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Abstract

Designing functional molecules with desirable properties is often a chal-
lenging, multi-objective optimization. For decades, there have been computa-
tional approaches to facilitate this process through the simulation of physical
processes, the prediction of molecular properties using structure-property re-
lationships, and the selection or generation of molecular structures. This
piece provides an overview of some algorithmic approaches to defining and
exploring chemical spaces that have the potential to operationalize the pro-
cess of molecular discovery. We emphasize the potential roles of machine
learning and consideration of synthetic feasibility, which is a prerequisite to
“closing the loop”. We conclude by summarizing important directions for
the future development and evaluation of these methods.
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Highlights

• Virtual libraries used in molecular discovery are often too large to ex-
haustively evaluate, warranting the use of algorithms to help with ex-
ploration.

• Algorithmic approaches like Bayesian optimization can help efficiently
navigate pre-defined chemical spaces in combination with surrogate
models.

• On-the-fly molecular generation during exploration enables even larger
chemical spaces to be searched, including deep learning-based models,
although their chemical spaces are defined only implicitly.

• Emerging approaches to incorporate reactions into machine learning-
based generation can ensure molecules are able to be synthesized, sim-
ilar to preceding algorithms for reaction-based de novo design.
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Glossary

• Active learning: An approach to data acquisition whereby a model
iteratively proposes new experiments to perform, i.e., new data points
to label.

• Deep generative model: A highly-parameterized machine learning
model capable of generating structured objects, e.g., strings or graphs.

• Graph theory: The study of graph-structured objects comprising
nodes and edges.

• On-the-fly: Processing or generating data in an ongoing manner as
needed, in contrast to preprocessing or enumeration.

• QSPR model: A quantitative structure-property relationship model
that is able to predict, with some degree of accuracy and reliability, the
functions of molecules based on their chemical structure.

• Reinforcement learning: A machine learning method whereby an
agent learns to optimize its behavior and interaction with an environ-
ment.

• Synthesizability-aware model: A model that is able to distinguish
between chemical structures on the basis of how easily they can be
synthesized experimentally.

• Virtual library: A digital collection of chemical structures or their
representations, as is used in computational screening.
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1. Conceptualizing chemical space

Chemical space can be thought of as the set of all possible molecules or
materials. We generally consider more narrowly defined chemical spaces that
are defined or constrained by the structures or functions of the molecules they
contain. For example, “drug-like chemical space” can be used in the context
of drug discovery in an attempt to quantify the vast number of molecules
that have physical properties similar to those of existing small molecule ther-
apeutics. While quantifying the size of a chemical is rarely useful, it should
be noted that there are far more organic molecules thought to be stable
than atoms in the solar system, which is unsurprising given the combina-
torics of designing molecular graphs. Here, we focus our discussion on small
molecules, rather than periodic materials, biomolecules, and polymers, all
of which correspond to distinct “chemical spaces”. There have been many
studies attempting to estimate the size of different chemical spaces [1, 2, 3]
and suggest rules for organizing these spaces along important functional axes
to improve its visualization and navigability [4, 5, 6, 7].

As we have previously described, the discovery of novel molecules can be
framed as a search within chemical space [8, 9]. The goal, often, is to iden-
tify which molecule(s) exhibits a set of desirable properties. Besides defining
these desirable properties and a strategy to evaluate candidate molecules,
the two primary considerations one must make are (1) how to define the
space and (2) how to explore the space. Both contribute to the search effi-
ciency and likelihood of finding a good candidate. These two aspects are not
decided independently: if you are repurposing FDA-approved drugs, your
chemical space is narrow enough that an exhaustive screen may be feasible,
but if you have no such restriction, you must employ some strategy to select
which molecules to test. These strategies are typically iterative optimization
routines (driven by human intuition or driven by quantitative experimen-
tal design) with varying degrees of sophistication, as will be discussed later.
Navigating chemical space has been extensively written on in the context of
(non-algorithmic) drug design [10, 11].

The number of candidate molecules is too large to explore exhaustively,
so one often imposes constraints on chemical space depending on the search
strategy, application, and practical limitations of cost and time. These con-
straints can look quite different when candidates are evaluated by physi-
cal experiments rather than by computational experiments. In the former
case, acquiring new information about the performance of a molecule requires
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physically realizing (i.e., synthesizing, purifying, and characterizing) it; con-
siderations of synthesis cost and material availability are paramount. In
the latter case, one may be able to postpone these practical considerations
until after computational evaluations have identified a putative “optimal”
molecule. To bound the computational cost, the search space is still re-
stricted using human expertise or some “prior” on what would make a viable
candidate.

This piece examines strategies to define and explore chemical spaces with
an emphasis on the role of machine learning and synthetic chemistry con-
straints (Table 1, Key Table). While this can be performed subconsciously by
subject matter experts (e.g., medicinal chemists) in the absence of computer
assistance, formalizing these concepts may eventually enable autonomous
workflows to produce truly novel, useful outcomes with reduced reliance on
human intuition and subjectivity. Elements of concepts we will cover can
be found in previous articles, including a recent overview by Lemonick [12].
We do not address visualization and instead refer readers to the work of
Reymond and coworkers [5, 7].

2. Defining and exploring enumerated chemical spaces

One approach to molecular discovery is exploring a pre-defined chemical
space: an enumerated list of candidate molecules. In this setting, the two
stages of (1) defining the space and (2) exploring the space are entirely de-
coupled. Formally, we might think about this problem as an optimization of
an objective function f(x), where x is a molecule belonging to a discrete set
X .

