECC designs choose 16-bit or 32-bit data-paths
for modular arithmetic, we have used full 256-bit adders for
energy-efficiency, with higher bits of the data-path gated when
working with smaller primes. Design space exploration was
performed for 256-bit modular adders with different data-path
sizes, as shown in Fig. 11. Clearly, the total area doesn’t scale
linearly with the data-path width due to the fixed overhead of
the 256-bit registers required to store the inputs and output.
When scaling up from 16-bit to 256-bit data-path, total area
increases by 1.8×, while energy per operation decreases by
6.8×, primarily due to reduced control circuitry and muxing
logic. Table III shows the simulated energy consumption of
our modular adder and multiplier at 1.2 V and 20 MHz.

Fig. 10. Block diagram of the reconfigurable prime-field elliptic curve
cryptography accelerator, along with detailed architecture of the modular
multiplier implementing interleaved modular reduction.

Prior work on hardware implementations of ECC re-use
the modular multiplier to perform modular inversion using
Fermat’s theorem: x−1 = xp−2 mod p [7]. This method
uses repeated modular multiplications (384 on average for
256-bit primes) for exponentiation. Therefore, inversion using
Fermat’s theorem (IFermat) is slow, but doesn’t require any
additional logic area. In this design, we make an energy-area
trade-off and implement dedicated hardware [17] to perform
modular inversion using the extended Euclidean algorithm
(IEuclid) [7], which involves modular additions, subtractions
and bit-shifts. Similar to the multiplier, our inverter also
consists of 256-bit adders for energy-efficiency. From Table
III, energy consumption of the two types of inversions are
found to be related to multiplication (M ) as: IFermat ≈ 384M
and IEuclid ≈ 3M , indicating that IEuclid is 128× more
efficient, albeit at the cost of increased logic area.

Having optimized the modular arithmetic implementations,
the next step is to select an efficient ECSM algorithm. Tra-
ditional window-based ECSM [7] requires 256 DBL and 64
ADD operations for window-size w = 4. Instead, a pre-
computation-based comb algorithm [7], [28] is implemented,
which involves 64 DBL and 64 ADD operations, thus reducing
ECSM energy by 2.5×. A 4 KB cache stores pre-computed
comb data for up to six points, including generator points and

Fig. 11. Comparison of modular adder architectures, with different data-path
widths, in terms of area (sequential and combinational) and energy.
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TABLE III
SYNTHESIS RESULTS FOR 256-BIT MODULAR ARITHMETIC

Operation Cycles / Op Energy (nJ / Op)

Add / Sub 1 0.02
Mul 256 4.04
Inv (Fermat) 98304 1552
Inv (Euclid) ≈ 720 12.9

public keys, which is specifically used to speed up the DTLS
handshake, as will be explained in Section V.

The final optimization step in our design is the appropriate
choice of coordinates for elliptic curve points. Resource-
constrained ECC implementations [23], [24], [25], [26] typi-
cally use projective coordinates to avoid modular inversions
in the ECSM inner loop, at the cost of extra multiplica-
tions and a final expensive Fermat inversion. In projective
coordinates, the costs of point opertions are ADD = 8M
and DBL = 11M . Since we have an efficient dedicated
modular inverter, we use affine coordinates where ADD =
2M + I and DBL = 3M + I . The total ECSM costs of the
projective and affine coordinate representations are calculated
as Eproj = 64 × (8M + 11M) + 4M + IFermat = 1604M
and Eaff = 64 × (5M + 2IEuclid) = 704M . Therefore, the
use of affine coordinates saves ≈ 2× in energy by trading off
the extra multiplications for cheaper Euclid inversions.

Public-key algorithms are prone to side-channel attacks due
to their expensive computations and long execution times. One
such attack is simple power analysis (SPA). Simple double-
and-add ECSM algorithms perform conditional point additions
in the outer loop depending on whether the corresponding
bit in the secret scalar is a 1. Since DBL and ADD involve
distinct arithmetic, the power consumption of the chip can leak
this information. For reference, we demonstrate an SPA attack
on a software implementation of this algorithm, as shown in
Fig. 12. The slower operations – multiplication and inversion,
can be clearly inferred from a single power trace, and the
bits of the secret scalar can be successfully determined. In
order to prevent SPA attacks, we use a zero-less signed digit
(ZSD) representation of the scalar [28] in conjunction with
the comb technique, which transforms the scalar to have no
zero bits, thus avoiding conditional point additions. This also
reduces the number of pre-computed comb points per ECSM
from 16 to 8. Fig. 13 shows power traces of our SPA-secure
implementation for 10 random scalars overlaid together, where
both DBL and ADD are computed at each iteration of the outer
loop, irrespective of the bits of the scalar.

