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Scaling limits of the Schelling model

Nina Holden∗ Scott Sheffield†

May 3, 2019

Abstract

The Schelling model of segregation, introduced by Schelling in 1969 as a model for residential segre-
gation in cities, describes how populations of multiple types self-organize to form homogeneous clusters
of one type. In this model, vertices in an N -dimensional lattice are initially assigned types randomly.
As time evolves, the type at a vertex v has a tendency to be replaced with the most common type
within distance w of v. We present the first mathematical description of the dynamical scaling limit of
this model as w tends to infinity and the lattice is correspondingly rescaled. We do this by deriving an
integro-differential equation for the limiting Schelling dynamics and proving almost sure existence and
uniqueness of the solutions when the initial conditions are described by white noise. The evolving fields
are in some sense very “rough” but we are able to make rigorous sense of the evolution. In a key lemma,
we show that for certain Gaussian fields h, the supremum of the occupation density of h − φ at zero
(taken over all 1-Lipschitz functions φ) is almost surely finite, thereby extending a result of Bass and
Burdzy. In the one dimensional case, we also describe the scaling limit of the limiting clusters obtained
at time infinity, thereby resolving a conjecture of Brandt, Immorlica, Kamath, and Kleinberg.

i

t = 0 t > 0 t = ∞

Figure 1: The Schelling model on the two-dimensional torus with two types (red and blue). At time t = 0
(left) the types of the nodes are chosen uniformly and independently at random. Each node i is associated
with a neighborhood (shown in green) and an independent rate one Poisson clock. Every time the clock of a
node rings, it updates its type to the most common type in its neighborhood. Eventually we reach a stable
configuration (right).
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1 Introduction

The Schelling model [Sch69, Sch71, Sch78] was initially introduced to explain residential segregation in
cities, and is one of the earliest and most influential agent-based models studied by economists. Variants
of the model have been studied by thousands of researchers within a number of disciplines, e.g. social
sciences, statistical mechanics, evolutionary game theory, and computer science, see the works referenced
below and [Cla91, PW01, LJ03, VK07, PV07, SS07, DCM08, Odo08, GGS+08, GVN09, GBLJ09, SVW09]
for a small and incomplete selection of these works. Until recently [BIKK12, BEL14, IKLZ17, BEL15b,
BEL16, BEL15a, OF18] most analysis of the model was based either on simulation, non-rigorous analysis or
so called “perturbed” versions of the model (discussed below). We will discuss the Schelling model history
and give an informal overview of the paper in Sections 1.1 and 1.2, and we provide a precise definition of
the model in Section 1.3.

1.1 History

In the original formulation of the model, individuals of two “types” occupy a subset of the nodes of a graph,
and at random times an individual moves to a free (i.e., unoccupied) position in the graph. Individuals move
to locations at which they will have more neighbors of their own type. Schelling showed, using simulations
he implemented manually with pennies and dimes on a ruled sheet of paper [Sch78], that segregation occurs
even if the agents have only a weak preference for being in regions with a high density of their own type.
His findings have been confirmed later by a huge number of simulations of other researchers, and his findings
have strongly influenced debates about the causes of residential segregation [CF08]. The introduction of the
model also contributed to Schelling winning the Nobel Memorial Prize in Economics in 2005 [N05].

The first mathematically rigorous results on the model considered a variant where the dynamics describing
the transition between states were “perturbed” in the sense that agents have a small probability p > 0 of
acting against their preference [You01, Zha04]. The perturbed model was analyzed by studying the stationary
distribution of the associated Markov chain. In particular, the stochastically stable states, which are states
whose stationary probability is bounded away from zero when p→ 0, were studied. The stochastically stable
states are proved to be those which minimize the length of the interface between the two types of individuals
(i.e., the number of neighboring pairs containing one individual of each type) so that using the terminology
of statistical physics the stochastically stable states correspond to Ising model ground states.
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One interesting property of the unperturbed model is that it can be shown to stabilize a.s. in finite
time, i.e., after some point in time the agents stop moving. It has been argued (see e.g. [IKLZ17]) that
these limiting stable configurations have at least some properties in common with the segregation patterns
observed in real cities, e.g. since they tend to appear more irregular than the stochastically stable states of
the perturbed model. We will not address real world segregation patterns in this paper.

The first mathematically rigorous analysis of the unperturbed model by Brandt, Immorlica, Kamath, and
Kleinberg [BIKK12] concerns a version of the model on the one-dimensional torus where the neighborhood
of a node is given by its nearest 2w + 1 neighbors (including itself) for some w ∈ N. They prove that the
configuration of types in the stable limiting configuration consists of intervals of length at most polynomial in
w. In [IKLZ17] the authors consider a two-dimensional Schelling model where an agent only changes location
if the fraction of his neighbors having the same type as himself is < 1/2− ε for some ε� 1. They prove that
the expected diameter of the segregated region containing the origin in the final configuration grows at least
exponentially in w2. In [OF18] an upper bound on the size of this region of the same order is established, and
the authors prove that their result holds for ε < 0.134. See also [BEL14, BEL15b, BEL16, BEL15a] for recent
rigorous results on the unperturbed Schelling model in one, two, and three dimensions. The models studied
in these papers have a more general initial configuration of types and/or more general tolerance parameters
than the models in [BIKK12, IKLZ17, OF18] and the current paper. The authors are particularly interested
in parameter values which lead to either very high degree of segregation, total takeover of one type, or almost
no changes relative to the initial configuration. The Schelling model is a variant of the so-called threshold
voter model [Lig13]; see the end of Section 1.3 for further details.

We will focus on a variant of the model which we call the single-site-update Schelling model, briefly
explained later in this paragraph, in which individual vertices are updated one at a time. This variant of the
model is also the one considered in [BEL15b, BEL16, IKLZ17]. Some of the other papers mentioned above
consider the pair-swapping Schelling model, where two individuals of different types will swap positions with
each other if this leads to both nodes having more neighbors of their own type. In both variants of the
model all the nodes of the considered graph are occupied, i.e., there are no free or unoccupied nodes. In
the single-site-update Schelling model unsatisfied individuals change types, instead of swapping with each
other. That is, one picks a random individual and allows that individual to change type if desired, instead
of picking a pair of individuals and asking them to swap locations if desired. In the single-site-update
version, the number of vertices of a given type is not constant. Instead, one imagines that there is a larger
“outside world” beyond the graph being considered, and that when a vertex changes type, it corresponds
to an individual within the configuration swapping location with someone from the “outside world.” The
single-site-update evolution is essentially equivalent to the pair-swapping model evolution in a setting with
an “outside world” region (disconnected from the main lattice graph under consideration) that contains a
large number of unsatisfied individuals of each type. We will focus on the single-site-update variant in this
paper because it is cleaner mathematically (one only has to deal with one individual at a time when making
updates), but we will explain at the end of Section 1.4 that our first main result (Theorem 1.2) also holds
in the pair-swapping setting.

1.2 Overview

We study an unperturbed, single-site-update version of the Schelling model on an N -dimensional lattice with
M ≥ 2 different types. A node is unsatisfied if the most common type in its neighborhood differs from its
current type, and the size of the neighborhood is described by a constant w ∈ N. Adapting the vocabulary
of majority dynamics (see e.g. the survey [MT17] and references therein), we call the type of the node the
opinion of the node. At time zero, each node is assigned an opinion uniformly and independently at random.
Each node is associated with an independent Poisson clock, and every time the clock of a node rings it
updates its opinion to the most common opinion in its neighborhood. In other words, a node changes its
opinion when its Poisson clock rings if and only if the node is currently not satisfied.

We prove a dynamical scaling limit result for the early phase of the Schelling dynamics for any N ∈ N
and M ∈ {2, 3, . . . }. We define a vector-valued function Y w called the normalized bias function; as explained
below, Y w(z) is the vector whose components are (a normalizing constant times) the M opinion densities
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(minus their expectations) in the radius w box centered at z. We prove that Y w converges in the scaling limit
to the solution Y of a differential equation (more precisely, an integro-differential equation) with Gaussian
initial data. We call the function Y the continuum bias function, and we call the associated initial value
problem the continuum Schelling model. See Theorem 1.2 and Proposition 3.1. Solutions of the differential
equation are not unique for all choices of initial data. However, we prove existence and uniqueness of solutions
for Gaussian initial data.

The basic idea of the argument is to note that even though the initial Gaussian normalized bias function
is very rough, the change in its value from the initial time to a finite later time is a.s. a (random) Lipschitz
function. Focusing on this difference, we are left with a random ODE in the (more regular) space of Lipschitz
functions. To establish existence and uniqueness of the evolution within this space, we wish to apply a variant
of the Picard-Lindelöf theorem, but doing so requires some sort of continuity in the corresponding ODE,
which requires us to understand whether there are situations where two coordinates of the normalized bias
function are very close on a large set, so that even small perturbations lead to big changes in the direction the
functions are evolving. It turns out that one can show these situations are unlikely by establishing control
on the maximal occupation kernel corresponding to the intersection of the initial Gaussian function with a
Lipschitz function (where the maximum is taken over all functions with Lipschitz norm bounded by a fixed
constant). Analogous results for Brownian local time, established by Bass and Burdzy in [BB01], turn out
to be close to what we need, and we are able to adapt the techniques of [BB01] to our higher dimensional
setting with a few modifications.

In the special case when N = 1 and M = 2 we also prove a scaling limit result for the final configuration
of opinions. This confirms a variant of a conjecture in [BIKK12].1 More precisely, we show in Theorem 1.3
below that the law on subsets of Z describing the limiting opinion of each node converges upon rescaling by
w. The theorem says that if we study the model on the rescaled lattice w−1Z and let A ⊂ w−1Z be the
set of nodes for which the limiting opinion is 1, then A converges in law as w → ∞, viewed as an element
in the space of closed subsets of R equipped with the Hausdorff distance. The scaling limit result is proved
by studying the long-time behavior of the continuum bias function Y . This is one of the more technically
interesting parts of the paper, as a number of tricks are used to rule out anomalous limiting behavior. Our
conclusion is that in the limit one obtains a random collection of homogeneous neighborhoods, each of width
strictly greater than one. The idea of the proof is to show that if this does not occur, then it will occur if we
make a slight perturbation to the initial data, and a delicate analysis of the differential equation is required
to show that this is indeed the case.

After we describe the continuum dynamics and (for N = 1,M = 2) its limiting behavior, we will need
to do some additional work to make the connection with the discrete model. We consider two phases
separately: First we study the model up to time Cw−N/2 for C � 1, and then (for N = 1,M = 2) we
consider times larger than Cw−1/2. The first phase of the evolution is governed by the differential equation,
and we prove that the differential equation predicts the evolution of the discrete model well by bounding the
error which accumulates during a short interval of length ∆t. The second phase starts when the solution
of the differential equation has almost reached its limiting state with homogeneous intervals. We show that
with high probability the homogeneous intervals observed at time Cw−1/2 will continue to exist until all
nodes have reached their final opinion. Nodes near the boundary between two intervals at time Cw−1/2

have approximately half of their neighbors of each opinion, which makes it hard to control the evolution of
the bias for these nodes; however, we do manage to show that with high probability each interval does not
shrink too much before all nodes have reached their final opinion.

In the remainder of the introduction we will give a precise definition of the Schelling model and state
our main results. In Section 2.3 we show existence and uniqueness of solutions of the continuum Schelling
model by using results from Section 2.2, and in Section 2.4 we prove that for the one-dimensional model
with M = 2 the sign of the solution converges a.s. at almost every point. In Section 3.1 we prove that the
continuum Schelling model describes the discrete Schelling model well for small times and large w. In Section

1The original version of the conjecture in [BIKK12] is for the pair-swapping variant of the model, while we mainly consider
the single-site-update variant in this paper. As we explain in Sections 1.4 and 2, most of our arguments can be adapted to the
pair-swapping setting.
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3.2 we conclude the proof of the scaling limit result for the one-dimensional Schelling model. We also prove
(proceeding similarly as in [TT15]) that the opinion of each node converges a.s. for any N ∈ N and M ≥ 2,
and we include a lemma which might be related to the typical cluster size for the limiting opinions in higher
dimensions. We conclude the paper with a list of open questions in Section 4.

1.3 The Schelling model

We will start by defining the Schelling model on a general simple graph G with vertex set V (G) and edge set
E(G). The vertex set V (G) may be infinite, but we assume G is locally finite. Let M ∈ {2, 3, 4, . . . }. Each
i ∈ V (G) is associated with an opinion in [M ] := {1, . . . ,M} and an independent unit rate Poisson clock,
i.e., each node is associated with a clock such that the times between two consecutive rings of the clock are
distributed as i.i.d. unit rate exponential random variables. Let X(i, t) ∈ [M ] denote the opinion of node i
at time t ≥ 0, and let N(i) := {j ∈ V (G) : (i, j) ∈ E(G)} ∪ {i} be the neighborhood of i. Every time the
Poisson clock of a node rings, the node updates its opinion according to the following rules:

(i) The node chooses the most common opinion in its neighborhood if this is unique. In other words, we
set X(i, t) = m for m ∈ [M ] if for all m′ ∈ [M ] \ {m} we have |{j ∈ N (i) : X(j, t) = m}| > |{j ∈
N (i) : X(j, t) = m′}|.

(ii) If there is a draw between different opinions, and the current opinion of the node is one of these
opinions, the node keeps its current opinion.

(iii) If there is a draw between different opinions, and none of these opinions are equal to the current opinion
of the node, the new opinion of the node will be chosen uniformly at random from the set of most
common opinions in its neighborhood.

Note that a.s. no two Poisson clocks will ring simultaneously, even when |V (G)| is infinite. Furthermore,
one can show that for graphs with bounded degree, and for any fixed vertex i ∈ V (G) and a fixed time
t ∈ R+, the set of vertices whose initial opinion may have influenced the opinion of i at time t, given the
times at which the various Poisson clocks were ringing, is a.s. finite, see e.g. [TT15, Claim 3.5]. These two
observations imply that the configuration at each time t is a.s. determined by the initial configuration and
the ring times, along with knowledge about how the draws described in (iii) are resolved.

In this paper, we will consider the Schelling model on a lattice, and we consider scaling limits as the
neighborhood size tends to infinity. Let N ∈ N be a parameter describing the dimension of the graph, and
let w ∈ N be a parameter we call the window size. Let N = (−1, 1)N (or, alternatively, let N ⊂ (−1, 1)N be
a sphere or some other shape; precise conditions on N appear below). Define the neighborhood N(i) of an
element i of ZN by

N(i) = {j ∈ ZN : w−1(j − i) ∈ N}. (1)

In most of the paper (at least for N > 1) we will work on a torus whose size is a large constant times
the neighborhood size; precisely, for a fixed constant R ∈ {3, 4, . . . } and defining the one-dimensional torus
S = Z/(RwZ) we will work on the torus SN . Some places we also consider the model on ZN . In the
remainder of this section we describe the Schelling model in terms of SN rather than ZN , but we obtain the
model on ZN by repeating the description with ZN instead of SN . To simplify notation when considering
the Schelling model on SN , we identify an element i ∈ ZN with its equivalence class in SN .

Assume the initial opinions of the nodes are i.i.d. random variables satisfying P[X(i, 0) = m] = M−1 for
all i ∈ SN and m ∈ [M ]. Throughout the paper we let R denote the set of rings of the Poisson clocks

R = {(i, t) ∈ SN × R+ : the clock of node i ∈ SN rings at time t}. (2)

We define the bias of node i ∈ SN towards opinionm ∈ [M ] at time t > 0, to be the sum
∑
j∈N(i) 1X(j,t)=m.

When the clock of a node rings, the node updates its opinion to the opinion towards which it has the strongest
bias, with draws resolved as described in (ii)-(iii) above. We say that i ∈ SN agrees with the most common
opinion in its neighborhood at time t if

∑
j∈N(i) 1X(j,t)=X(i,t) ≥

∑
j∈N(i) 1X(j,t)=m for any m ∈ [M ]. In
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other words, i agrees with the most common opinion in its neighborhood if and only if it would not update
its opinion if its Poisson clock were ringing.

In the description of the Schelling model above we considered (for simplicity of the description) the
neighborhood N = (−1, 1)N , but our results are proved for more general neighborhoods, since the more
general case is not significantly more difficult to analyze. Unless otherwise stated, we will assume that
N ⊂ (−1, 1)N is an arbitrary open set containing 0, such that ∂N has upper Minkowski dimension strictly
smaller than N , and such that the following technical condition is satisfied. If x0 is a unit vector in an
arbitrary direction, λ denotes Lebesgue measure, and we let N + sx0 denote the set {x+ sx0 : x ∈ N} for
some s ∈ R, then

lim inf
t→0+

1
t
λ


(N + tx0) \

⋃

s≤0

(N + sx0)


 > 0. (3)

The condition (3) will be used in the proof of Lemmas 2.5 and 2.7. It is obviously satisfied by most of
the smooth-boundary regions one would be inclined to consider. We may for example let N = Np, where
Np := {x ∈ RN : ‖x‖p < 1} is a metric ball for the `p norm for some p ∈ [1,∞].

We remark that the first main result of the next section holds for the general N -dimensional Schelling
model on the torus with M ∈ {2, 3, . . . } opinions, while the second main result holds for the torus or the
real line for N = 1, M = 2, and N = N∞.

Remark 1.1. For the reader who prefers to focus on a single variant of the Schelling model we advise to
assume the following throughout the paper: dimension N = 1, M = 2 opinions, torus SN = S (rather than
ZN = Z), and neighborhood N = (−1, 1)N = (−1, 1). Most of the phenomena and mathematical challenges
of our analysis are present already with these parameters. The model for N > 1 does exhibit different
qualitative properties than the case N = 1, but, besides Section 2.2, most techniques we develop to treat
this case are not specific for higher dimensions.

Finally, let us mention that the Schelling model with M = 2 is a special case of the threshold voter
model. The threshold voter model with parameter T is defined just as the Schelling model on ZN with
M = 2, N symmetric, and w fixed, except that the initial opinions may be sampled according to some other
distribution, and that a node changes its opinion exactly when its clock rings and when at least T of its
neighbors are of a different opinion. Note that the Schelling model corresponds to setting T = b|N(0)|/2+1c.
The threshold voter model has been proved to fixate for any T > (|N(0)| − 1)/2 [DS93], i.e., for any i the
limit limt→∞X(i, t) exists a.s. For T = (|N(0)|−1)/2 and dimension N = 1 the model clusters, which means
that for any fixed i, j we have limt→∞ P(X(i, t) 6= X(j, t)) = 0 [ALM92] (Note that this value of T is slightly
larger than the one relevant for the Schelling model). For T < θ|N | with θ < 1/4 and N sufficiently large,
the process coexists, meaning that there are invariant measures which are not a mixture of the extremal
measures with only 1 or only 2 [Lig94].

1.4 Main results

Our first main result is a dynamical scaling limit result for the Schelling model. We prove that a function
Y w describing the opinions of the nodes in the early phase (times up to order w−N/2) of the Schelling model
on the torus, converges in law as w →∞. For R ∈ {3, 4, . . . } let S be the torus of width R, i.e., S = R/ ∼,
where ∼ is the equivalence relation on R defined by x ∼ y iff x− y is an integer multiple of R. Denote the
N -dimensional torus of side length R by SN = S × · · · × S. Let C(SN × R+) denote the set of continuous
real-valued functions on SN ×R+, and let CM (SN ×R+) denote the set of functions which can be written in
the form f = (f1, . . . , fM ) for fm ∈ C(SN ×R+) and m = 1, . . . ,M . Equip CM (SN ×R+) with the topology
of uniform convergence on compact sets. Define the unscaled bias function Ym by

Ym(i, t) =
∑

j∈N(i)

(
1X(j,t)=m −

1
M

)
.
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Then define the (normalized) bias function Y w = (Y w1 , . . . , Y
w
M ) ∈ CM (SN × R+) by

Y wm (x, t) :=
1

wN/2
Ym(xw, tw−N/2) m ∈ [M ], x ∈ w−1ZN , t ≥ 0, (4)

and for x 6∈ w−1ZN let Y wm (x, t) be a weighted average of the ≤ 2N points x̃ ∈ w−1ZN which satisfy
‖x− x̃‖∞ < w−1

Y wm (x, t) =
∑

x̃∈w−1ZN : ‖x−x̃‖∞<w−1

(
N∏

k=1

(1− w|xk − x̃k|)
)
Y wm (x̃, t). (5)

See Figure 2. Note that Y w encodes the bias of each node towards each opinion 1, . . . ,M . Also note that
when defining Y w we do not only scale space; we also scale time by w−N/2. The rescaling in space guarantees
that Y w(·, 0) converges in law to a Gaussian field as w →∞. The rescaling in time guarantees that for fixed
x ∈ S the change in Y w(x, ·) during a time interval of order 1 is of order 1, since during an unscaled time
interval of length w−N/2 there are typically order w−N/2 · wN = wN/2 nodes in the neighborhood of any
fixed node which change opinion, which implies that the change to Y w(x, ·) for any fixed x is of order 1. Due
to the rescaling of time, the convergence result of the following theorem only describes the evolution of the
bias in the very beginning (more precisely, up to times of order w−N/2) of the Schelling model. However, as
we describe below, for the one-dimensional model one can use the theorem to also obtain information about
the final configuration of opinions, since the sign of the bias function can be shown to stabilize after times
of order w−N/2 = w−1/2 for N = 1.

Theorem 1.2. In the setting described above, Y w converges in law in CM (SN × R+) to a random function
Y as w →∞.

The theorem is an immediate consequence of Proposition 3.1 in Section 3.1, which identifies Y as the
solution of a particular differential equation with Gaussian initial data. Note that this theorem holds in rather
large generality: For all dimensions N ∈ N, number of opinions M ∈ {2, 3, . . . }, and general neighborhoods
N . However, we have not proved the theorem for the model on ZN , only for the model on the torus; the
reason for this is that we do not establish that the differential equation describing the evolution of Y w is
well-defined on RN for N > 1.

As we discuss right below, Theorem 1.2 is an important input to the proof of our second main result,
Theorem 1.3, which is a scaling limit result for the final configuration of opinions in the one-dimensional
Schelling model. In Theorem 1.3 we consider the model on either the torus S or on Z, and have M = 2
opinions and neighborhood N = N∞. In other words, we consider the base case in Remark 1.1, except that
we allow both S and Z. By [DS93] (see Proposition 3.10 below for the analogous result for general M) the
opinion of each node converges a.s. as time goes to infinity, hence each node is associated with a unique
opinion in {1, 2} describing its limiting opinion.

For V = S and V = R define

D(V ) := {A = (A1, A2) : Am ⊂ V is closed for m = 1, 2}.

Equip D(V ) with the topology of convergence of A1 and A2 for the Hausdorff distance on compact sets. The
appropriately normalized limiting distribution of opinions in the Schelling model, is a random variable in
D(V ). The following theorem says that this random variable converges in law in D(V ) as the window size
w converges to ∞. In the theorem below we identify S and S with {0, . . . , Rw− 1} and [0, R), respectively.

Theorem 1.3. Let V = Z and V = R, or let V = S and V = S. Consider the one-dimensional Schelling
model on V as described in Section 1.3 with window size w ∈ N, M = 2 opinions, and N = N∞. Define
Aw ∈ D(V ) by

Aw := (Aw1 , A
w
2 ), Awm := {jw−1 ∈ V : j ∈ V, lim

t→∞
X(j, t) = m} for m = 1, 2.

7
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Figure 2: The graphs show the bias function Y w at four different times for the Schelling model on the torus
of dimension N = 1 with M = 3 opinions. Each color in the figure corresponds to one of the M opinions.
The initial data of Y w (upper left figure) converges in law to the Gaussian field B defined in Section 2 when
w → ∞. The evolution of Y w can be well approximated by the differential equation (6) on compact time
intervals, see Theorem 1.2 and Proposition 3.1. When we have reached the final configuration of opinions,
each function Y wm , m = 1, 2, 3, is piecewise linear with slopes ±2w1/2 and 0, and values in the interval
[−2w1/2 1

M , 2w1/2(1 − 1
M )]. Regions in which Y wm equals 2w1/2(1 − 1

M ) correspond to long intervals where
the nodes have limiting opinion m. We see that the natural rescaling of the discrete bias function to get a
non-trivial limit for the final configuration is to replace the multiplicative factor w−1/2 in (4) by w−1. For
the continuum analog Y of Y w, each function Ym converges to ±∞ at almost every point, such that for each
fixed x the function t 7→ |Ym(x, t)| is approximately linear in t. The thick line at the x axis in the lower
right figure represents the limiting opinion of the nodes. The plots are made with window size w = 100 and
torus width R = 14.

Then Aw1 ∪Aw2 = {jw−1 : j ∈ V} a.s., and Aw converges in law as a random variable in D(V ) to a limiting
random variable A = (A1, A2). The sets A1 and A2 have disjoint interior and union V a.s., and each set
Am for m = 1, 2 is a.s. the union of at most countably many closed intervals each of length strictly larger
than 1.
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Figure 3: The graphs show the function Ŷ w := Y w1 − Y w2 for the Schelling model on the torus of dimension
N = 1 with M = 2 opinions, which evolves approximately as described by (11). The plots are made with
window size w = 100 and torus width R = 14.

When we prove the theorem in Section 3.2 we will describe the limiting random variable A in terms of
the solution Y of the initial value problem mentioned above. We will not describe the law of this random
variable further, but we remark that if I is defined to be the maximal interval satisfying either 0 ∈ I ⊂ A1
or 0 ∈ I ⊂ A2, then the length of I decays at least exponentially; this holds by Lemma 3.9, and since the
event considered in this lemma holds independently and with uniformly positive probability on each interval
[10k, 10k + 5], k ∈ Z (see the proof of [BIKK12, Theorem 1] for a similar argument).