2.1. Defining finite chemical spaces

Defining or selecting a finite chemical space often relies on domain ex-
pertise. Careful selection of X can increase the likelihood that it contains
a high-performing molecule while minimizing the number of low-performing
compounds. Common databases of molecules for computational screening
are ZINC [13], a library of commercially-available compounds; PubChem [15],
molecules with biological relevance; ChEMBL [14], molecules with bioactivity
data; and DrugBank [17], approved or experimental therapeutic molecules.
These virtual libraries all represent “general-purpose” chemical spaces with
broad biological relevance, and are therefore applied to many problems re-
lated to drug discovery [41].
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Unconstrained Constrained

Pre-defined ZINC [13],
ChEMBL [14],
PubChem [15],
GDB [16]

DrugBank [17],
Enamine REAL [18],
WuXi Virtual
Library [19],
SAVI [20], PGVL [21],
PLC [22]

On-the-fly via
heuristic methods

Fragment-based
GAs [23],
GroupBuild [24],
BREED [25],
GraphGA [26],
GEGL [27]

SYNOPSIS [28],
Flux [29],
MOARF [30],
DOGS [31]

On-the-fly via machine
learning

SMILES VAE [32],
JT-VAE [33], SMILES
RNN [34, 35],
MolDQN [36]

MoleculeChef [37],
ChemBO [38],
PGFS [39],
REACTOR [40]

Table 1: Categorization of approaches to defining chemical spaces for molecular discovery
and an incomplete set of examples for each. Spaces can be defined prior to exploration or
defined on-the-fly by evolutionary and/or machine learning-based methods. They can be
relatively unconstrained (i.e., only in terms of validity), or constrained by the availability
(i.e., in terms of purchaseability or synthseizability).
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More focused chemical spaces can be created through a domain-informed
enumeration of compounds relevant to a specific application. For example,
1.6M donor-bridge-acceptor trimers for organic electronics [42] or 2.8M tran-
sition metal complexes for redox flow batteries [43]. These are exhaustively
enumerated chemical spaces with strict constraints on which fragments are in-
cluded and how they are attached, similar to R-group enumeration methods.
Privileged fragments for drug-like molecules have been identified through
retrosynthetic analysis and automatic fragmentation [44, 45]; the molecules
produced by recombining these fragments are intended to look more realistic
than an enumeration based on graph structure alone.

Graph-theoretical enumeration of molecular structures has been studied
for over a century, starting with simple spaces like that of acyclic alkanes [46,
47]. However, it is only recently that these structures have been recorded,
evaluated, and used for discovery. The Chemical Space Project exemplifies
modern exhaustive enumeration of all stable molecules containing the most
common atom types in organic molecules up to a certain size [16]. Since
the original Generated DataBase (GDB) of up to seven heavy atoms [48],
Reymond and coworkers have enumerated, analyzed, and released the 166.4
billion structures of up to 17 heavy atoms [49] and published numerous vi-
sualizations and analyses thereof.

In addition to the benefits of ensuring X is relevant to the design objec-
tive, pre-defining chemical spaces lets us impose arbitrary constraints on their
contents. A practical constraint is the ease of experimental validation. That
is, ensuring that any candidate encountered in our chemical space can be
physically acquired for experimental testing. In the simplest case, a chemical
space can be defined as the set of molecules available in a company’s chem-
ical inventory or the set of molecules in-stock at a chemical vendor. Any
compound from this list can be acquired rapidly for experimental evaluation.

Accessibility is the primary motivation for make-on-demand libraries,
which are chemical spaces defined as the set of molecules that are in-stock
or available and all molecules that can be produced from those structures
through straightforward synthetic protocols. Libraries are often enumerated
by applying a small number (< 100) of reaction templates defining common
single-step transformations to all possible combinations of starting materials
[50, 51, 52, 53] (Figure 1); recursive enumeration generates molecules acces-
sible through multiple synthetic steps. There are numerous implementations
of this approach [54] including SAVI [20], efforts within pharmaceutical com-
panies [21, 22], and efforts from commercial vendors [18, 19]. As it becomes
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Figure 1: Representative building blocks and enumeated products for the Enamine REAL
make-on-demand library [18]. Modular building blocks are combined according to expert-
defined reaction rules describing common transformations. Figure reproduced from Lyu
et al. [55].

impractical to store such large numbers of compounds due to the combi-
natorial explosion of reaction products, these spaces may be defined only
implicitly.

Whether molecules in these spaces are actually easy to synthesize de-
pends on the robustness of the rules used for enumeration. Lyu et al. cite
an 86% synthesis success rate for 51 compounds selected from 170 million in
the Enamine REAL library enumerated from 130 reaction types; WuXi esti-
mates a 60-80% success rate for their 1.7B-member collection generated by
30 reaction types [19]. There is an opportunity to improve this success rate
through the use of machine learning models for reaction outcome prediction
[56, 57], which for common reaction types exhibit accuracies well above 90%
on benchmark datasets. These neural models can be directly used to enu-
merate possible products or used to predict regio/stereoselectivity patterns
[58, 59, 60].