The binary scalar k = (kt−1, kt−2, · · · , k1, k0)2 needs to
be odd to have a valid ZSD form, that is, the least significant
bit k0 = 1 [28]. To prevent leaking any information about
whether k is even or odd, we initially compute k′ = k + 1
if k is even, and k′ = k + 2 if k is odd. Then, Q′ = k′P
is computed, and finally, we obtain Q = kP as Q′ − P if k
is even, and Q′ − 2P if k is odd. We use a compact scalar
encoding, which we denote as ZSD∗, of the ZSD scalar where
the 1-bit represents ‘1’ and the 0-bit represents ‘-1’, similar
to [29]. We prove that this compact form of scalar k can be
computed “on-the-fly” as ZSD∗(k) = (1, kt−1, · · · , k2, k1)2

Fig. 12. Measured power trace demonstrating SPA attack on the simple
double-and-add ECSM algorithm implemented in software on the RISC-
V processor. The double (D) and add (A) steps are marked, along with
their key constituent modular arithmetic operations - multiplication (MUL)
and inversion (INV). Also shown are bits of the secret scalar successfully
recovered from this trace.

Fig. 13. Measured power traces of the SPA-secure hardware ECSM, for 10
random scalars, overlaid together for comparison. The sets of point doubling
(DBL) and point addition (ADD) operations are shown in boxes, indicating
that the double-and-add patterns are constant irrespective of the secret scalar.

since the following equation holds:
(1, kt−1, · · · , k2, k1)2 =

2t−1 +
k − 1

2︸ ︷︷ ︸
+1 bits of (kt−1,··· ,k1)

− (2t−1 − 1− k − 1

2
)︸ ︷︷ ︸

-1 bits of (kt−1,··· ,k1)

= k

Therefore, no additional circuitry is required to convert k to the
ZSD∗ form. The SPA countermeasure introduces 5 extra point
additions, on average, for 256-bit scalars [7], which translates
to ≈ 4% energy and performance overhead.

More sophisticated side-channel attacks on ECC exist [30],
which involve statistical metrics, e.g., correlation, and there-
fore require several power traces for a single scalar. Since
the same scalar is never used twice for any of the ECSM
computations during the DTLS handshake, these attacks are
not particularly relevant to our main application. For other
ECC-based protocols, appropriate countermeasures, usually
requiring some form of input randomization, can be easily
implemented using software.

For a 256-bit short Weierstrass curve, our design takes
≈ 320k cycles for comb pre-computations and ≈ 180k
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TABLE IV
COMPARISON OF OUR RECONFIGURABLE ECC DESIGN WITH STATE OF THE ART

Design Tech Voltage Logic Area Supported Cycles Energy a

(nm) (V) (kGE) Curve(s) / ECSM / ECSM (µJ)

Hutter et al., WISTP 2011 [23] b 350 3.3 9.5 NIST P-192 753k 1423.6

Roy et al., ECC 2013 [24] b 32 1.0 26
SEC P-160 250k 2.25
NIST P-192 350k 3.15

Pessl et al., RFIDSec 2014 [25] b 130 1.2 8.6 NIST P-160 100k 4.4
Hutter et al., CHES 2015 [26] b 130 1.2 32.6 Curve25519 811k 56.8

This work (Reconfigurable ECC) 65 0.8 65.5 c (49.1 d)

All prime curves up to 256 bits
160-bit 74k 2.22 e

192-bit 102k 3.11 e

256-bit 180k 6.47 e

a Base point ECSM energy b Post-synthesis area and power reported in [23], [24], [25], [26]
c Area of final placed-and-routed design d Synthesized area for comparison e Measured energy

cycles for SPA-secure ECSM. Table V compares the measured
execution time and energy consumption of our hardware with
an equivalent software implementation on the RISC-V at 0.8
V and 16 MHz. As described earlier, our reconfigurable ECC
supports all short Weierstrass and Montgomery curves over
prime fields up to 256 bits. Fig. 14 shows measured base point
ECSM performance over different curve sizes, generated using
the NIST curves for 160, 192, 224 and 256 bit primes. ECSM
performance and energy scale approximately cubically with
size of the prime. Since the prime size is directly related to
security, our reconfigurable ECC can be used to scale security
and efficiency, depending on the application requirements.