The solution Y of the differential equation evolves deterministically once the random initial data are fixed.
Therefore the final configuration in the discrete one-dimensional model is essentially determined at time
t = 0, i.e., the randomness of the Poisson clocks has only minor impact on the final configuration of opinions.
Furthermore, due to the rescaling in time in (4), one can see already at time O(w−1/2) approximately what
the final configuration of opinions will be, since the signs of Y eventually stabilize in time. More precisely,
for each fixed x the limit limt→∞ signY (x, t) exists a.s., and S can be divided into intervals of length strictly
greater than one on which the limiting sign of Y is constant. By a coupon collector argument, the time it
takes until the final configuration is reached in some interval of length Θ(w) is Ω(logw), since the clock of

9
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a constant fraction of the nodes must ring in order for this to happen. We note that the bias of most nodes
stabilizes already at time O(w−1/2), while the opinion of a node does not stabilize until a time of order 1
with constant order probability. We remark that the strategy outlined here for the one-dimensional Schelling
model does not immediately apply to the higher-dimensional Schelling model, since we have not proved that
limt→∞ signY (x, t) exists a.s. in higher dimensions.

i
N(i)

N(j)
j w = 1

w = 2

w = 3

iN(i)

Figure 4: Left: initial configuration of opinions in the Schelling model on the torus for N = 2, M = 2,
R = 9, and w = 1. Middle: one possible final configuration of opinions with initial data as on the left
figure. Observe that all nodes agree with the most common opinion in their neighborhood. Right: final
configuration of opinions in the Schelling model on the torus for N = 1, M = 2, R = 15, and w = 1, 2, 3.

Figure 5: Final configuration of opinions in the Schelling model on the torus for N = 2, M = 2, and a torus
width of 4000 nodes. Left: w = 4, middle: w = 8, and right: w = 12. Simulations by Omer Tamuz.

Other results in the paper of independent interest include Theorem 2.1, which establishes existence and
uniqueness of the solution of the differential equation mentioned above, and Theorem 2.4, which says that
for a certain family of Gaussian fields the supremum of its occupation kernel on Lipschitz functions is finite.

Finally we remark that our methods can be adapted easily to certain other variants of the Schelling
model. For example, we may consider a perturbed variant of the model, where each node acts against
its own preference with probability p ∈ (0, 1) every time its Poisson clocks rings, e.g. it chooses some
opinion uniformly at random from [M ] instead of changing its opinion to the most common opinion in its
neighborhood. In this perturbed model a variant of Theorem 1.2 still holds, but the continuum bias function
would evolve slower than with the unperturbed dynamics.

The results above are stated for the single-site-update variant of the Schelling model. In the version of
the Schelling model studied in certain other papers, however, the nodes swap opinions rather than changing
opinions; equivalently, the nodes have a fixed opinion and they change locations in order to be surrounded by
nodes of a similar opinion to themselves. In this formulation of the model we would consider a finite grid (e.g.
the torus), and each time step could consist of choosing two nodes i, j uniformly at random and swapping
their opinions if the opinion of node i (resp. j) equals the most common opinion in the neighborhood of
node j (resp. i). Defining Y w using (4) and (5), the continuum approximation Y to Y w would evolve as

10
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described by a particular differential equation with random initial data, i.e., a variant of Theorem 1.2 still
holds in this setting. This differential equation also describes certain variants closely related to Schelling’s
original model, where some nodes are unoccupied and individuals may move to unoccupied sites if they are
not satisfied. See the introduction of Section 2 for more details.

A variant of Theorem 1.3 also holds for the pair-swapping variant of the Schelling model if the torus
width R → ∞ sufficiently fast as w → ∞. Restricted to some bounded neighborhood J of the origin, the
main difference between the pair-swapping Schelling model and the single-site-update Schelling model, is
that in the former variant of the model unsatisfied nodes of one type will change type at a higher rate than
unsatisfied nodes of the other type. For example, if M = 2 and there are more unsatisfied nodes of type
1 than of type 2 in the system overall, unsatisfied nodes of type 1 will tend to get replaced more slowly
than unsatisfied nodes of type 2. When R → ∞, the total variation distance between the two variants of
the model restricted to J and some bounded time interval goes to zero. Since the system stabilizes in finite
time, for any given w we can find R such that the two models restricted to J evolve very similarly in total
variation distance. In particular, if R → ∞ sufficiently fast, then the limiting configuration of opinions in
the pair-swapping Schelling model restricted to J converges in law to the same limit as the single-site-update
Schelling model on Z. The variant of the problem considered here (pair-swapping model; R→∞ sufficiently
fast as w →∞) is exactly the variant studied in [BIKK12], hence the discussion in this paragraph addresses
the precise form of conjecture in [BIKK12] about scaling limits for the one-dimensional Schelling model.

Our results above also extend easily to other lattices than ZN and SN (assuming N(i) is still defined by
(1) for each node i).

1.5 Notation

We will use the following notation:

• If a and b are two quantities whose values depend on some parameters, we write a � b (resp. a � b) if
there is a constant C independent of the parameters such that a ≤ Cb (resp. a ≥ Cb). We write a � b
if a � b and a � b. (We will sometimes abuse notation and use the same terminology when C depends
on some parameters but not others, but this will be made clear in context.)

• For any N ∈ N let λ denote the Lebesgue measure on RN or the torus SN .

• For N ∈ N and a topological space V let C(V N ) denote the space of continuous real-valued functions
on V N , equipped with the topology of uniform convergence on compact sets.

• For N ∈ N and either V = S or V = R let L(V N ) denote the space of real-valued Lipschitz continuous
functions on V N equipped with the topology of uniform convergence on compact sets. For K > 0
define LK(V N ) ⊂ L(V N ) by

LK(V N ) =




y ∈ L(V N ) : ‖y‖∞ ≤ K2N and ∀k ∈ {1, . . . , N}, sup

x, x′ ∈ V N , xk 6= x′k,
xj = x′j∀j 6= k

|y(x)− y(x′)|
|xk − x′k|

≤ K2N−1




.

• For M,N ∈ N and either V = S or V = R define CM (V N ) (resp. LM (V N ), LKM (V N )) to be the space
of functions f = (f1, . . . , fM ) taking values in RM , such that for each m ∈ [M ] we have fm ∈ C(V N )
(resp. fm ∈ L(V N ), fm ∈ LK(V N )).

• For any topological space V let B(V ) denote the Borel σ-algebra.

See Sections 1.3, 1.4, and 2 for additional notation.
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2 The continuum Schelling model

In this section we will introduce a differential equation which describes the early phase of the Schelling
dynamics when the window size w is large. We call this differential equation with appropriate initial data
the continuum Schelling model.

The main result of this section is the existence and uniqueness of solutions of the differential equation
(Theorem 2.1), along with a result on the occupation kernel of Gaussian fields (Theorem 2.4) and some
properties of the continuum one-dimensional dynamics (Proposition 2.14).

Let N ∈ N, M ∈ {2, 3, . . . }, and R ∈ {3, 4, . . . }, and let V = S or V = R. The solution of the differential
equation we will define just below is a function Y = (Y1, . . . , YM ), Ym : V N×R+ → R, which is the continuum
analog of the function Y w defined by (4) and (5). Define the plurality function p : RM 7→ {0, 1, . . . ,M} by

p(y) =





m if ym > max
m′∈[M ]\{m}

ym′ ,

0 if there is no m for which ym > max
m′∈[M ]\{m}

ym′ .

Letting N ⊂ (−1, 1)N be as in Section 1.3 define the neighborhood of x ∈ V N by

N (x) = {x′ ∈ V N : x′ − x ∈ N},

where we view x′ − x modulo addition of an element in RZN if V = S. Consider the following differential
equation

∂Ym
∂t

(x, t) =
∫

x′∈N (x)
(1−M−1)1p(Y (x′,t))=m −M−11p(Y (x′,t)) 6=m dx

′ m ∈ [M ], x ∈ V N , t ≥ 0. (6)

We will prove in Proposition 3.1 that this differential equation approximates the early phase of the Schelling
dynamics well for large window size.

An (N,M)-random field is a random map from V N to RM . Let B be a multivariate Gaussian (N,M)-
random field (see Section 2.1) on the probability space (Ω,F ,P) with mean and covariance functions given
by mm(x) = 0 and

Cm,m′(x, x′) =
{

M−1
M2 λ

(
N (x) ∩N (x′)

)
for m = m′,

−1
M2λ

(
N (x) ∩N (x′)

)
for m 6= m′.

(7)

We prove in Lemma 3.2 that B is well-defined as a continuous field. Although we will not need this
formulation, we remark that one way to construct B involves starting with W = (W1,W2, . . . ,WM ), where
the Wi are i.i.d. instances of white noise (each rescaled by 1/

√
M) on N -dimensional space, and then writing

W̃i = Wi −
1
M

M∑

i=1

Wi,

so that the W̃i sum up to zero a.s. and each W̃i describes (in a limiting sense) the “surplus” of individuals
with opinion i. We can then let B(x) denote the integral of W̃/

√
2 over the set N (x).

12
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Let the initial data of (6) be given by B

Y (x, 0) = B(x), ∀x ∈ V N . (8)

The following theorem will be proved in Section 2.3.

Theorem 2.1 (Existence and uniqueness for (6), (8)). Let V = S and N ∈ N, or let V = R and N = 1.
Let M ∈ {2, 3, . . . } and R ∈ {3, 4, . . . }, and let N ⊂ (−1, 1)N be as defined in Section 1.3. Then the initial
value problem (6), (8) a.s. has a solution Y : V N × [0,∞) → RM . This solution can be written as the sum
of the function (x, t) 7→ B(x) and a function y : V N × [0,∞)→ RM satisfying the following properties. For
any t > 0, we have y(·, t) ∈ LtM (V N ), so that in particular y(·, 0) = 0, and y is continuously differentiable
in t. The solution Y just described is unique in the space of functions satisfying these properties.

Note that we have not proved that the initial value problem (6), (8) is well-defined for N ≥ 2 and V = R,
but we believe that the above theorem also holds in this case. As we will discuss in Section 2.3 there exist
initial data for which (6) does not have a unique solution (also when N = 1 and/or V = S), and solutions
of (6) do not in general vary continuously with the initial data.

For any ω ∈ Ω and m ∈ [M ] define the random function φωm : CM (V N )→ L1(V N ) by

φωm(y) : x 7→
∫

x′∈N (x)
(1−M−1)1p(B(x′)+y(x′))=m−M−11p(B(x′)+y(x′))6=m dx

′, ∀x ∈ V N , y ∈ CM (V N ). (9)

Also define φω : CM (V N ) → L1
M (V N ) by φω = (φω1 , . . . , φ

ω
M ). Note that solving (6), (8) is equivalent to

solving the following initial value problem for a.e. ω ∈ Ω

∂y

∂t
(·, t) = φω(y(·, t)), t ≥ 0,

y(x, 0) = 0, x ∈ V N .
(10)

We obtain a solution to (6), (8) by defining Y (x, t) = y(x, t) +B(x) for all t ≥ 0 and x ∈ V N .
We also observe that (6) is equivalent to a single differential equation when M = 2. Let sign : R →

{−1, 0, 1} denote the sign function, which is defined to be 0 at 0. Defining Ŷ = Y 1 − Y 2, the initial value
problem (6), (8) is equivalent to

∂Ŷ

∂t
(x, t) =

∫

x′∈N (x)
sign Ŷ (x′, t) dx′, ∀x ∈ V N , t ≥ 0,

Ŷ (x, 0) = B̂(x),

(11)

where B̂ is the centered Gaussian field with covariances Cov(B̂(x), B̂(x′)) = λ(N (x) ∩N (x′)).
Finally, we will briefly state the analog of (6), (8) for the setting of the pair-swapping variant of the

Schelling model. See the end of Section 1.4 for the definition of this model. In this variant of the model the
initial data for the continuum approximation Y : SN × R+ → RM to Y w : SN × R+ → RM is still given by
(8), while the differential equation describing the evolution of Y is given by

∂Ym
∂t

(x, t) =
∫

x′∈N (x)
(λ(SN )− Λm(t))1p(Y (x′,t))=m − Λm(t)1p(Y (x′,t′)) 6=m dx

′,

m ∈ [M ], x ∈ SN , t ≥ 0, Λm(t) := λ({x ∈ SN : p(Y (x, t)) = m}).
(12)

The main difference between (6) and (12) is that the rate at which Y changes in (12) depends on the overall
fraction Λm(t) of points with the various biases. Also observe that the integral of Ym(·, t) is constant in
time, which is consistent with the fact that the number of nodes with opinion m is constant. Theorems
1.2 and 2.1 (for the model on the torus) also hold for the pair-swapping Schelling model, and are proved
exactly as before. Notice in particular that any solution of (12), (8) can be written on the same form as the

13
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function Y in Theorem 2.1 (except that LtM (V N ) is replaced by LCtM (V N ) for some constant C > 1), and
since y(·, t) ∈ LCtM (V N ) we can still apply Theorem 2.4 in this setting. The initial value problem (12), (8) also
describes the situation where each node is unoccupied with constant probability in the initial configuration,
and individuals (who have a fixed type or opinion) may move to an unoccupied node if this would make
them satisfied.

2.1 Occupation measures of random fields: basic definitions

We now give a short introduction to the theory of occupation measures of random fields, which is used
frequently in our study of the continuum Schelling model. We refer to [GH80] for further information.

Let N,M ∈ N. An (N,M)-random field on a probability space (Ω,F ,P) is a collection B of random
variables with values in RM , which are indexed by the N -dimensional vector space V N for V = R or V = S,
i.e., B = {B(x) : x ∈ V N} or B = (B(x))x∈V N . If M = 1 we say that the field is an N -random field.

The field B is Gaussian if M = 1 and if, for every k ∈ N and x1, . . . , xk ∈ V N , the random variable
(B(x1), . . . , B(xk)) is multivariate Gaussian. We say that B = (B1, . . . , BM ) is a multivariate (N,M)-
Gaussian field if, for every α ∈ RM , the weighted sum

∑M
m=1 αmBm is a real-valued Gaussian field. By e.g.

[Adl10], a multivariate Gaussian field is uniquely determined by its mean m = (m1, . . . ,mM ) and covariance
matrix C = (Cm,m′)m,m′∈[M ], which satisfy the following relations with t denoting the transpose of a matrix

m(x) = E[B(x)], C(x, x′) = E
[
(B(x)−m(x))t(B(x′)−m(x′))

]
, x, x′ ∈ V̂ .

White noise on V N for V = S or V = R is a collection of random variables W = (W (X) : X ∈ B(V N ))
such that (i)W (X) ∼ N (0, λ(X)) for anyX ∈ B(V N ), (ii)W (X1∪X2) = W (X1)+W (X2) ifX1, X2 ∈ B(V N )
and X1 ∩X2 = ∅, and (iii) W (X1) and W (X2) are independent if X1, X2 ∈ B(V N ) and X1 ∩X2 = ∅. Note
that for a fixed set X ∈ B(V N ) we can define an N -random field B̂ = {B̂(x) : x ∈ V N} by defining
B̂(x) := W (x+X), where x+X = {x+ x′ : x′ ∈ X} for any x ∈ V N . We call a field that can be written
on this form a moving average Gaussian field.

The following definition is from [GH80, Section 21]. See [GH80, Theorem 6.3] for a proof that the
occupation kernel α described below is well-defined when µX is a.s. absolutely continuous with respect to
Lebesgue measure λ.

Definition 2.2 (Occupation measure and occupation kernel). Let N,M ∈ N, let V = S or V = R, and
consider an (N,M)-random field B = (B1(x), . . . , BM (x))x∈V N on the probability space (Ω,F ,P).

• The occupation measure µ = (µX)X∈B(V N ) is defined by

µX(A) := λ(X ∩B−1(A)), A ∈ B(RM ).

• If µX is a.s. absolutely continuous with respect to Lebesgue measure λ for all X ∈ B(V N ), let α(a,X)
denote the Radon-Nikodym derivative of µX with respect to λ, i.e.,

λ(X ∩B−1(A)) =
∫

A

α(a,X) da, A ∈ B(RM ). (13)

Let α be chosen such that α(·, X) is measurable for each fixed X ∈ B(V N ), and α(a, ·) is a σ-finite
measure on (V N ,B(V N )) for each a ∈ RM . We call α the occupation kernel of B.

• For f : V N → RM let α(f, ·, ·) denote the occupation kernel (provided it exists) of the field B − f .

• More generally, for k ∈ {1, . . . , N − 1}, x′ = (x′1, . . . , x
′
k) ∈ V k, and f : V N → RM , let α(x′, f, ·, ·)

denote the occupation kernel (provided it exists) of the (N − k,M)-random field
(
B(x1, . . . , xN−k, x

′
1, . . . , x

′
k)− f(x1, . . . , xN−k, x

′
1, . . . , x

′
k)
)

(x1,...,xN−k)∈V N−k .
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2.2 Supremum of the occupation kernel on Lipschitz functions for moving av-
erage Gaussian fields

In [BB01, BB02] the authors prove that the supremum on Lipschitz curves of Brownian local time is finite.
In this section we will prove a higher-dimensional analog of this result, stated in Theorem 2.4 below. We
consider the supremum on Lipschitz functions of the occupation kernel of a particular centered moving
average Gaussian field B.

The idea of the proof is to define various (N + 1)-dimensional boxes on different scales, and bound the
number of such boxes intersected by both the graph of B and a Lipschitz function f , uniformly over all
choices of f . On each scale we proceed by using that f is approximately constant, while B fluctuates rapidly.
We also prove that if f and g are uniformly close then the occupation kernel of B on f and g, respectively, are
close with high probability. This allows us to show that the occupation kernel is continuous on a countable
dense set of functions. Since the set of Lipschitz continuous functions with bounded Lipschitz constant is
compact for the supremum norm, we can conclude that the continuous extension of the occupation kernel
on this countable dense set has a finite supremum. We start the section by proving existence and basic
properties of the occupation kernel of B on any fixed Lipschitz function.

Theorem 2.4 will imply that for any solution Y of (6), (8) on SN and any m,m′ ∈ [M ], m 6= m′, the field
Ym − Ym′ is close to 0 only for a small subset of SN simultaneously. This will help us to prove existence,
uniqueness and other properties of solutions to (6), (8). Since Bm −Bm′ has the law of a constant multiple
of Bm, it will be sufficient to obtain our result for the following real-valued field B.

Remark 2.3. We will assume throughout the section that B = (B(x))x∈SN is the centered moving average
Gaussian field with covariances given by

C(x, x′) = λ
(
N (x) ∩N (x′)

)
, x, x′ ∈ SN . (14)

Observe that B is a moving average Gaussian field as defined in Section 2.1. The proof of the follow-
ing theorem uses ideas from [BB01, BB02]. See Section 2.1 for the definition and basic properties of the
occupation measure of random fields.

Theorem 2.4. Let B = (B(x))x∈SN be the centered Gaussian field with covariances given by (14), and let
K > 0. For each fixed f ∈ LK(SN ) the occupation kernel α(f, ·, ·) of B − f exists a.s. Furthermore, a.s.
there exists a random field α̃ = {α̃(f) ∈ R : f ∈ LK(SN )} satisfying the following properties.

(I) For each fixed f ∈ LK(SN ), we have α̃(f) = α(f, 0,SN ) a.s.

(II) Almost surely, f 7→ α̃(f) is continuous on LK(SN ) equipped with the supremum norm.

(III) Almost surely, supf∈LK(SN ) α̃(f) <∞.

First we will prove the existence and various properties of the occupation kernel for a certain class of
Gaussian random fields. In particular, we study fields given by B plus a Lipschitz continuous function, and
fields obtained by fixing some coordinates of this field.

Lemma 2.5. Let K > 0 and f ∈ LK(SN ). Define B̃ = B − f , where B is the centered Gaussian field on
SN with covariances given by (14). Then the following holds a.s.

(I) B̃ has an occupation kernel α(f, ·, ·).

(II) For all k ∈ {1, . . . , N − 1} and almost all x′ = (x′1, . . . , x
′
k) ∈ Sk the (N − k)-field

x′′ 7→ B̃(x′′1 , . . . , x
′′
N−k, x

′
1, . . . , x

′
k)

for x′′ = (x′′1 , . . . , x
′′
N−k) ∈ SN−k, has an occupation kernel α(x′, f, ·, ·). For almost all a ∈ R the

following holds for all X ′ ∈ B(Sk) and X ′′ ∈ B(SN−k)

α(f, a,X ′′ ×X ′) =
∫

X′
α(x′, f, a,X ′′) dx′. (15)
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Proof of Lemma 2.5. By (14), we have Var(|B̃(x′)− B̃(x)|) � λ
(
N (x)∆N (x′

))
, where the implicit constant

is independent of x, x′ ∈ SN and ∆ denotes symmetric difference. Since x, x′ ∈ SN , the difference x− x′ is
only defined as an element in RN modulo RZN , but we will view x − x′ as an element in RN by choosing
the equivalence class such that ‖x − x′‖1 is minimized (with some arbitrary choice of equivalence class in
case of draws). By (3) it follows that Var(|B̃(x′)− B̃(x)|) � ‖x′ − x‖1, where the implicit constant is again
independent of x, x′ ∈ SN , but may depend on all other parameters. Since the probability density function
of a standard normal random variable is bounded, for any x ∈ SN ,

lim inf
ε→0

ε−1
∫

SN
P[|B̃(x′)− B̃(x)| ≤ ε] dx′ �

∫

SN
‖x′ − x‖−1/2

1 dx′ <∞. (16)

By [GH80, Theorem 21.12] we know that if B̃ is a random field for which the left side of (16) is finite, then
B̃ has an occupation kernel a.s. Applying this result concludes our proof of (I).

The same theorem also implies the existence of the occupation kernel α(x′, f, ·, ·) for a.e. fixed x′ =
(x′1, . . . , x

′
k). The identity (15) follows by [GH80, Theorem 23.5], since for any k ∈ {1, . . . , N − 1} and

x = (x′′1 , . . . , x
′′
N−k, x

′
1, . . . , x

′
k) ∈ SN , x′′ = (x′′1 , . . . , x

′′
N−k) ∈ SN−k, x′ = (x′1, . . . , x

′
k) ∈ Sk,

∫

SN−k
sup
ε>0

ε−1P[|B̃((x̃1, . . . , x̃N−k, x
′
1, . . . , x

′
k))− B̃((x′′1 , . . . , x

′′
N−k,x

′
1, . . . , x

′
k))| ≤ ε] dx̃

�
∫

SN−k
‖x̃− x′′‖−1/2

1 dx̃ <∞.

Now we will construct a countable set of functions which is dense in LK(SN ) for the supremum norm.
For K > 1 let LK,k(SN ) denote the space of functions f ∈ L(SN ) that satisfy the following properties: (i)
for each x ∈ 2−kZN , f(x) ∈ 2−kZ, (ii) for each x 6∈ 2−kZN , f(x) is a weighted average of f at the ≤ 2N

points x̃ ∈ 2−kZN which satisfy ‖x− x̃‖∞ < 2−k, where the weights are defined as in (5), (iii) ‖f‖L∞(SN ) ≤
K2N + 2−k, and (iv) if x, x′ ∈ 2−kZN satisfy ‖x−x′‖1 = 2−k then |f(x)−f(x′)| ≤ K2N−k−1 + 22−k. Define

L̃K(SN ) =
⋃

k∈N
LK,k(SN ). (17)

The following lemma implies that L̃K(SN ) is dense in LK(SN ) ∪ L̃K(SN ) for the supremum norm.

Lemma 2.6. For any f ∈ LK(SN ) and k ∈ N there is a canonically defined element fk ∈ LK,k(SN ) such
that ‖f − fk‖L∞ ≤ 2−k, where the implicit constant is independent of k and f , but may depend on K and
k.

Proof. For each x ∈ 2−kZN let fk(x) be the multiple of 2−k which is closest to f(x). For x 6∈ 2−kZN let
fk(0) be defined such that condition (ii) in the definition of LK,k(SN ) is satisfied. It is immediate that the
properties (i)-(iv) in the definition of LK,k(SN ) are satisfied.

Our next lemma proves some basic properties of the field B. From (20) one can deduce that for two close
points x, x′ ∈ S the random variable B(x)−B(x′) is typically not too small, which will help to lower bound
the occupation kernel at any fixed level. From (21) we will deduce that if f, g are close then the occupation
kernel of B on f and on g are typically not too different. This will help us later to establish continuity of
the occupation kernel in f . By (14) we may couple B with an instance of white noise W on SN such that
for any x ∈ S, we have B(x) = W (N (x)). Define a filtration (Ft)t∈[0,R−2] by

Ft = σ(W |B(Dt)), Dt :=
⋃

s∈[0,t], (x2,...,xN )∈SN−1

N ((s, x2, . . . , xN )). (18)

Let 0 ≤ s < t < R− 2 and (x2, . . . , xN ) ∈ RN−1. Conditioned on Fs the random variable B(t, x2, . . . , xN ) is
a Gaussian random variable with expectation W (N ((t, x2, . . . , xN )) ∩Ds) and variance depending only on
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t− s. Therefore there exists a function p : (0, R−2)×R×R such that p(t− s,W (N ((t, x2, . . . , xN ))∩Ds), ·)
is the probability density function of B(t, x2, . . . , xN ) conditioned on Fs. By (14), and with x = (t, 0, . . . , 0)
and p̃(s, a, y) := (2πs)−1/2 exp(−|y − a|2/(2s)),

p(t, a, y) = p̃(λ(N (x) \D0), a, y). (19)

Lemma 2.7. Let p be given by (19). For t ∈ (0, R− 2) and a, y ∈ R,

p(t, a, y) � t−1/2, (20)

where the implicit constant is independent of t, a, y, but may depend on N . Let δ ∈ (0, 1/2), a ∈ R, and
assume f, g : [0, R− 2]→ R satisfy ‖f − g‖L∞([0,R−2]) < δ. Then

∫ R−2

0
|p(t, a, f(t))− p(t, a, g(t))| dt � δ log(1/δ), (21)

where the implicit constant may depend on N .

Proof. Since p is continuous in t by (19) and since p(t, a, y) � 1 for t > 2 and any a, y ∈ R, in order to prove
(20) it is sufficient to prove lim inft→0 t

1/2p(t, a, y) � 1. By the explicit formula for p this follows from (3).
The estimate (21) follows by the exact same argument as for the case p = p̃, which is considered in [BB01,

Lemma 3.4], except that we use (20) instead of the corresponding estimate for p̃.

The next lemma will be used to show that if two functions f, g are close for the supremum norm, then
the occupation kernel of B on f is typically not too different from then the occupation kernel of B on g.