2.2. Exploring finite chemical spaces

Once these chemical spaces are defined, there are several approaches for
identifying the top-performing molecules within them. The simplest strategy
is of course to computationally or experimentally evaluate every candidate
molecule exhaustively. The feasibility of this approach depends on the nature
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of evaluation and time/cost constraints. It would not be practical to phys-
ically test every compound in a database such as ZINC, but it could be for
smaller collections like the Drug Repurposing Hub [61] or the NCATS Phar-
maceutical Collection [62]. It is worth noting that technologies like DNA-
encoded libraries [63] and phage display [64] can be used to physically screen
chemical spaces of trillions of molecules, albeit with a sparse and stochastic
readout.

If evaluation is computational, practicality is simply a question of com-
putational budget. In one of the largest docking studies reported to date,
138 million and 99 million compounds from the Enamine REAL library were
docked against the D4 receptor and AmpC, respectively [55]; this was en-
abled by a fast computational pipeline requiring only one second per library
compound. More recent studies have since screened over one billion enumer-
ated molecules from the same database [65, 66]. As several make-on-demand
libraries exceed this scale by multiple orders of magnitude, we argue that
such exhaustive screening techniques are not a viable long-term approach
even for inexpensive evaluations like docking.

A popular framework to reduce the overall cost is active learning through
iterative, model-guided optimization [67]. This involves selecting subsets of
experiments to perform based on predictions from a quantitative structure-
property relationship (QSPR) model—a surrogate model, f̂(x)—that codi-
fies an approximation to f(x). In Bayesian optimization, predictions both
of performance and of model uncertainty are both considered to balance ex-
ploration of uncertain candidates and exploitation of candidates likely to be
high-performing [68]; simpler optimization schemes may simply perform a
greedy search. Examples of this paradigm include the platform Eve for the
experimental identification of bioactive molecules [69], a retrospective iden-
tification of bioactive compounds using PubChem data [70], computational
screening of OLED-relevant molecules through batched greedy optimization
[42], and machine learning-guided selection of compounds for docking [71].
There are still many limitations to be addressed related to the surrogate
model, f̂ , in terms of its low-data performance, generalization power, and
ability to quantify uncertainty. The development of QSPR models is an area
of active research [72], with many emerging methods for learning from graph-
structured molecular candidates [73]. Additional settings where algorithmic
improvements will be beneficial are those with variable evaluation costs (e.g.,
the cost of purchasing a compound to physically test it) and those where mul-
tiple experiments are run in batches (e.g., parallelized in well plates or over
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Figure 2: A workflow for machine learning-augmented antibiotic discovery. A pre-defined
virtual library (ZINC15) is evaluated using a surrogate machine learning model trained
on a set of ≈ 104 experimental measurements to prioritize compounds to test. Figure
reproduced from Stokes et al. [74].

multiple CPUs).
Surrogate models can help explore pre-defined chemical spaces outside

of iterative active learning by providing an inexpensive approximation to
f(x). Identifying the optimal molecules to test at each iteration is equiva-
lent to exhaustive screening using f̂(x)in place of the true design objective.
While multiple iterations lead to improved surrogate models, a one-iteration
approach to finding an optimal molecule can still be very effective. This
approach was recently used to identify a novel antibiotic from a drug re-
purposing collection with fewer experiments than an exhaustive screen [74]
(Figure 2); a similar one- and few-iteration screen was also used to iden-
tify kinase inhibitors, including an essential Mtb kinase [75]. Both studies
used machine learning models as their surrogates—a directed message pass-
ing network and a Gaussian process using compound representations from
unsupervised learning, respectively.
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3. Defining and exploring chemical spaces on-the-fly

If we are not interested in exploring a chemical space exhaustively, we
may not need to enumerate it upfront. Implicitly-defined virtual libraries
exceed trillions of molecules, and even the vaguest estimates of the size of
biologically-relevant chemical space (1020-1060) are clearly too large to enu-
merate. Even when using Bayesian optimization, selecting “optimal” ex-
periments from billions or trillions of molecules requires an equal number of
surrogate model predictions; this constrains the size of pre-enumerated chem-
ical spaces one can consider with a fixed computational budget. Instead, we
perform on-the-fly generation and exploration simultaneously.

3.1. Genetic algorithms

One popular class of techniques for finding optimal molecules in an implicitly-
defined chemical space is genetic algorithms (GAs). GAs are model- and
derivative-free optimization routines that “evolve” candidate solutions based
on their performance and those of other candidates through stochastic muta-
tion and crossover events. They have a long history of use in cheminformatics
[76] including molecular design [23]. In an exemplary study, Venkatasubra-
manian et al. define chemistry-informed operators that allow for two parent
molecules to crossover (i.e., AB and A′B′ yields AB′ and A′B), two to be
merged, one to randomly permute its backbone or side chains, and one to
have functional groups inserted, removed, or translocated [23].

Subsequent studies refined this strategy of generating novel molecular
structures by applying mutation operators [25] on molecular graphs or string
representations, in some cases demonstrating interpolation between two known
structures [77, 78], exploration of chemical space around a known active com-
pound [79], and adaptation to atom- and bond-level mutations in combina-
tion with a Monte Carlo tree search strategy [26], reinforcement learning [27],
or a neural network to improve diversity [80]. As discussed by Jensen and
coworkers, a relatively small number of generations are required to transmute
any one molecule into another [81], making them remarkably efficient for ex-
ploration. These GAs are closely related to fragment-based design, which
generates molecular structures piece-by-piece through addition operations
alone, e.g., [24].

