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‘We derive a new formulation of the $3D$ compressible Euler equations exhibiting
‘remarkable null structures and regularity properties. Our results hold for an arbitrary

equation of state (which yields the pressure in terms of the density and the entropy) in

‘non-vacuum regions where the speed of sound is positive. Our work here is an

extension of our prior joint work with J.\,Luk, in which we derived a similar new
formulation in the special case of a barotropic fluid, that is, when the equation of state
depends only on the density. The new formulation comprises covariant wave equations
for the Cartesian components of the velocity and the logarithmic density coupled to a

‘transport equation for the specific vorticity (defined to be vorticity divided by density),
‘transport equations for the entropy and its gradient, and some additional transport-

divergence-curl-type equations involving special combinations of the derivatives of the
solution variables. The good geometric structures in the equations allow one to use the
full power of the vectorfield method in treating the “wave part" of the system. In a
forthcoming application, we will use the new formulation to give a sharp, constructive
proof of finite-time shock formation, tied to the intersection of acoustic “"'wave
characteristics,” for solutions with nontrivial vorticity and entropy at the singularity. In
the present article, we derive the new formulation and provide an overview of the
central role that it plays in the proof of shock formation.

Although the equations are significantly more complicated than they are in the
barotropic case, they enjoy many of same remarkable features, including: \textbf{i)} all
derivative-quadratic inhomogeneous terms are null forms relative to the acoustical
metric, which is the Lorentzian metric driving the propagation of sound waves and
\textbf{ii)} the transport-divergence-curl-type equations allow one to show that the

entropy is one degree more differentiable than the velocity and that the vorticity is
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exactly as differentiable as the velocity, assuming that the initial data enjoy the same
gain in regularity. This represents a gain of one derivative compared to standard
estimates. This gain of a derivative, which seems to be new for the entropy, is essential
for closing the energy estimates in our forthcoming proof of shock formation,

since the second derivatives of the entropy and the first derivatives of the vorticity
appear as inhomogeneous terms in the wave equations.

Response to Reviewers:

Since | did not receive comments, this is essentially the same version as before. |
corrected a few typos, made a few clarifying remarks, and added equation (3.1.1c),
which is an identity that is independent of the rest of the paper and that | plan to use in
future works.
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Abstract We derive a new formulation of the 3D compressible Euler equa-
tions exhibiting remarkable null structures and regularity properties. Our re-
sults hold for an arbitrary equation of state (which yields the pressure in
terms of the density and the entropy) in non-vacuum regions where the speed
of sound is positive. Our work here is an extension of our prior joint work
with J. Luk, in which we derived a similar new formulation in the special case
of a barotropic fluid, that is, when the equation of state depends only on
the density. The new formulation comprises covariant wave equations for the
Cartesian components of the velocity and the logarithmic density coupled to &
transport equation for the specific vorticity {defined to be vorticity divided by
density), transport equations for the entropy and its gradient, and some addi-
tional transport-divergence-curl-type equations involving special combinations
of the derivatives of the solution variables. The good geometric structures in
the equations allow one to use the full power of the vectorfield method in
treating the “wave part” of the system. In a forthcoming application, we will
use the new formulation to give a sharp, constructive proof of finite-time shock
formation, tied to the intersection of acoustic “wave characteristi/a\é)f}or S0~
lutions with nontrivial vorticity and entropy at the singularity. In the’present
article, we derive the new formulation and provide an overview of the central
role that it plays in the proof of shock formation.
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Although the equations are significantly more complicated than they are in
the barotropic case, they enjoy many of same remarkable features, including:
i) all derivative-quadratic inhomogeneous terms are null forms relative to the
acoustical metric, which is the Lorentzian metric driving the propagation of
sound waves and ii) the transport-divergence-curl-type equations allow one to
show that the entropy is one degree more differentiable than the velocity and
that the vorticity is exactly as differentiable as the velocity, assuming that the
initial data enjoy the same gain in regularity. This represents a gain of one
derivative compared to standard estimates. This gain of a derivative, which
seems to be new for the entropy, is essential for closing the energy estimates
in our forthcoming proof of shock formation, since the second derivatives of
the entropy and the first derivatives of the vorticity appear as inhomogeneous
terms in the wave equations.

Keywords characteristics - eikonal equation - eikonal function - genuinely
nonlinear hyperbolic systems - null condition - null hypersurface - singularity
formation - strong null condition - vectorfield method - vorticity - wave
breaking

Mathematics Subject Classification (2000) MSC (2010) Primary:
35L67; Secondary: 35L05 - 35110 - 35L15 - 35L72 - 356Q31 - 76N10

1 Introduction and Summary of Main Results

Our main result in this article is Theorem 1, in which we provide a new formu-
lation of the compressible Euler equations with vorticity and dynamic entropy
that exhibits astoundingly good null structures and regularity properties. We
consider only the physically relevant case of three spatial dimensions, though
similar results hold in any number of spatial dimensions. Our results hold for
an arbitrary equation of state in non-vacuum regions where the speed of sound

is positive. By “equation of stat@"wemaion yielding the pres-
sure in terms of the density and tHe entropy. Our results are an extension of
our previous joint work with J.Luk [21], in which we derived a similar new
formulation of the equations in the special case of a barotropic fluid, that is,
when the equation of state depends only on the density. Our work [21] was in
turn inspired by Christodoulou’s remarkable proofs [6,9] of shock formation
for small-data solutions to the compressible Euler equations in irrotational
(that is, vorticity-free) and isentropic (that is, with constant entropy) regions
as well as our prior work [28] on shock formation for general classes of wave
equations; we describe these works in more detail below.

A principal application of the new formulation is that it serves as the start-
ing point for our forthcoming work, in which we plan to give a sharp proof
of finite-time shock formation for an open set of initial conditions without
making any symmetry assumptions, irrotationality assumption, isentropic as-
sumption, or barotropic equation of state assumption. The forthcoming work
will be an extension of our recent work with J. Luk [22], in which we proved a

— 17,
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A New Formulation of the 3D Compressible Euler Equations 3

similar shock formation result for barotropic fluids in the case of two spatial
dimensions.

Our new formulation of the compressible Euler equations comprises covari-
ant wave equations, transport equations, and transport-divergence-curl-type
equations involving special combinations of solution variables (see Def. 3). As
we mentioned earlier, the inhomogeneous terms exhibit good null structures,
which we characterize in our second main result, Theorem 2. Its proof is quite
simple given Theorem 1. As we mentioned above, in [21], we derived a sim-
ilar new formulation of the equations under the assumption that the fluid is
barotropic. The barotropic assumption, though often made in astrophysics,
cosmology, and meteorology, is generally unjustified because it entails neglect-
ing thermal dynamics and their effect on the fluid. Compressible fluid models
that are more physically realistic feature equations of state that depend on t

equation
the second
(which we refer to

thermodynamic variable to be the entjopy per uni S

as simply the “entropy” from now on).