Lemma 2.8. Let d ∈ (0, 1 ∧ (R − 2)], and let f, g be two functions defined on some N -dimensional cube
I ⊂ SN with side lengths d. Assume that ‖f − g‖L∞(I) ≤ δ for some δ > 0. Then for all b ≥ 1 and with
α(f, I) = α(f, 0, I) and α(g, I) = α(g, 0, I) as in Definition 2.2,

log P
[
α(f, I)− α(g, I) ≥ bd(N−3/4)(δ log(δ−1))1/2

]
� −b,

where the implicit constant is independent of δ, f and g.

Proof. Assume without loss of generality that I = [0, d]N . Couple B with an instance of white noise W as
described above the statement of Lemma 2.7, and recall the filtration (Ft)t and the sets Dt ⊂ RN defined
by (18). For any t ∈ [0, d] define It = [0, t] × [0, d]N−1 ⊂ SN , and let Aft = α(f, It), A

g
t = α(g, It),

and Ãt = Aft − Agt . Then (Aft )t∈[0,d], (Agt )t∈[0,d], and (Ãt)t∈[0,d] are stochastic processes adapted to the
filtration (Ft)t∈[0,d]. To simplify notation we write f(t, x′) instead of f(t, x′1, . . . , x

′
N−1) for t ∈ R and

x′ = (x′1, . . . , x
′
N−1) ∈ RN−1. Let t1, t2 ∈ [0, d] satisfy t1 < t2. By Lemma 2.5 (II) and (20) of Lemma 2.7,

E
[
Aft2 −A

f
t1 | Ft1

]
= E

[∫

[0,d]N−1
α(x′, f(·, x′), [t1, t2]) dx′

∣∣∣Ft1

]

=
∫

[0,d]N−1

∫ t2−t1

0
p
(
s,N ((t2, x′1, . . . , x

′
N−1)) ∩Dt1 , f(t1 + s, x′)

)
ds dx′

� dN−1
∫ t2−t1

0
s−1/2 ds

� dN−1/2.
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By a similar argument E[Agt2 −A
g
t1 | Ft1 ] � dN−1/2. By (21) we get further

|E[Ãt2 − Ãt1 | Ft1 ]| =
∣∣∣∣∣E
[∫

[0,d]N−1
α
(
x′, f̃(·, x′), [t1, t2]

)
− α

(
x′, g̃(·, x′), [t1, t2]

)
dx′

∣∣∣ Ft1

]∣∣∣∣∣

≤
∫

[0,d]N−1

∫ t2−t1

0

∣∣∣p
(
s,N ((t2, x′1, . . . , x

′
N−1)) ∩Dt1 , f(t1 + s, x′)

)

− p
(
s,N ((t2, x′1, . . . , x

′
N−1)) ∩Dt1 , g(t1 + s, x′)

)∣∣∣ ds dx′

� dN−1δ log δ.

The lemma now follows by [BB01, Lemma 2.1].

The next lemma bounds from above the number of rectangles of width L−1 and height L−1/2 that
intersect that graph of B.

Lemma 2.9. Let L > 1, a ∈ R, and define L̃ := dL1/2e. For m ∈ {1, . . . , L̃} define the (N + 1)-dimensional
rectangle Jm by

Jm = [(m− 1)L−1,mL−1]× [0, L−1]N−1 × [a, a+ L̃−1].

Let A be the number of rectangles Jm for m ∈ {1, . . . , L̃} which intersect the graph {(x,B(x)) ∈ SN × R :
x ∈ SN} of B. Then the following estimate holds for all ξ > 1 and ε ∈ (0, 1]

P[A ≥ L̃1/2+ε] � L−ξ,
where the implicit constant is independent of a and L, but depends on ε and ξ.

Proof. Let Em be the event that the graph of B intersects Jm, let J̃m = [(m− 1)L−1,mL−1]× [0, L−1]N−1,
let xm =

(
mL−1, 0, . . . , 0

)
∈ J̃m and define the event E′m by E′m = {|B(xm) − a| < L̃−1+ε/10}. Define the

random variable Am by Am =
∑
m′≤m 1E′

m′
. By (20), for m2 > m1,

P[E′m2
| Fm1L−1 ] � ((m2 −m1) · L−1)−1/2L̃−1+ε/10 � (m2 −m1)−1/2L̃ε/10.

Therefore, for any m ∈ {1, . . . , L̃},

E[AL̃ −Am | FmL−1 ] �
L̃∑

d=1

d−1/2L̃ε/10 � L̃1/2+ε/10.

By applying [Bas95, Corollary I.6.12] to a constant multiple of the sequence {Am/L̃1/2+ε/10}1≤m≤L̃, we get

log P(AL̃ > L̃1/2+ε) � −L̃ε/10.

For any x, x′ ∈ S and b > 1 we have E[|B(x)−B(x′)|b] � ‖x− x′‖b/2 for an implicit constant depending
on b. By a quantitative version of the Kolmogorov-Chentsov theorem as in e.g. [MS16, Proposition 2.3], the
function B is γ-Hölder continuous with (random) constant C(γ) for any γ < 1/2, and P[C(γ) > C] decays
faster than any power of C. In particular, P[C(1/2 − ε/100) > Lε/100] � L−ξ for any ξ. Observe that if
C(1/2 − ε/100) ≤ Lε/100 and Em occurs, and if L is sufficiently large, then E′m also occurs since for some
x ∈ J̃m,

|B(xm)− a| ≤ |B(xm)−B(x)|+ |B(x)− a| ≤ NLε/100(L−1)1/2−ε/100 + L̃−1 < L̃−1+ε/10.

Therefore
Em ⊂ E′m ∪ {C(1/2− ε/100) > Lε/100},

so
{A ≥ L̃1/2+ε} ⊂ {AL̃ ≥ L̃1/2+ε} ∪ {C(1/2− ε/100) > Lε/100},

and the lemma follows by a union bound.
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In the next lemma we define a number of high probability events G1
k, G

2
k, G

3
k which will help us conclude

the proof of Theorem 2.4. On the event Gk1 , for any g ∈ GK(SN ) we have an upper bound for the number
of cubes of side length 2−k that intersect the graph of both B and g. This will imply an upper bound for
the occupation measure of B on g. Occurrence of the events Gk2 and Gk3 will guarantee continuity of the
occupation kernel for the supremum norm.

Lemma 2.10. For any k ∈ N divide SN into N -dimensional cubes Ij, j = 1, . . . , (R2k)N , of side length
2−k, such that the cubes have pairwise disjoint interior. Also divide SN ×R into (N + 1)-dimensional cubes
I ′ij of side length 2−k for j = 1, . . . , (R2k)N and i ∈ Z, such that the cubes have pairwise disjoint interior.
Let ε ∈ (0, 1/100) and define the three events G1

k, G
2
k, G

3
k as follows

• G1
k is the event that for any g ∈ LK(SN ) the number of cubes I ′ij intersecting the graph of both g and

B, is bounded by 2k(N−1/2+ε).

• G2
k is the event that for any f ∈ LK(SN ) and j ∈ {1, . . . , 2k}, the approximations fk and fk+1 to f

defined in Lemma 2.6 satisfy

|α(fk, Ij)− α(fk+1, Ij)| ≤ 2k(−N+1/4+ε).

• G3
k is the event that for any j ∈ {1, . . . , 2k} and any two f, g ∈ LK(SN ) satisfying ‖f − g‖L∞ ≤ 2−k,

we have
|α(fk, Ij)− α(gk, Ij)| ≤ 2k(−N+1/4+ε).

Finally define Gk by

Gk :=


 ⋂

k′≥k
G1
k′


 ∩


 ⋂

k′≥k
G2
k′


 ∩


 ⋂

k′≥k
G3
k′


 .

Then P[Gk]→ 1 as k →∞.

Proof. It is sufficient to prove that for b = 1, 2, 3 it holds that limk→∞ P
[
∩k′≥k Gbk′

]
= 1. We consider the

three cases b = 1, 2, 3 separately. All implicit constants may depend on R and K, but not on k.
Case b = 1: For any L ∈ N divide SN × R into (N + 1)-dimensional cubes I ′ij(L) for i ∈ Z and

j ∈ {1, . . . , (LR)N}, such that the interior of the cubes are disjoint, and each cube has side length L−1.
Observe that I ′ij = I ′ij(2

k) with I ′ij as in the statement of the lemma. Define L̃ := dL1/2e ∈ N. Divide SN×R
into (N + 1)-dimensional rectangles Jij = Jij(L) for i ∈ Z and j ∈ {1, . . . , RNLN−1L̃}, such their interiors
are pairwise disjoint, and such that each rectangle is a translation of Ji1 := [0, L̃−1]× [0, L−1]N−1× [0, L̃−1].
Assume I ′1,1(L) = [0, L−1]N+1, and that the projection of I ′ij(L) (resp. Jij) onto the last coordinate is given
by L−1[i− 1, i] (resp. L̃−1[i− 1, i]).

Consider one of the rectangles Jij . Find a cover {Jmij }L̃m=1 of Jij of (N +1)-dimensional rectangles whose
interiors are disjoint, and each of which is a translation of [0, L−1]N × [0, L̃−1] (note that unless L̃2 = L,
a small fraction of the rectangles Jmij have a non-empty intersection with the complement of Jij). Let
Aij = Aij(L) denote the number of such rectangles that contain a point of the graph of B. By Lemma 2.9
the following holds for all i, j and any ξ > 1

P[Aij ≥ L̃1/2+ε] � L̃−ξ, (22)

where the implicit constant depends on ε and ξ. We will now prove that on the event

ẼL :=
⋂

1≤j≤RNLN−1L̃,−KL≤i<KL

{Aij < L̃1/2+ε}

the number of cubes I ′ij(L) intersecting the graph of both f ∈ LK(SN ) and B is � L(N−1/4+ε/2). Since
f ∈ LK(SN ) the number of rectangles Ji′j′ intersecting the graph of f is � LN−1/2. Assuming the event

19



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature.

ẼL occurs, for each such i′, j′ there are < L̃1/2+ε rectangles Jmi′j′ intersecting both Ji′j′ and the graph of B.
By using f ∈ LK(SN ) again it follows that, for each i′, j′, the number of cubes I ′ij(L) intersecting both Ji′j′
and the graph of B and f , is � L̃1/2+ε. Hence the total number of cubes I ′ij(L) intersecting the graph of
both B and f is � LN−1/2 × L̃1/2+ε � LN−1/4+ε/2.

By (22) and a union bound, in order to complete the proof for the case b = 1 it is sufficient to prove that,
conditioned on the event ∩L∈N :L≥L0ẼL for some L0 ∈ N, the number of rectangles I ′ij(L) intersecting the
graph of both f and B is bounded by LN−1/2+ε for all sufficiently large L. We will proceed by iterations as
in the proof of [BB01, Proposition 3.3].

Condition on the event ∩L∈N :L≥L0ẼL, and choose L ≥ (2L0)2. Since L̃ > L0 the number of cubes I ′ij(L̃)
intersecting the graph of both f and B is < L̃N−1/4+ε/2 < L̃N−1/4+ε. Each of these cubes I ′ij(L̃) is contained
in the union of L̃N−1 rectangles Ji′j′(L). By the definition of ẼL and by f ∈ LK(SN ), for each fixed i′, j′,
the number of cubes I ′i′′j′′(L) intersecting both Ji′j′(L), the graph of f and the graph of B, is bounded by
L̃1/2+ε. It follows that the number of cubes I ′i′′j′′(L) intersecting both I ′ij(L̃), the graph of f and the graph
of B, is � L̃N−1/2+ε. Further we get that the number of cubes I ′i′′j′′(L) intersecting the graph of both f and
B is � L̃N−1/4+ε × L̃N−1/2+ε � LN−3/8+ε.

Now choose L ≥ (4L0)4. Since L̃ ≥ (2L0)2 the number of cubes I ′ij(L̃) intersecting the graph of both f

and B is � L̃N−3/8+ε. For fixed i, j the number of cubes I ′i′j′(L) intersecting both I ′ij(L̃), the graph of f
and the graph of B, is � L̃N−1/2+ε, so the number of cubes I ′i′j′(L) intersecting the graph of both f and B

is � L̃N−3/8+ε× L̃N−1/2+ε � LN−7/16+ε. By continued iterations it follows that, for sufficiently large L, the
number of cubes I ′i′′j′′(L) intersecting the graph of both f and B is � LN−1/2+2ε. This completes the proof.

Case b = 2: By Lemma 2.6 we have ‖fk − fk+1‖L∞(SN ) � 2−k. Therefore, for any f ∈ LK(SN ) and
j ∈ {1, . . . , 2k}, Lemma 2.8 implies that

log P
[
|α(fk, Ij)− α(fk+1, Ij)| ≥ 2k(−N+1/4+ε)] � −2kε/2.

For each fixed x ∈ Iij ∩ (2kZN ), fk(x) can take � 2k different values. Conditioned on fk(x) the number of
possible realizations of fk|Ij and fk+1|Ij is bounded by a constant. It follows that there are � 2k possibilities
for fk|Ij and fk+1|Ij . Since the number of cubes Ij is � 2kN , a union bound implies that

log(1− P[G2
k]) � −2kε/2.

We conclude by a union bound.
Case b = 3: We proceed exactly as in the case b = 2. The result follows by a union bound, Lemma 2.8,

and by observing that the number of possible realizations of fk|Ij and gk|Ij for each fixed j is � 2k.

Proof of Theorem 2.4. We start by proving uniform continuity of g 7→ α(g) on L̃K(SN ), where L̃K(SN ) is
defined by (17). Let η, β > 0, and the choose k̃ ∈ N sufficiently large such that the event Gk̃ of Lemma
2.10 holds with probability at least 1 − η. Condition on the event Gk̃. Consider any f, g ∈ L̃K(SN ) such
that ‖f − g‖L∞ ≤ 2−k̃, and let fk, gk ∈ LK,k(SN ) denote the approximations to f, g, respectively, defined
in Lemma 2.6. By the definition of the events G1

k and G2
k,

|α(fk+1)− α(fk)| � 2k(N−1/2+ε) · 2k(−N+1/4+ε) = 2k(−1/4+2ε)

for all k ≥ k̃ and a universal implicit constant. Since f = fk for sufficiently large k the triangle inequality
implies that, after we increase k̃ if necessary, we have |α(f) − α(f k̃)| ≤ β/3. By the same argument
|α(g)− α(gk̃)| ≤ β/3. By the definition of G1

k and G3
k,

|α(f k̃)− α(gk̃)| � 2k̃(N−1/2+ε) · 2k̃(−N+1/4+ε) = 2k̃(−1/4+2ε).
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Figure 6: Illustration of the periodic initial data defined in (23).

Increasing k̃ if necessary, it follows by the triangle inequality that |α(f)−α(g)| ≤ β with probability at least
1− η for all f, g ∈ L̃(SN ) satisfying ‖f − g‖L∞ ≤ 2k̃. Note that k̃ is a function of β and η, i.e., k̃ = k̃(β, η).

Fix some η > 0 and a sequence (βm)m∈N converging to 0. For any m ∈ N and any f, g ∈ L̃K(SN )
satisfying ‖f − g‖L∞ ≤ 2−k̃(βm,η2−m) we have |α(f) − α(g)| ≤ βm with probability at least 1 − η2−m. By
a union bound it holds with probability at least 1 − η that |α(f) − α(g)| ≤ βm for all m ∈ N and all
f, g ∈ L̃K(SN ) satisfying ‖f−g‖L∞ ≤ 2−k̃(βm,η2−m). Since the choice of η was arbitrary this implies uniform
continuity of g 7→ α(g).

Define α̃ to be the restriction to LK(SN ) of the continuous extension of α from L̃K(SN ) to LK(SN ) ∪
L̃K(SN ). Part (II) of the theorem follows by the definition of α̃ and uniform continuity of α on L̃K(SN ).
Part (III) of the theorem follows by using part (II) and that LK(SN ) is compact for the supremum norm.

Finally we will prove part (I). Let f ∈ LK(SN ), and for each k ∈ N let fk be as in Lemma 2.6. By
Lemma 2.8 and the Borel-Cantelli lemma we can find an increasing sequence {kl}l∈N, kl ∈ N, such that
α(fkl) → α(f) a.s. as l → ∞. By part (II) we have α(fk) → α̃(f) a.s. as k → ∞. Part (I) now follows by
the triangle inequality.

2.3 Existence and uniqueness of solutions of the continuum Schelling model

In this section we will prove Theorem 2.1, i.e., we will prove existence and uniqueness of solutions of the
initial value problem (6), (8). Our strategy is to prove that the operator φω in the equivalent problem (10)
is a.s. Lipschitz continuous (Proposition 2.12), which allows us to conclude the proof of Theorem 2.1 by
applying a variant of the Picard-Lindelöf theorem (Theorem 2.13). We first prove the result for the torus,
and then we use some notion of locality for the one-dimensional problem to transfer the result to the case
N = 1 and domain R.

First we will see that Theorem 2.1 does not hold for all choices of initial data, i.e., there exist initial
data for which (6) does not have a unique solution. Furthermore, solutions of (6) do not in general vary
continuously with the initial data. We will illustrate these properties of (6) by considering the model for
N = 1, M = 2, N = N∞, and V = S. Let Ŷ be as in (11). The initial data Ŷ (·, 0) ≡ ε and Ŷ (·, 0) ≡ −ε
for ε > 0, give solutions Ŷ (x, t) = ε + 2t and Ŷ (x, t) = −ε − 2t, respectively, so the solution does not vary
continuously with the initial data. As an example of initial data for which Theorem 2.1 does not hold,
assume n := 3R/4 ∈ N, and define periodic initial data as follows (see Figure 2.3)

Ŷ (x, 0) =
{
−1 + 3(x− 4k/3) for x ∈ 2

3 [2k, 2k + 1), k ∈ {0, . . . , n− 1},
1− 3(x− 4k/3− 2/3) for x ∈ 2

3 [2k + 1, 2k + 2), k ∈ {0, . . . , n− 1}. (23)

Then we have for all t ∈ [0, 3/2),

∂Ŷ

∂t
(x, t) =

{
2/3− 2(x− 4k/3) for x ∈ 2

3 [2k, 2k + 1), k ∈ {0, . . . , n− 1},
−2/3 + 2(x− 4k/3− 2/3) for x ∈ 2

3 [2k + 1, 2k + 2), k ∈ {0, . . . , n− 1}.

For t = 3/2 we have Ŷ (·, t) ≡ 0. If we only allow for solutions satisfying (6) for all t ≥ 0, we have no solutions
since (6) is not satisfied at t = 3/2. If we allow the time derivative not to exist for the single time t = 3/2,
solutions are not unique, e.g. Ŷ (t, x) = 2(t− 3/2) and Ŷ (t, x) = −2(t− 3/2) are both solutions for t ≥ 3/2.
We do not encounter these problems for the Gaussian initial data (8). The problems in the examples above
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arise since Ŷ (x, t) is close to 0 for many x ∈ SN simultaneously, and Theorem 2.4 implies that this is not
the case for the Gaussian initial data.

In order to establish that φω is a.s. Lipschitz continuous, we first prove a weaker property, namely a.s.
continuity.

Lemma 2.11. For any ω ∈ Ω let φω be defined by (9). For any K > 0 the map φω|LKM (SN ) : LKM (SN ) →
L1
M (SN ) is a.s. continuous for the supremum norm.

Proof. By the definition of φω, for any ε > 0 and y ∈ LK(SN ) it holds a.s. that

sup
ỹ∈L(SN ), ‖ỹ−y‖L∞<ε

‖φω(y)− φω(ỹ)‖L∞

≤ sup
ỹ∈L(SN ), ‖ỹ−y‖L∞<ε

∑

1≤m,m′≤M,
m 6=m′

∫

SN
1Bm(x)+ym(x)≥Bm′ (x)+ym′ (x);Bm(x)+ỹm(x)≤Bm′ (x)+ỹm′ (x) dx

≤
∑

1≤m,m′≤M,
m 6=m′

∫

SN
1|(Bm′ (x)−Bm(x))−(ym(x)−ym′ (x))|≤2ε dx.

(24)

We want to show that a.s., for all y ∈ LK(SN ) the right side of (24) converges to 0 as ε→ 0. Fix m,m′ ∈ [M ],
m 6= m′. The random field B̃(x) := Bm′(x) − Bm(x) has the law of a constant multiple of Bm. Also note
that ym − ym′ ∈ L2K(SN ). Assume ε = 2−k for k ∈ N. On the event G1

k of Lemma 2.10 (with 2K instead
of K, B̃ instead of B, and ε = 1/1000),

∫

SN
1|(Bm′ (x)−Bm(x))−(ym(x)−ym′ (x))|≤2ε dx � 2k(N−1/2+1/1000) × 2−kN = 2−k/2+k/1000

for all y ∈ LK(SN ). The lemma now follows by Lemma 2.10.

We prove Lipschitz continuity of φω by using the continuity result of Lemma 2.11, and by using Theorem
2.4 (III) to argue Lipschitz continuity of φω on a dense set of functions.

Proposition 2.12. For any ω ∈ Ω let φω be defined by (9). For any K > 0 the map φω|LKM (SN ) : LKM (SN )→
L1
M (SN ) is a.s. Lipschitz continuous for the supremum norm.

Proof. Recall the set L̃K(SN ) defined by (17). By Lemmas 2.6 and 2.11 it is sufficient to prove a.s. Lipschitz
continuity on L̃K(SN ). By (24) it is sufficient to prove that for any m,m′ ∈ [M ], m 6= m′, and B̃ = Bm−Bm′ ,

sup
f∈L̃2K(SN )

∫

SN
1|B̃(x)−f(x)|≤ε dx � ε, (25)

where the implicit constant is independent of ε, but depends on B̃. The occupation times formula (13)
implies that a.s. for fixed f and with α(f, ·, ·) denoting the occupation kernel of B̃ − f ,

∫

SN
1|B̃(x)−f(x)|≤ε dx =

∫ ε

−ε
α(f, a,SN ) da.

For fixed a ∈ R, by the definition of α it holds a.s. that α(f, a,SN ) = α(f + a, 0,SN ). By Theorem 2.4 (I)
and with α̃ as in this theorem, we have α(f + a, 0,SN ) = α̃(f + a) a.s. Therefore,

∫

SN
1|B̃(x)−f(x)|≤ε dx =

∫ ε

−ε
α̃(f + a) da ≤ 2ε sup

f∈LK+ε(SN )
α̃(f),

which completes the proof of the lemma upon an application Theorem 2.4 (III).
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We will deduce Theorem 2.1 from the following Banach space version of the theorem known as the Picard-
Lindelöf theorem in the theory of differential equations. The theorem is proved in the same manner as the
Picard-Lindelöf theorem, i.e., by defining a contraction mapping from the integral version of (10), showing
that the Picard iterates converge to a solution, and deducing uniqueness from the contraction property, see
e.g. [AMR88, Lemma 4.1.6]. The integral in (iii) is the Bochner integral.

Theorem 2.13. Let (Ĉ, ‖ · ‖) be a Banach space, L̂ ⊂ Ĉ, y0 ∈ L̂, t0 ∈ R, ∆t > 0, and I = [t0−∆t, t0 + ∆t].
Let φ : Ĉ → Ĉ be a map satisfying the following properties:

(i) φ is uniformly Lipschitz continuous on the closure of L̂,

(ii) supy∈L̂ ‖φ ◦ y‖ <∞, and

(iii) y0 +
∫ t
t0
φ(y) ds ∈ L̂ for any t ∈ I and any continuous curve (y(s))t0≤s≤t with values in L̂.

Then there is a unique curve (y(t))t∈I , such that y(t0) = y0, ∂y
∂t (t) = φ(y(t)), and y(t) ∈ L̂ for all t ∈ I.

Proof. The conditions ∂y
∂t = φ(y(t)) and y(t0) = y0 are equivalent to the following

y(t) = y0 +
∫ t

t0

φ(y(s)) ds. (26)

Define y0(t) = y0 for all t ∈ I, and for n ∈ N and t ∈ I define yn(t) by induction:

yn+1(t) = y0 +
∫ t

t0

φ(yn(s)) ds. (27)

By assumption (iii) we have yn(t) ∈ L̂ for all n ∈ N and t ∈ I. Let C1 ≥ 0 be the Lipschitz constant of φ on
L̂, and let C2 ∈ [0,∞) be defined by C2 := supy∈L̂ ‖φ(y)‖. Then ‖y1(t) − y0‖ ≤ C2|t − t0| for all t ∈ I by
(27). By assumption (i) and induction on n, we get further

‖yn+1(t)− yn(t)‖ ≤
∫ t0∨t

t0∧t
‖φ(yn(s))− φ(yn−1(s))‖ ds ≤ C2C

n
1 |t− t0|n+1/(n+ 1)!.

Since Ĉ is complete it follows that (yn(t))t∈I converges uniformly to a curve (y(t))t∈I , such that y(t) ∈ Ĉ for
any t ∈ I. Further, by sending n → ∞ in (27) it follows by continuity of φ on the closure of L̂ and by the
dominated convergence theorem for the Bochner integral that y satisfies the integral equation (26). We have
y(t) ∈ L̂ for all t ∈ I by assumption (iii). This concludes the proof of existence of solutions.

To obtain uniqueness of solutions let (ỹ(s))s∈I for ỹ(s) ∈ L̂ be another solution. By (26) we have
‖y0(t)− ỹ(t)‖ ≤ C2|t− t0| for all t ∈ I. By assumption (i) and induction we get further that for any n ∈ N,

‖yn(t)− ỹ(t)‖ ≤
∫ t0∨t

t0∧t
‖φ(yn(s))− φ(ỹ(s))‖ ds ≤ C2C

n
1 |t− t0|n+1/(n+ 1)!.

Letting n→∞ it follows that y = ỹ.

Theorem 2.1 follows from Theorem 2.13 applied with Ĉ = CM (SN ), L̂ = LKM (SN ) for some K > 0, and
φ = φω as defined by (9).