Our configurable ECC architecture can be easily scaled to
larger prime fields (such as 384-bit or 521-bit primes), in
order to support security levels higher than 128-bit, by using
even wider data-path adders and small changes to the control
logic. Table IV compares our design with recent work in ECC
hardware. Our design is the most energy-efficient and flexible,
but has larger area owing to the dedicated modular inverter
(31k GE) and full data-path modular multiplier (11.8k GE).
Reconfigurability of our ECC core is also responsible for some

TABLE V
MEASURED 256-BIT PRIME CURVE ECC PERFORMANCE

Computation Time (s) Energy (µJ)

Software Comb + ECSM 8.5 4180
Hardware Comb 0.02 11.1
Hardware ECSM 0.012 6.47

Fig. 14. Base point ECSM performance over different curve sizes.

of the area overheads, since fixed prime field arithmetic (such
as NIST primes) can be implemented with smaller logic with
hard-wired parameters.

V. DTLS ENGINE

At the core of DTLS is its state machine, which controls
all handshaking protocols and related computations. Since the
DTLS state machine supports a variety of configurations [2],
[3], software implementations can be error-prone and has lead
to attacks in the past [31]. To avoid such issues, we enable only
a carefully chosen secure subset of all the configurations sup-
ported by DTLS. In this work, we have implemented the cipher
suite with ECDHE, ECDSA, AES-128-GCM and SHA2-256,
requiring mandatory server/client authentication. The Client
Certificate URL extension is used, that is, client certificates
are not transmitted. The Cached Information extension is made
optional, and the server decides whether to use it during the
handshake. Certificate Authority (CA) public keys are cached
by both parties, and CA certificates are never exchanged (still
maintaining compliance with the TLS specification).

Fig. 15 shows the architecture of our DTLS engine (DE),
with its key components – (1) energy-efficient cryptographic
accelerators, (2) DTLS controller and (3) DTLS RAM. The
efficient cryptographic primitives, described in Section IV,
not only accelerate DTLS computations but can also be
accessed individually through RISC-V software to implement
standalone protocols. The DTLS RAM and DTLS controller
are discussed in detail in the following subsections.

A. DTLS RAM

The 2 KB DTLS RAM can be divided into three sections
- DTLS micro stack, DTLS Config memory and Accelera-
tor Config memory. The 1.25 KB DTLS micro stack acts
as scratch-pad for temporary variables computed during the
DTLS handshake, including DRBG states and DTLS session
keys. The DTLS stack is not accessible through the memory-
mapped interface so that secret session information, including
encryption keys, cannot be read by software. The 0.45 KB
DTLS Config memory is used to store public keys, secret keys
and certificate details, which can be programmed through the
RISC-V processor, while the remaining 0.3 KB Accelerator
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Fig. 15. Architecture of DTLS engine along with contents of DTLS RAM.

Config memory stores accelerator configuration values for
standalone cryptographic operations. Contents of the config
memory and the micro stack are detailed in Fig. 15.

B. DTLS Controller

The DTLS controller implements a micro-coded DTLS
1.3 state machine for pseudo-random number generation,
key schedule, session transcripts, encrypted packet framing,
parsing and validation of X.509 digital certificates and re-
transmission timeouts, as shown in Fig. 15. Details of some
key components of the DTLS controller are discussed next.

1) HMAC-DRBG and HKDF: An HMAC-based Determin-
istic Random Bit Generator (HMAC-DRBG) [34] is used to
generate cryptographically secure pseudo-random numbers,
while an HMAC-based Key Derivation Function (HKDF) [33]
is used to compute DTLS handshake and session keys. Both
HMAC-DRBG and HKDF use the SHA2-256 cryptographic
accelerator to efficiently compute HMACs (keyed-hash mes-
sage authentication codes) [32], as shown in Fig. 16. HMAC
uses two passes of the SHA2-256 hash function, with the key
XOR-ed with the appropriate pad – repeated bytes valued
0x36 and 0x5C for the inner and outer passes respectively.
The HMAC inputs are loaded from the DTLS RAM into
a temporary register and bytes are shifted out to the hash
module, with or without padding. The micro stack is used
to store any intermediate values computed during HMAC.