1.1 Paper outline

In the remainder of Sect. 1, we summarize some of our notation, provide some
standard background material on the compressible Euler equations, define the
solution variables that we use in formulating our main results, roughly sum-
marize our main results, and provide some preliminary context. In Sect.2,
we define some geometric objects that we use in formulating our main re-
sults and provide some basic background on Lorentzian geometry and null
forms: In Sect. 3, we give precise statements of our main results, namely Theo-
rems 1 and 2, and give the simple proof of the latter. In Sect. 4, we provide an
overview of our forthcoming proof of shock formation, highlighting the roles
that Theorems 1 and 2 will play. In Sect. 5, we prove Theorem 1 via a series
of calculations in whic erve many important cancellations.

1.2 Notation

Throughout {z
R*3 ~ RxR3

}a=0,1,2,3 denotes a standard Caxtesian coordinate system o
ore precisely, 2° € R is the time ¢

1 For sufficiently regular solutions, there are many equivalently
pressible Euler equations, depending on the state-space variables that ¢
knowns in the system.

2 In our forthcoming proof of shock formation, we will, for convenience, consider space-
times with topology R x X, where X := R X T2 is the space manifold; see Sect.4 for an
overview. In that context, {*}«=0,1,2,3 denotes the usual Cartesian coordinate system on
R x X, where 20 € R is the time coordinate, z! is a standard spatial coordinate on R,
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4 Jared Speck

3]
R? are spatial coordinates. We use the notation d, := — to denote the

corresponding Cartesian coordinate partial derivative Vect(:)urﬁelds. We often
use the alternate notation z° = ¢ and 8y = 9;. Greek “spacetime” indices such
as a vary over 0,1, 2, 3, while Latin “spatial” indices such as a vary over 1, 2, 3.
We use Einstein’s summation convention in that repeated indices are summed
over their respective ranges. X; denotes the usual flat hypersurface of constant
Cartesian time ¢. If V is a vectorfield and f is a function, then V f := V0,f
denotes the derivative of f in the direction V.

1.3 Background on the compressible Euler equations

In this subsection, we provide some basic background on the compressible
Euler equations and provide definitions that we will use throughout the article.

1.8.1 Equations of state

We study the compressible Euler equations for a perfect fluid in three spatial
dimensions under any equation of state with positive sound speed (see defi-
nition (1.3.9)). The equation of state is the function (which we assume to be
given) that determines the pressure p in terms of the density ¢ > 0 and the
entropy s € R:

p=p(0,s). (1.3.1)

Given the equation of state, the compressible Euler equations can be for-
mulated as evolution equations for the velocity » : R1*3 — R3, the density
0 : R1*3 5 [0, 00), and the entropy s : R'*3 — (—00,00).

1.8.2 Some definitions

We use the following notati for the Euclidean divergence and curl of a

X, —tangent vectorfield V with Cartesian components {V*},=43:

divV = 8,V (cuer)i = €;060.V2. (1.3.2)

In (1.3.2) and throughout, €;;; denotes the fully antisymmetric symbol nor-
malized by

€123 = 1. (133)

and 22 and z3 ate standard (locally defined) coordinates on T2. Note that the vectorfields

{6.1 = 567} on T? can be extended so as to be globally defined and smooth.
T% ) a=2,3

3 See Subsect. 1.2 regarding our conventions for indices and implied summation.
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The vorticity w : R**3 — R3 is the vectorfield with the following Cartesian
components, (1 = 1,2,3):

wt := (curlv)®. (1.3.4)

Rather than formulating the equations in terms of the density and the
vorticity, we find it convenient to use the logarithmic density p and the specific
vorticity {2; some of the equations that we study take a simpler form when
expressed in terms of these variables.

To define these quantities, we first fix a constant “background density”
such that

o> 0.
In applications, one may choose any convenient valu

Definition 1 (Logarithmic density and specific vorticity) We deﬁne
the logarithmic density p, which is a scalar function, and the specific vorti
{2, which is a X;—tangent vectorfield, as follows:

:m<:

We assume throughout tha
>0 (1.3.7)

In particular, the variable p is finite assuming (1.3.7).

In the study of shock formation, to obtain sufficient top-order regularity for
the entropy, it is important to work with the X;-tangent vectorfield S provided
by the next definition; see Remark 1 for further discussion.

Definition 2 (Entropy gradient vectorfield) We define the Cartesian
components of the Xi-tangent entropy gradient vectorfield S as follows, (i =
1,2,3):

St = 6198,5 = 9;s. (1.3.8)

Remark 1 (The need for S and transport-div-curl estimates in con-
trolling s) In our forthcoming proof of shock formation, we will control the
top-order derivatives of s by combining estimates for transport equations with
div-curl-type elliptic estimates for .S and its higher derivatives. At first glance,

4 For example, when studying solutions that are perturbations of non-vacuum constant
states, one can choose g so that in terms of the variable p from (1.3.6), the constant state
corresponds to p = 0.

5 We avoid discussing fluid dynamics in regions with vanishing density. The reason is that
the compressible Euler equations become degenerate along fluid-vacuum boundaries, and
the study of compressible fluid flow becomes much more difficult; see, for example, [12] for
more information.
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6 Jared Speck

it might seem like the div-curl elliptic estimates could be replaced with sim-
pler elliptic estimates based on controlling As, in view of the simple identity
As = divS. Although this is true for As itself, in our proof of shock for-
mation, the Fuclidean Laplacian A is not compatible with the differential
operators that we must use to commute the equations when obtaining esti-
mates for the solution’s higher derivatives. Specifically, like all prior works on
shock formation in more than one spatial dimension, our forthcoming proof
is based on commuting the equations with geometric vectorfields (see Sub-
sect. 4.3 for an overview) that are adapted to the acoustic wave characteristics
of the compress1ble Euler equations.® The acoustic characterlstlcs

through f'u st—ord reperators, as long as they are wexghted Wlth an appropriate
geometric weigh (Dleads to controllable efror terms, compatible with following
the solution all the way to the smgulaut ¢ We explain this issue in more detail

in Steps 1 and 2 of Subsect. 4.3.

Notation 11 (Differentiation with respect to state-space variables via semicolons)

If f = f(p,s) is a scalar function, then we use the following notation to-de-

0 7]
note partial differentiation with respect to p and s: f;p = 6—£ and fg 1= 6_£
&% f - ) .
Moreover, fp.s = 5—56, and we use similar notation for other higher-
s

partial derivatives of f with respect to p and s.

1.3.3 Speed of sound and an assumption on th ation of state

The scalar function ¢ > 0 defined b,

9 T
=2 exp(—p)Pio (13.9)

39'3: F;

is a fundamental quantity known as the speed of sound¥To obtain the last
a 1 é)
equality in (1.3.9), we used the chain rule identity 50 [, = —éexp(—p)a—p [4

From now on, we view c as a function of the logarithmic density and the

6 We define these “wave characteristics,” denoted by Py, in Subsect. 4.2,
7 Specifically, the weight is the inverse foliation density w of the acoustic characteristics;
see Def. 10.