Proof of Theorem 2.1. First consider the case when V = S. Assume the assertion of the theorem is not true,
and let t̃ ∈ [0,∞) be the supremum of times t ≥ 0 for which (10) has a unique solution y in [0, t]. Choose an
arbitrary ∆t > 0, let K > t̃+∆t, and define t0 = t̃−(∆t)/2. We will prove that the assumptions of Theorem
2.13 are a.s. satisfied with φ = φω, y0 = y(t0), L̂ = LKM (SN ), Ĉ = CM (SN ) and I = [t0 −∆t, t0 + ∆t]. We
equip Ĉ with the norm ‖f‖ = max1≤m≤M ‖fm‖L∞(SN ) for f = (f1, . . . , fM ) ∈ Ĉ. Condition (i) holds by
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Proposition 2.12. Condition (ii) is satisfied since ‖φω(y)‖ ≤ 2N for any y ∈ LKM (SN ) (in fact, this bound
holds even for y ∈ CM (SN )). Finally observe that (iii) holds since for any t ∈ I,

∥∥∥∥y(t0) +
∫ t

t0

φω(y(·, s)) ds
∥∥∥∥ ≤ 2N t0 + ∆t2N ,

and since the function y(t0) +
∫ t
t0
φω(y(·, s)) ds is Lipschitz continuous with Lipschitz constant at most

2N−1t̃+ 2N−1∆t in each coordinate. Theorem 2.13 now implies that (10) has a unique solution on I, which
is a contradiction. This completes the proof of the theorem for the case V = S.

Now consider the case N = 1 and V = R. First we prove uniqueness. It is sufficient to show that given
any ε > 0 solutions are unique on [−ε−1, ε−1] × R+ with probability at least 1 − ε. Let R ∈ {3, 4, . . . } be
sufficiently large such that with probability at least 1− ε there are real numbers xi (which are random and
measurable with respect to σ(B)) for i = 1, 2, 3, 4 such that −R/2 + 1 < x1 < x2−1 < −ε−1−1 < ε−1 + 1 <
x3 +1 < x4 < R/2−1, and such that x 7→ p(B(x)) is constant on the intervals [x1, x2] and [x3, x4]. Consider
the Schelling model on the torus S of width R, and let (B̃(x))x∈[−R/2,R/2] be the initial values. Couple B̃ and
B such that B̃|[−R/2+1,R/2−1] = B|[−R/2+1,R/2−1] a.s., and observe that if Y : R × R+ solves the Schelling
model (6), (8) on R, then Y |[x2,x3] is a solution to the Schelling model on S restricted to [x2, x3]. Here we
use that if x 7→ p(B(x)) is constant on an interval of length > 1 then Y (resp. Ŷ ) evolves independently to
the left and to the right of this interval. By uniqueness of solutions to the Schelling model on S, we obtain
uniqueness of solutions to the Schelling model on R.

Existence follows by a similar argument. Let ε > 0, R ∈ {3, 4, . . . }, B̃, and xi ∈ R for i = 1, 2, 3, 4 be as
in the previous paragraph. It is sufficient to prove existence of Y restricted to [x2, x3], since the real line a.s.
can be divided into countably many disjoint intervals, such that each interval either (i) has length > 1 and
is such that x 7→ p(B(x)) is constant on the interval, or (ii) is between two intervals of type (i). If we find
a solution on each interval of type (ii) we can get a global solution by concatenating the solution from the
different intervals, since p(Y (x, t)) is constant for all t ≥ 0 and all x in an interval of type (i). By existence of
solutions to the Schelling model on the torus, we define Y |[x2,x3] to be equal to the solution of the Schelling
model on the torus restricted to [x2, x3], which concludes the proof.

2.4 Long-time behavior of the one-dimensional continuum Schelling model

The main result in this section is the following proposition, which says that in the one-dimensional continuum
Schelling model with M = 2 opinions, the spatial domain of Y can be written as the union of intervals of
length strictly greater than one on which one opinion dominates as t→∞.

Proposition 2.14. Let V = R or let V = S. Let Y be the solution of the initial value problem (6), (8) on
V with M = 2, N = 1 and N = N∞, and for m = 1, 2 define

Am :=
{
x ∈ R : lim

t→∞
p(Y (x, t)) = m

}
.

Then R = A1 ∪A2 a.s., the boundary ∂A1 is a.s. equal to the boundary ∂A2, and this boundary a.s. consists
of a countable collection of points such that the distance between any two of these points is strictly greater
than one 1.

The proposition implies that the complement of ∂A1 = ∂A2 is a sequence of open intervals, each of length
greater than 1, which alternately belong to A1 and A2. We make no statement about whether the limit does
or does not exist at the boundary points themselves.

Remark 2.15. The reason the proposition is only stated for M = 2 is that a particular form of monotonicity
of (6) holds only for M = 2. More precisely, if M = 2, Y solves (6), (8), and Ỹ solves (6) with initial data
Ỹ 1(·, 0) = B + f and Ỹ 2(·, 0) = B − f for a strictly positive function f (with f chosen such that Ỹ is
well-defined), then (Ỹ 1 − Ỹ 2) − (Y 1 − Y 2) is a strictly positive function which is increasing in t. However,
we do believe that the proposition also holds for M > 2, and if we had established the proposition for all
M , then Theorem 1.3 would hold for all M ∈ {2, 3, . . . }.
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We briefly outline the proof of Proposition 2.14 before we proceed, and we begin with some notation. We
say that an opinion m dominates in an interval J in the limit as t→∞ if the fraction of (x, t) ∈ J× [0, T ] for
which p(Y (x, t)) = m converges to 1 as T → ∞ (equivalently, r(m,J, T ) → 1 with the notation introduced
below). Intuitively, this means that individuals in the interval J are (regardless of how they started out)
increasingly tending to switch their opinions to m in the large T limit.

The first part of the argument is to show that if a certain opinion m dominates in an interval J of length
≥ 1 in the limit as t → ∞, and J is not contained in a larger interval satisfying this property, then the
interval of length 1 immediately to the right (or left) of J is dominated by some other opinion m′ as t→∞.

This result is stated in Lemma 2.20 (which is in turn immediate from Lemmas 2.18 and 2.19 below). As
explained right after Lemma 2.20, from this lemma we can deduce a weak variant of Proposition 2.14 which
holds for all M .

We conclude the proof of Proposition 2.14 by a perturbative approach. We show that if the result of
Proposition 2.14 does not hold, then it will hold for a slight perturbation of the initial data which favors
one opinion more. We deduce from this that the set of initial data on which the proposition does not hold
is exceptional. If we increase the initial bias towards opinion (say) 1 uniformly by ε, then we can find some
positive (random) number ˜̀(t) such that for any x the measure of the set {x′ ∈ N (x) : p(Y (x′, t)) = 1}
increases by at least ˜̀(t). By a detailed analysis of the differential equation we can show that inft≥0 ˜̀(t) > 0,
which we use to show that there exists at least one interval of length > 1 on which the bias converges, and
further (using Lemma 2.20) that this property must hold everywhere.

The following lemma is immediate from (6), and will be used throughout the proof of the proposition.
It says that if we have an interval J of length at least one on which one opinion dominates (in the sense
that p(Y (·, t)) is constant on the interval), then this opinion will dominate J for all times t′ ≥ t. The
lemma will be useful at several occasions, e.g. since it allows us to isolate the evolution of the differential
equation on certain compact intervals (which is important when relating the model on S and on R), and
since it simplifies certain parts of our perturbative argument by proving the occurrence of intervals J as in
the lemma for certain perturbations of Y .

Lemma 2.16. Let V = R or let V = S. Let Y be a solution of the initial value problem (6), (8) on V
with N = 1 and N = N∞. Let t ≥ 0, let m ∈ [M ], and let J ⊂ V be an interval of length ≥ 1 such that
p(Y (x, t)) = m for all x ∈ J . Then p(Y (x, t′)) = m for all t′ ≥ t and x ∈ J .

Remark 2.17. For the discrete Schelling model on Z the final configuration of opinions will always consist
of intervals of length at least w + 1 in which all nodes have the same limiting opinion. This can be seen
by the following argument. If there is an interval of length w + 1 where all nodes have the same opinion
m, then no nodes in this interval will ever change their opinion. Furthermore, if i is the first node to the
right of this interval for which m is not the limiting opinion, then nodes i, i+ 1, . . . , i+w must all have the
same limiting opinion; otherwise node i would not be satisfied in the final configuration. Since we consider
the model on Z, there will always be some interval of length w + 1 where all nodes have the same opinion
in the initial configuration. By induction on the nodes to the left and right, respectively, of this interval,
it follows that all nodes are contained in an interval of length at least w + 1 in which all nodes have the
same limiting opinion. The two lemmas we will prove next (which imply Lemma 2.20 when combined) are
continuum analogs of this result.

Lemma 2.18 says that if some opinion m dominates in an interval I = (a− 1, a) of length exactly 1, but
p ◦ Y does not converge pointwise to m in I, then there is some opinion m′ 6= m which dominates in the
interval Ĩ = (a, a+ 1). We give a brief outline of the proof in the simplified setting where M = 2 and m = 1.
For m ∈ [M ], an interval J ⊂ R, and t ≥ 0, define

r(m,J, t) :=
1
|J |t

∫ t

0

∫

J

1p(Y (x,t′))=m dx dt
′. (28)

Observe that for x ∈ I and t � 1, we see from (11) that Ŷ (x, t) is approximately equal to t
(
r(1, I, t) −

r(2,N (x) \ I, t)
)
. If r(1, I, t) is very close to 1, but Ŷ (x, t) < 0, then we must have r(2,N (x) \ I, t) very
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a− 1 a+ 1a a+ ε1/5x′t

ĨI

Figure 7: Illustration of objects in the statement and proof of Lemma 2.18. We assume that opinion m
dominates in the interval I, in the sense that r(m, I, t) → 1 as t → ∞. We also assume that there exists
an x ∈ I for which p(Y (x, t)) does not converge to m. Using the latter assumption, we prove that if we
pick some sufficiently small ε > 0 then for every sufficiently large t (where in particular t is large enough
so that r(m, I, t) > 1 − ε) there exists an xt in the slightly translated interval (a − 1 +

√
ε, a +

√
ε) such

that p(Y (xt, t)) 6= m. Using this, we will then prove existence of m′ ∈ [M ] \ {m} and x′t ∈ (a, a + ε1/5) for
all sufficiently large t > 0, such that r(m′, x′t, t) > 1 − ε1/5. Then we use the existence of x′t to prove that
limt→∞ r(m′, Ĩ, t) = 1. Note that by symmetry, we could have made the analogous argument with Ĩ on the
left side of I, instead of the right side.

close to 1. We can use this to argue existence of x′ satisfying 0 < x′ − a� 1 such that r(2, x′, t) is close to
1. By (11) and since N (x′) is approximately equal to I ∪ Ĩ, we see that Ŷ (x′, t) is approximately equal to
t
(
r(1, I, t) − r(2, Ĩ, t)

)
. We can deduce from this that r(2, Ĩ , t) is close to 1, so opinion 2 dominates in the

interval Ĩ.

Lemma 2.18. Let Y be a solution of (6) with continuous initial data (chosen such that we have existence
of solutions of (6)), N = 1, N = N∞, and either V = S or V = R. For m ∈ [M ], an interval J ⊂ R, and
t ≥ 0, define r(m,J, t) by (28). For a ∈ R define I := (a− 1, a) and Ĩ := (a, a+ 1). Assume there exists an
m ∈ [M ] such that limt→∞ r(m, I, t) = 1, and that there exists x ∈ I for which the limit limt→∞ p(Y (x, t))
either does not exist or takes a value different from m. Then there exists an m′ ∈ [M ], m′ 6= m, such that
limt→∞ r(m′, Ĩ, t) = 1.

Proof. Define K := supx∈I∪Ĩ ‖Y (x, 0)‖1. Let ε ∈ (0, 1/10), and define dε := ε1/2 and d′ε := ε1/5. For each
t ≥ 0 we define xt ∈ R by

xt := inf{x ≥ a− 1 + dε : p(Y (x, t)) 6= m},
and let m′t ∈ [M ]\{m} be such that Ym(xt, t) ≤ Ym′t(xt, t). Note that we can find such an m′t since Y is
continuous.

For m ∈ [M ], x ∈ R and t ≥ 0 define

r(m,x, t) :=
1
t

∫ t

0
1p(Y (x,t′))=m dt

′. (29)

We abuse notation slightly by letting r denote both this function and the function in the statement of the
lemma.

We will prove that for all sufficiently large t ≥ 0 there exists x′t ∈ (a, a+d′ε) satisfying r(m′t, x
′
t, t) > 1−d′ε.

The following relation, which follows directly from (6) and holds for any m1,m2 ∈ [M ], will be used multiple
times throughout the proof of this result

1
t

(
Ym1(xt, t)− Ym2(xt, t)

)
− 1
t

(
Ym1(xt, 0)− Ym2(xt, 0)

)
= r(m1,N (xt), t)− r(m2,N (xt), t). (30)

We consider the following three cases separately: (I) a−1 +dε ≤ xt < a−1 +d′ε, (II) a−1 +d′ε ≤ xt < a,
(III) a ≤ xt ≤ a+ dε. One of the cases (I)-(III) must occur by the following argument, i.e., we cannot have
xt > a + dε. If xt > a + dε, we would have an interval of length > 1, such that p(Y (x, t)) = m for all x
in the interval. Therefore, by Lemma 2.16 we would have p(Y (x, t′)) = m for all t′ ≥ t and all x in the
interval. Since limt→∞ r(m, I, t) = 1, and by the differential equation (6) and Lemma 2.16, it would follow
that limt→∞ p(Y (x, t)) = m for all x ∈ I, which is a contradiction to the assumptions of the lemma.
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First consider cases (I) and (II) defined above. Define IL := (xt − 1, a − 1), IR := (a, xt + 1) and
dt := xt − (a− 1) ≥ dε. Note that N (xt) = IL ∪ I ∪ IR, |IR| = dt and |IL| = 1− dt. By (30),

1
t

(
Ym′t(xt, t)− Ym(xt, t)

)
− 1
t

(
Ym′t(xt, 0)− Ym(xt, 0)

)

= r(m′t, I, t)− r(m, I, t) + |IL|r(m′t, IL, t)− |IL|r(m, IL, t) + |IR|r(m′t, IR, t)− |IR|r(m, IR, t).
Therefore, for all sufficiently large t (chosen such that r(m, I, t) > 1− ε, which implies r(m′t, I, t) < ε),

|IR|r(m′t, IR, t) =
1
t

(
Ym′t(xt, t)− Ym(xt, t)

)
− 1
t

(
Ym′t(xt, 0)− Ym(xt, 0)

)
− r(m′t, I, t) + r(m, I, t)

− |IL|r(m′t, IL, t) + |IL|r(m, IL, t) + |IR|r(m, IR, t)
> 0− 2K/t− ε+ (1− ε)− (1− dt) + 0 + 0
= − 2K/t− 2ε+ dt.

If there is no appropriate x′t and case (I) occurs,

dt(1− d′ε) ≥ dt sup
x∈[a,a+dt]

r(m′t, x, t) ≥ |IR|r(m′t, IR, t) > −2K/t− 2ε+ dt,

which is a contradiction for sufficiently large t, since dtd′ε ≥ 2K/t+2ε for all large t. If there is no appropriate
x′t and case (II) occurs,

dt − (d′ε)
2 ≥ d′ε sup

x∈[a,a+d′ε]
r(m′t, x, t) + (dt − d′ε) sup

x∈[a+d′ε,a+d′t]
r(m′t, x, t) ≥ |IR|r(m′t, IR, t) ≥ 2K/t− 2ε+ dt,

which is a contradiction for sufficiently large t, since d′εd
′
ε ≥ K/t+ ε for all large t.

In case (III) define dt := xt−a < dε, IL := I∩N (xt) = (xt−1, a) and IR := N (xt)\IL = (a, xt+1). Note
that |IL| = 1−dt and |IR| = 1+dt. By (30), for any sufficiently large t (such that |IL|r(m, IL, t) > 1−dt−ε)

|IR|r(m′t, IR, t) =
1
t

(
Ym′t(xt, t)− Ym(xt, t)

)
− 1
t

(
Ym′t(xt, 0)− Ym(xt, 0)

)

− |IL|r(m′t, IL, t) + |IL|r(m, IL, t) + |IR|r(m, IR, t)
≥ − 2K/t+ 0− ε+ (1− dt − ε) + 0,

so if there is no appropriate x′t,

1 + dt − (d′ε)
2 = d′ε(1− d′ε) + (1 + dt − d′ε)
≥ d′ε sup

x∈[a,a+d′ε]
r(m′t, x, t) + (1 + dt − d′ε) inf

x∈IR\[a,a+d′ε]
r(m′t, x, t)

≥ |IR|r(m′t, IR, t)
≥ −2K/t− 2ε− dt + 1,

which implies (d′ε)
2 ≤ 2K/t+ 2ε+ 2dt. This is a contradiction for sufficiently large t. We conclude that an

appropriate x′t exists for all large t in all cases (I)-(III).
For any t ≥ 0 define

Sεt := {s ∈ (K/ε,∞) : r(m′t, Ĩ, s) < 1− 3ε− 3d′ε, r(m, I, s) > 1− ε}.
We will prove that |Sεt ∩ [0, t]|/t < d′ε for all sufficiently large t > 0. For any t > 0 sufficiently large such that
x′t exists and r(m, I, s) > 1− ε, and for any s ∈ Sεt it follows from (30) that

1
s

(
Ym(x′t, s)− Ym′t(x′t, s)

)
=

1
s

(
Ym(x′t, 0)− Ym′t(x′t, 0)

)
+ (x′t − a)r(m, [a+ 1, x′t + 1], s)

− (x′t − a)r(m′t, [a+ 1, x′t + 1], s) + r(m, Ĩ, s)− r(m′t, Ĩ, s)
+ (1 + a− x′t)r(m, [x′t − 1, a], s)− (1 + a− x′t)r(m′t, [x′t − 1, a], s)

≥ − 2K/s+ 0− d′ε + 0− (1− 3ε− 3d′ε) + (1− ε− d′ε)− ε
> 0,
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where we used the following estimates to obtain the first inequality

(1 + a− x′t)r(m, [x′t − 1, a], s) = r(m, I, s)− (x′t − a)r(m, [a− 1, x′t − 1], s) ≥ (1− ε)− d′ε,
(1 + a− x′t)r(m′t, [x′t − 1, a], s) = r(mt, I, s)− (x′t − a)r(mt, [a− 1, x′t − 1], s) ≤ (1− r(m, I, s))− 0 ≤ ε.

Therefore Ym(x′t, s) > Ym′t(x
′
t, s) for all sufficiently large t and s ∈ Sεt , and it follows from the definition of r

that r(m′t, x
′
t, t) ≤ 1− |Sεt ∩ [0, t]|/t for all sufficiently large t. Since 1− d′ε < r(m′t, x

′
t, t) by definition of x′t

it follows that |Sεt ∩ [0, t]|/t < d′ε for all sufficiently large t.
Note that if ε is sufficiently small, and t, t′ ≥ 0 are such that m′t 6= m′t′ , then it follows from the definition

of Sεt and Sεt′ that (Sεt )
c ∩ (Sεt′)

c ⊂ {s ≥ 0 : r(m, I, s) ≤ 1− ε}. Therefore the estimate |Sεt ∩ [0, t]|/t < d′ε for
all sufficiently large t and the assumption lims→∞ r(m, I, s) = 1 imply that there is an m′ ∈ [M ] such that
m′t = m′ for all sufficiently large t. Define

S′ε := {s ∈ (K/ε,∞) : r(m′, Ĩ, s) < 1− 3ε− 3d′ε},

and note that |S′ε ∩ [0, t]|/t < d′ε for all sufficiently large t.
Let ε̃ > 0. In order to complete the proof of the lemma it is sufficient to show that the set of t′ > 0

such that r(m′, Ĩ, t′) < 1 − ε̃ is bounded from above. Let t′ > 0 be such that r(m′, Ĩ, t′) < 1 − ε̃. Choose
ε > 0 such that ε̃ > 10d′ε. By definition of r, for any t ∈ [(1 − ε̃

10 )t′, t′] we have r(m′, Ĩ, t) < 1 − 1
2 ε̃. By

definition of ε we have 3ε+ 3d′ε <
1
2 ε̃, so r(m′, Ĩ, t) < 1− 3ε− 3d′ε for all t ∈ [(1− ε̃

10 )t′, t′]. By definition of
S′ε this implies that |S′ε ∩ [0, t′]|/t′ > ε̃/10. On the other hand we know from the preceding paragraph that
|S′ε ∩ [0, t]|/t < d′ε < ε̃/10 for all sufficiently large t, which completes the proof of the lemma.

Lemma 2.19. Let Y be the solution of the initial value problem (6), (8) for N = 1, N = N∞, and
either V = S or V = R. Assume a ∈ R and m ∈ [M ] are such that limt→∞ p(Y (x, t)) = m for all
x ∈ I := (a− 1, a), and that for x > a arbitrarily close to a, either the limit limt→∞ p(Y (x, t)) does not exist
or limt→∞ p(Y (x, t)) 6= m. Then there is an m′ ∈ [M ], m′ 6= m, such that, in the notation of Lemma 2.18,
we have limt→∞ r(m′, Ĩ, t) = 1 for Ĩ := (a, a+ 1).

Proof. For each t ≥ 0 we can find an xt ∈ R such that limt→∞ xt = a and mt := p(Y (xt, t)) 6= m. By the
identity (30) and letting ot(1) denote a term which converges to 0 as t→∞,

0 ≤ 1
t
(Ymt(xt, t)− Ym(xt, t))

=
1
t
(Ymt(xt, 0)− Ym(xt, 0)) + |N (xt) ∩ I| · r(mt,N (xt) ∩ I, t) + |N (xt) ∩ Ĩ| · r(mt,N (xt) ∩ Ĩ , t)

− |N (xt) ∩ I| · r(m,N (xt) ∩ I, t)− |N (xt) ∩ Ĩ| · r(m,N (xt) ∩ Ĩ , t) + ot(1)

= r(mt, I, t) + r(mt, Ĩ, t)− r(m, I, t)− r(m, Ĩ, t) + ot(1).

Since limt→∞ r(m, I, t) = 1, which implies limt→∞ r(mt, I, t) = 0, it follows that limt→∞ r(mt, Ĩ, t) = 1 and
limt→∞ r(m, Ĩ, t) = 0. Since

∑M
k=1 r(k, Ĩ, t) = 1 this implies further that there is an m′ ∈ [M ], m′ 6= m, such

that mt = m′ for all sufficiently large t > 0. It follows that limt→∞ r(m′, Ĩ, t) = 1.

The following lemma is immediate from Lemmas 2.18 and 2.19. It says that if some opinion m dominates
an interval I (in the sense that limt→∞ r(m, I, t) = 1), and I is not contained in a larger interval satisfying
this property, then some other opinion m′ will dominate the interval of length 1 immediately to the right of
I. (By symmetry, the same property holds for the interval of length 1 immediately to the left of I.)

Lemma 2.20. Let V = S or V = R, and consider the initial value problem (6), (8) for N = 1 and N = N∞.
Assume m ∈ [M ] and I = [a1, a2] ⊂ R is an interval of length ≥ 1 such that limt→∞ r(m, I, t) = 1, and such
that I is not contained in any larger interval satisfying this property. Then there is an m′ ∈ [M ] \ {m} such
that limt→∞ r(m′, [a2, a2 + 1], t) = 1.
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We can deduce a weak version of Proposition 2.14 for the case V = R from Lemma 2.20. This weak
version of Proposition 2.14 is the last result of the section which holds also for M > 2. By Lemma 2.16
we know that there will be some interval I satisfying the conditions of Lemma 2.20. Lemma 2.20 therefore
says that all x ∈ R will be contained in an interval J ⊂ R of length ≥ 1, such that for some m′ ∈ [M ], we
have limt→∞ r(m′, J, t) = 1. In particular, both this lemma and Proposition 2.14 say that the limiting states
of the continuum Schelling model on R can be divided into intervals of length ≥ 1 such that each interval
is associated with a particular limiting opinion. The lemma is weaker than Proposition 2.14 in two ways:
First, we do not prove that each interval has length strictly larger than 1, and second, instead of proving
that p ◦ Y converges pointwise on the intervals we prove a weaker result expressed in terms of the function
r. Both these stronger properties are needed when we apply Proposition 2.14 in our proof of Theorem 1.3.

In the following lemma we consider two solutions Y ε1 and Y ε2 for perturbed initial data such that
Y ε1 > Y ε2 . Roughly speaking, we let h(t) denote the minimal distance between the solutions at time t
and let `(t) denote the smallest distance between a pair of points where Y ε1 is negative and Y ε2 is positive,
respectively. We lower bound `(t) in terms of h(t) by using (among other properties) Lipschitz continuity
of x 7→ Y εk(x, t)− Y εk(x, t) for k = 1, 2. For x, x′ ∈ S we define |x− x′| to be equal to infk∈N |x− x′ −Rk|
when we identify S with the interval [0, R).

Lemma 2.21. Let M = 2, and consider the initial value problem (11) with N = 1, N = N∞, and either
V = S or V = R, but with the following perturbed initial data for some K > 0

Ŷ (x, 0) = B̂(x) + ελ([−(K + 1),K + 1] ∩ [x− 1, x+ 1]) for V = R,

Ŷ (x, 0) = B̂(x) + ε for V = S.
(31)

For ε1 > ε2 > 0 let Ŷ ε1 and Ŷ ε2 denote the solution of (11), (31) with ε = ε1 and ε = ε2, respectively. For
V = R let J ⊂ [−K,K] be an interval which may depend on B̂, ε1, and ε2, and for V = S let J = S. For
t ≥ 0 define

h(t) := inf{Ŷ ε1(x, t)− Ŷ ε2(x, t) : x ∈ J}, `(t) = inf{|x− x′| : x, x′ ∈ J, Ŷ ε1(x, t) < 0, Ŷ ε2(x′, t) > 0},

where the infimum over the empty set is defined to be ∞. There are c0, c1 > 0 depending on B̂, ε1, and ε2,
such that for all t > 0,

`(t) ≥ max
{
h(t)− c1

2t
; min

{
c0;

h(t)
2.01t

}}
.

Proof. For all x ∈ J we have Ŷ ε1(x, 0) ≥ Ŷ ε2(x, 0)+(ε1− ε2). Since the right side of the differential equation
(11) is monotone in Y , this implies that the function t 7→ Ŷ ε1(x, t)− Ŷ ε2(x, t) is increasing for each x ∈ J .