The initial pool of starting materials and the set of mutation operators de-
fines the chemical spaces that can be accessed by the algorithm: for example,
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Figure 3: Mutation operators used in the genetic algorithm-based Molpher. Atom- and
bond-level modifications to previously-generated structures yield new structures as can-
didates for evaluation. Over the course of many GA generations, a combinatorially-large
chemical space can be accessed. Figure reproduced from Hoksza et al. [78].
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Figure 4: Overview of some deep learning architectures used for molecular genera-
tion. Exploration and optimization can occur through navigation in the numerical latent
space. VAE: variational autoencoder; AAE: advertsarial autoencoder; GAN: generative-
adversarial network; RL: reinforcement learning. Figure reproduced from Vanhaelen et al.
[86].

a combinatorial chemical space of 230 billion septa-substituted dihydroazu-
lenes [82]. Because we can perform arbitrarily many addition operations,
chemical spaces can become astronomically large. It is not terribly instruc-
tive to try to quantify their size in these cases, since the relevant chemical
space (surrounding the optimal solution) may be a small fraction of its the-
oretical size.

3.2. Deep generative models

Deep generative models likewise maintain an implicit definition of chem-
ical space and have shown tremendous promise for molecular design as re-
viewed elsewhere [83, 84, 85, 86] (Figure 4). Prototypical frameworks for gen-
eration include variational autoencoders (VAEs) operating on SMILES string
representations [32], recurrent neural networks also operating on SMILES
string [34, 35, 87], VAEs operating on molecular graphs or junction trees [33,
88], reinforcement learning (RL) agents composing graphs atom-by-atom [36,
89, 90], and many adaptations and improvements thereof.
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When applied to discovery, these approaches explore chemical space by
biasing generation to candidates that are high-performing. These models are
usually pretrained on enumerated chemical spaces to learn basic principles of
molecular generation, chemical validity, and what “typical” molecules look
like. For autoencoder-based methods that encode/decode molecular struc-
tures to/from numerical representations, numerical latent space optimization
(LSO) can be used to optimize the molecules that latent vectors correspond
to; this is typically done with a fixed decoder network, but the decoder can
also be updated on-the-fly [91]. For reinforcement learning methods where an
agent learns a policy for generating molecules through a sequence of actions,
the value of f(x) can be treated as a reward to update the agent’s behavior
directly.

While there are hundreds of publications developing and evaluating these
methods on computational benchmarks (e.g., [92]), experimental validations
of deep generative model predictions are rare. A few exceptions are worth
noting. Polykovskiy, Zhebrak, Vetrov, et al. used a generative model to
propose 300,000 molecules as potential JAK3 kinase inhibitors, which were
filtered to 5000 using docking, clustering, and medchem filters, filtered again
to 100 using molecular dynamics simulations, and finally one molecule was
hand selected and validated [93]. A second study from the same company
filtered 30,000 generated structures down to 40, then selected six to test on
the basis of synthesizability [94]. In an application to materials discovery,
Sumita et al. used RL-based generation and DFT calculations to propose
3200 molecules with targeted maximum absorption wavelengths, of which 86
passed DFT evaluation and six with known synthetic routes were synthesized
[95].

The chemical spaces deep generative models explore is defined by the
structures they are able to propose as SMILES strings, molecular graphs, or
otherwise. Autoregressive generation limits molecules’ sizes (e.g., number of
SMILES tokens or atom-addition actions) but still produce a massive chem-
ical space. The initial chemical space used for training and any natural in-
ductive biases of the models influences the structures proposed. Benchmarks
for the “distribution learning” setting where we are not trying to optimize
f(x) show that these models are very effective at proposing novel molecules
that exhibit similar properties to their training set [96].

14



4. Defining and exploring synthetically-constrained chemical spaces
on-the-fly

Part of why experimental validation is missing from many computer-aided
molecular design studies, particularly showcasing deep generative models,
is the expense of physical experiments. Molecules sampled from chemical
spaces defined on-the-fly may be challenging, time-consuming, and/or costly
to synthesize and evaluate. We previously demonstrated the severity of this
problem for generative models using a data-driven retrosynthetic planning
tool to assess synthesizability [97]. The status quo is to perform a post
hoc filtering of molecules according to manual assessment. Here, we discuss
a category of techniques for synthetically-aware definition and exploration
of chemical spaces on-the-fly by incorporating explicit building block and
synthetic constraints (Figure 1g of [97]).

4.1. Synthetically-aware genetic algorithms

Synthetic constraints can be incorporated into GAs by restricting allow-
able mutation operations or by taking advantage of the structured nature
of a synthetic route. Methods for the former case include deriving “chem-
ically reasonable mutations” from synthetically accessible compounds [98]
and defining retrosynthesis-inspired rules for fragmenting molecules [29, 30,
99]. For the latter, a common approach is reaction-based de novo design,
where candidates are generated through expert-encoded reaction templates
and evaluated (i.e., an on-the-fly equivalent of make-on-demand libraries)
[28, 31, 100, 101]. These approaches tend to use model-free algorithms for
optimization like GAs to make incremental changes to molecular structures.
An early example of synthetically-aware molecular optimization through a
GA is Weber et al.’s 1995 experimental optimization of thrombin inhibitors
that explored a 160,000-member chemical space implicitly defined by 10 iso-
cyanides, 40 aldehydes, 10 amines, 40 carboxylic acids, and an Ugi-type
reaction template [102].