8,
8 On RHS (1.3.9), B—IJ |, denotes the derivative of the equation of state with respect to
(4

the (non-logarithmic) density g at fixed s.
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A New Formulation of the 3D Compressible Euler Equations 7

entropy:
c=c{p,s). (1.3.10)

Assumption on the equation of state

We make the following physical assumption, which ensures the hyperbolicity
of the system when g > 0:

We assume that ¢ > 0 when g > 0. Equivalently, we assume that ¢ > 0
whenever p € (—o0, 00).

1.83.4 A standard first-order formulation of the co

essible FEuler equations

We now state a standard first-ordex-férmulation of the compressible Euler
equations; these equations f the starting point of our new formulation.
Specifically, relative tgg€artesian coordinates, the compressible Euler equa-
tions can be expressefl®)Jas follows, where we again stress that p denotes the
logarithmic density:

Bp = —divv, ' (1.3.11a)
—p) it giag, s, (1.3.11b)

Bs =0. (1.3.11c)

Above and throughout, §%° denotes the standard Kronecker delta, and
B =8, +1°0, (1.3.12)

denotes the material derivative vectorfield. We stress already that B plays a
critical role in the ensuing discussion. Readers can consult, for example, [9] for
discussion behind the physics of the equations and for a first-order formulation
of them in terms of g, {v*}i=1 2,3, and s, which can easily seen to be equivalent
to (1.3.11a)-(1.3.11c).

1.3.5 Modified fluid variables

Although it is not obvious, the quantities that we provide in the following
definition satisfy transport equations with a good structure; see (3.1.3b) and
(3.1.4a). When combined with elliptic estimates, the transport equations al-
low one to prove that the specific vorticity and entropy are one degree more
differentiable than naive estimates would yield, assuming that these quantities
initially have the extra differentiability. This gain of regularity is essential in
our forthcoming proof of shock formation since it is needed to control some
of the source terms in the wave equations for the velocity, density, and en-
tropy, specifically, the first products on RHSs (3.1.1a)-(3.1.1c). In addition,

9 Here we recall our notation from Subsect.1.2: if V is a vectorfield and f is a function,
then V f := V8, f denotes the derivative of f in the direction V.
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the source terms in the transport equations have a good null structure, which
is also essential in the study of shock formation. We discuss these issues in
more detail in Sect. 4.

Definition 3 (Modified fluid variables) We define the Cartesian compo-

nents of the X-tangent vectorfield C and the scalar function D as follows,

(i=1,2,3):

Ct:= exp(—p)(curl2)* + exp(—Bp)c_z%Saaavi - exp(—3p)c‘2%(5‘av“)5i,
(1.3.13a)

D := exp(—2p)divS — exp(—2p)S*9,p. (1.3.13b)

1.4 A brief summary of our main results

For the reader’s convenience, we now provide a brief, inforsral version of our

main results.

Summary of the main results. The-Compressible Euler equations
(1.3.11a)-(1.3.11c) can be reforrilated as a system of covariant wave
equations for the Carfeésian components {v'}i—1,23 of the velocity
and the loggRithmic density p coupled to a transport equation for
the entrop, s, transport equations for the Cartesian components
{S%}i=1,2,3 of the entropy gradient, transport equations forThe Carte-
sian components {§2¢};.1,2,3 of the specific vorticity, trgnsport equa-
tions for the modified fluid variables of Def. 3, and idenjties for div{2
and (curl8)¢; see Theorem 1 on pg. 20 for the equations."Moreover, the
inhomogeneous terms exhibit remarkable structures, including good
null form structures tied to the acoustical metric g (which is the
Lorentzian metric corresponding to the propagation of sound waves,
see Def. 4); see Theorem 2 on pg. 23 for the precise statement.

1.5 Some preliminary context for the main results

In this subsection, we provide some preliminary context for our main results,
with a focus on the special null structures exhibited by the inhomogeneous
terms in our new formulation of the compressible Euler equations and their
relevance for the study of shock formation. The presence of special null struc-
tures in the equations might seem surprising since they are often associated
with equations that admit global solutions; see, for example, Klainerman’s
work [18] on small-data global existence for wave equations satisfying his “clas-
sic” null condition. However, as we explain below, the good null structures are

10 The entropy also solves the covariant wave equation (3.1.1c). However, in practice, one
might be interested in equation (3.1.1c) more for computational purposes than for analytical
purposes; one can derive estimates for the entropy using the transport equation (3.1.2b) and
the transport-divergence-curl system (3.1.4a)-(3.1.4b).
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A New Formulation of the 3D Compressible Euler Equations 9

in fact key to proving that the shock forms. Several works have contributed
to our understanding of the important role that the null structures play in
the proof of shock formation, including [6, 14,21, 22,28). Below we will review
these works and some related ones and, for the results in more than one spatial
dimension, we will highlight the role that the presence of good geo-analytic
structures and null structures played in the proofs.

The famous work of Riemann [26], in which he invented the Riemann in-
variants, yielded the first general proof of shock formation for solutions to
the compressible Euler equations in one spatial dimension. More precisely, for
such solutions, the velocity and density remain bounded, even though their
first-order Cartesian coordinate partial derivatives blow up in finite time. This
type of singularity formation is also known as wave breaking in the literature.
The standard proof of this phenomenon is elementary and is essentially based
on identifying a Riccati-type blowup-mechanism for the solution’s first deriva~
tives; see Subsect. 4.1 for a review of these ideas in the context of simple plane
wave solutions.

In all prior proofs of shock formation in more than one spatial dimension,
there also was a Riccati-type mechanism that drove the blowup of the solu-
tion’s derivatives. However, in the analysis, the authors encountered many new
kinds of error terms that are much more complicated than the ones encoun-
tered by Riemann. A key aspect of the proofs was showing that the additional
error terms do not interfere with the Riccati-type blowup-mechanism. This is
where the special null structure mentioned above eptefs into play: terms that
enjoy the special null structure are weak compgréd to the Riccati-type terms
that drive the singularity, at least near the giock. In order tg/xplain this in
more detail, we now review some prior wopks on shock fopmrsfion in more than
one spatial dimension.

Alinhac was the first [1-4] to provg shock formatidn results for quasili
hyperbolic PDEs in more than one gpatial dimension¥ Specifi 7in two and
three spatial dimensions, he provefi shock formation ts for scalar quasi-
linear wave equations of the for

(1.5.1)

non-degeneracy condition¥We clarify that the classic null condition refers to
structures adapted to the Minkowski metric and thus is distinct from the good

11 Alinhac’s equations were perturbations of the linear wave equation in the sense that
9ap (8% = 0) = mqap, where m is the Minkowski metric, e.g. mep = diag(—1,1,1,1) in
three spatial dimensions.