Define c1 := sup{|B̂(x) − B̂(x′)| : x, x′ ∈ J}. Let ŷ, ỹ : V × R+ → R be such that Ŷ ε1(x, t) =
Ŷ ε1(x, 0)+ ŷ(x, t) and Ŷ ε2(x, t) = Ŷ ε2(x, 0)+ ỹ(x, t), and recall that ŷ(·, t) and ỹ(·, t) are Lipschitz continuous
with constant 2t by Theorem 2.1. For x, x′ ∈ J and t > 0 satisfying Ŷ ε2(x, t) ≥ 0 and |x− x′| ≤ h(t)−c1

2t , we
have

Ŷ ε1(x′, t) = (B̂(x′)− B̂(x)) + (ŷ(x′, t)− ŷ(x, t)) + (Ŷ ε1(x, t)− Ŷ ε2(x, t)) + Ŷ ε2(x, t)
≥ −c1 − 2t|x− x′|+ h(t) + 0 ≥ 0,

which implies `(t) ≥ h(t)−c1
2t .

Define c0 :=
(
ε1−ε2
1000c2

)3, where c2 is the 1/3-Hölder constant for B̂ on J , and observe that c0 ≤
( h(t)

1000c2

)3

for all t ≥ 0, so c2c
1/3
0 ≤ h(t)

1000 . For x, x′ ∈ J satisfying Ŷ ε2(x) ≥ 0 and |x− x′| ≤ min
{
c0; h(t)

2.01t

}
, we have

Ŷ ε1(x′, t) = (B̂(x′)− B̂(x)) + (ŷ(x′, t)− ŷ(x, t)) + (Ŷ ε1(x, t)− Ŷ ε2(x, t)) + Ŷ ε2(x, t)

≥ −c2|x− x′|1/3 − 2t|x− x′|+ h(t) + 0 ≥ − h(t)
1000

− 2t
h(t)
2.01t

+ h(t) ≥ 0,
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Ŷ ε2(x, t)

Ŷ ε1(x, t) ≥ h(t)

≥ `(t)
x xx0x0 − 1 x0 + 1x′ x′′

J Ŷ ε1(x, t)

Ŷ ε2(x, t)

Figure 8: For ε1 > ε2 > 0 we consider two solutions Ŷ ε1 and Ŷ ε2 of (11) with initial data perturbed by
ε1 and ε2, respectively. We prove Proposition 2.14 by showing that the event considered in the proposition
must occur for at least one of Ŷ ε1 and Ŷ ε2 . Left: Illustration of h and ` defined in Lemma 2.21. Right:
Illustration of the proof of Proposition 2.14, case (b).

which implies `(t) ≥ min
{
c0; h(t)

2.01t

}
. Combining the above two bounds for `(t) we obtain the lemma.

The next lemma says that if Y is a solution of (11) and there is some interval of length greater than 1 on
which one opinion dominates as t→∞ (in the sense that the limit limt→∞ p(Y (x, t)) exists and is constant
for all x in the interval), then the event considered in Proposition 2.14 occurs a.s.

Lemma 2.22. Let M = 2, and consider the initial value problem (11) with N = 1, N = N∞, and either
V = S or V = R. Let E be the event that (in the notation of Proposition 2.14), R \ (A1 ∪ A2) has measure
zero, and each set A1 and A2 can be written as the union of intervals of length > 1. Let E′ be the event that
at least one of the sets A1 and A2 contains an interval of length > 1. Then P[E′ ∩ Ec] = 0.

Proof. For ε > 0 and fixed K > 1 consider the initial value problem (11) with perturbed initial data (31).
Let A1(ε) and A2(ε) be defined just as the sets A1 and A2, respectively, in the statement of Proposition 2.14.
Let Ẽ(ε) be the event that the following two properties hold: (i) if V = S then at least one of the sets A1(ε)
and A2(ε) contains an interval of length > 1, and if V = R then at least one of the sets A1(ε) ∩ [−K,K]
and A2(ε) ∩ [−K,K] contains an interval of length > 1, and (ii) the origin is not contained in an interval I
of length > 1 such that limt→∞ signY ε(x, t) exists and is equal for all x ∈ I. Since K was arbitrary and by
translation invariance in law in the space variable, in order to complete the proof of the lemma it is sufficient
to show that P[Ẽ(0)] = 0.

First we will reduce the lemma to proving

P[Ẽ(ε1) ∩ Ẽ(ε2)] = 0 ∀ε1 > ε2 > 0. (32)

Assume P[Ẽ(0)] > 0. Observe that the initial data (31) are absolutely continuous with respect to the initial
data with ε = 0. By absolute continuity, we can find a sequence (εn)n∈N and p > 0 such that εn1 6= εn2 for
n1 6= n2 and P[Ẽ(εn)] > p for all n ∈ N. If we assume (32) holds this leads to a contradiction, since for any
n ∈ N,

P

[
n⋃

k=1

Ẽ(εk)

]
=

n∑

k=1

P[Ẽ(εn)] ≥ np,

which converges to ∞ as n→∞. We conclude that the lemma will follow once we have established (32).
Let Ŷ ε1 (resp. Ŷ ε2) denote the solution of (11) with perturbed initial data for ε = ε1 (resp. ε = ε2). We

will assume that both events Ẽ(ε1) and Ẽ(ε2) occur, and want to derive a contradiction. For an interval
I ⊂ V and t ≥ 0 define

r(I, t) :=
1

λ(I)t

∫ t

0

∫

I

sign(Ŷ ε2(x, t′)) dx dt′.

By Lemma 2.20 and by absolute continuity of the initial data, we know that on the event Ẽ(ε2) there is a.s.
an interval I of length ≥ 1 containing the origin, such that either limt→∞ r(I, t) = 1 or limt→∞ r(I, t) = −1.
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Without loss of generality we assume limt→∞ r(I, t) = −1; the case limt→∞ r(I, t) = 1 can be treated
similarly. We also assume that I is the maximal open interval satisfying this property, and let a be the left
end-point of the interval. By Lemma 2.20, limt→∞ r([a− 1, a], t) = 1.

If λ(I) > 1, it is immediate from the definition of r and (11) that limt→∞ sign Ŷ ε2(x, t) = −1 for all
x ∈ I, which contradicts (ii) in the definition of E(ε2). Therefore we will assume λ(I) = 1. To conclude the
proof of the lemma it is sufficient to derive a contradiction to the occurrence of E(ε1).

Let J = [a − 1/2, a + 1/2], and let h and ` be as in Lemma 2.21. Let T ⊂ R+ be the set of times
t ≥ 0 for which we can find a x′ ∈ [a − 1/10, a + 1/10] such that Ŷ ε2 takes both positive and negative
values arbitrarily close to x′. Since limt→∞ r([a, a+ 1/2], t) = −1 and limt→∞ r([a− 1/2, a], t) = 1, we have
limt→∞ λ(T ∩ [0, t])/t→ 1.

Let t ∈ T , and consider two cases: (i) there is some interval J ′ ⊂ J of length ≥ `(t) on which Y ε2(·, t)
is negative, and (ii) otherwise. In case (ii), by definition of ` there will be some interval J ′′ containing J
of length strictly larger than 1 on which Y ε1(·, t) is positive. By Lemma 2.16, Y ε1(x, t′) will be positive for
all t′ ≥ t and x ∈ J ′′. By using this, limt′→∞ r([a + 1, a + 2], t′) = 1 (which follows from Lemma 2.20),
Y ε1 ≥ Y ε2 , and (11), we get that limt′→∞ signY ε1(·, t′) = 1 on [a − 1, a + 2], which contradicts E(ε1), so
case (ii) cannot occur.

In case (i), assume the interval J ′ is chosen as large as possible, i.e., it is the largest interval in J on
which Y ε2(·, t) is negative. Then each end-point of J ′ is either contained in {a− 1/2, a+ 1/2} or is a point
x′ such that Y ε2(x′, t) = 0. By the definition of T , at least one end-point of J ′ must be a point x′ such that
Y ε2(x′, t) = 0. If x′ is the left (resp. right) end-point of J ′ then it follows from the definition of ` and J ′

that on (x′, x′ + `(t)) (resp. (x′ − `(t), x′)) we have Ŷ ε1(x, t) > 0 and Ŷ ε2(x, t) < 0 J ′. In particular,

λ({x ∈ J : Ŷ ε1(x, t) > 0, Ŷ ε2(x, t) < 0}) ≥ `(t).

By (11) we get further that for all t ∈ T ,

dh

dt
(t) ≥ 2λ({x ∈ J : Ŷ ε1(x, t) > 0, Ŷ ε2(x, t) < 0}) ≥ 2`(t).

Since `(t) ≥ min
{
c0; h(t)

2.01t

}
, this implies that limt→∞ h(t) =∞.

By the lower bound for ` in Lemma 2.21 we also have dh
dt (t) ≥ 2`(t) ≥ h(t)−c1

t for all t ∈ T , and since
limt→∞ h(t) = ∞ this implies that h(t) ≥ ct for some random constant c > 0 and all t ≥ 0. Lemma 2.20
implies that limt→∞ r([a− 1, a] ∪ [a+ 1, a+ 2], t) = 1. By this result, (11), and limt→∞ r(I, t) = −1,

inf
x∈I

1
t
Ŷ ε2(x, t) ≥ inf

x∈I
1
t
Ŷ ε2(x, 0) + r(I, t) + inf

I′⊂[a−1,a]∪[a+1,a+2] :λ(I′)=1
r(I ′, t)→ 0 as t→∞.

It follows that infx∈J Ŷ ε1(x, t) ≥ infx∈J Ŷ ε2(x, t) + h(t) > 0 for all sufficiently large t. This implies (using
(11) and Lemma 2.16) that infx∈[a−1,a+2] Ŷ

ε1(x, t) > 0 for all sufficiently large t, which is a contradiction to
the condition (ii) in the definition of E′(ε1).

By Lemma 2.22, in order to complete the proof of Proposition 2.14 we need only show that the event
E′ in that lemma occurs a.s. For V = R this is immediate, while for the torus case V = S we will apply
another perturbative argument along with Lemmas 2.21 and 2.22.

Proof of Proposition 2.14. For the case when V = R the proposition follows immediately from Lemma 2.22,
since with probability 1 there will be some interval in the initial data of length greater than 1 on which the
sign of Y is constant, and by Lemma 2.16 this implies the occurrence of E′, so we have P[E′] = 1.

Let V = S. For ε > 0 let E′(ε) be the event of Lemma 2.22, but for the perturbed initial data. It
is sufficient to prove that for any ε1 > ε2 > 0, we have P[E′(ε1)c ∩ E′(ε2)c] = 0, since this implies that
P[(E′)c] = 0 (see the argument in the second paragraph in the proof of Lemma 2.22 for a similar argument).
We assume that both E′(ε2)c and E′(ε1)c occur, and will derive a contradiction.

31



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature.

First we will argue that the following inequality holds

dh

dt
≥ 4`(t). (33)

By (11) we have
dh

dt
≥ 2 inf

x∈S
λ({x′ ∈ N (x) : Ŷ ε1(x′, t) > 0, Ŷ ε2(x′, t) < 0}). (34)

Since E′(ε1)c occurs, each closed interval I ′ ⊂ S of length ≥ 1 must intersects some interval of length ≥ 2`(t)
on which Ŷ ε2(x, t) < 0; otherwise we would have Ŷ ε1(x, t) > 0 on I ′. For some fixed x0 ∈ S the interval
[x0 − 1/2, x0 + 1/2] therefore intersect some interval of length ≥ 2`(t) on which Ŷ ε2(x, t) < 0. Let J be an
interval satisfying this property and which is maximal in the sense that J is not contained inside any other
interval satisfying the property. We have either (a) J ⊂ (x0− 1, x0 + 1), (b) {x0− 1, x0 + 1} ∩ J 6= ∅. If case
(a) occurs, then the following holds by the definition of `

λ({x′ ∈ N (x0) : Ŷ ε1(x′, t) > 0, Ŷ ε2(x′, t) < 0}) ≥ 2`(t). (35)

Next assume case (b) occurs, and without loss of generality assume (x0 − 1) ∈ J . See Figure 8 for an
illustration. We have `(t) ≤ 1/2; otherwise E′(ε2)c and E′(ε1)c cannot both occur, since Ŷ ε1 would be
positive on any maximal interval of length < 1 on which Ŷ ε2 is negative. Let x′ ∈ [x0− 1/2, x0) be the right
end-point of J , and observe that Ŷ ε1 is positive and Ŷ ε2 negative on the interval (x′− `(t), x′). Also observe
that (x′ − `(t), x′) ⊂ N (x0) since x′ ∈ [x0 − 1/2, x0) and `(t) ≤ 1/2.

Define x′′ := inf{x > x′ : Ŷ ε1(x, t) < 0}. We have x′′ < x′ + 1 − `(t) < x0 + 1 − `(t), where the first
inequality holds since Ŷ ε1(x′, t) > 0 and E′(ε1)c occurs. We also have x′′ > x′ + 2`(t); otherwise we would
have Ŷ ε2 < 0 on (x′− `(t), x′+ `(t)) by the definition of `(t), which contradicts the definition of x′. It follows
that Ŷ ε1 is positive and Ŷ ε2 negative on the interval (x′′−`(t), x′′) ⊂ N (x0). Since the intervals (x′−`(t), x′)
and (x′′ − `(t), x′′) are disjoint, we see that (35) holds also in case (b). We obtain (33) by combining (34)
and (35).

Next we argue that h(t) ≥ 2c0t for all t ≥ 0. Let τ = inf{t ≥ 0 : h(t) ≤ 2c0t}. We see that τ =∞, since
h(0) > 0, and since (33) and Lemma 2.21 imply that for t ∈ [0, τ ],

dh

dt
≥ 4 min

{
c0;

h(t)
2.01t

}
≥ 8

2.01
c0.

We conclude that h(t) ≥ 2c0t for all t ≥ 0. In particular, we have limt→∞ h(t) = ∞, so by Lemma 2.21
we have `(t) ≥ h(t)−c1

2t ≥ h(t)
2.01t for all sufficiently large t, which implies by (33) that dh

dt ≥
4h(t)
2.01t for all

sufficiently large t. Further we get h(t) ≥ ct4/2.01 for some random constant c > 0. The function h cannot
grow superlinearly, since Ŷ ε2 and Ŷ ε1 grow at most linearly in time. Therefore we obtain a contradiction,
which concludes the proof.

3 The discrete Schelling model

3.1 The early phase of the discrete Schelling model

The main purpose of this section is to prove the following proposition, which says that the solution of the
initial value problem (6), (8) describes the early phase of the discrete Schelling model well for large w. Recall
that we rescaled time by w−N/2 when we defined Y w. Therefore the proposition only provides information
about times up to order w−N/2 for the discrete Schelling model. However, as we will see in Section 3.2,
in the one-dimensional model the limiting opinion of the nodes is essentially determined at times of order
w−N/2 in the sense that the bias of most nodes is unchanged after time Cw−N/2 for C � 1.
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Proposition 3.1. Let N ∈ N and V = S, or let N = 1 and V = R. Let M ∈ {2, 3, . . . }, let N be as defined
in Section 1.3, let Y be the solution of the initial value problem (6), (8), and let Y w be given by (4). There
is a coupling of Y and Y w for w ∈ N such that a.s. Y w converges uniformly to Y on compact subsets of
V N × R+ as w →∞.

We will see in the proof of the proposition that it is sufficient to construct a coupling of the initial data
for the discrete and continuum Schelling model; given the initial data, the evolution of Y is deterministic
and the evolution of Y w is approximately deterministic. The following lemma says that the initial data can
be coupled.

Lemma 3.2. Let V = S or V = R. There is a uniquely defined continuous centered Gaussian (N,M)-
random field B on V N with covariances given by (7). The initial data Y w(·, 0) of the normalized discrete
bias function defined by (4) converges in distribution to B.

Proof. We first define a smoothed version Y̌ w ∈ CM (V N ) of Y w(·, 0), and prove convergence of Y̌ w to B.
For any i ∈ ZN let A(i) denote the square of side length 1 centered at i, and for i ∈ ZN let wN + i = {x ∈
RN : w−1(x − i) ∈ N}. If V = S (resp. V = R) define V = S (resp. V = Z). For m ∈ [M ] define the
smoothed unscaled bias function Y̌m : V × R+ → R by

Y̌m(i, t) =
∑

j∈V
λ(A(j) ∩ (wN + i))

(
1X(j,t)=m −

1
M

)
, i ∈ V, t ≥ 0.

Then define Y̌ wm by (4) and (5), but using Y̌ instead of Y. It follows by e.g. [AP86] that for each m ∈ [M ], Y̌ wm
converges in law to Bm in C(V N ). Note in particular that the entropy integral considered in [AP86] is finite
as required, since ∂N has an upper Minkowski dimension strictly smaller than 2. By this convergence result,
we see that the law of Y̌ w(·, 0) is tight in CM (V N ). By convergence of the finite dimensional distributions
and hence uniqueness of the limit, we get that (B(x))x∈V N exists and that Y̌ w(·, 0) converges in law to B in
CM (V N ). Continuity of B follows e.g. by applying the Kolmogorov-Chentsov theorem as in the construction
of Brownian motion, see the proof of Lemma 2.9.

To conclude the proof it is sufficient to show that Y wm (·, 0) − Y̌ wm converges in law to 0 as w → ∞ for
any m ∈ [M ]. Let qw ∈ N denote the following measure for the number of lattice points which are near the
boundary of wN

qw = |{j ∈ ZN : 0 < λ(A(j) ∩ (wN )) < 1}|.
Observe that for each i, Y wm (i, 0) − Y̌ wm (i) is the weighted sum of qw i.i.d. centered random variables with
values in {− 1

M , M−1
M }, divided by wN/2, where the weights are in [0, 1]. Since the upper Minkowski dimension

of ∂N is smaller than N , it holds that qw = O(wN−ε) for some ε > 0. Therefore, for any i ∈ V, we have
P[|Y wm (i, 0) − Y̌ wm (i)| > w−ε/3] � exp(−w−ε/10). A union bound now gives that Y wm (·, 0) − Y̌ wm converges in
law to 0 as w →∞.

For times of order O(w−N/2) (in particular, for times of order o(1)), in any fixed set the fraction of nodes
of each opinion m ∈ [M ] is approximately M−1, since few nodes have changed their opinion since time
t = 0. This is quantified in the following lemma. The lemma is useful since it will imply that each time the
clock of some node i rings and t = O(w−N/2), the probability that its opinion is different from its bias (i.e.,
X(i, t) 6= p(Y(i, t))) is approximately 1−M−1.

Lemma 3.3. Let M , N , R, R, w and N be as in Section 1.3, and consider the Schelling model on V = S.
Divide SN into disjoint cubes of side length L−1 for L = dw1/2e. For T > 0 let Ê(T ) be the event that for
each cube U , each m ∈ [M ], and each t ∈ [0, T ],

∣∣∣ |{i ∈ SN : w−1i ∈ U, X(i, w−N/2t) = m}|
|{i ∈ SN : w−1i ∈ U}| −M−1

∣∣∣ < w−0.1.

Then P
[
Ê(T )

]
→ 1 as w →∞, and the rate of convergence depends only on T,R,M,N .
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Proof. Throughout the proof, when we say that an event occurs with probability converging to 1 as w →∞,
we require that the rate at which the convergence holds depends only on T,R,M,N . By concentration for
the sum of independent Bernoulli random variables, with probability converging to 1 as w →∞ the following
holds at time t = 0, simultaneously for all cubes U and each m ∈ [M ]

∣∣∣ |{i ∈ SN : w−1i ∈ U, X(i, 0) = m}|
|{i ∈ SN : w−1i ∈ U}| −M−1

∣∣∣ < 1
2
w−0.1. (36)

Note that each cube contains wNL−N = Θ(wN/2) nodes, so the expected number of nodes in each cube
whose clock rings before time T is Θ(wN/2 · w−N/2) = Θ(1). Let ξ(U) denote the number of times that the
clock of some node in U rings before time T . By using concentration for the sum of independent Bernoulli
random variables again, with probability converging to 1 as w →∞, we have ξ(U) ≤ 0.1w0.01 for all U . On
this event and the event in (36), by the triangle inequality,

∣∣∣ |{i ∈ SN : w−1i ∈ U, X(i, w−N/2t) = m}|
|{i ∈ SN : w−1i ∈ U}| −M−1

∣∣∣

<
∣∣∣ |{i ∈ SN : w−1i ∈ U, X(i, 0) = m}|

|{i ∈ SN : w−1i ∈ U}| −M−1
∣∣∣+
|{i ∈ SN : w−1i ∈ U, X(i, 0) 6= X(i, w−N/2t)}|

|{i ∈ SN : w−1i ∈ U}|

<
1
2
w−0.1 +

ξ(U)
wNL−N

< w−0.1.

The evolution of Y w is random, while the evolution of Y (given its random initial condition) is deter-
ministic. The next lemma states that if Y w and Y are coupled in such a way that they are likely to be
close at time t0, then it is likely that they remain close at time t0 + ∆t. Informally, this means that the
evolution of Y w is approximately deterministic and approximately follows the same evolution rule as Y . One
reason the lemma is challenging to prove is that the evolution of Y w (resp. Y ) may be very sensitive to small
perturbations when the bias is approximately as strong towards two different opinions. To bound the effect
of this we will use Theorem 2.4, which will imply that the measure of the set of points at which this happens
is not too large, uniformly for t in a compact set.

Lemma 3.4. Let M , N , R, R, w, and N be as in Section 1.3, and consider the Schelling model on V N

for V = S. Let T > 0, ∆t > 0 and t0 ∈ {0,∆t, 2∆t, . . . , dT/∆te∆t}. Consider an arbitrary coupling of Y w

(which is defined by (4)) and Y (which solves (6), (8)). Let (Ft)t≥0 denote the filtration which contains all
information about the discrete and continuum model until (rescaled) time t, i.e,

Ft = σ
(
Y |SN×[0,t], X|SN×[0,tw−N/2], {(j, s) ∈ R : s ∈ [0, tw−N/2]}

)
.

There exists a random function v : N → [0, 1] and a random constant c > 1, such that limw→∞ v(w) = 1
a.s., and such that for all w ∈ N and with Ê(t0) as in Lemma 3.3 and E(t) := ‖Y w(·, t)− Y (·, t)‖L∞(SN ),

1E(t0)<δ;Ê(t0)P
[
E(t0 + ∆t) ≤ E(t0)(1 + c∆t) + c∆t2 | Ft0

]
≥ 1E(t0)<δ;Ê(t0)v(w).

The constant c depends on T and the σ-algebra generated by (B(x))x∈SN , and the function v depends on
T, δ,∆t and the σ-algebra generated by (B(x))x∈SN .

Lemma 3.4 will follow almost immediately from the following lemma. For any f ∈ CM (SN ) and w ∈ N
define ‖f‖L∞(SN ) := supm∈[M ] supi∈SN |fm(w−1i)|.

Lemma 3.5. The result of Lemma 3.4 holds if we replace L∞(SN ) by L∞(SN ) in the second indented
equation.

The next lemma, which is a discrete version of the estimate (25), will help us to prove Lemma 3.5.
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Lemma 3.6. For any T > 0 and ∆t > 0 there are random constants c and w0 such that for any δ ∈ (0, 1),
if

Ãt,δ,w := {i ∈ SN : ∃m,m′ ∈ [M ],m 6= m′, such that |Ym(iw−1, t)− Ym′(iw−1, t)| < δ}, t ≥ 0,

then |Ãt,δ,w| < cδwN for all t ∈ {0,∆t, 2∆t, . . . , dT/∆te∆t} and all sufficiently large w ≥ w0. The constant
c satisfies the same properties as in Lemma 3.4, and the constant w0 depends on T , ∆t, and the σ-algebra
generated by (B(x))x∈SN .

Proof. Let m,m′ ∈ [M ] satisfy m 6= m′. Then the field Ym(·, t)−Ym′(·, t) has the law of a constant multiple
of Bm plus some element of L2t(SN ). The estimate (25) implies that

λ(At,δ) <
1
2
cδ, At,δ := {x ∈ SN : |Ym(x, t)− Ym′(x, t)| < δ}. (37)

By e.g. [Str11, Lemma 4.2.6] and since At,δ is open,

λ(At,δ) = lim
w→∞

∑

i∈SN

w−N1|Ym(iw−1,t)−Ym′ (iw−1,t)|<δ = lim
w→∞

w−N |Ãt,δ,w|.

Therefore |Ãt,δ,w| < cδwN for all sufficiently large values of w for fixed t ∈ [0, T ], so |Ãt,δ,w| < cδwN for all
sufficiently large values of w and all t ∈ {0,∆t, 2∆t, . . . , dT/∆te∆t}.

Proof of Lemma 3.5. Throughout the proof the implicit constant of� will depend only on T and (B(x))x∈SN .
The function v will change throughout the proof, but will always satisfy the properties of the function v in the
statement of the lemma. The expression ”for all sufficiently large w” means that a statement is true for all
w � 1. Fix m ∈ [M ]. For any i ∈ S̃ let Ui,t = 1X(i,w−N/2t−)6=m, and let Vi be i.i.d. Bernoulli random variables
with P[Vi = 0] = M−1 and P[Vi = 1] = 1−M−1. Here X(i, w−N/2t−) is equal to lims↑tX(i, w−N/2s). Recall
the definition (2) of R, and for i ∈ SN define the following sets R′,R′0,R′i,R′0,i ⊂ R

R′ := {(j, tw−N/2) ∈ R : t ∈ (t0, t0 + ∆t]}, R′0 := {(j, t) ∈ R′ : 6 ∃s ∈ [t0, t) such that (j, s) ∈ R′},
R′i := {(j, t) ∈ R′ : j ∈ N(i)}, R′0,i := {(j, t) ∈ R′0 : j ∈ N(i)} = R′0 ∩R′i.