4.2. Synthetically-aware deep generative models

Generative models operating on SMILES tokens or individual atoms are
especially prone to generating synthetically-challenging structures. In the
past two years, however, methods have emerged that integrate concepts
from reaction-based de novo design with machine learning-based generation.
These approaches impose constraints on the process of generating candidates
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Figure 5: The MoleculeChef model for synthetically-constrained molecular optimization.
Chemical space is explored by navigating the latent space of a multi-reactant VAE, gen-
erating reactant products from a list of commercially-available starting materials, and
running those reactants through a reaction prediction model. Figure reproduced from
Bradshaw et al. [37].

directly by reframing molecular optimization as the optimization of building
block and/or reaction type selection. For VAEs or generative adversarial
networks, this requires modifying the decoder to produce multiple reactant
molecules and/or reaction steps; for RL approaches, this requires changing
the action space to the selection of reactants and reaction types or conditions.

A naive approach to attempt to constrain molecules generated by a VAE
would be to impose constraints on the latent space itself and restrict which
points LSO is able to visit. While MoleculeChef uses a VAE, its VAE oper-
ates on sets of molecules rather than individual molecules [37]. These sets
are proposed by a recurrent decoder that selects available starting materials
from a discrete list of options. A SMILES-based reaction predictor [57] an-
ticipates the product that would be formed in a reaction between molecules
in the set after one synthetic step; the properties of this product are what
the model optimizes for (Figure 5). ChemBO does not learn a latent space
over reactant sets, but instead uses a graph-based reaction predictor [56] to
perform a random walk on a synthesis graph by sampling starting materials
and simulating reaction outcomes [38]. The product predicted to be most
optimal according to a surrogate model f̂(x) is selected for full evaluation by
f(x). This approach is similar to Bayesian optimization within an enumer-
ated chemical space, but the space is continually growing through on-the-fly
reaction prediction at each iteration.

Two other studies, released within one week of each other, formulate
chemical space exploration as a Markov decision process (MDP)—a sequence
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of actions that correspond to reaction steps in a linear synthesis—and train
RL agents to learn a policy that yields optimal products [39, 40]. Both
begin their optimizations with a random starting material and select from
a list of expert-defined reaction templates. The first, PGFS, also selects
the other reactant required for bimolecular reactions [39], while the second,
REACTOR, enumerates all possible second reactants and chooses the one
with the highest reward [40]. As training progresses and more products
are evaluated, the agent’s policies (parameterized as neural networks) are
updated to reward strategies that yield higher-performing molecules.

The chemical spaces these synthetically-constrained approaches can cover
are the same as make-on-demand libraries when both are extended to mul-
tistep synthetic sequences. But because there is no pre-enumeration of com-
pounds, there is no need to impose a strict limit on the number of allowable
reaction steps. The reliability of synthetic pathways (i.e., the actual synthe-
sizability of molecules they propose) comes with the same caveats as make-
on-demand libraries, so improving machine learning models for outcome pre-
diction and/or pathway-level evaluation will improve their robustness.

5. Concluding Remarks

Underlying much of our discussion around defining and exploring chemical
spaces has been the desire to efficiently navigate chemical spaces to avoid
exhaustive screening. We also have slightly biased our discussion towards
discovery workflows that ultimately involve experimental validation. The
approach one should select for chemical space exploration will depend on the
nature of the evaluation function, f(x), the extent to which domain expertise
can narrow down the problem-relevant chemical space, and the time/cost
budget. There are several unresolved questions and factors to be considered
when further developing these techniques (see Outstanding Questions).

5.1. Closed-loop physical experimentation and robotic laboratories

The integration of computational experimental design algorithms and
robotic laboratories—“closing the loop”—is frequently discussed as a paradigm
for accelerated scientific discovery. However, the ability of automated plat-
forms to make truly novel and impactful discoveries has been limited by their
inability to generate and test hypotheses without human intervention [8, 9].
In the context of chemical space exploration and molecular discovery, exper-
imental testing requires that proposed candidates are able to be physically
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Outstanding Questions

• What are appropriate ways to quantify the size and diversity of a chem-
ical space? Are these useful measures that correlate in some way to the
success of molecular discovery efforts?

• When is it better to use a model-free optimization strategy (e.g., genetic
algorithms) compared to a model-based optimization strategy (e.g.,
Bayesian optimization)?

• What computational benchmarks can be used to compare different ex-
ploration algorithms that reflect the true complexity of molecular de-
sign and optimization? Current objectives are dominated by heuristics
and do not explicitly penalize sample inefficiency.

• Can generative algorithms be modified to enable the precise specifica-
tion of stereoisomers or other configurational isomers when designing
ligands for synthesis or protein binding?

• How can considerations of cost and synthetic feasibility be incorpo-
rated into the selection of optimal experiments? These are essential
factors when designing algorithms to control closed-loop, automated
experimental platforms.
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obtained: for manual evaluation, that they be purchseable or synthesizable
from commercial starting materials; for automated evaluation, that they be
available or synthesizable from an on-hand chemical inventory given experi-
mental constraints.