12 Klainerman formulated the “classic” null condition in three spatial dimensions [18],
while Alinhac formulated it in two spatial dimensions [3]. For equations of type (1.5.1),
the difference is that in three spatial dimensions, the definition of the classic null condition
involves only the structure of the quadratic part 8% - 82 of the nonlinearities (obtained by
Taylor expansion), while in two spatial dimensions, it also involves the cubic part §&-56.82&,




W ~2on U W=

AN U U U U U OO U U BB DD DWWWWWWWWwWWwWwWRNNNNNNNNDN P R e e e
N WO ROV LN BEWNFRFOOCO-TAUN R WNHOOR TN DWNFROWOWE-LZAUDWNFOWO-THURWNDRFO

10 Jared Speck

null structures appearing in our new formulation of the compressible Euler
equations; we refer to the good null structures appearing in the new formu-
lation as the “strong null condition” (relative to the acoustical metric g) in
Theorem 2.

Although Alinhac’s work significantly advanced our understanding of sin-
gularity formation in solutions to quasilinear wave equations, the most robust
and precise framework for proving shock formation in solutions to quasilinear
wave equations was developed by Christodoulou in his groundbreaking work
[6]. More precisely, in [6], Christodoulou proved a small-data shock formation
result for irrotational and isentropic solutions to the equations of compressible
relativistic fluid mechanics. In the irrotational and isentropic case, the equa-
tions are equivalent to an Euler-Lagrange equation for a potential function
@, which can be expressed in the form (1.5.1). It turns out that for all fluid
equations of state except for one, the quasilinear wave equation for the poten-
tial function fails to satisfy the classic null condition, leading to the presence
of nonlinear terms that can drive finite-time shock formation; the exceptional
equation of state was identified in {6] in the case of the relativistic Euler equa-
tions and in [9] in the case of the non-relativistic compressible Euler equations.
Christodoulou’s sharp geometric framework relied on a reformulation of the
wave equation (1.5.1) that exhibits good geo-analytic structures (see equation
(1.5.2)), and his approach yielded information that is not accessible via Al-
inhac’s approach. In particular, Christodoulou’s framework is able geyreveal
information about the structure of the maximal classical devel?sﬁ@f the
initial data, all the way up to the boundary, information that.i fitial for
propeerm up the shock development problem in compressible fluid me-
chanics YRoughly, the shock development problem is the problem of weakly
continuing the solution past the singularity under suitable jump conditions.
We note that even if the data are irrotational, vorticity can be generated to
the future of the first singularity. Thus, in the study of the shock development
problem, one must consider the full compressible Euler equations with vorticity
and entropy. The shock development problem remains open in full generality
and is expected to be very difficult. However, Christodoulou-Lisibach recently
made important progress: in [8], they solved the problem in spherical symme-
try in the relativistic case.

Christodoulou’s shock formation results for the irrotational and isentropic
relativistic compressible Euler equations were extended to the non-relativistic
irrotational and isentropic compressible Euler equations by Christodoulou—
Miao in [9), to general classes of wave equations [28] by the author, and to other
solution regimes in [24,25,29]. In all cases, the formation of the shock singu-
larity was driven by the presence of Riccati-type interactions, similar in spirit
to the ones found in Riemann’s aforementioned work [26] in the case of one
spatial dimension and in the famous class of genwinely nonlinear hyperbolic
systems. Readers can consult the survey article [14] for an extended overview of

13 Roughly, the maximal classical development is the largest possible classical solution that
is uniquely determined by the data; see, for example, [27,30] for further discussion.
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A New Formulation of the 3D Compressible Euler Equations 11

some of these works. We remark that a similar Riccati-type blowup-mechanism
was also present in our aforementioned proof of shock formation [22] for the
compressible Euler equations with vorticity under a barotropic equation of
state, and that a similar mechanism drives the blowup in our forthcoming
proof of shock formation for general equations of state. Of the above works,
the ones [6,9] are most icle. In those works, the
authors proved i essible Euler

for the pofential function &. The wave equation can be written jgl the (non-
Euler-Lagrange) form (1.5.1) relative to Cartesian coordinates, X%/ where the

of statefIn the context of fluid mechanics, the Lorentzian metric g in (1.5.1)
is known as the acoustical metric because it drives the propagation of sound
waves. We note that the acoustical metric also plays a fundamental role in the
main results of this article (see Def. 4), even when the vorticity and entropy
are non-zero.

A simple — but essential — step in Christodoulou’s proof [6] of shock for-
mation was to differentiate the wave equation (1.5.1) with the Cartesian coor-
dinate partial derivative vectorfields 8,, which led to the followin
covariant wave equations, (v = 0,1, 2, 3):

In (1.5.2), ¥ :=
0, denoting
conformal t

artesian coordinate partial derivative), § is a Lorentzian metyic
g, Dg@) is the covariant wave operator of § (see Def. 9),

¥, is treated as a scalar function under covariant differentiation in (1.5.2)%A
key feature of the system (1.5.2) is that all of the terms that drive the shock
Jormation are on the left-hand side, hidden in the lower-order terms generated
by the operator CL(@*) That is, if one expands EL( )LP relative to the standard

Cartesian coordinates, one encounters Riccati-type terms of the schematic
form 8% - OF that fail to satisfy the claggic null© nd thus are able to
drive the blowup of a certain tensorial gomponent of 6?, while ¥ itself remains
uniformly bounded up to the singuladity; roughly, this is what it means for
solutions to (1.5.2) to form a shock.#Readers can consult Subsect.4.1 for a
more detailed description of how the Riccati-type terms lead to blowup for
simple isentropic plane wave solutions to the compressible Euler equations.
The presence of a covariant wave operator on LHS (1.5.2) was crucial for
Christodoulou’s analysis. The reason is that he was able to construct, with
the help of an eikonal function (see Subsect.4.2), a collection of geometric,

14 In discussing [6], it would be better for us to call them “rectangular coordinates” since
the equations there are introduced in the context of special relativity, and the Minkowski
metric takes the “rectangular” form diag(—1,1,1,1) relative to these coordinates.

18 That is, g is a scalar function multiple of g.

16 TIn reality, what blows up is a specific tensorial component of 8Y; the tensorial structure
in the problem is rather intricate,
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12 Jared Speck

solution-dependent vectorfields that enjoy good commutation properties with
Dg(q—;). He then used the vectorfields to differentiate the wave equations and
to obtain estimates for the solution’s higher derivatives, much like in his cel-
ebrated proof [7], joint with Klainerman, of the global nonlinear (dynamic)
stability of Minkowski spacetime as a solution to the Einstein-vacuum equa-
tions. Indeed, in more than one spatial dimension, the main technical challenge
in the proof of shock formation is to derive sufficient energy estimates for the
geometric vectorfield derivatives of the solution that hold all the way up to
the singularity. In the context of shock formation, this step is exceptionally
technical, and we discuss it in more detail in Sect. 4. It is important to note
that the standard Cartesian coordinate partial derivatives 8, generate uncon-
trollable error terms when commuted through DE(@) and thus the geometric
vectorfields and their good commutation properties with the operator Dg(q;)
are essential ingredients in the proof.