The HMAC-DRBG algorithm involves two 256-bit values
K and V , and operates in two phases. The DRBG is first
initialized using the input seed material (as obtained from
the DTLS Config memory), also known as the Instantiate
phase. During the Generate phase, pseudo-random numbers
are generated in V , 256 bits at a time, by repeatedly computing
HMAC(K,V ), followed by an update of K and V , as shown in
Fig. 16, which are then stored in the micro stack. The DRBG is
initialized (seeded) only once at the time of device setup, and it
can be used for up to 248 invocations of the Generate step, with
up to 219 bits generated in each invocation, as per the NIST
DRBG specification [34]. Since the DRBG Generate function

Fig. 16. HMAC logic along with details of DRBG computations.

Fig. 17. TLS 1.3 key schedule [2].

is used 3 times (for generating client random and scalars for
ECDHE and ECDSA-Sign) during a DTLS handshake (DRBG
not required during application data exchange), it need not be
re-seeded for ≈ 9.4×1013 handshakes, which exceeds the life
of the IoT device.

The SHA2-256-based HKDF algorithm also works in two
steps – Extract and Expand. In the Extract phase, a non-secret
salt and input keying material IKM are used to calculate the
pseudo-random key PRK = HMAC(salt, IKM). In the Expand
phase, output keying material is generated in 256-bit blocks
T [k] using PRK and some application specific info as:
HKDF-Expand ( PRK, info, L ) = T [1] ‖ T [2] ‖ · · · ‖ T [L/32]
where T [k] = HMAC ( PRK, T [k− 1] ‖ info ‖ k ) for k > 0,
T [0] = null, and L is length of output keying material in bytes.

Along with HKDF-Extract, the TLS 1.3 Key Schedule [2]
uses the following function for key derivation:
Derive-Secret ( Secret, Label, Messages ) =
HKDF-Expand ( Secret, 0x0020 ‖ 0x746C733133 ‖ Label
‖ SHA2-256 ( Messages ), 32 )
The detailed key schedule is shown in Fig. 17, where PSK
refers to the pre-shared key (if PSK is not in use, it is replaced
with a string of zero bits) and ECDHE refers to the shared
secret computed during the Diffie-Hellman key exchange. The
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handshake and application traffic secrets are used to generate
AES-GCM key and IV pairs (using further invocations of
HHKDF-Expand, as specified in [2]) during the handshake
and application data phases respectively.

While our prototype chip uses SRAMs and flip-flops as
the only on-chip storage elements, a commercial product
replicating this design would replace the DTLS config and
micro stack with non-volatile memory so that the IoT device
can enable power gating while still retaining the configuration
values, DRBG state and session keys.

2) Session Transcript: The DTLS handshake involves 6
session hash (transcript) computations, that is, hash of the
concatenation of all messages exchanged till that point in the
handshake. Software implementations of DTLS typically save
all handshake messages, and compute the hash over all of
them every time a transcript is required. Handshakes can be
as large as 2-3 KB and repeatedly reading them from SRAMs
can be very expensive. To eliminate the need to store the entire
handshake, we implement a running hash by exploiting the
property of SHA2-256 that the internal registers H0 − H7

completely define the hash state every time a 512-bit block
has been digested, as discussed in Section IV. Fig. 18 provides
an overview of our session hash architecture. Handshake bytes
are pushed into a 64-byte FIFO, and a 512-bit block is sent to
the SHA2-256 core whenever the FIFO is full. This ensures
that session hash computations always digest data in blocks of
64 bytes, except for the last block, and when computing the
hash H(m) of an N -byte message m, the intermediate hash
of bN/64c blocks of m is stored in H0 −H7.

In Fig. 18, we illustrate this technique using a simple
example where the DTLS controller needs to compute SHA2-
256 ( ClientHello ‖ ServerHello ). After every session hash, the
FIFO state (containing any un-hashed bytes) and the registers
H0−H7 are copied to the DTLS stack, so that the SHA2 core
can be used for other computations. This is particularly useful
for later phases of the handshake which involve hashing large
digital certificates. Our proposed approach reduces the total
session transcript memory usage from several kilobytes down
to only 96 bytes – 64 bytes for the SHA2 state and up to 32

Fig. 18. Efficient session hash computation for DTLS handshake.

bytes for the un-hashed portions of the messages.
3) ECC Computations in DTLS: The reconfigurable ECC

core is used to perform both ECDH and ECDSA-Sign/Verify
computations, where the deterministic ECDSA scheme [35] is
used to securely generate signatures. The DTLS handshake
involves up to 7 ECSM computations, and we have seen
in Section IV that ECSM energy can be reduced by 2.5×
if pre-computed comb points are available. Our ECC comb
point cache supports up to 6 pre-computed base points,
which are used to minimize the energy consumption of the
ECDHE ECDSA handshake. Comb points are computed and
stored for the curve generator point G, the CA public key
QCA and the server public key QSRV . This one-time pre-
computation requires around 33 µJ of energy, which gets
amortized over all the subsequent handshakes, but provides up
to 2.2× reduction in the energy consumption of each DTLS
handshake. The pre-computation for G is essential for both
ECDH and ECDSA, while pre-computations for QCA and
QSRV are used to verify signatures from the CA and the
server respectively. The rest of the point cache is used for
ECDH and ECDSA with random points without corrupting
the stored points required by DTLS.