If we have access to a very large chemical library without any on-demand
synthesis capabilities, an automated platform must use an algorithm for ex-
ploring the pre-defined chemical space this library represents (e.g., a high
throughput screening facility [103]). If we only have the ability to perform
simple one-step chemistries (e.g., [104]), it likely makes sense to exhaustively
enumerate this space and use Bayesian optimization to select from the list of
candidates. Platforms for automated multi-step synthesis with intermediate
purification are still in the proof-of-concept phase [105, 106, 107], but would
theoretically have access to a much larger chemical space than what can be
practically enumerated. In this case, it makes sense to use an approach that
defines the chemical space on-the-fly constrained by the starting materials
and reactions compatible with the platform.

5.2. Considerations beyond synthesizability for molecular design

The number of experiments has been the predominant measure of cost
for optimal experimental design algorithms. Factors considered by humans
when determining what molecules to test are of course far more complex than
the number of unique molecules (and a binary assessment of their synthe-
sizability). As computer-aided synthesis planning and predictive chemistry
tools become increasingly sophisticated, detailed considerations of synthesis
time, ease of parallelization, and utilization of common intermediates might
be able to be factored into batched molecular design. For settings where
compounds will be purchased or outsourced, cost-sensitive Bayesian opti-
mization frameworks can help quantify tradeoffs between the information a
new experiment will provide and its price.

5.3. Diversity of chemical spaces

As or more important than the size of a chemical space is its diversity
and whether it contains molecules that satisfy our design objectives. While
“diversity” is ill-defined, one could consider a diverse chemical space as one
where a high-performing molecule can be found for multiple distinct dis-
covery tasks. Chemical spaces accessible for experimental testing are de-
fined both by the availability of commercial compounds and by the scope
of known synthetic methods to transform them. Selecting diverse building
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blocks with privileged or interesting structural motifs is one way to enable
construction of a diverse chemical space [108]. Medicinal chemistry is domi-
nated by a small number of reaction types [109] and as illustrated through a
recent study by Tomberg and Boström, focusing on building block diversity
might let us use simple chemistries more conducive to automation without
sacrificing product diversity. However, over-reliance on routine chemistries
may make us fated to repeat the boom and bust of combinatorial chemistry,
which did not yield results at a rate commensurate with the sheer number
of compounds tested. Diversity-oriented synthesis (DOS) is an orthogonal
approach [111, 112] where the reactions themselves introduce a high degree
of structural complexity. Clever modulation of reaction conditions can lead
to dozens of unique products even given very simple amine and carboxylic
acid building blocks [113]. A combination of both will likely lead to the most
useful compound sets. Designing optimal screening collections as small pre-
defined chemical spaces is an ongoing topic of research, particularly for drug
discovery applications [114, 115, 116].

5.4. Simplification of molecular structures for on-the-fly generation

An underappreciated limitation of most algorithms for on-the-fly gen-
eration, particularly using deep generative models, is their ability to handle
stereoisomerism. We know that stereoisomers can exhibit drastically different
properties (e.g., the BINAP family of ligands), and yet SMILES and graph
representations are fundamentally unable to distinguish configurational iso-
mers defined by more than tetrahedral chirality and cis/trans bond isomerism
(e.g., atropisomers, folded polypeptides). One could argue that models oper-
ating on these representations do not meaningfully understand point chirality
either. Fragment-based methods that explicitly operate in 3D coordinates or
generative models designed to propose individual conformers [117] theoreti-
cally overcome this limitation, but there have been few (if any) evaluations
of on-the-fly molecular generation where the design objective is sensitive to
atropisomerism. Even representing these structures as comformational en-
sembles for the sake of property prediction (i.e., as would be used to build a
surrogate model f̂(x)) is a broader, and perhaps more immediate, challenge.

5.5. Simplification of design objectives

Computational approximations to physical properties are rarely able to
replace physical testing (e.g., docking scores as approximations of binding
affinity). This makes it difficult to benchmark algorithms for chemical space
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exploration, as benchmarks’ design objectives do not reflect the true com-
plexity of the problem and may not reveal certain failure modes [118]. How-
ever, experimental data can only be used in a retrospective setting to test
algorithms for exploring pre-defined spaces (e.g., [70, 103]).

Design objectives tend to focus on optimizing simple heuristics calculated
by fragment-contribution approaches or based on similarity to a target struc-
ture; several algorithms already achieve near perfect results on these tasks
[92]. A notable exception is a study by Aumentado-Armstrong that incorpo-
rates a docking scores in the design objective [119]; although a simple proxy
for bioactivity, optimizing a docking score can still prove challenging for
some algorithms [120]. We require a new generation of benchmark tasks that
contain (a) complex design objectives that are less smooth with respect to
molecular structure, exhibit more local optima, and require tradeoffs between
competing design objectives, (b) tasks requiring the generation of individual
stereoisomers, (c) metrics related to sample efficiency, and (d) budget-limited
settings where not all compounds carry the same experimental cost.

5.6. Human involvement in computer-aided chemical space exploration

As a closing thought, we should acknowledge the role of human expertise
in computational workflows for chemical space exploration. Computational
workflows should not be used for their own sake, but because they enable dis-
coveries that are otherwise inaccessible to human researchers, whether that is
due to the complexity of the optimization task or simply speed or throughput.
We should not eschew human expertise if it is possible to restrict ourselves
to a smaller chemical space (that is easier to search) through domain knowl-
edge. Human filters and manual selection of compounds has almost always
been an intermediate step between computational predictions and physical
experiments and should remain so until we can capture those considerations
algorithmically. As we build that ability, the influence of human subjectivity
can be reduced and the process of chemical space exploration can be further
operationalized.