In [28], we showed that if one considers a general wave equation of type
(1.5.1), not necessarily of the Euler-Lagrange type considered by Christodoulou
[6] and Christodoulou-Miao [9], then upon differentiating it with 8,, one does
not generate a system of type (1.5.2), but rather an inhomogeneous system of
the form

where f is smooth and 0 is a standard null form relative to the acoustical
metric g; see Def. 8, We then showed that the null forms relative to g have
precisely the right structure such that they do not interfere with or prevent
the shock formation processes, at least for suitable data. The £ are canonical
examples of terms that enjoy the good null structure that we mentioned at the
beginning of this subsection. In particular, the term £2 on RHS (1.5.3) is not
strong enough to overcome derivative-quadratic terms on LHS (1.5.3), which
become visible upon expanding Dg (‘17)@,, relative to the Cartesian coordinates
and which, exceptional cases aside, do not enjoy the same good
null structure featured on RHS (1.5.3). More generally, we refer to the
good null structure on RHS (1.5.3) as the strong null condition; see Def.7
and Prop. 1. We stress that the full nonlinear structure of the null forms
£ is critically important. This is quite different from Klainerman’s classic
null condition (see Footnote 12), which he formulated in his study of wave
equations in three spatial dimensions that enjoy small-data global existence
[18]; in Klainerman’s classic null condition, the structure of cubic and higher
order terms is not even taken into consideration since, in the small-data regime
that he studied, wave dispersion causes the cubic terms to decay fast enough
that their precise structure is typically not important. The reason that the full
nonlinear structure of the null forms £ is of critical importance in the study
of shock formation is that they are adapted to the acoustical metric g and
enjoy the following key property: each £ is linear in the tensorial component
of 8% that blows up. Therefore, near the singularity, £ is small relative to the
quadratic terms A% - OV that drive the singularity formation (which we again
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stress are hidden in the definition of O (%) ,). Roughly, this linear dependence
on the singular terms is the crux of the strong null condition. In contrast, a
typical quadratic inhomogeneous term 8% 87, if present on RHS (1.5.3), would
distort the dynamics near the singularity and could in principle prevent it from
forming or change its nature. Moreover, in the context of shock formation,
cubic or higher-order terms such as 8% - 8% - 0% are expected to become
dominant in regions where o is large and it is therefore critically important
that there are no such terms on RHS (1.5.3). These observations suggest that
proofs of shock formation are less stable under perturbations of the equations
compared to more familiar perturbative proofs of global existence.

The equations in our new formulation of the compressible Euler equations
(see Theorem 1} are drastically more complicated than the homogeneous wave
equations (1.5.2) that Christodoulou encountered in his study of irrotational
and isentropic compressible fluid mechanics and the inhomogeneous equations
(1.5.3) that we encountered in [28]. The equations of Theorem 1 are even con-
siderably more complicated than the equations we derived in [21] in our study
of the barotropic fluids with vorticity. However, the equations of Theorem 1
exhibit many of the same good structures enjoyed by the equations of [21],
as well as some remarkable new ones. Specifically, in the present article, we
derive geometric equations whose inhomogeneous terms are either null forms
relative to the acoustical metric g, similar to the ones on RHS (1.5.3), or less
dangerous terms that are at most linear in the solution’s derivatives. We find
the presence of this null structure to be somewhat miraculous in view of the
sensitivity of proofs of shock formation under perturbations of the equations,
as we described in the previous paragraph. Moreover, in Theorem 1, we als
exhibit special combinations of the solution variables that solve equations
good source terms, allowing, with the help of elliptic estimates, for a
the vorticity is one degree more differentiable than one might expec
ing that the gain in differentiability is present in the initial data; see Def. 3

for the special combinations, which we refer to as “modified fluid variabalzgy e

The gain in differentiability for the vorticity has long been known relofivé
to Lagrangian coordinates, in particular because it has played an important
role in proofs of local well-posedness {10-12,15,16] for the compressible Euler
equations for data featuring a physical vacuum-fluid boundary. However, the
gain in differentiability for the vorticity with respect to arbitrary vectorfield
differential operators (with coefficients of sufficient regularity relative to the
solution) seems to originate in [21]. The freedom to gain the derivative relative
to general vectorfield differential operators is important because Lagrangian
coordinates are not adapted to the wave characteristics, whose intersection cor-
responds to the formation of a shock. Therefore, Lagrangian coordinates are
not suitable for following the solution all the way to the shock; instead, as we
describe in Subsects. 4.2 and 4.3, one needs a system of geometric coordinates

17 To show the gain in regularity, one must use a combination of energy estimates and
elliptic estimates along hypersurfaces of constant time. In the present article, we do not
actually derive energy estimates and elliptic estimates, but rather only PDEs that one can
use to derive them.
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constructed with the help of an eikonal function, as well as the aforementioned
geometric vectorfields, which are closely related to the geometric coordinates.
We remark that in the barotropic case [21], the “special combinations” of solu-
tion variables were simpler than they are in the present article. Specifically, in

might expect by studying a rescaled version of its Laplacian®*/see (1.3.13b).
To the best of our knowledge, the gain in regularity for the entropy is a new
result.

As we mentioned above, we exhibit the special null structure of the inho-
mogeneous terms in Theorem 2. Given Theorem 1, the proof of Theorem 2
is simple and is essentially by observation. However, it is difficult to over-
state its profound importance in the study of shock formation since, as we
described above, the good null structures are essential for showing that the
inhomogeneous terms are not strong enough to interfere with the shock for-
mation processes (at least for suitable open sets of initial data). The gain of
differentiability mentioned in the previous paragraph is also essential for our
forthcoming work on shock formation since we need it to control some of the
source terms in the wave equations.

2 Geometric Background and the Strong Null Condition

In this section, we define some geometric objects and concepts that we need
in order to precisely state our main results.

2.1 Geometric tensorfields associated to the flow

Roughly, there are two kinds of motion associated to compressible Euler flow:
the transporting of vorticity and the propagation of sound waves. We now
discuss the tensorfields associated to these phenomena.

We start by recalling that the material derivative vectorfield B, defined
in (1.3.12), is associated to the transporting of vorticity and entropy; the
equations of Theorem 1 justify this remark.

We now define the Lorentzian metric g correspondi 0 the propagation
of sound waves; again, the equations of Theore fustify this remark.

and its inverse) We define the
—1 relative to the Carte-

Definition 4 (The acoustical metr
acoustical metric g and the inverse acoustital metric g

18 Actually, with our future study of shock formation in mind, we formulate a transport-
div-curl-type system for the gradient of the entropy; see equations (3.1.4a)-(3.1.4b) and

Remark 1.
19 Other authors have defined the acoustical metric to be c¢?g. We prefer our definition
because it implies that (g~1)%° = —1, which simplifies the presentation of many formulas.
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sian coordinates as follows:

3
gi=—dt®@dt+c? Z(dm“ — v ® (dz® — vdt), (2.1.1a)
a=1
3
g ==B®B+cY 0,8 da. (2.1.1b)
a=1

Remark 2 One can easily check that g~ is the matrix inverse of g, that is, we

have (g71)#%g,, = 6%, where 6# is the standard Kronecker delta.