Note that several of the random variables or sets we have defined above depend on w, but we have chosen
not to indicate the w dependence in order to simplify notation. We have

‖(Y wm (·, t0 + ∆t)− Ym(·, t0 + ∆t))− (Y wm (·, t0)− Ym(·, t0))‖L∞(SN )

= sup
j∈SN

∣∣∣∣w−N/2
∑

(i,t)∈R′j

1X(i,w−N/2t−) 6=X(i,w−N/2t)=m − w−N/2
∑

(i,t)∈R′j

1m=X(i,w−N/2t−)6=X(i,w−N/2t)

− (1−M−1)
∫ t0+∆t

t0

∫

x∈N (jw−1)
1p(Y (x,t))=m dx dt+M−1

∫ t0+∆t

t0

∫

x∈N (jw−1)
1p(Y (x,t))6=m dx dt

∣∣∣∣.

To conclude the proof of the lemma it is sufficient to show that with probability > v(w), the right side is
� ∆t(∆t + δ). By the triangle inequality, if X0(j), X2(j), . . . , Xn(j) is any sequence of real numbers for
j ∈ SN and Ak = supj∈SN |Xk−1(j)−Xk(j)|, then

sup
j∈SN

|Xn(j)−X0(j)| ≤
n∑

k=1

Ak.

We apply this principle with certain expressions in place of the Xk(i), where each expression in some sense
approximates the amount the bias function evaluated at i has changed during (t0, t0 + ∆t]. This gives

‖(Y wm (·, t0 + ∆t)− Ym(·, t0 + ∆t))− (Y wm (·, t0)− Ym(·, t0))‖L∞(SN ) ≤
7∑

k=1

(Ak +A′k), (38)
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where

A1 = sup
j∈SN

∣∣∣∣∣∣
w−N/2

∑

(i,t)∈R′j

1X(i,w−N/2t−) 6=X(i,w−N/2t)=m − w−N/2
∑

(i,t)∈R′j

1p(Y w(iw−1,t))=mUi,t

∣∣∣∣∣∣
,

A2 = sup
j∈SN

∣∣∣∣∣∣
w−N/2

∑

(i,t)∈R′j

1p(Y w(iw−1,t))=mUi,t − w−N/2
∑

(i,t)∈R′j

1p(Y w(iw−1,t0))=mUi,t

∣∣∣∣∣∣
,

A3 = sup
j∈SN

∣∣∣∣∣∣
w−N/2

∑

(i,t)∈R′j

1p(Y w(iw−1,t0))=mUi,t − w−N/2
∑

(i,t)∈R′0,j

1p(Y w(iw−1,t0))=mUi,t0

∣∣∣∣∣∣

= sup
j∈SN

∣∣∣∣∣∣
w−N/2

∑

(i,t)∈R′j\R′0,j

1p(Y w(iw−1,t0))=mUi,t

∣∣∣∣∣∣
,

A4 = sup
j∈SN

∣∣∣∣∣∣
w−N/2

∑

(i,t)∈R′0,j

1p(Y w(iw−1,t0))=mUi,t0 − w−N/2
∑

(i,t)∈R′0,j

1p(Y w(iw−1,t0))=mVi

∣∣∣∣∣∣

= sup
j∈SN

∣∣∣∣∣∣
w−N/2

∑

(i,t)∈R′0,j

1p(Y w(iw−1,t0))=m(Ui,t0 − Vi)

∣∣∣∣∣∣
,

A5 = sup
j∈SN

A5,j , A5,j =

∣∣∣∣∣∣
w−N/2

∑

(i,t)∈R′0,j

1p(Y w(iw−1,t0))=mVi −∆t(1−M−1)
∫

x∈N (jw−1)
1p(Y w(x,t0))=m dx

∣∣∣∣∣∣
,

A6 = (1−M−1)∆t sup
j∈SN

∣∣∣∣∣

∫

x∈N (jw−1)
1p(Y w(x,t0))=m dx−

∫

x∈N (jw−1)
1p(Y (x,t0))=m dx

∣∣∣∣∣

= (1−M−1)∆t sup
j∈SN

∣∣∣∣∣

∫

x∈N (jw−1)
1p(Y w(x,t0))=m − 1p(Y (x,t0))=m dx

∣∣∣∣∣ ,

A7 = (1−M−1) sup
j∈SN

∣∣∣∣∣∆t
∫

x∈N (jw−1)
1p(Y (x,t0))=m dx−

∫ t0+∆t

t0

∫

x∈N (jw−1)
1p(Y (x,t))=m dx dt

∣∣∣∣∣ ,

where we view iw−1 as an element of SN by identifying S (resp. S) with [0, R) (resp. {0, . . . , Rw − 1}).
Define A′v exactly as Av, except that = m is replaced by 6= m, 1−M−1 is replaced by M−1, Ui,t is replaced
by 1−Ui,t, and Vi is replaced by 1− Vi. We have chosen to split the terms as above since the accumulation
of error during (t0, t0 + ∆t] (as defined on the left side of (38)) is caused by several factors, while each
term Ak is of the form Ak = supi∈SN |Xk−1(j)−Xk(j)| such that each difference Xk−1(j)−Xk(j) is more
straightforward to bound.

In our bound of A5 it will become clear why the natural scaling of time in (4) is w−N/2. Recall that we
can write A5 on the form A5 = supj∈SN |X4(j)−X5(j)|. In this notation, the term X5(j) is of order O(∆t).
The sum appearing in the definition of X4(j) is of order wN/2∆t, since during an unscaled time interval of
duration w−N/2∆t (equivalently, a rescaled time interval of duration ∆t) the fraction of nodes whose Poisson
clock rings is approximately w−N/2∆t, and the sum is over Θ(wN ) nodes. Therefore the order of magnitude
of X4(j) is O(w−N/2 · wN/2∆t) = O(∆t), i.e., of the same order as X5(j) as desired.

For each j ∈ {1, . . . , 7} we will show that with probability > v(w) we have Aj � ∆t(∆t+ δ). The term
A′j can be bounded exactly as Aj for all j, and the proof of its bound will therefore be omitted.

First we show that A1 � ∆t(δ + ∆t) with probability > v(w). Recall the update rules described in
(i)-(iii) in Section 1.3. Notice that the two sums in the definition of A1 are identical, except possibly for
the contribution from terms where p(Y w(iw−1, t)) = 0, i.e., from situations where there is not a unique
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opinion which is the most common opinion in the neighborhood of j. We will bound A1 by using that there
are very few nodes for which p(Y w(iw−1, t)) = 0. We may assume that |R′| < 2RN∆twN/2, since |R′| is
a Poisson random variable with parameter RN∆twN/2, which gives P[|R′| < 2RN∆twN/2] ≥ v(w). This
implies ‖Y w(·, t)−Y (·, t)‖L∞(SN ) ≤ δ+c∆t for all t ∈ (t0, t0+∆t] and some appropriate c as in the statement
of the lemma. Under these assumptions,

A1 ≤ w−N/2
∑

(i,t)∈R′
1p(Y w(iw−1,t))=0 ≤ w−N/2

∑

(i,t)∈R′

∑

1≤m,m′≤M,m6=m′
1|Ym′ (iw−1,t)−Ym(iw−1,t)|≤2δ+2c∆t.

By independence of R′ and Ft0 , conditioned on Ft0 the right side is stochastically dominated by the sum of
i.i.d. {0, 1}-valued random variables; this can be seen by ordering the terms by the value of t and use the
memoryless property of the Poisson clocks. By Lemma 3.6 the probability that each of these i.i.d. random
variables equals 1 is � δ + ∆t. The bound for A1 now follows by the assumed upper bound for |R′| and a
Chernoff bound.

Next we bound A2. The first sum defining A2 represents the actual update rule of the dynamics (except
for the case of p(Y w(iw−1, t)) = 0, which is handled above), while the second sum defining A2 represents an
update rule where the nodes use their bias at time t0 rather than their bias at time t to determine whether
they update their opinion. We bound A2 by using that (due to (25) and the assumption ‖Y w(·, t0) −
Y (·, t0)‖L∞(SN ) < δ) most nodes have a rather significant bias towards one opinion at time t0, and this is
unlikely to change throughout the considered time interval since the number of rings |R′| in the neighborhood
of j is not too large. As above we assume |R′| < 2RN∆twN/2. Define Ã ⊂ SN by

Ã = {i ∈ SN : ∃m′ ∈ [M ]\{m} such that |Y wm′(w−1i, t0)− Y wm (w−1i, t0)| ≤ 2w−N/2|R′|}.

We claim that |Ã| � (∆t+δ)wN for all sufficiently large w. If i ∈ Ã the assumption ‖Y (·, t0)−Y w(·, t0)‖L∞(SN ) <
δ implies that there exists m′ ∈ [M ]\{m}, such that

|Ym(iw−1, t0)− Ym′(iw−1, t0)| ≤ 2w−N/2|R′|+ 2δ < 4RN∆t+ 2δ. (39)

It follows by Lemma 3.6 that the set of nodes i satisfying (39) is � wN (∆t+ δ), and our claim follows.
If i ∈ SN is such that there is a t ∈ (t0, t0 + ∆t] for which p(Y w(iw−1, t)) 6= p(Y w(iw−1, t0)), then we

must have i ∈ Ã by the definition of Y w. Therefore

A2 ≤ w−N/2
∑

(i,t)∈R′
1i∈Ã.

We conclude the bound for A2 by using independence of R′ and Ã and proceeding exactly as in the proof of
A1.

Next we claim that with probability > v(w) we have A3 < (∆t)2. Note that the two sums defining A3
are identical, except that in the second sum we only consider terms coming from the first time a node rings
during (t0, t0 + ∆t]. We bound A3 by using that there are few clocks which ring two or more times. For each
i ∈ SN let Pi be the Poisson random variable with parameter ∆tw−N/2 which denotes the number of rings
of Poisson clock i during the interval (t0, t0 + ∆t]. Then

A3 ≤ w−N/2
∑

i∈SN

max{Pi − 1, 0}.

Since E[max{Pi − 1, 0}] � (∆t)2w−N , we have E[A3] � (∆t)2w−N/2. By Chebyshev’s inequality P[A3 ≥
(∆t)2] � w−N/2, which implies our claim.

Next we will bound A4. In the neighborhood of each node i the fraction of nodes which has each opinion
is approximately 1/M . Furthermore, as we will argue below, the same property holds if we only consider
nodes for which the bias is m. Therefore, each time the clock of some node with bias m is ringing, the
probability that this node has an opinion different from m (which will cause the node to change opinion)
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is approximately 1 − M−1. The term A4 quantifies the error we make by assuming this probability is
exactly 1−M−1, independently for each clock ring. We will bound A4 by approximating the region where
p(Y w(iw−1, t0)) = m by small cubes of side length L−1, and by proving that when a node i is sampled
uniformly from one of these cubes and L� w, then Ui,t0 and Vi have approximately the same distribution.
As in our proof for the bound of A3 we can assume |R′| < 2RN∆twN/2. Let L = dw1/2e and divide SN into
(RL)N disjoint cubes of side length L−1. For any i ∈ SN let ILi denote the cube containing iw−1. Define
A ⊂ S and Ã ⊂ SN by

A = {x ∈ SN : p(Y (x, t0)) = m}, Ã = {i ∈ SN : ILi ⊂ A}.

We have

A4 ≤ w−N/2
∑

(i,t)∈R′
|1p(Y w(iw−1,t0))=m − 1i∈Ã|+ sup

j∈SN

w−N/2
∑

(i,t)∈R′0,j ,i∈Ã

(Ui,t0 − Vi). (40)

We will prove that A4 < δ∆t with probability > v(w). Any i ∈ SN for which 1p(Y w(iw−1,t0))=m 6= 1i∈Ã must
satisfy one of the following conditions: (i) p(Y w(iw−1, t0)) 6= p(Y (iw−1, t0)), or (ii) p(Y (iw−1, t0)) = m and
i 6∈ Ã.

We will prove that the number of nodes satisfying one of the conditions (i)-(ii) is � wNδ with probability
> v(w). If i ∈ SN satisfies (i) and E(t0) < δ, there is an m′ ∈ [M ], m′ 6= m, such that |Ym(iw−1, t0) −
Ym′(iw−1, t0)| < 2δ, and the wanted result follows by Lemma 3.6. If i satisfies (ii), there is a m′ 6= m
such that the function Ym(·, t0) − Ym′(·, t0) intersects zero in ILi . By our estimates for the event G1

k in
Proposition 2.10, it holds with probability > v(w) that the number of such cubes is < LN−1/2+1/100 for
all t ∈ [0, T ]. Using L = dw1/2e, it follows that for w > δ−4 the number of nodes i ∈ S̃ satisfying (ii) is
� LN−1/2+1/100(w/L)N � wNδ with probability > v(w). This completes the proof that the number of nodes
satisfying one of the conditions (i)-(ii) is � wNδ with probability > v(w).

Given any i ∈ SN the events {∃t ∈ (t0, t0 + ∆t] such that (i, t) ∈ R′} and 1p(Y w(i,t0))=m 6= 1i∈Ã are
independent. Proceeding as when bounding A2 and A3, we see that the first term on the right side of (40)
is � δ∆t with probability > v(w).

Next we will prove that the second term on the right side of (40) converges to 0 in probability as
w → ∞. On the event Ê(t0), for each m ∈ [M ] the number of nodes in ILj with type m at time t0 is
M−1 · #ILJ · (1 + O(w−0.1)). Therefore the difference in probability between the events {Ui,t0 = 1} and
{Vi = 1} is � w−0.1 when we sample i uniformly from one of the cubes ILj . Since R′ is independent of
Ui,t0 and Vi for all i ∈ N(j), the second term on the right side of (40) is stochastically dominated by w−N/2

times the sum of < |R′| � ∆twN/2 i.i.d. random variables taking values in {−1, 0, 1} and with expectation
� w−0.1. Our claim follows by a Chernoff bound and a union bound.

Next we claim that A5 < δ∆t with probability > v(w). The integral in the definition of A5 is the exact
continuum analogue of the sum: For each node i having bias m at time t0, the probability that Vi = 1 and that
the clock of i rings during a time interval of rescaled length ∆t (i.e., unscaled time w−N/2∆t) is approximately
equal to (1−M−1)w−N/2∆t. Therefore, for each node with bias m we get an expected contribution to the first
term defining A5 which is equal to approximately (1−M−1)w−N∆t = ∆t(1−M−1)

∫
x : ‖x−w−1i‖∞<w−1/2 dx.

Summing over all nodes for which the bias is m at time t0, we get a heuristic justification for why A5 is
small.

We will now make the heuristic argument in the above paragraph more precise. If |R′0,j | ≥ ∆t2NwN/2

let R̃′0,j denote the first d∆t2NwN/2e rings of the Poisson clocks during the interval (t0, t0 + ∆t], and if
|R′0,j | < ∆t2NwN/2 let R̃′0,j denote the union of R′0,j and (d∆t2NwN/2e − |R′0,j |) pairs (i, t0 + ∆t), where
the i’s are pairwise different and sampled independently and uniformly from N(j). By the triangle inequality
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and letting ∆ denote symmetric difference,

A5,j ≤


w−N/2

∑

(i,t)∈R′0,j∆R̃′0,j

Vi




+

∣∣∣∣∣∣
w−N/2

∑

(i,t)∈R̃′0,j

1p(Y w(iw−1,t0))=mVi −∆t(1−M−1)
∫

x∈N (jw−1)
1p(Y w(iw−1,t0))=m dx

∣∣∣∣∣∣
.

(41)

We will prove that P[A5,j > w−1/100] decays faster than any power of w when w → ∞, which is sufficient
to complete the proof of our bound for A5. We see immediately that the first term on the right side of
(41) decays sufficiently fast. By independence of R′0,j and Ft0 , the second sum on the right side of (41)
is, conditioned on Ft0 , equal in law to w−N/2 times the sum of ∆t2NwN/2 independent bounded centered
random variables. We obtain the desired bound by a Chernoff bound.

Now we will prove that A6 � δ∆t with probability > v(w). The difference between the considered
integrals is whether we let Y w or Y determine the bias of the nodes. We bound this term by using that
Y w and Y are close, and that at most points the nodes have a rather clear bias towards one opinion, so the
slight difference between Y w and Y does not change the bias at most points (i.e., p(Y w(x, t0)) = p(Y (x, t0))
for most x). By first using ‖Y wm (·, t0)− Ym(·, t0)‖L∞(SN ) < δ and (24), and then using Ym −Bm ∈ LtM (SN )
and (25) for all t ∈ (t0, t0 + ∆t], we get

A6 ≤ ∆t
∑

1≤m,m′≤M,m6=m′
sup
x∈SN

∫

|x−x′|≤1
1|(Ym(t0,x′)−Ym′ (t0,x′))|≤2δ dx

′

≤ ∆t
∑

1≤m,m′≤M,m6=m′
sup

f∈L2t0 (SN )

∫

SN
1|(Bm(x)−Bm′ (x))−f(x)|<2δ dx

� δ∆t.
Finally we will bound A7. The first integral corresponds to a model where the updates are determined

by the biases at time t0 (rather than time t ∈ (t0, t0 + ∆t]), while the second integral represents the true
dynamics. The difference is small for similar reasons as A2 is small: At most points x ∈ N (jw−1) one element
of the vector Y (x, t0) is significantly larger than the other elements, so t 7→ p(Y (x, t)) will be constant for
t ∈ (t0, t0 + ∆t] since the time derivative of Y is bounded. More precisely, we can use Lemma 2.12 and
‖Ym(·, t)− Ym(·, t0)‖L∞(SN ) ≤ 2∆t for all t ∈ (t0, t0 + ∆t], to argue that A7 � (∆t)2.

Combining the above estimates for Aj , j = 1, . . . , 7, we obtain the lemma by a union bound.

Proof of Lemma 3.4. For any x ∈ SN there are αi(x) ∈ [0, 1] and xi(x) ∈ SN for i = 1, . . . , 2N such that
‖xi(x) − x‖∞ ≤ w−1 and

∑2N

i=1 αi(x) = 1, and such that for any t ≥ 0, Y w(x, t) =
∑2N

i=1 αi(x)Y w(xi(x), t).
For any x ∈ SN define ∆Y w(x) := Y w(x, t0 + ∆t) − Y w(x, t0) and ∆Y (x) := Y (x, t0 + ∆t) − Y (x, t0).
Observe that

∆Y w(x)−∆Y (x) =
2N∑

i=1

αi(x)(∆Y w(xi(x))−∆Y (xi(x))) +
2N∑

i=1

αi(x)(∆Y (xi(x))−∆Y (x)). (42)

By uniform continuity of Y , which follows from uniform continuity of B,

sup
x∈SN

∑

i

αi(x)(∆Y (xj(x))−∆Y (x))→ 0 as w →∞, (43)

and the rate of convergence depends only on T and the σ-algebra generated by (B(x))x∈SN . By Lemma 3.5,

1E(t0)<δ;Ê(t0)P
[

sup
x∈SN

‖∆Y w(x)−∆Y (x)‖ ≤ c∆t(∆t+ δ) | Ft0
]
≥ 1E(t0)<δ;Ê(t0)v(w). (44)

We obtain the desired bound for ∆Y w(x)−∆Y (x) by combining (42), (43) and (44).
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The following lemma will be needed to transfer the result of Proposition 3.1 from S to R. It says that a
discrete version of Lemma 2.16 holds with high probability for large w.

Lemma 3.7. Consider the Schelling model on S (resp. Z) with (in the notation of Section 1.3) N = 1,
M ∈ {2, 3, . . . } and N = N∞. Let Y w ∈ CM (S × R+) (resp. Y w ∈ CM (R × R+)) be given by (4). Fix an
interval I ⊂ R of length > 1 and some m ∈ [M ]. For any ε > 0 and t ≥ 0 define the event Eεt by

Eεt :=

{
Y wm (x, t) > sup

m′∈[M ]\{m}
Y wm′(x, t) + ε, ∀x ∈ I

}
.

Then for any ε > 0, limw→∞ P
[
Eε0 ∩

(⋃
t∈[0,ε−1]

(
E0
t

)c )] = 0.

Proof. Define Ỹ wm (x, t) := Y wm (x, t) − supm′∈[M ]\{m} Y
w
m′(x, t). For any interval I ⊂ R and w ∈ N, let

wI = {wx : x ∈ I}. Define stopping times T and Ti for i ∈ wI by

Ti = inf{t ≥ 0 : Ỹ wm (w−1i, t) ≤ 0}, T = inf
i∈(wI)

Ti.

Since
⋃
t∈[0,ε−1]

(
E0
t

)c ⊂ {T ≤ ε−1} it is sufficient by a union bound to prove that for each fixed i ∈ wI

log P[Eε0; Ti = T ≤ ε−1] � −w,

where the implicit constant can depend on all parameters except w and i. Letting tn := ε−1w−0.1n for
n ∈ {0, 1, . . . , dw0.1e}, we observe that

{Eε0; Ti = T ∈ [tn, tn+1]} ⊂
{
Eε0; tn ≤ Ti = T ; Ỹ wm (w−1i, tn) <

1
2
Ỹ wm (w−1i, 0)

}

∪
{
Eε0; |{(j, w−1/2t) ∈ R : j ∈ N(i), t ∈ [tn, tn+1]}|w−1/2 >

1
100

Ỹ wm (w−1i, 0)
}
.

It follows by a union bound that

P[Eε0; Ti = T ≤ε−1] ≤
dw0.1e−1∑

n=0

P
[
Eε0; tn ≤ Ti = T ; Ỹ wm (w−1i, tn) <

1
2
Ỹ wm (w−1i, 0)

]

+
dw0.1e−1∑

n=0

P
[
Eε0; |{(j, w−1/2t) ∈ R : j ∈ N(i), t ∈ [tn, tn+1]}|w−1/2 >

1
100

Ỹ wm (w−1i, 0)
]
.

Since Ỹ wm (w−1i, 0) > ε on the event Eε0, the logarithm of the last sum is � −w, so to conclude the proof of
the lemma it is sufficient to show that for each fixed n ∈ {0, 1, . . . , dw−0.1e − 1},

log P
[
Eε0; tn ≤ Ti = T ; Ỹ wm (w−1i, tn) <

1
2
Ỹ wm (w−1i, 0)

]
� −w, (45)

where the implicit constant can depend on all parameters except w, i, and n. Fix n ∈ {0, 1, . . . , dw−0.1e−1},
and define

N+ := {j ∈ N(i) : X(j, 0) 6= m, jw ∈ I}, R+ := {j ∈ N+ : ∃t ∈ [0, tn] such that (j, tw−1/2) ∈ R},
N− := {j ∈ N(i) : X(j, 0) = m, jw 6∈ I}, R− := {j ∈ N− : ∃t ∈ [0, tn] such that (j, tw−1/2) ∈ R}.

By large deviation estimates for Bernoulli random variables,

log P
[
Êc
]
� −w, Ê :=

{∣∣|R±| − (1− e−w−1/2tn)|N±|
∣∣ < w0.1

}
. (46)
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Furthermore, observe that

|N+| − |N−| = |{j ∈ N(i) : (jw) ∈ I}| − |{j ∈ N(i) : X(j, 0) = m}|

≥ (w + 1)−
(

2w + 1
M

+ w1/2Y wm (w−1i, 0)
)

> −w1/2Y wm (w−1i, 0),

(47)

where the inequality on the second line follows by the definition of Y w. By (47), the definition of Ê,
|1− e−w−1/2tn | ≤ 2ε−1w−1/2, and

1tn≤T Ỹ
w
m (w−1i, tn) ≥ 1tn≤T

(
Ỹ wm (w−1i, 0) + 2w−1/2|R+| − 2w−1/2|R−|

)
,

it follows that on the event {Eε0; tn ≤ Ti = T ; Ê},

Ỹ wm (w−1i, tn) ≥ Ỹ wm (w−1i, 0)− 2ε−1w−1/2Y wm (w−1i, 0)− 4w−0.4.

Since log P[2ε−1w−1/2Y wm (w−1i, 0) > Ỹ wm (w−1i, 0)] � −w, this result and (46) implies (45).

Proposition 3.1 now follows by iterating the estimate of Lemma 3.4.

Proof of Proposition 3.1. First consider the case V = S and N ∈ N. By Skorokhod embedding we may
couple the discrete and continuum Schelling model such that the convergence in law in Lemma 3.2 is almost
sure. Let T,∆t > 0. Conditioned on B, let c and v be the (random) constant and function, respectively, of
Lemma 3.4. Recall that c depends on B and T , while v depends on B, T , ∆t, and the error E(t0) with E
as in Lemma 3.4. By Lemma 3.4 with t0 = 0 and with notation as in that lemma,

1E(0)<δ;Ê(T )P
[
‖Y w(·,∆t)− Y (·,∆t)‖L∞(SN ) < c2(∆t)3 + 2c(∆t)2 | F0

]
> 1E(0)<δ;Ê(T )v(w).

Iterating the result of Lemma 3.4, we get further that for any n ∈ N,

1E(0)<δ;Ê(T )P
[
‖Y w(·, ñ∆t)− Y (·, ñ∆t)‖L∞(SN ) < ∆t(1 + c∆t)ñ+1 −∆t, ñ ∈ {0, . . . , n} |F0

]

> 1E(0)<δ;Ê(T )v(w)n.

We need n0 := dT/∆te time steps to reach time T , so conditioned on F0 and on the event {E(0) < δ}∩Ê(T ),
with probability at least v(w)n0 and for ∆t < 1/(100c),

‖Y w(·, ñ∆t)− Y (·, ñ∆t)‖L∞(SN ) < ∆t(1 + c∆t)n0+1 −∆t < (2ecT − 1)∆t, ∀ñ ∈ {0, . . . , n0}. (48)

With probability converging to 1 as w →∞, for any interval I = [∆tñ,∆t(ñ+1)] and node i ∈ SN , the total
number of times during I at which the Poisson clock of a node in N(i) rings, is ≤ 10NwN/2∆t. Therefore,
with probability converging to 1 as w →∞,

sup
i∈SN

sup
0≤n≤n0

sup
d∈[0,∆t]

‖Y w(iw−1, n∆t+ d)− Y w(iw−1, n∆t)‖L∞(SN ) ≤ 10N∆t.

Combining this estimate with (48), for any given ε0 > 0 and for all w sufficiently large as compared to ε0,

1E(0)<δ;Ê(T )P

[
sup
x∈SN

sup
t∈[0,T ]

‖Y (x, t)− Y w(x, t)‖L∞(SN ) ≤ (2ecT + 10N )∆t
∣∣∣F0

]
> 1E(0)<δ;Ê(T )(v(w)n0 − ε0).