Acknowledgements

We thank David Graff for commenting on the manuscript and the Ma-
chine Learning for Pharmaceutical Discovery and Synthesis Consortium for
inspiring conversations.

21



References

[1] Bohacek, R. S., McMartin, C., & Guida, W. C. (1996). The art and
practice of structure-based drug design: A molecular modeling per-
spective. Med. Res. Rev., 16 (1), 3–50. https : / / doi . org / 10 . 1002 /
(SICI)1098-1128(199601)16:1$〈$3::AID-MED1$〉$3.0.CO;2-6

[2] Drew, K. L. M., Baiman, H., Khwaounjoo, P., Yu, B., & Reynisson,
J. (2012). Size estimation of chemical space: How big is it? J. Pharm.
Pharmacol., 64 (4), 490–495. https://doi.org/10.1111/j.2042-7158.
2011.01424.x

[3] Polishchuk, P. G., Madzhidov, T. I., & Varnek, A. (2013). Estimation
of the size of drug-like chemical space based on GDB-17 data. J.
Comput. Aided Mol. Des., 27 (8), 675–679. https://doi.org/10.1007/
s10822-013-9672-4

[4] Oprea, T. I., & Gottfries, J. (2001). Chemography: The Art of Nav-
igating in Chemical Space. J. Comb. Chem., 3 (2), 157–166. https :
//doi.org/10.1021/cc0000388

[5] Reymond, J.-L., & Awale, M. (2012). Exploring Chemical Space for
Drug Discovery Using the Chemical Universe Database. ACS Chem.
Neurosci., 3 (9), 649–657. https://doi.org/10.1021/cn3000422

[6] Awale, M., & Reymond, J.-L. (2016). Web-based 3D-visualization of
the DrugBank chemical space. J. Cheminform., 8. https://doi.org/
10.1186/s13321-016-0138-2

[7] Probst, D., & Reymond, J.-L. (2020). Visualization of very large high-
dimensional data sets as minimum spanning trees. J. Cheminform.,
12 (1), 12. https://doi.org/10.1186/s13321-020-0416-x

[8] Coley, C. W., Eyke, N. S., & Jensen, K. F. (2020a). Autonomous
discovery in the chemical sciences part I: Progress. Angew. Chem.
Int. Ed. https://doi.org/10.1002/anie.201909987

[9] Coley, C. W., Eyke, N. S., & Jensen, K. F. (2020b). Autonomous
Discovery in the Chemical Sciences Part II: Outlook. Angew. Chem.
Int. Ed. https://doi.org/10.1002/anie.201909989

[10] Dobson, C. M. (2004). Chemical space and biology [Number: 7019
Publisher: Nature Publishing Group]. Nature, 432 (7019), 824–828.
https://doi.org/10.1038/nature03192

[11] Lipinski, C., & Hopkins, A. (2004). Navigating chemical space for
biology and medicine [Number: 7019 Publisher: Nature Publishing

22

https://doi.org/10.1002/(SICI)1098-1128(199601)16:1$<$3::AID-MED1$>$3.0.CO;2-6
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1$<$3::AID-MED1$>$3.0.CO;2-6
https://doi.org/10.1111/j.2042-7158.2011.01424.x
https://doi.org/10.1111/j.2042-7158.2011.01424.x
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1021/cc0000388
https://doi.org/10.1021/cc0000388
https://doi.org/10.1021/cn3000422
https://doi.org/10.1186/s13321-016-0138-2
https://doi.org/10.1186/s13321-016-0138-2
https://doi.org/10.1186/s13321-020-0416-x
https://doi.org/10.1002/anie.201909987
https://doi.org/10.1002/anie.201909989
https://doi.org/10.1038/nature03192


Group]. Nature, 432 (7019), 855–861. https : / / doi . org / 10 . 1038 /
nature03193

[12] Lemonick, S. (2020). Exploring chemical space: Can AI take us where
no human has gone before? [Library Catalog: cen.acs.org]. Retrieved
August 6, 2020, from https : / / cen . acs . org / physical - chemistry /
computational-chemistry/Exploring-chemical-space-AI-take/98/i13

[13] Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman,
R. G. (2012). ZINC: A Free Tool to Discover Chemistry for Biology.
J. Chem. Inf. Model., 52 (7), 1757–1768. https://doi.org/10.1021/
ci3001277

[14] Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M.,
Hersey, A., Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani,
B., & Overington, J. P. (2012). ChEMBL: A large-scale bioactivity
database for drug discovery. Nucleic Acids Res., 40 (Database issue),
D1100–D1107. https://doi.org/10.1093/nar/gkr777

[15] Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q.,
Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J.,
& Bolton, E. E. (2019). PubChem 2019 update: Improved access to
chemical data. Nucleic Acids Res., 47 (D1), D1102–D1109. https://
doi.org/10.1093/nar/gky1033

[16] Reymond, J.-L. (2015). The Chemical Space Project. Acc. Chem.
Res., 48 (3), 722–730. https://doi.org/10.1021/ar500432k

[17] Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M.,
Stothard, P., Chang, Z., & Woolsey, J. (2006). DrugBank: A compre-
hensive resource for in silico drug discovery and exploration. Nucleic
Acids Res., 34 (Database issue), D668–D672. https : / / doi . org / 10 .
1093/nar/gkj067

[18] REAL Compounds - Enamine [Accessed 2019-07-25]. (2019). https:
//enamine.net/library-synthesis/real-compounds