The vectorfield B enjoys some simple but important geometric properties,
which we provide in the next lemma. We repeat the simple proof from [21] for
the reader’s convenience.

Lemma 1 (Basic geometric properties of B) B is g-timelike,?® future-
directed,?! g—orthogonal to X,, and g—unit—lengt%
g9(B,B) = -1. (2.1.2)

Proof Clearly B is future-directed. The identity (2.1.2) (which also implies
that B is g-timelike) follows from a simple calculation based on (1.3.12) and
(2.1.1a). Similarly, we compute that g(B, 8;) := goiB* = 0 for i = 1,2, 3, from
which it follows that B is g—orthogonal to X,.

2.2 Decompositions relative to null frames

The special null structures found in our new formulation of the compress-
ible Euler ions, which we briefly described in Subsect. 1.5, are intimately
to the notion of a null frame,.

(Standard g-Null frame) Let g be a Lorentzian®® metric
R**3NA standard g-null frame (“null frame” for short, when the metric
is clear) at a point g is a set of vectors

=

N = {L)_L_) @1,62} (221)
belonging to the tangent space of RM*3 at ¢ such that
g(L:L) = g(L_a L) =0, (2223')
g(L,I_,) = -2, (2.2.2b)
g(L,es) = g(L,ea) =0, (A=1,2), (2.2.2¢)
g(eA)eB) = JABy (A»B = 172)) (22‘2d)
’;wvhere d4p is the standard Kronecker delta.
o g-timelike vectorfields V' are such that g(V, V) < 0.
21 A vectorfield V is future-directed if V¢ > 0, where V0 is the 0 Cartesian component.
22 Throughout we use the notation g(V, = A
23 By “Lorentzia, @an that the quadratic form corresponding to the 4 x 4 matrix

of components g, £ Has signature (—, +,+, +).
24 The topology of the spacetime manifold is not relevant for our discussion here.
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The following lemma is a straightforward consequence of Def. 5; we omit

the simple proofga_

Lemma 2 (Decomposition of g~! relative to a standard g-null frame)
Relative to an arbitrary standard g—null frame, we have

1

2

1 1
g =-L®L--LO®L+ Y ea®ea. (2.2.3)
2 2 —

Definition 6 (Decomposition of a derivative-quadratic nonlinear term
relative to a null frame) Let

V= (p, v, v?,v%, s, 21, 2%, 2%, 8%, 8%, 5%) (2.2.4)

be the array of unknowns in the below system (3.1.1a)-(3.1.4b) (see Fo
note 30). We label the components of V' as follows:

VO =, Vii= 0!, Vii= 5, Vit = 2%, and V17

tofori=1,2,3.
(2.2.5)

Let N(V,8V) be a smooth noplificar term that is quadratically n
in V. That is, we assume thaf®d N (V,8V) = {(V)22.(8.Y8TT5V", where
f(V)ae’?-, is symmetric in © and I" and is a smooth function of
vanishing at 0) for @, 8 = 0,1,2,3 and &,I' = 0,1, -+, 10!
g-null frame ¥ as defined in Def. 5, we denote

{(not necessarily
iven a standard

N = {e1,es,63 1= L,eq := L}.

Moreover, we let M2 denote the scalar functions corresponding to expanding
the Cartesian coordinate partial derivative vectorfield 8, at ¢ relative to the
null frame, that is,

4
Oy = MfeA = Z M(‘;‘e,;.
A=1
Then

Ny = (V) MEME (eaV®)epV" (2.2.6)

denotes the nonlinear term obtained by expressing N (17, 817) in terms of the
derivatives of V with respect to the elements of ./, that is, by expanding ov
as a linear combination of the derivatives of V with respect to the elements of
A and substituting the expression for the factor 8V in N(V,8V).

25 Here and below, we use Einstein’s summation convention, where uppercase Latin indices
such as A and B vary over 1,2, 3,4, lowercase Latin “spatial” indices such as a and b vary
over 1,2, 3, uppercase Greek indices such as @ and I' vary over 0,1,...,10, and lowercase
Greek “spacetime” such as « and § indices vary over 0,1,2,3.
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2.3 Strong null condition and standard null forms

In Subsect.1.5, we roughly described the special null structure enjoyed by
the inhomogeneous terms in our new formulation of the compressible Euler
equations. We precisely define the special null structure in the next definition,
which we recall from [21].

Definition 7 (Strong null condition) Let N 4 = f(f/‘)g’?«MaAMﬁB(eAVe)eBVF

be as in Def. 6. We say that N (17, 6‘7) verifies the strong null condition rel-
ative to g if the following condition holds: for every standard g-null frame
A, Ny can be expressed in a form that depends linearly (or not at all) on
LV and LV. That is, for A, B = 1,2,3,4 and e,I'=0,1,---,10, there exist
scalar functions fg?(ﬁ) and fA%(V), depending on the null frame, such that
the following hold:

for(V) =Tor(V) =0, £5:(V) =t&n(V) =0, 6, =0,1,-,10,
(2.3.1)
and
(V)28 MEM3(e3VO)esV T = Ton(V)(eaV®)esV?, (232
(V)& MAME(eaVO)ea VT = tAE (V) (eaVO)epV? .
Put differently, (2.3.1)-(2.3.2) state that M_ can be re-expressed in such a

way that terms proportional to (LVE)LVT and (LVE)LVT are completely
absent.

Remark 8 (Some comments on the strong null condition) Equation
(2.3.2) allows for the possibility that one uses external PDEs?® to algebraically
substitute for terms on LHS (2.3.2), thereby generating the good terms on
RHS (2.3.2), which verify the essential condition (2.3.1). As our proof of Prop. 1
below shows, this kind of substitution is not needed for null forms relative to
the acoustical metric g, which can directly be shown to exhibit the desired
structure, without the help of external PDEs. That is, for null forms Q rela-
tive to g, one can directly show that f(V)gngMg = f(f/')g’f}MﬁMg =0.In
the present article, the formulation of the equations that we provide (see The-
orem 1) is such that all derivative-quadratic terms are null forms relative to
g- Readers might then wonder why our definition of the strong null condition
allows for the more complicated scenario in which one uses external PDEs for
algebraic substitution to detect the good null structure. The reason is that in
our work [21] on the barotropic case, we encountered the inhomogeneous terms
€iab {(8a(2d)8dvb — (Bavd)ad()b}, which are not null forms. To show that these
terms had the desired null structure, we used the compressible Euler equations
for substitution and therefore relied on the full scope of Def. 7. In the present
article, we encounter the same terms, but we treat them in a different way

26 By “external PDEEA we simply mean PDEs satisfied by the elements of V.

)
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and show that in fact, €;qp {(Baﬂd)advb - (Gav‘i)ad()b} is equal to a null form
plus other terms that are either harmless or that can be incorporated into our
definition of the modified fluid variables from Def. 3; see the identity (5.1.14)
and the calculations below it.