4) DTLS State Machine: The DTLS state machine is used
to generate and process messages at different steps of the
handshake as well as exchange encrypted data after the
handshake. A 64-bit counter is used to implement the DTLS
Retransmission Timer [3] which handles dropped packets. The
time-out value can be configured externally, and the state
machine re-transmits the previous flight whenever the timer
expires. When the DTLS state machine waits for the next
flight, all cryptographic accelerators are clock-gated in order to
reduce power consumption. Three 256-byte FIFOs are used to
fetch input messages (IN FIFO), send output messages (OUT
FIFO) and read application data packets (DATA FIFO). The
IN FIFO ensures that the DTLS controller starts parsing input
messages only when a fully formed packet is available, and
sends out complete output messages to the OUT FIFO. For
encrypted application data, the state machine also implements
the packet optimizations proposed in [4], with the option to
enable AES-GCM tag truncation.

VI. MEASUREMENT RESULTS

The test chip, shown in Fig. 19, was fabricated in a 65
nm CMOS process, with a core size of 1.54 × 1.54 mm2.
The RISC-V processor occupies 0.0489 mm2 (34 kGE) area
and interfaces with 16 KB instruction cache and 64 KB data
cache. The DTLS engine requires 0.214 mm2 (149k GE) logic
area, and uses 6.75 KB of SRAM for the comb point cache,
DTLS RAM and packet FIFOs. The chip supports voltage
scaling from 1.2 V down to 0.8 V. The RISC-V core achieves
a maximum frequency of 78 MHz at 1.2 V and 20 MHz at
0.8 V. The DTLS engine can operate in a frequency range of
16 MHz (at 0.8 V) to 20 MHz (at 1.2 V). All measurements
for the RISC-V processor and the DTLS engine are reported
at 16 MHz and 0.8 V.

Fig. 20 shows our test board and measurement setup. The
test chip is housed in a QFN64 socket soldered to the board,
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Fig. 19. Chip micrograph, logic area breakdown of the DTLS engine and
summary of chip specifications.

and an Opal Kelly XEM7001 FPGA is used to interface with
the chip. A Keithley 2602A source meter is used to supply
power to the chip. Both the FPGA and the source meter
are controlled from a host computer through USB and GPIB
interfaces respectively. While our chip has an SD interface
which can communicate with standard SD cards, we use the
FPGA to emulate the SD card program memory so that we
can eliminate the overhead otherwise imposed by real SD card
access times and thus allow fair software benchmarking.

A. Protocol Benchmarks and Energy Measurements

The DTLS engine supports handshake in two modes:
• Full – with verification of server certificate
• Cached – with caching of server certificate information

to speed up future handshakes
The cached mode requires one less ECDSA-Verify operation,
thus achieving 36% reduction in handshake time and energy.
Energy consumption of the hardware-accelerated DTLS hand-
shake is 68.94 µJ and 44.08 µJ in the full and cached modes

Fig. 20. (a) Test board with FPGA and (b) power measurement setup.

Fig. 21. Processor resource utilization in three different DTLS handshake
implementations – SW, SW+HW and HW. Improvements of HW versus SW
are indicated in the boxes.

Fig. 22. Benchmarks for security protocols implemented in SW and SW+HW
– (a) ECMQV, (b) Schnorr Prover and (c) Merkle Hashing. Improvements over
software are indicated above the bars.

respectively. In the application data phase, the chip consumes
0.89 nJ per byte of data.