Since P[E(0) < δ; Ê(T )]→ 1 as w →∞, for all sufficiently large w,

P

[
sup
x∈SN

sup
t∈[0,T ]

‖Y (x, t)− Y w(x, t)‖L∞(SN ) ≤ (2ecT + 10N )∆t

]
> E[v(w)n0 − 2ε0].
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We first make (2ecT + 10N )∆t arbitrarily small by decreasing ∆t, and then we make v(w)n0 −2ε0 arbitrarily
close to 1 by sending ε0 → 0 and w → ∞. It follows that supt∈[0,T ] ‖Y w(·, t) − Y (·, t)‖L∞(SN ) → 0 in
probability. By the Skorokhod representation theorem we can couple the model for different values of w,
such that we obtain a.s. convergence. This concludes the proof in the case V = S.

Now consider the case V = R and N = 1. Let ε > 0. For R > 2(ε−1 + 2) define the event ER by

ER = {∃a− ∈ [−R/2 + 2,−ε−1], a+ ∈ [ε−1, R/2− 2] : Y1(x, 0) > sup
m′∈{2,...,M}

Ym′(x, 0) + ε,

∀x ∈ [a− − 2, a−] ∪ [a+, a+ + 2]}.

Choose R sufficiently large such that P[ER] > 1− ε/2. Let Y (resp. Ŷ ) denote the solution of (6), (8) on R
(resp. S = [−R/2, R/2]), and let Y w (resp. Ŷ w) be given by (4) for the Schelling model on Z (resp. S). We
will argue that we can couple Y, Ŷ , Y w, and Ŷ w such that with probability at least 1− ε, Y w → Y uniformly
on [−ε−1, ε−1]× [0, ε−1]. This will be sufficient to complete the proof of the proposition since ε was arbitrary.

By the convergence result for the torus proved above, we can couple Ŷ w and Ŷ such that Ŷ w|[−R/2,R/2]×[0,ε−1]

converges uniformly to Ŷ |[−R/2,R/2]×[0,ε−1]. Furthermore, on ER we can couple Y and Ŷ such that Y |[a−,a+] =
Ŷ |[a−,a+], since the law of the initial conditions are the same, and since Lemma 2.16 implies that p(Y (x, t)) =
p(Ŷ (x, t)) = 1 for all x ∈ [a− − 1, a−] ∪ [a+, a+ + 1] and t ≥ 0. To complete the proof of the proposition it
is sufficient to prove that on ER we can couple Y w and Ŷ w such that Y w|[a−,a+]×[1,ε−1] = Ŷ w|[a−,a+]×[1,ε−1]
with probability at least 1− ε/2.

Consider a coupling of Y w and Ŷ w such that the initial opinion of the nodes corresponding to the interval
[a− − 1, a+ + 1] is identical for the models on Z and S, and such that the set of rings of Poisson clocks
corresponding to this interval, i.e. the set {(i, t) ∈ R : (a−−1)w ≤ i ≤ (a++1)w}, is the same for the models
on Z and S. We also assume that draws as described in (iii) of Section 1.3 are resolved in the same way. By
Lemma 3.7, p(Y w(x, t)) = p(Ŷ w(x, t)) = 1 for all x ∈ [a−−2, a−]∪ [a+, a+ + 2] and t ≥ 0 with probability at
least 1 − ε/2 for sufficiently large w. On the event that this happens Y w|[a−,a+]×[0,ε−1] = Ŷ w|[a−,a+]×[0,ε−1]
for all t ∈ [0, ε−1], so we have obtained an appropriate coupling.

3.2 Limiting states for the one-dimensional discrete Schelling model

In this section we will first conclude the proof of Theorem 1.3. Then we will prove that the opinion of
each node in the Schelling model in any dimension converges a.s., and we will present a result on stable
configurations in the higher-dimensional Schelling model.

The main inputs to our proof of Theorem 1.3 are Propositions 2.14 and 3.1. We consider a coupling of
the discrete and continuum Schelling model as in Proposition 3.1, and choose a sufficiently large t ≥ 0 such
that the limiting configuration of the continuum Schelling model described in Proposition 2.14 is almost
obtained; more precisely, we choose t sufficiently large such that with high probability 0 is contained in an
interval I ′ of length strictly larger than 1 on which p ◦ Y (·, t) is constant. Let m ∈ [M ] denote the value of
p ◦ Y (·, t) in I ′. Recall that by the scaling we used when defining Y w in (4), a time t for Y corresponds to
time tw−1/2 for the discrete Schelling model.

To conclude the proof it will be sufficient to prove that p◦Y w = m in some slightly smaller interval I ′′ ⊂ I ′
(still of length > 1) until all nodes in I ′′ have changed opinion to m. We will first prove Lemma 3.8, which
says, roughly speaking, that p ◦ Y = m in some interval I (satisfying I ′′ ⊂ I ⊂ I ′) for a macroscopic time
with high probability. Then we prove (Lemma 3.9) that conditioned on the event of Lemma 3.8, p ◦ Y = m
in I ′′ for a time interval with length of order w0.01; this duration is sufficient to guarantee that at the end of
this time interval, with high probability all nodes in I ′′ have changed their opinion to m. The latter result
is proved by considering dw0.02e consecutive time intervals each of length w−0.01. In each of these length
w−0.01 intervals we allow the interval on which p ◦Y = m to shrink slightly. For nodes i bounded away from
the boundary of the interval, we can guarantee that p ◦ Y = m by using (among other properties) that the
fraction of nodes in N(i) which have a bias towards m is strictly larger than 1/2 throughout the time interval
we consider; therefore the bias of i towards m will have an upwards drift and never become negative. For
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nodes i near the boundary of our interval, however, up to half of the nodes in N(i) may have a bias towards
another opinion than m, so we do not necessarily have an upward drift, and the node may eventually get a
bias towards another opinion. For such nodes we can guarantee that the bias will not become negative too
fast, by using that the node typically has a strong bias towards m at the beginning of the time interval we
consider. We show that the interval on which p ◦ Y = m shrinks sufficiently slowly, such that all nodes on
the subinterval I ′′ of length > 1 get opinion m before the interval gets a length smaller than 1.

Define

Ywm(i, t) :=


 ∑

j∈N(i)

1X(j,t)=m


− sup

m′∈[M ]\{m}


 ∑

j∈N(i)

1X(j,t)=m′




= w1/2

(
Y wm (i/w, tw1/2)− sup

m′∈[M ]\{m}
Y wm′(i/w, tw

1/2)

)
.

(49)

Observe that if Ywm(i, t) > 0 then m is the most common opinion in the neighborhood of node i at time t.
In the statement and proof of the following lemma, wI = {wx : x ∈ I} for any interval I ⊂ R and w ∈ N.
The lemma says, roughly speaking, that if the event of Proposition 3.1 (or its analog for M > 2) occurs for
the continuum Schelling model, then it is very likely that after some small macroscopic time a typical point
is contained in an interval I of length strictly greater than 1 on which the bias is constant.

Lemma 3.8. Couple the discrete and continuum Schelling model on V as described in Proposition 3.1, where
V = R or V = S, and N = 1, M ∈ {2, 3, . . . }, and N = N∞. Let {A1, . . . , AM} be as defined in Proposition
2.14, and let Ê be the event that the set R \ ∪1≤m≤MAm has measure zero, and that each set Am can be
written as the union of intervals of length > 1. If Ê occurs, choose m ∈ [M ] and an interval I ′ ⊂ V in a
σ(B)-measurable way such that I ′ is a connected component of Am. Let c1, c2 ∈ (0, 1/10) and let I ⊂ I ′ be
the open interval with left (resp. right) end-point at distance c2 from the left (resp. right) end-point of I ′. Let
E = Ewc1,c2 be the event that Ê occurs, that I has length larger than 1+c2 and is contained in [−c−1

2 , c−1
2 ], and

that Ywm(i, t) > 0 for all i ∈ (wI)∩Z and t ∈ [c−1/2
1 w−1/2, c1]. Then limc2→0 limc1→0 limw→∞ P[E∪(Ê)c] = 1.

Proof. First we give a brief outline of the proof. For small c1 and large w it holds with high probability (by
Proposition 3.1) that all nodes in wI have a large bias towards opinion m at time c−1/2

1 w−1/2. In particular,
w−1/2Ywm(i, c−1/2

1 w−1/2) � 1 for nodes i in wI. We consider the system until, roughly speaking, the first
time T̂ > c

−1/2
1 w−1/2 at which Ywm(i, T̂ ) ≤ 0 for some node i in wI. More precisely, we will consider a

slightly differently defined random variable Ŷwm,m′(i, t) instead of Ywm(i, t) in order to simplify the estimates
(see below for the precise definition). Until this time all nodes in wI will have a bias towards m. We show
that T̂ > c1 with high probability by arguing that each individual node i in wI is unlikely to be the first node
in wI for which Ŷwm,m′(i, t) ≤ 0 for t ∈ [c−1/2

1 w−1/2, c1]. Let the nodes i∗1 and i∗2 represent the two end-points

of (wI) ∩ Z. At time t = c
−1/2
1 w−1/2, with high probability at least half of the neighbors of i∗1 have a bias

towards m. Using this and that the types are approximately uniformly distributed on [M ], one can show
that Ŷwm,m′(i∗1, t) stochastically dominates a random walk with increments that have negative expectation
with a magnitude of order O(w−1/2). This implies that Ŷwm,m′(i∗1, t) will not reach zero before time c1 � 1
with high probability. We argue similarly for i = i∗2. If i is contained in wI and has distance Ω(w) from the
boundary of wI, then Ŷwm,m′(i, t) has an upward drift for t ∈ [c−1/2

1 w−1/2, T̂ ], since the fraction of neighbors
of i which have a bias towards m is uniformly above 1/2; therefore Ŷwm,m′(i, t) is very unlikely to get negative
before time c1. If i is close to the boundaries of wI, but not equal to i∗1 or i∗2, we conclude that Ŷwm,m′(i, t)
is unlikely to get negative by comparing with i∗1 or i∗2.

Probabilistic estimates involving both I and the initial data of Y w need to be handled with care since I
depends on Y and therefore through the coupling also on the initial data of Y w. Some places we deal with
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this by taking a union bound (truncating on the event that I ⊂ [−c−1
2 , c−1

2 ]), and other places we use that
the considered random variables have a scaling limit as w →∞. On the other hand, the randomness of the
Poisson clocks is independent of I.

Note that the lemma clearly holds if P[Ê] = 0, so we may assume P[Ê] > 0. We will work on the event
Ê throughout the proof of the lemma. Let i∗1 (resp. i∗2) be the smallest (resp. largest) element of (wI) ∩ Z,
and let R denote the set of rings as defined in (2).

Define the following random variables A1, A2 ∈ {0, 1, 2, . . . }, where | · | denotes the number of elements
in a set

A1 := |{(j, t) ∈ R : c−1/2
1 w−1/2 ≤ t ≤ c1, j ∈ {i∗1 − w, . . . , i∗2 + w}|,

A2 := |{(j, t) ∈ R : j ∈ {i∗1 − w, . . . , i∗2 + w}, 0 ≤ t ≤ c−1/2
1 w−1/2,

∃(j, t′) ∈ R such that c−1/2
1 w−1/2 ≤ t′ ≤ c1}|,

(50)

In other words, A1 is the number of times that some Poisson clock is ringing between the times c−1/2
1 w−1/2

and c1, if we only consider the clock of nodes in {i∗1 − w, . . . , i∗2 + w}. Furthermore, A2 is the number of
Poisson clock rings by the same set of nodes which happen before time c−1/2

1 w−1/2, such that the same clock
rings again between the times c−1/2

1 w−1/2 and c1.
In the initial data, for any node i ∈ Z it holds with high probability that the fraction of nodes in (a

subinterval of) its neighborhood with opinion m′ ∈ [M ] is approximately M−1. We define a random variable
A3 ∈ [0, 1] in order to quantify the extent to which this is true for the two nodes i∗1 and i∗2

A3 = inf
{
a ≥ 0 :

∣∣|{i ∈ N (i∗k) ∩ (wI) : X(i, 0) = m′}|w−1 −M−1
∣∣ ≤ aw−1/2, k = 1, 2, m′ ∈ [M ]

∣∣|{i ∈ N (i∗k) \ (wI) : X(i, 0) = m′}|w−1 −M−1
∣∣ ≤ aw−1/2, k = 1, 2, m′ ∈ [M ]

}
.

(51)

Since Y is an approximation to Y w, and since it follows from occurrence of Ê and (6) that limt→∞ Ym(x, t) =
∞ and limt→∞ Ym′(x, t) = −∞ for m′ 6= m and x ∈ I, we expect that Y wm (x, t) −∑m′ 6=m Y

w
m′(x, t) → ∞

as t → ∞ for all x ∈ I. We introduce a random variable A4 in order to quantify this. Namely, we define
A4 ∈ R by

A4 := inf
x∈I


Y wm (x, c−1/2

1 )−
∑

m′ 6=m
Y wm′(x, c

−1/2
1 )


 .

Recall that for any i and any fixed subset of N (i), the fraction of nodes with initial type equal to m is
1/M in expectation. We now define an event E which, roughly speaking, says that for all i ∈ (wI) and the
sets N (i) ∩ (wI) and N (i) \wI, the fraction of nodes with initial type equal to m does not deviate from its
expectation by more than w−1/4. More precisely, E is defined as follows.

E :=
{
∀i ∈ (wI) ∩ Z, ∀m′ ∈ [M ],
∣∣∣{j ∈ N (i) ∩ (wI) : X(j, 0) = m′}

|N (i) ∩ (wI)| −M−1
∣∣∣ ∨
∣∣∣ |{j ∈ N (i) \ (wI) : X(j, 0) = m′}

|N (i) \ (wI)| −M−1
∣∣∣ < w−1/4

}
.

We will now define an event Ẽ which we will truncate on throughout part of the proof. Let Ẽ = Ẽwc1,c2
be defined by

Ẽ = {A1 < 2c1c−1
2 w} ∩ {A2 < 2c1/21 c−1

2 w1/2} ∩ {A3 < c
−1/10
1 }

∩ {A4 > 2} ∩ {1 + c2 < λ(I); I ⊂ [−c−1
2 , c−1

2 ]} ∩ E.
(52)

First we will argue that
lim
c2→0

lim
c1→0

lim
w→∞

P[Ẽ] = 1. (53)
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The probability of the fifth event on the right side of (52) is independent of w and c1, and converges to 1
as c2 → 0. The probability of the first, second, and sixth event on the right side of (52) converge to 1 as
w →∞ for any fixed c1, c2 ∈ (0, 1/10) if we assume occurrence of the fifth event. (Here we use occurrence of
the fifth event since it allows us bound the probability of E

c
by taking a union bound over i ∈ w[−c−1

2 , c−1
2 ].)

The probability of the third event on the right side of (52) converges to a constant as w → ∞, and it
converges to 1 when first w → ∞ and then c1 → 0. It is immediate by occurrence of Ê and from (6) that
Ym(·, t)−∑m′ 6=m Ym′(·, t)→∞ uniformly on I as t→∞. Therefore it follows from Proposition 3.1 that the
probability of the fourth event on the right side of (52) converges to a constant as w →∞, and it converges
to 1 as first w →∞ and then c1 → 0. Combining the above estimates we get (53).

Fix m′ ∈ [M ] \ {m}. Consider a modified dynamic where, for every time t > c
−1/2
1 w−1/2 at which the

clock of a node j 6∈ wI (resp. j ∈ wI) rings, this node updates its type to m′ (resp. m), even if it has a bias
towards some other type. We refer to this dynamic as the m′-modified dynamic, as opposed to the original
dynamic. Define Ŷwm,m′(i, t) as follows, where we assume the opinions X(j, t) have been updated according
to the m′-modified dynamic

Ŷwm,m′(i, t) :=


 ∑

j∈N(i)

1X(j,t)=m


−


 ∑

j∈N(i)

1X(j,t)=m′


 .

Note that for any i and for t such that p(Y (j, t′)) = m for all j ∈ wI and t′ ∈ (c−1/2
1 w−1/2, t],

inf
m′′∈[M ]\{m}

Ŷwm,m′′(i, t) ≤ Y
w

m(i, t). (54)

(Here Ŷwm,m′′(i, t) is defined with the m′′-modified dynamic, while Ywm(i, t) is defined with the original dy-
namic.) Let the event Em′ be defined exactly as the event E in the statement of the lemma, except that we
require Ŷwm,m′(i, t) > 0 instead of Ywm(i, t) > 0. Since m′ is arbitrary and by (54), in order to conclude the
proof of the lemma it is sufficient to show that

lim
c2→0

lim
c1→0

lim
w→∞

P[Em′ ∪ Êc] = 1. (55)

For any j ∈ N let t1j be the jth smallest element of {t ≥ c−1/2
1 w−1/2 : ∃x ∈ N (i∗1) such that (x, t) ∈ R}.

In other words, t1j is the jth time after time c−1/2
1 w−1/2 at which the clock of some node in N (i∗1) rings.

Then define i1j ∈ N (i∗1) such that (i1j , t
1
j ) ∈ R, and define R1

j := Ŷwm,m′(i∗1, t1j ) − Ŷwm,m′(i∗1, (t1j )−), where
Ŷwm,m′(i∗1, (t1j )−) := limt↑t1j Ŷ

w
m,m′(i

∗
1, t). Define (i2j , t

2
j ) (resp. R2

j ) exactly as (i1j , t
1
j ) (resp. R1

j ), but with i∗2 in
place of i∗1. Now define the following stopping times Tj for j = 1, 2, 3

T1 := inf



t ≥ c

−1/2
1 w−1/2 :

∑

j : t1j≤t
R1
j ≤ −w1/2



 ,

T2 := inf



t ≥ c

−1/2
1 w−1/2 :

∑

j : t2j≤t
R2
j ≤ −w1/2



 ,

T3 := inf
{
t ≥ c−1/2

1 w−1/2 : ∃i ∈ wI such that i ∈ {i∗1 + c2w + 1, i∗1 + c2w + 2, . . . , i∗2 − c2w − 1}

and Ŷwm,m′(i, t) ≤ 0
}
.

(56)

Our strategy for establishing (55) is to show that on the high probability event Ẽ, for all nodes j ∈ (wI)∩Z
we have Ŷwm,m′(j, t) > 0 until time T1 ∧ T2 ∧ T3, and at the same time each of the times T1, T2, T3 is very
unlikely to be the smallest time in {T1, T2, T3, c1}. Combining these results give that with high probability,
for all nodes j ∈ (wI) ∩ Z we have Ŷwm,m′(j, t) > 0 until time c1.
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First we will argue that

Ŷwm,m′(i, t) > 0 ∀i ∈ wI if t < T1 ∧ T2 ∧ T3 and Ẽ occurs. (57)

To prove this it is sufficient to show that if Ẽ occurs and t < T1 ∧ T2 ∧ T3, then Ŷwm,m′(i, t) > 0 for any
i ∈ {i∗1, . . . , i∗1 + c2w}∪ {i∗2− c2w, . . . , i∗2}, since the inequality Ŷwm,m′(i, t) > 0 clearly holds for other i by the
definition of T3. We will prove this result for i ∈ {i∗1, . . . , i∗1 + c2w}, which is sufficient by symmetry. It is
sufficient to show that

Ŷwm,m′(i, t)− Ŷwm,m′(i, c−1/2
1 w−1/2) ≥

∑

j : t1j≤t
R1
j , (58)

since by the definition of T1 and Ŷwm,m′(i, c
−1/2
1 w−1/2) ≥ A4w

1/2 > 2w1/2, it gives Ŷwm,m′(i, t) > 0. Consider

a time t′ ∈ (c−1/2
1 w−1/2, t] at which the clock of some node j ∈ N (i) rings. Then exactly one of the following

holds: (i) j ∈ {i∗1, i∗1 + 1, . . . , i∗1 + w}, (ii) j > i∗1 + w, (iii) j ∈ {i − w, i − w + 1, . . . , i∗1 − 1}. In case (ii)
the increment made by Ŷwm,m′(i, ·) is non-negative. The sum of the increments made by Ŷwm,m′(i, ·) in cases
(i) and (iii) stochastically dominates the right side of (58). In fact, the two sums are identical if we do not
consider the contribution to the latter sum from nodes in {i∗1 −w, i∗1 −w+ 1, . . . , i−w− 1}; note that these
terms are always ≤ 0 due to the definition of the m′-modified dynamic. This implies the inequality in (58),
which concludes the proof of (57).

Since (57) implies that Ẽ ∩ {c1 < T1 ∧ T2 ∧ T3} ⊂ Em′ , a union bound gives

P[Ecm′ ∩ Ê] ≤P[Ẽc ∩ Ê] + P[Ẽ;T1 ≤ T2 ∧ T3;T1 ≤ c1; Ê] + P[Ẽ;T2 ≤ T1 ∧ T3;T2 ≤ c1; Ê]

+ P[Ẽ;T3 ≤ T1 ∧ T2;T3 ≤ c1; Ê].
(59)

In order to prove (55) it is sufficient to show that each of the four terms on the right side converge to 0 as we
send w →∞, c1 → 0, and c2 → 0 (in that order). We will bound the probability of each term on the right
side separately. By (53), and since the second and third terms on the right side have the same probability,
it is sufficient to bound the second term and the fourth term on the right side of (59).

First we bound the second term on the right side of (59). Recall the definition of (i1j , t
1
j )j∈N above, and

observe that the following hold, where X(i1j , (t
1
j )
−) = limt↑t1j X(i1j , t):

(i) If X(i1j , (t
1
j )
−) = m and i1j 6∈ (wI) ∩ Z then Rj = −2;

(ii) if X(i1j , (t
1
j )
−) = m′ and i1j 6∈ (wI) ∩ Z then Rj = 0;

(iii) if X(i1j , (t
1
j )
−) 6∈ {m,m′} and i1j 6∈ (wI) ∩ Z then Rj = −1;

(iv) if X(i1j , (t
1
j )
−) = m and i1j ∈ (wI) ∩ Z then Rj = 0;

(v) if X(i1j , (t
1
j )
−) = m′, and i1j ∈ (wI) ∩ Z then Rj = 2;

(vi) if X(i1j , (t
1
j )
−) 6∈ {m,m′} and i1j ∈ (wI) ∩ Z then Rj = 1.

Letting Fj denote the σ-algebra containing all information until times which are strictly smaller than t1j ,
consider the martingale Mk =

∑k
j=1(R1

j − E[R1
j | Fj ]). Since this is a martingale with increments bounded

by 2, Freedman’s inequality [Fre75] gives

lim
c1→0

lim
w→∞

P
[

sup
1≤k≤2c1c−1

2 w

|Mk| > c
1/10
1 w1/2; Ê

]
= 0.

On the event Ẽ (in particular, the requirement onA2 andA3), the fraction of nodes j in wI (resp.N (i∗1)\(wI))
for which X(j, c−1/2

1 w−1/2) = m (resp. X(j, c−1/2
1 w−1/2) = m) differs from M−1 by at most (2c1/21 c−1

2 +
c
−1/10
1 )w−1/2. Using this and that the number of times each event (i)-(vi) above occurs in any interval

(c−1/10
1 w1/2, s) concentrates around its mean,

lim
c1→0

lim
w→∞

P
[

inf
1≤k≤2c1c−1

2 w

k∑

j=1

E[R1
j | Fj ] < −20c−1/10

1 w−1/2 · 2c1c−1
2 w; Ê; Ẽ

]
= 0.
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Combining the above,

lim
c2→0

lim
c1→0

lim
w→∞

P[Ê; Ẽ;T1 ≤ T2 ∧ T3;T1 ≤ c1]

≤ lim
c2→0

lim
c1→0

lim
w→∞

P


Ê; Ẽ;T1 ≤ T2 ∧ T3; inf

c
−1/2
1 w−1/2≤t≤c1∧T1


 ∑

j : t1j≤t
R1
j


 < −1

2
w1/2




≤ lim
c2→0

lim
c1→0

lim
w→∞

P


Ê; Ẽ;T1 ≤ T2 ∧ T3; inf

c
−1/2
1 w−1/2≤k≤2c1c−1

2 w


Mk +

k∑

j=1

E[R1
j | Fj ]


 < −1

2
w1/2




= 0,

which bounds the probability of the second term on the right side of (59).
In order to bound the fourth term on the right side of (59), a union bound and Ẽ ⊂ {I ⊂ [−c2, c2]}

imply that it is sufficient to prove that for fixed c1, c2 ∈ (0, 1/10) and fixed i ∈ [−c2w, c2w] ∩ Z, defining

T := inf{t ≥ c−1/2
1 w−1/2 : Ŷwm,m′(i, t) ≤ 0},

E′ := Ẽ ∩ {T = T3 ≤ T1 ∧ T2} ∩ {i ∈ {i∗1 + c2w + 1, i∗1 + c2w + 2, . . . , i∗2 − c2w − 1}},
(60)

we have
log P[E′; Ê;T ≤ c1] � −w, (61)

where the implicit constant is independent of w, but may depend on c1, c2. We prove this by a similar
approach as for the second term on the right side of (59), and will therefore only give a brief justification.
For any j ∈ N let t′j be the jth smallest element of {t ≥ c

−1/2
1 w−1/2 : ∃x ∈ N(i) such that (x, t) ∈ R}.

Then define i′j ∈ N(i) such that (i′j , t
′
j) ∈ R, and define R′j := Ŷwm,m′(i, t′j) − Ŷwm,m′(i, (t′j)−). The random

variables R′j are supported on {−2,−1, 0, 1, 2} and they have uniformly positive expectation on the event E′

since λ(I) > 1 + c2 and all nodes in I have bias towards m. Using A1 < 2c1c−1
2 w and A2 < 2c1/21 c−1

2 w1/2 on
E′,

1E′ inf
c
−1/2
1 w−1/2≤t≤c1∧T

(
Ŷwm,m′(i, t)− Ŷwm,m′(i, c−1/2

1 w−1/2)
)
≥ 1E′ min

1≤k≤2c1c−1
2 w

k∑

j=1

R′j − 2c1/21 c−1
2 w1/2.