A key feature of our new formulation of the compressible Euler equations
is that all derivative-quadratic inhomogeneous terms are linear combinations
of the standard null forms relative to the acoustical metric g, which verify the
strong null condition relative to g (see Prop.1). We now recall their standard
definition.

Definition 8 (Standard null forms) The standard null forms Q@ () (rel-
ative to g) and Q(ap) (- ), (0 < @ < B < 3), act on pairs (¢, ¢) of scalar-valued
functions as follows:

Q9 (8¢, 09) := (971)*# (029059, (2.3.32)
D(ap) (09, 09) = (0a$)0pb — (0a$) 0. (2.3.3b)

Proposition 1 (The standard null forms satisfy the strong null con-
dition) Let 0 be a standard null form relotive to g and let ¢ and $ be any two
eniries of the array V from Def. 6. Let f = f(V) be a smooth scalar-valued func-
tion of the entries of V. Then £{(V)Q(89, 65) verifies the strong null condition
relative to g, as defined in Def. 7.

Proof In the case of the null form (9) | the proof is a direct consequence of
the identity (2.2.3).

In the case of the null form Qg defined in (2.3.3b), we consider any
g-null frame (2.2.1), and we label its elements as follows: A := {e1, €2, €3 :=
L,es := L}. Since ./ spans the tangent space at each point where it is defined,
there exist scalar functions M2 such that the following identity holds for
a=0,1,2,3:

4
0 =Y Mfea. (2.3.4)
A=1

From (2.3.3b) and (2.3.4), we deduce

4
Qap)(06,00) = > {MAME — MEMZ} (cad)end.
A,B=1

The key point is that the terms in braces are antisymmetric in A and B.
It follows that the sum does not contain any diagonal terms, that is, terms
proportional to (ead)ea¢d (in the previous expression, we do not sum over
A). In particular, terms proportional to (Lqﬁ)La and (L¢)Lq~5 are not present,
which is the desired result.
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3 Precise Statement of the Main Results

In this section, we precisely state our two main theorems and give the simple
proof of the second one. We start by recalling the standard definition of the
covariant wave operator O,.

Definition 9 (Covariant wave operator) Let g be a Lorentzian metric.
The covariant wave operator [, acts on scalar-valued functions ¢ as follows:27

Oy = \/l—;ﬁaa {Videtsl(s™) 50} . (3.0)

3.1 The new formulation of the compressible Euler equations with vorticity
and entropy

Our first main result is Theorem 1, which provides the new formulation of the
compressible Euler equations. We postpone its lengthy proof until Sect. 5.

Remark 4 (Bzplanation of the different kinds of inhomogeneous terms )
In the equations of Theorem 1, there are many inhom at are
denoted by decorated versions of “£Y#FNESe terms are linear combinations of
standard null forms relative to g tHaf] in our forthcoming proof of shock for-
mation, can be controlled in the energy estimates without elliptic estimates.
Similarly, in the equations of Theorem 1, decorated versions of the symbol
“L£" denote terms that are at most linear in the derivatives of the solution
and that can be controlled in the energy estimates without elliptic estimates.
In our forthcoming proof of shock formation, the £'s and £'s will be simple
error terms. The equations of Theorem 1 also feature additional null form
inhomogeneous terms depending on 842 and 88, which we explicitly display
(i.e., we do not incorporate them into the “02’s”) because one needs elliptic
estimates along X to control them in the energy estimates. For this reason,
in the proof of shock formation, these terms are substantially more difficult to
control compared to the £2’s and £s. Similarly, terms that are linear in 812,
88, C, or D can be controlled only with the help of elliptic estimates along 3.

Theorem 1 (The geometric wave-transport-divergence-curl formu-
lation of the compressible Euler equations) Let 3 > 0 be any con-

stant backgremgrd-density (see (1.3.5)), and assume that (p.ul 2 23 _s—tsn
C? solutio o the compressible Euler equations (1.3.11a)-(1.3.11c) in three
spatial dimensions under an arbitrary equation of state (1.3.1) with positive

27 The formula (3.0.1) holds relative to arbitrary coordinates, but in our proof of Theo-
rem 1, we will carry out computations using (3.0.1) in Cartesian coordinates, with g equal
to the acoustical metric from Def. 4; see Lemma. 7.

2% 'We have made the C3 assumption only for convenience, i.e., so that all of the quantities
on the left- and right-hand sides of the equations of Theorem 1 are at least continuous. In
applications, one can make sense of the equations and solutions in a distributional sense
under weaker regularity assumptions (for example, in suitable Sobolev spaces).
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sound speed ¢ (see (1.3. 9))&Let B be the material derivative ve
fined in (1.3.12), let g be the acoustical metric from and let C and D
be the modified fluid variables from Def.3—Ffen the scalar valued functions
o and v, (2%, 5, St,_div{2 and (curlS)t, (i = 1,2,3), also solve the
followmg equationsy= where the Cartesian component functions v* are
treated as scalar-valued functions under covariant differentiation on
LHS (3.1.1a):

o~ U WN

\te]

Covariant wave equations

Jay
o

o
N

Ogv* = —c? exp(2p)C* + D’&v) + Eév), (3.1.1a)
O,p = —exp(p)%imrn(p) + Lo (3.1.1b)

e e
G W

Ogs = c? exp(2p)D + £(5). (3.1.1¢)

o
@ ~J

Transport equations

NN
= O W

B0 = £, (3.1.2a)
Bs =0, (3.1.2b)
BS' = £ig). (3.1.2¢)

NN
~N oy s W N

Transport-divergence-curl system for the specific vorticity

NN
[Celes]

divi2 = £giv gy, (3.1.3a)
BC' = —25;€iab exp(—p) (8av”)Bp 2 + €qji exp(—p)(Bav?)0; 28
+ exp(~3p)e —2”; {(BS®)8.v* — (Bv)9, 8"

wwwwww
M d WO

+ exp(—3p)c —21’; {(Bv")3.5= (BS")8,v°}

w
[o)]

+ Q) + Loy

w w w
O 0 ]

Transport-divergepte-curl system for the entropy gradient

KN
o

Wb
N

BD = 2exp(f-2p) {(6av“)8b5b — (028"} + exp(—p)das(curl 2)25°
(3.1.4a)

B b
oW

45 + Q(p);

46 {curl8)t = 0. (3.1.4b)
47 o T

48 = See the end of Subsect. 1.2 regarding our notation for the differentiation of scalar-valued
functions with vectorfields.
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
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Above, 0t ., Q(oy, i, and Ypy are the null forms relative to g
(v) (p) ©) (D)
defined by