[19] LabNetwork [Accessed 2020-08-06]. (2020). https://www.labnetwork.
com/frontend-app/p/%5C#!/library/virtual

[20] Patel, H., Ihlenfeldt, W., Judson, P., Moroz, Y. S., Pevzner, Y., Peach,
M., Tarasova, N., & Nicklaus, M. (2020). Synthetically Accessible Vir-
tual Inventory (SAVI). https://doi.org/10.26434/chemrxiv.12185559.
v1

[21] Hu, Q., Peng, Z., Kostrowicki, J., & Kuki, A. (2011). LEAP into the
Pfizer Global Virtual Library (PGVL) space: Creation of readily syn-
thesizable design ideas automatically. Methods in Molecular Biology

23

https://doi.org/10.1038/nature03193
https://doi.org/10.1038/nature03193
https://cen.acs.org/physical-chemistry/computational-chemistry/Exploring-chemical-space-AI-take/98/i13
https://cen.acs.org/physical-chemistry/computational-chemistry/Exploring-chemical-space-AI-take/98/i13
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/ci3001277
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1021/ar500432k
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/nar/gkj067
https://enamine.net/library-synthesis/real-compounds
https://enamine.net/library-synthesis/real-compounds
https://www.labnetwork.com/frontend-app/p/%5C#!/library/virtual
https://www.labnetwork.com/frontend-app/p/%5C#!/library/virtual
https://doi.org/10.26434/chemrxiv.12185559.v1
https://doi.org/10.26434/chemrxiv.12185559.v1


(Clifton, N.J.), 685, 253–276. https://doi.org/10.1007/978-1-60761-
931-4 13

[22] Nicolaou, C. A., Watson, I. A., Hu, H., & Wang, J. (2016). The
Proximal Lilly Collection: Mapping, Exploring and Exploiting Fea-
sible Chemical Space. J. Chem. Inf. Model., 56 (7), 1253–1266. https:
//doi.org/10.1021/acs.jcim.6b00173

[23] Venkatasubramanian, V., Chan, K., & Caruthers, J. M. (1994). Computer-
aided molecular design using genetic algorithms. Comput. Chem. Eng.,
18 (9), 833–844. https://doi.org/10.1016/0098-1354(93)E0023-3

[24] Rotstein, S. H., & Murcko, M. A. (1993). GroupBuild: A fragment-
based method for de novo drug design. J. Med. Chem., 36 (12), 1700–
1710.

[25] Pierce, A. C., Rao, G., & Bemis, G. W. (2004). BREED: Generating
Novel Inhibitors through Hybridization of Known Ligands. Applica-
tion to CDK2, P38, and HIV Protease. J. Med. Chem., 47 (11), 2768–
2775. https://doi.org/10.1021/jm030543u

[26] Jensen, J. H. (2019). A graph-based genetic algorithm and genera-
tive model/Monte Carlo tree search for the exploration of chemical
space. Chem. Sci., 10 (12), 3567–3572. https : / / doi . org / 10 . 1039 /
C8SC05372C

[27] Ahn, S., Kim, J., Lee, H., & Shin, J. (2020). Guiding Deep Molecular
Optimization with Genetic Exploration. arXiv:2007.04897 [cs, q-bio,
stat]. Retrieved July 14, 2020, from http://arxiv.org/abs/2007.04897

[28] Vinkers, H. M., de Jonge, M. R., Daeyaert, F. F. D., Heeres, J., Koy-
mans, L. M. H., van Lenthe, J. H., Lewi, P. J., Timmerman, H., Van
Aken, K., & Janssen, P. A. J. (2003). SYNOPSIS: SYNthesize and
OPtimize System in Silico. J. Med. Chem., 46 (13), 2765–2773. https:
//doi.org/10.1021/jm030809x

[29] Fechner, U., & Schneider, G. (2006). Flux (1): A virtual synthesis
scheme for fragment-based de novo design. J. Chem. Inf. Model.,
46 (2), 699–707. https://doi.org/10.1021/ci0503560

[30] Firth, N. C., Atrash, B., Brown, N., & Blagg, J. (2015). MOARF,
an Integrated Workflow for Multiobjective Optimization: Implemen-
tation, Synthesis, and Biological Evaluation. J. Chem. Inf. Model.,
55 (6), 1169–1180. https://doi.org/10.1021/acs.jcim.5b00073

[31] Hartenfeller, M., Zettl, H., Walter, M., Rupp, M., Reisen, F., Proschak,
E., Weggen, S., Stark, H., & Schneider, G. (2012). DOGS: Reaction-
Driven de novo Design of Bioactive Compounds. PLOS Computa-

24

https://doi.org/10.1007/978-1-60761-931-4_13
https://doi.org/10.1007/978-1-60761-931-4_13
https://doi.org/10.1021/acs.jcim.6b00173
https://doi.org/10.1021/acs.jcim.6b00173
https://doi.org/10.1016/0098-1354(93)E0023-3
https://doi.org/10.1021/jm030543u
https://doi.org/10.1039/C8SC05372C
https://doi.org/10.1039/C8SC05372C
http://arxiv.org/abs/2007.04897
https://doi.org/10.1021/jm030809x
https://doi.org/10.1021/jm030809x
https://doi.org/10.1021/ci0503560
https://doi.org/10.1021/acs.jcim.5b00073


tional Biology, 8 (2), e1002380. https://doi.org/10.1371/journal.pcbi.
1002380
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