In order to analyze the efficiency of our DTLS hardware
accelerator, we compared resource utilization in three sce-
narios: DTLS fully implemented as RISC-V software (SW),
the cryptographic kernels accelerated in hardware and only
the DTLS controller implemented in software (SW+HW), and
DTLS fully implemented in hardware (HW). Test software
was implemented using the cryptographic libraries provided by
ARM mbedTLS [36]. Since mbedTLS does not support cached
server certificates, all analyses were performed with the DE
in non-cached mode. Detailed comparisons are shown in Fig.
21. The use of cryptographic accelerators alone results in over
2 orders of magnitude improvement in run time and energy
efficiency (SW vs. SW+HW). The hardware DTLS controller
reduces code size by 60 KB, while the DTLS micro stack
results in 13 KB reduction in data memory usage (SW+HW
vs. HW). When DTLS is accelerated in hardware, code size
goes down to only 8 KB, including system functions. We also
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note that the area occupied by the DTLS state machine and
control logic is 5× smaller than the area of SRAM otherwise
required to accommodate the DTLS program in software.

Security applications beyond DTLS can also be imple-
mented on the RISC-V, using the cryptographic accelera-
tors in standalone mode. We illustrate this flexibility using
three benchmark applications – (a) ECMQV, an alternative
to ECDHE/ECDSA-based authenticated key exchange, (b)
Schnorr Prover, an interactive zero-knowledge prover of iden-
tity, and (c) Merkle Hashing, used to ensure data integrity
in peer-to-peer network protocols. The reduction in resource
utilization for all three applications is shown in Fig. 22. The
ECC-based applications achieve over 200× increase in energy-
efficiency, while Merkle hashing sees 6× energy savings.

Since the cryptographic hardware is active only for a
fraction of the total processing time of the IoT node, it is
important to analyze the effect of leakage power of the DE
on overall energy consumption. Overall leakage power of the
chip was measured around 30 µW at 0.8 V, out of which
the DE accounts for ≈ 60% (based on layout area). Power
consumption of the chip, with only the RISC-V processor
active and the DE clock-gated, ranges between 300-650 µW
at 16 MHz and 0.8 V depending on the application software
being executed. Therefore, DE leakage power is at most 6%
of the total power consumption of the IoT application, thus
justifying some of the architectural optimizations described in
Section IV which increase leakage power due to larger logic
area. The peak current drawn by the chip at 16 MHz and 0.8
V was measured to be around 800-900 µA, which is well
below the maximum current supplied by standard batteries,
e.g., 15/30 mA for coin cells.

B. System Demonstration
To demonstrate the functionality of our chip in a complete

system, a secure IoT node was designed with the test chip
collecting data from a temperature sensor and an accelerome-
ter, encrypting it and then transmitting it through a Bluetooth
Low Energy (BLE) transceiver, where all data communications
with our test chip are through SPI. A Raspberry Pi module is
used as a gateway which forwards these encrypted packets to
the application software running on a PC. The system setup
is shown in Fig. 23, along with a screenshot of the server
application which displays packet details along with decrypted
sensor data.

C. Comparison with Previous Work
Fig. 24 compares this work with embedded systems that

integrate multiple cryptographic accelerators. This work im-
plements a flexible ECC accelerator which supports arbitrary
primes up to 256 bits, in contrast with [23] and [26] which only
support fixed 192 and 255-bit curves respectively. [37] only
supports binary field modular arithmetic in hardware. Our ECC
accelerator is 458× and 9× more energy-efficient than [23]
and [26] respectively at comparable security levels. In addition
to the resource savings enabled by the individual cryptographic
accelerators, offloading DTLS control flow to the DE realizes
a further 3× reduction in energy and 5× reduction in run time
compared to a SW+HW implementation.

Fig. 23. System demonstration of a secure IoT node with our test chip
collecting data from sensors and transmitting them to a server application
over a DTLS-encrypted channel.

Fig. 24. Comparison of our design with integrated cryptographic accelerators
for embedded systems.

VII. CONCLUSION

In this work, we have presented an energy-efficient re-
configurable cryptographic engine which makes DTLS a
practical solution for implementing end-to-end security on
resource-constrained IoT devices. Energy-efficient accelerators
for ECC, AES and SHA provide more than two orders of
magnitude improvement in performance and energy-efficiency
compared to software implementations of DTLS. This allows
IoT sensor nodes to re-authenticate more frequently for appli-
cations that demand stronger security guarantees. A dedicated
DTLS 1.3 protocol controller enables 78 KB and 20 KB
reduction in code and memory usage respectively. This allows
IoT platforms to implement application programs without
having to worry about the overheads otherwise imposed by
the security protocol. Protocols beyond DTLS can also be
implemented using the RISC-V processor working in conjunc-
tion with the cryptographic accelerators, while still getting the
benefits of energy-efficiency and performance.
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