Another application of Freedman’s inequality now gives

P[E′; Ê;T ≤ c1] ≤ P

[
E′; Ê; inf

c
−1/2
1 w−1/2≤t≤c1∧T

(
Ŷwm,m′(i, t)− Ŷwm,m′(i, c−1/2

1 w−1/2)
)
< −w1/2

]

= exp(−Θ(w)),

which implies (61).

Lemma 3.8 says that after some small macroscopic time, with high probability all nodes in the interval
I has a bias towards m. The following lemma will imply that this is still true for slightly smaller intervals
In at time tn := nw−0.01

Lemma 3.9. Consider the setting described in Lemma 3.8, and let I, c1, c2, and E be as in that lemma.
Define open intervals In for n ∈ {0, . . . , dw0.02e} inductively by I0 := I, and by letting In ⊂ In−1 be the open
interval such that the left (resp. right) end-point of In has distance w−0.1 from the left (resp. right) end-point
of In−1. For n ∈ {1, . . . , dw0.02e} define tn := nw−0.01, and let En be the following event

En = {Ywm(i, t) > 0, ∀i ∈ (wIn), ∀t such that c−1/2
1 w−1/2 ≤ t ≤ tn}.

Then log P
[
E ∩En−1 ∩Ecn

]
� −w for all n ∈ {1, . . . , dw0.02e}, where the implicit constant is independent of

w and n, but may depend on all other constants, including c1 and c2.

47



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature.

Proof. We first give a brief outline of the proof. As in the proof of Lemma 3.8, we consider some time T
which represents the first time at which Ywm(i, t) ≤ 0 for some i in wIn, and we show that for each i in wIn
it is very unlikely that i is the first node for which this happens for T ≤ tn. We assume the event E ∩En−1
occurs. We divide N(i) into three parts (see N1(i), N2(i), N3(i) below). For each k ∈ {1, 2, 3} we can
obtain a good (lower) bound on the contribution to Ywm(i, tn−1) coming from nodes in Nk(i), since we know
approximately how many Poisson clocks which have been ringing before time tn−1, and since nodes in In−1

(corresponding to N1(i)∪N3(i), plus maybe part of N2(i)) have a bias towards m during [c−1/2
1 w−1/2, tn−1]

on the event E ∩ En−1. Conditioning on the fraction of nodes in Nk(i), k ∈ {1, 2, 3}, of opinion m at time
tn−1, we compare the evolution of Ywm(i, t) on [tn−1, T ] to a random walk of a certain step size distribution,
and we argue that this random walk is unlikely to hit 0 before time tn, which completes the proof.

As in the proof of Lemma 3.8 we may assume P[Ê] > 0. We work on the event Ê throughout the proof;
in particular, some variables we define may exist only conditional on Ê. Define the following stopping times
for i ∈ [−c−1

2 w, c−1
2 w] ∩ Z

Ti := inf{t ≥ tn−1 : Ywm(i, t) ≤ 0}, T := inf{Ti : i ∈ (wIn)},

Fix i ∈ [c−1
2 w, c−1

2 w]∩Z. By a union bound it is sufficient to prove the following estimate, where the implicit
constant is independent of w, n, and i

log P
[
Ein;Ti < tn

]
� −w, Ein := E ∪ En−1 ∪ {i ∈ (wIn)} ∪ {Ti = T < tn}. (62)

This estimate says that each node i is very unlikely to be the first node for which Ywm(i, t) ≤ 0. Divide
the neighborhood N(i) into three disjoint parts Nk(i) for k = 1, 2, 3 satisfying the following requirements;
existence of appropriate neighborhoods is immediate by using the definition of In and λ(In) > 1

|N1(i)| = w, |N2(i)| = w − w0.9 + 1, |N3(i)| = w0.9,

N1(i) ⊂ {j ∈ N(i) : j ∈ (wIn)}, N3(i) ⊂ {j ∈ N(i) : j ∈ (wIn−1)}.

Note that on E ∩En−1, nodes in N1(i) have bias towards m until time tn, nodes in N3(i) have bias towards
m until time tn−1, while we have no information about the bias of nodes in N2(i). For any t ≥ 0 define
Yw,km (i, t) for k = 1, 2, 3 by

Yw,km (i, t) :=
∑

j∈Nk(i)

1X(j,t)=m −
∑

j∈Nk(i)

1X(j,t)=m′ , (63)

where m′ ∈ [M ] \ {m} is chosen such that the second sum is maximized if we sum over j ∈ N(i) (rather
than j ∈ Nk(i)). In other words, Yw,km (i, t) is defined just as Ywm(i, t), except that we only consider nodes
in Nk(i). Note that Ywm(i, t) =

∑3
k=1 Y

w,k

m (i, t). On E ∩ En−1 the nodes in N1(i) have bias m throughout
[c−1/2

1 w−1/2, tn−1]. For each node the probability that its clock rings during [0, tn−1] is (1 − e−tn−1), and
when this happens for the first time for some t ∈ [c−1/2

1 w−1/2, tn−1] the node changes its opinion to m iff its
current opinion is different. When this happens Yw,1m (i, ·) increases by either 1 or 2, depending on whether
the opinion of the node right before the clock ring was equal to the maximizing m′ in (63) or not. Except
on an event of exponentially small probability, for large w the number of nodes in N1(i) with an opinion
equal to each m′′ ∈ [M ] at time c−1/2

1 w−1/2 differ from M−1w by at most 1
100w

1/2+1/100, and the number of
nodes in N1(i) whose Poisson clock rings during t ∈ [c−1/2

1 w−1/2, tn−1] differ from (1− e−tn−1)w by at most
1

100w
1/2+1/100. Therefore

log P
[
E; En−1;

∣∣∣Yw,1m (i, tn−1)− (1− e−tn−1)w
∣∣∣ > w1/2+1/100

]
� −w. (64)

By a similar argument the following inequalities hold. Note that we only get a lower bound for Yw,2m (i, tn−1)
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since we do not know the bias of the nodes in N2(i) throughout [0, tn−1]

log P
[
E; En−1; Yw,2m (i, tn−1) < −(1− e−tn−1)(w − w0.9)− w1/2+1/100

]
� −w,

log P
[
E; En−1;

∣∣∣Yw,3m (i, tn−1)− (1− e−tn−1)w0.9
∣∣∣ > w1/2+1/100

]
� −w.

(65)

We first consider the caseM = 2. Defining T w := {tn−1+w−0.3, tn−1+2w−0.3, . . . , tn−1+dw0.3−0.01ew−0.3},
observe by a union bound that for all sufficiently large w

P
(
Ein; inf

tn−1≤t≤Ti∧tn
Ywm(i, t) ≤ 0

)
≤
∑

s∈T w
P
(
Ein; s < Ti;Y

w

m(i, s) <
1
2
Ywm(i, tn−1); Ywm(i, tn−1) > w0.85

)

+
∑

s∈T w
P(Ein; |{(j, t) ∈ R : j ∈ N(i), t ∈ [s− w−0.3, s]}| > w0.8)

+ P
(
Ein; Ywm(i, tn−1) ≤ w0.85

)
.

The logarithm of the second sum on the right side is � −w. The logarithm of the third term on the right
side is also � −w by (64)-(65), so to prove (62), and thereby complete the proof of the lemma, it is sufficient
to prove the following estimate for any s ∈ T w

log P
(
Ein; s < Ti;Y

w

m(i, s) <
1
2
Ywm(i, tn−1); Ywm(i, tn−1) > w0.85

)
� −w. (66)

Fix s ∈ T w, and define the following random variables

R+ := |{j ∈ N+(i) : ∃t ∈ (tn−1, s] such that (j, t) ∈ R}|, N+(i) := {j ∈ N1(i) : X(j, tm−1) 6= m},
R− := |{j ∈ N−(i) : ∃t ∈ (tn−1, s] such that (j, t) ∈ R}|, N−(i) := {j ∈ N2(i) ∪N3(i) : X(j, tm−1) = m}.

In other words, R+ (resp. R−) is the number of times during (tn−1, s] at which the clock of some node in
N1(i) (resp. N2(i)∪N3(i)) is ringing and this node has opinion different from m (resp. equal to m). Observe
that

Ein ∩ {s < Ti} ∩
{
Ywm(i, s) <

1
2
Ywm(i, tn−1)

}
⊂ Ein ∩ {s < Ti} ∩

{
R+ −R− < −1

4
Ywm(i, s)

}
. (67)

By the definition of Yw,km (i, tn−1),

|N+(i)| = 1
2

(w − Yw,1m (i, tn−1)), |N−(i)| = 1
2

(w + Yw,2m (i, tn−1) + Yw,3m (i, tn−1)). (68)

By large deviation estimates for Bernoulli random variables

log P[R+ < (1− e−(s−tn−1))|N+(i)| − w1/2+1/100] � −w,
log P[R− > (1− e−(s−tn−1))|N−(i)|+ w1/2+1/100] � −w,

so using (68) and 1− e−(s−tn−1) < 2w−0.01, for all sufficiently large w,

log P
[
Ein; s < Ti;R+ −R− < −1

4
Ywm(i, s)

]
� −w.

We obtain (66) by using this estimate and (67).
We now explain how to modify the argument above to the case M > 2. Again it is sufficient to prove

(66). Let m′ ∈ [M ] \ {m} be the optimal value of m′ in (49) at time t = s and define M := [M ] \ {m,m′}.
Instead of considering R+ and R− as in the case M = 2, we define R+

m′ , R
+
M, R−m, R

−
M as above using

N+
m′(i) := {j ∈ N1(i) : X(j, tm−1) = m′}, N+

M(i) := {j ∈ N1(i) : X(j, tm−1) ∈M},
N−m(i) := {j ∈ N2(i) ∪N3(i) : X(j, tm−1) = m}, N−M(i) := {j ∈ N2(i) ∪N3(i) : X(j, tm−1) ∈M}.

(69)
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As in the case M = 2 and with Ŷwm,m′(i, t) as in the proof of Lemma 3.8, we can express Ŷwm,m′(i, tn−1)
in terms of the size of the sets in (69). By using that the random variables R+

m′ , R
+
M, R−m, R

−
M concentrate

around their mean given the configuration at time tn−1, we can conclude as before.

Proof of Theorem 1.3. Couple the discrete and continuum Schelling model as in Proposition 3.1. Almost
surely there is an m∗ ∈ {1, 2} such that 0 ∈ Am∗ . Let I ′ ⊂ Am∗ (resp. Iw ⊂ Awm∗) be the connected
component of Am∗ (resp. Awm∗) containing the origin, where Iw is empty if 0 6∈ Awm∗ . Let ε > 0. Define
I ⊂ I ′ by I := {x ∈ I ′ : dist(x, (I ′)c) > ε}. By translation invariance in law of both the discrete and
continuum Schelling model it is sufficient to prove that P[I ⊂ Iw] > 1− ε for all sufficiently large w ∈ N.

Consider the objects defined in the statement of Lemma 3.8 for I ′ the connected component of Am contain-
ing the origin. SinceM = 2 we know by Proposition 2.14 that P[Ê] = 1, so limc2→0 limc1→0 limw→∞ P[E] = 1.
Let c1, c2 ∈ (0, 1/2) be such that limw→∞ P[E] > ε/100 and such that c2 � ε. Observe that if

E′ :=
{
∀i ∈ (wI) ∩ Z, ∃t ∈ (c−1/2

1 w−1/2, w0.01) such that (i, t) ∈ R
}

and the events En for n ∈ {0, . . . , dw0.02e} are defined as in Lemma 3.9, then E′ ∩ Edw0.02e ⊂ {I ⊂ Iw}. It
follows by a union bound that

P[I 6⊂ Iw] ≤ P[(E′)c] + P[Ec] + P[E;Ec0] +
dw0.02e∑

n=1

P[E;En−1;Ecn]. (70)

The first term on the right side of (70) converges to 0 as w →∞, and the second term on the right side of
(70) is smaller than ε/3 for all sufficiently large w by our choice of c1 and c2. The third term on the right
side of (70) is identically equal to zero. The last term on the right side of (70) is smaller than ε/3 for all
sufficiently large w by Lemma 3.9. Therefore P[I ⊂ Iw] > 1− ε for all sufficiently large w, which concludes
the proof.

The following proposition says that the opinion of the nodes in the discrete Schelling model converge a.s.
For the case M = 2 it was proved in [DS93, Theorem 1]. See e.g. [Mor95, GH00, TT15] for other related
results. Our proof is inspired by the earlier proofs, in particular the proof found in [TT15]. Observe that
the proposition below is not used in our proof of our main results, and is included only as a statement of
independent interest.

Proposition 3.10. Consider the Schelling model on either ZN or on the torus SN where (in the notation
on Section 1.3) N is invariant upon reflection through the origin, N ∈ N, and M ∈ {2, 3, . . . }. For each
node i the opinion X(i, t) converges a.s. as t→∞, i.e., for each node i there is a random time T > 0 such
that X(i, t) = X(i, T ) for all t ≥ T .

Proof. The proof is identical for the two cases ZN and SN . We will only present it for the case of ZN , but
the result for SN follows by replacing ZN by SN throughout the proof. Let E be the set of undirected
edges of the graph on which the Schelling model takes place, i.e. (i, j) = (j, i) ∈ E for i, j ∈ ZN iff j ∈ N(i)
(equivalently, since N is invariant upon reflection through the origin, i ∈ N(j)). For each i, j ∈ ZN such
that (i, j) ∈ E, associate a positive real number wij , such that for any i, j, k for which (i, j), (i, k) ∈ E

wij
wik

<
(2w + 1)N + 1
(2w + 1)N − 1

. (71)

Choose the wij ’s such that
∑

(i,j)∈E wij < ∞. The existence of appropriate wij satisfying these properties
follows by [TT15, Proposition 3.4], since the degree of each node is bounded by (2w + 1)N , and since our
graph satisfies the growth criterion considered in [TT15]. For each i ∈ ZN and t ≥ 0 define J it by

J it :=
∑

j∈N(i)

wij1X(j,t) 6=X(i,t) −
∑

j∈N(i)

wij1X(j,t−) 6=X(i,t−).
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If t is a time at which the Poisson clock of node i rings, the first (resp. second) term on the right side
expresses how many neighbors of i that disagree with i after (resp. before) i updates its opinion at time
t. Assume the clock of node i rings at time t, and consider the three rules (i)-(iii) from Section 1.3 that i
follows when updating its opinion. By our constraint (71), J it < 0 if one of the rules (i) or (iii) apply, while
J it = 0 if i does not change its opinion, which is the case when (ii) applies. Given a node i and the value of
wij for all j ∈ N(i), the number of possible values for J it is finite. It follows that we can find a real number
εi > 0, such that we have either J it < −εi or J it = 0 for all times t ≥ 0 for which the clock of node i rings.

Next define the Lyapunov function L : [0,∞)→ R+ by

Lt =
∑

(i,j)∈E
wij1X(i,t) 6=X(j,t).

Note that Lt <∞ for all t ≥ 0 by our assumption of summability of wij . Since Lt−Lt− = J it if the clock of
node i rings at time t, Lt is decreasing in t. It follows that there exists some L ≥ 0 such that limt→∞ Lt = L.
Fix i ∈ ZN , and let T > 0 be such that Lt − L < εi for all t ≥ T . Since Lt − Lt− = J it for any time t at
which the clock of node i rings, we see that J it = 0 for all times t > T . It follows that i never updates its
opinion after time T , which completes the proof of the lemma.

We end the section with a result which may be related to the limiting opinions of the Schelling model on
ZN for N ≥ 2 and M = 2. We say that A ⊂ ZN is connected if, for any two i, j ∈ A, there is an n ∈ N and
a sequence {ik}0≤k≤n such that i0 = i, in = j, ik ∈ A and ‖ik − ik−1‖1 ≤ 1 for all k ∈ {1, . . . , n}. We say
that A ⊂ ZN is stable if all nodes of ZN agree with the most common opinion in their neighborhood when
all nodes in A have opinion 1 and all nodes in ZN\A have opinion 2. Note that the definition of stability
depends on N and w. The diameter of a set A ⊂ ZN is defined by supi,j∈A ‖i − j‖∞. We say that A is a
smallest stable shape for the Schelling model if it is a connected stable subset of ZN of minimal diameter.

We observed before the statement of Lemma 2.18 that in the one-dimensional Schelling model on Z the
final configuration of opinions consists of monochromatic intervals of length at least w+ 1. We also observe
that the smallest stable shapes for the Schelling model on Z are sets A ⊂ Z consisting of w + 1 consecutive
integers. In particular, this means that all nodes are part of a monochromatic stable shape in the final
configuration. By Theorem 1.3 the blocks with constant opinion in the final configuration of the Schelling
model on Z or S have length of order w.

One might guess that the smallest stable shape is related to the diameter of a typical cluster in the
limiting configuration of opinions also in higher dimensions. There exist stable configurations where the
cluster sizes are smaller than the diameter of a stable shape (e.g. a checkerboard configuration when N has
the shape of a cube), but these seem unlikely to occur since they are typically unstable, in the sense that
changing the opinion of a small number of nodes may cause a large cluster of nodes to obtain the same
opinion.

We thank Omer Tamuz for suggesting the approach used in the upper bound of the following proposition.

Proposition 3.11. Let N > 1, p ∈ [1,∞], and assume N = Np := {x ∈ RN : ‖x‖p < 1}. The diameter d
of a smallest stable shape for the Schelling model satisfies w2 � d � wN+1, where the implicit constants can
be chosen independently of p and w, but the constant in the upper bound may depend on N .

Proof. We will prove the lower bound w2 � d by induction on the dimension N . We will only do the case
p <∞, but the case p =∞ can be done in exactly the same way. We start with the case N = 2. See Figure
9 for an illustration.

Assume A is a stable shape, and define ik1 and i2 as follows for k = {1, . . . , bw/2c}

i2 := min{i2 ∈ Z : ∃i1 ∈ Z such that (i1, i2) ∈ A}, ik1 := min{i1 ∈ Z : (i1, i2 + k − 1) ∈ A}.
Then define ik := (ik1 , i2 + k − 1) ∈ A. We will prove by induction on k that ik1 − ik+1

1 ≥ w − k for all
k ∈ {1, . . . , bw/2c}, which is sufficient to obtain the lower bound w2 � d since it implies that i11− i

bw/2c
1 � w2.

For any i = (i1, i2) ∈ Z2 define

N−(i) = {(i′1, i′2) ∈ N(i) : i′2 < i2 ∨ ((i′2 = i2) ∧ (i′1 < i1))}, N+(i) = N(i) \N−(i).
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i1 = (i11, i2)i2 = (i21, i2 + 1)i3 = (i31, i2 + 2)

A ⊂ Z2

N(i2)

Figure 9: Illustration of the lower bound in Proposition 3.11 for N = 2, w = 6, and p = 1. The points of Z2

marked in blue is a subset of a stable shape A, while elements of Z \A are shown in red. The green dotted
line separates N−(i2) (lower part) and N+(i2) (upper part).

First let k = 1. By definition of i2 and i11, A ∩N−(i1) = ∅. Since i1 agrees with the most common opinion
in its neighborhood this implies A ∩N(i1) = N+(i1). In particular, this implies by the definition of i21 and
since (i11 − w + 1, i2 + 1) ∈ N+(i1) that i11 − i21 ≥ w − 1.

Now assume k > 1 and that i`1 − i`+1
1 ≥ w − ` for ` ∈ {1, . . . , k − 1}. This assumption implies by the

definition of i`1 that

A ∩N−(ik) ⊂ {(ik1 + w − k + 1, i2 + k − 2), (ik1 + w − k + 2, i2 + k − 2), . . . , (ik1 + w − 1, i2 + k − 2)},

in particular, |A ∩N−(ik)| ≤ k. Since ik ∈ A agrees with the most common opinion in its neighborhood by
stability of A, we must have |N+(ik) \A| ≤ k − 1. By N = Np for p ∈ [1,∞),

{(ik1 − w + 1, i2 + k), (ik1 − w + 2, i2 + k), . . . , (ik1 − w + k, i2 + k)} ⊂ N+(ik),

where we note that the set on the left side has k elements. Since |N+(ik)\A| ≤ k−1 this implies ik1 − ik+1
1 ≥

w − k. This completes our proof by induction, and hence completes the proof of the lower bound for d in
the case when N = 2.

Now assume the lower bound w2 � d has been proved for dimension 2, . . . , N − 1 for some N > 2. We
want to show that it also holds in dimension N . Define

iN := min{iN ∈ Z : ∃i1, . . . iN−1 ∈ Z such that (i1, i2, . . . , iN ) ∈ A}.

Then
{i = (i1, . . . , iN ) ∈ A : iN < iN} = ∅,

so since all elements of A ∩ {i = (i1, . . . , iN ) ∈ ZN : iN = iN} agree with the most common opinion in its
neighborhood and by, for any i′ = (i′1, . . . , i

′
N ) ∈ ZN , symmetry of N(i′) upon reflection through the plane

iN = i′N , the following (N − 1)-dimensional set must be stable if the neighborhood of any j ∈ ZN−1 is given
by {j′ ∈ ZN−1 : ‖j − j′‖p < w}

{(i1, . . . , iN−1) ∈ ZN−1 : (i1, . . . , iN−1, iN ) ∈ A}.

By the induction hypothesis this set has diameter � w2, so A also has diameter � w2. This concludes the
proof of the lower bound by induction.

Now we will prove the upper bound d � wN+1. Let r = 22NwN+1, and define A0 = {i ∈ ZN : ‖i‖∞ ≤ r.
Let all nodes in A0 have opinion 1, and let all nodes in ZN\A0 have opinion 2. We define decreasing sets
An ⊂ ZN , n ∈ N, by induction as follows. For each n ∈ N we choose one element of i ∈ An−1 which does
not agree with the most common opinion in its neighborhood, we change the opinion of this node to 2, and
we define An = An−1\{i}. We continue this procedure until An = ∅ or until all nodes in An agree with the
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most common opinion in its neighborhood. Note that throughout the process all nodes not in An agree with
the most common opinion in their neighborhood. Let ñ denote the time at which the process terminates.
We will prove by contradiction that Añ 6= ∅. This will imply the existence of a stable shape of diameter
� r � wN+1.

Define
En = {(i, j) : i ∈ An, j ∈ ZN\An}.

By our choice of the node i in each step, the sequence (|En|)1≤n≤ñ is strictly decreasing. Assuming Añ = ∅
this implies |A0| ≤ |E0|. We have |A0| = (2r + 1)N . We can find a constant CN > 0 depending on N , such
that there are < CN (2r + 1)N−1w nodes in A0 which have a neighbor in ZN\A0. By using this and that
|N(i)| ≤ (2w + 1)N for any i ∈ SN , we get |E0| ≤ CN (2r + 1)N−1w(2w + 1)N . Using |A0| ≤ |E0| these
estimates imply (2r + 1) ≤ CNw(2w + 1)N . This is a contradiction to our definition of r, and we conclude
that Añ 6= ∅.

4 Open problems

This paper explains the limiting configuration of opinions in the Schelling model when N = 1 and M = 2
(see Theorem 1.3). One open problem is to understand the limiting configuration of opinions in cases where
N ≥ 2 and/or M > 2. In particular, it remains an open question to understand the following situations: (i)
SN for N ≥ 2, (ii) ZN for N ≥ 2, and (iii) S or Z for M > 2.

Case (i) could possibly be understood by studying the long-time behavior of solutions Y of the initial
value problem (6), (8) for N ≥ 2. If we knew that the limit Y (x) := limt→∞ p(Y (x, t)) exists for almost every
x ∈ SN a.s., the field (Y (x))x∈SN would likely describe law of the limiting opinions in the discrete model.
Observe that non-trivial limiting configurations (i.e., limiting configurations with more than one limiting
opinion) happen with positive probability, e.g. if the torus width R is at least 3, and the initial data are such
that p(Y ((x1, . . . , xN ), 0)) equals 1 (resp. 2) for x1 ∈ [0, 1] (resp. x1 ∈ [R − 5/4, R − 1/4]). For such initial
data we will have p(Y ((x1, . . . , xN ), t)) equal to 1 (resp. 2) for x1 ∈ [0, 1] (resp. x1 ∈ [R− 5/4, R− 1/4]) and
all t ≥ 0.

The continuum Schelling model (6), (8) may be less helpful for understanding case (ii). Even if we
had established existence and uniqueness of solutions of (6), (8) on RN for N ≥ 2 (see Theorem 2.1), the
solution Y may be of only limited help for understanding the final configurations of opinions in the discrete
model. Observe that there are no bounded continuum stable shapes, where a continuum stable shape is a
set D ⊂ RN which is such that if m ∈ [M ], t0 ≥ 0 and p(Y (x, t0)) = m for all x ∈ D then p(Y (x, t)) = m
for all t ≥ t0 (see above Proposition 3.11 for the discrete definition). Since there are no bounded continuum
stable shapes, we expect that the limit limt→∞ p(Y (x, t)) a.s. does not exist for any fixed x ∈ RN , at least
when M = 2. The existence of this limit is necessary in order for the continuum Schelling model to describe
the limiting configurations of opinions in the discrete model.

The continuum Schelling model (6), (8) is related to the discrete Schelling model upon rescaling the
lattice by w−1. If we proved a scaling limit result for the discrete model by proving convergence of the
opinions in the continuum model, the diameter of a typical cluster in the discrete model would therefore
be of order w. Figure 5 suggests that the diameter of the limiting clusters on Z2 grow superlinearly in w.
The typical cluster size may be related to the size of the smallest (discrete) stable shape for the model; see
Proposition 3.11 for upper and lower bounds on the diameter of the smallest stable shape. An independently
interesting problem (which involves no probability) is to resolve the sizable discrepancy between the upper
and lower bounds in Proposition 3.11. One could try to explicitly construct the minimal stable shape for
each given w, and compute its size.

Case (iii) could be understood by studying the long-time behavior of the solutions of (6), (8) for N = 1.
We believe Theorem 1.3 also holds for M > 2, i.e., the limiting opinions in the Schelling model have a scaling
limit upon rescaling the lattice by w−1, and the limiting law can be described by an M -tuple (A1, . . . , AM ),
where the sets Am have a.s. disjoint interior and can be written as the union of intervals each of length larger
than 1 a.s. This version of Theorem 1.3 with M > 2 would be immediate from the approach in Section 3.2
if we had established the corresponding version of Proposition 2.14 (see Remark 2.15).
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