(== {1+ e} (971)% (8ap)0p0", (3.1.5a)
Dpy = =3¢ ¢;p(971)*# (8ap)pp + {(8av*)8yv® — (aavb)(?bv“} , (3.1.5b)
Qi¢y = GXP(“3P)C_22§-Si {(8av*)Byv? — (8,v%)950°} (3.1.5¢)

+ exp(—3p)c"2%5b {(Bav“)abvi — (Bavi)abv“}
+2exp(~3p)e~ 2 5% {(up) Bv' — (3u*) Bo)
+2 exp(—3p)c_ac;p%sa {(8ap)Bv* — (8.v") Bp}
+ exp(—3p)c_2p;ggS‘1 {(8av")Bp — (8ap)Bv'}

+ exp(=3p)e ™ BEL 5 {(B*) a0 — (Bp)Ou”}

+ 2exp(~3p)c P2 5 (Bo)a” — (Bv")2up}

o+ 2exp(~3p)c e,y IS {(Bp)Ov — (Bu)dap}

Dy = 2exp(—2p)S* {(8av")0pp — (82p) 00"} . (3.1.5d)
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In addition, the terms 2’('”), Loy Ls)s 2’('9), st), E(divn)f and 220), which
are at most linear in the derivatives of the unknowns, are defined as follows:

£,y 1= 2exp(p)eias(Bv*)2° — p—;fiabﬂasb (3.1.6a)
1 s .
-5 exp(—p)p—-—’g’ 5%9,v*
- 2exp(—p)c‘16;pE§(Bp)Si + exr)(—p)p;g” (Bp)S",

—_

5 o
Ly =3 eXP(—p)p"?"Saaap - exp(~p)%6ab3“5”, 3.1.6b)
Loy 1= €28%8,p — cc;pS%0,p — cc;séabS“Sb,

L) = 02°0av" — exp(~2o)c_21")§“fiab(3v”)sb,

—

3.1.6¢)
3.1.6d)

—

3.1.6e)
3.1.6f)

225) 1= —8%9,v¢ + eiqp exp(p)$2°8°,
Ldiva) = —§2%0,p,
oy 1= 2exp(—3p)c_3c;3p—§(Bvi)éabS“Sb (3.1.6g)

—_

-2 exp(—Bp)c_Sc;s%JabS“(Bvb)Si
+ exp(—3p)c_2p;—g§-5ab(BU“)SbSi
— exp(—3p)c_2‘9;g—;s(Bvi)dabS“Sb.

Remark 5§ (Comparison to the results of [21]) For barotropic fluids, we
have p,; = 0, and consequently, the variables s and S* do not influence the
dynamics of the remaining solution variables. For such fluids, one can check
that equations (3.1.1a)-(3.1.1b), (3.1.2a), and (3.1.3a)-(3.1.3b) are equivalent
to the equations that we derived in [21]. However, one needs some observations
described in Remark 3 in order to see the equivalence.

Remark 6 (The data for the system (3.1.1a)-(3.1.4b)) The “fundamental”
initial data for the compressible Euler equations (1.3.11a)-(1.3.11c) are pl¢—o,
{v*|t=0}i=1,2,3, and s|s=o. On the other hand, to solve the Cauchy problem for
the system (3.1.1a)-(3.1.4b), one also needs the data d;pli=o, {80 }iz=1,2,3,
Be8le=0, {12%t=0}i=1,2,3, and {S*|i=0}|i=1,2,3. These data can be obtained by
differentiating the fundamental initial data with respect to the Cartesian coor-
dinate spatial partial derivative vectorfields {8;}i=1,2,3 and by using equations
(1.3.11a)-(1.3.11c) to algebraically solve for time derivatives.

3.2 The structure of the inhomogeneous terms

The next theorem is our second main result. In the theorem, we characterize
the structure of the inhomogeneous terms in the equations Theorem 1. The
most important part of the theorem is the null structure of the Type iii terms.
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Theorem 2 (The structure of the inhomogernéous terms) Let
V= (p,v*,v?,v3, 5,02 2% 028 8, 8%, 8%)

Yin the equations of Theorem 1f The inhomo-
d sides of equations (3.1.1a)-(3.1.4b) consist of

denote the array of unkno
geneous terms on the right-hu
three types:

3. Terms of the form £(V), where f is smooth and vanishes when S = 2 = 0.
2t. Terms of the form f(T?) -8V where f is smooth, that is, terms that depend
linearly on the elements of 6I7.~ _
141, Terms of the form {(V)Q(0¢, O¢), where f is smooth, ¢ and ¢ are elements
of V, and 2 is a standard null form relative to the acoustical metric
g from Def.8. By Prop. 1, these terms satisfy the strong null condition
relative to g.

Proof 1t is easy to see that Q’('v » (o) ‘ch)’ and Q(p) are Type iii terms,
and that the same is true for the products on the first through third lines
of RHS (3.1.3b) and the terms in braces on the first line of RHS (3.1.4a).
Similarly, it is easy to see that 22,)), Lpys L(a) 229), st), ‘Q(divny and
Ezc) are sums of terms of type Type i and Type ii, while the first prod-
uct on RHS (3.1.1a), the first product on RHS (3.1.1b), the first product on
RHS (3.1.1c), and the second product on RHS (3.1.4a) are, in view of Def. 3
on pg. 8, Type ii.

4 Overview of the Roles of Theorems 1 and 2 in Proving Shock
Formation

As we mentioned in Sect. 1, in forthcoming work, we plan to use the results
of Theorems 1 and 2 as the starting point for a proof of finite-time shock
formation for an open set of solutions to the compressible Euler equations.
In this section, we provide an overview of the main ideas in the proof and
highlight the role that Theorems 1 and 2 play. We plan to study a convenient
open set of initial conditions in three spatial dimensions whose solutions typi-
cally have non-zero vorticity and non-constant entropy: perturbations (without
symmetry assumptions) of simple isentropic (that is, constant entropy®!) plane
waves.3? We note that in our joint work [29] on scalar wave equations in two
spatial dimensions, we proved shock formation for solutions corresponding to
a similar set of nearly plane symmetric initial data. The advantage of study-
ing perturbations of simple isentropic plane waves is that it allows us to focus

30 Here, we are not considering C* and D to be “unknowns.” The reason is that, in view
of Def. 3, we can express C' and D in terms of V and 8V,

31 Note that the transport equation (1.3.11c) implies that the entropy is constant in the
maximal classical development of the data if it is constant along Xy.

32 These simple plane waves have vanishing vorticity and constant entropy, though their
perturbations generally do not.
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our attention on the singularity formation without having to confront addi-
tional evolutionary phenomena that are often found in solutions to wave-like
systems. For example, nearly plane symmetric solutions do not exhibit wave
dispersion because their dynamics are dominated by 1D-type wave behavior.33
In particular, our forthcoming analysis will not feature time weights or radial
weights.

4.1 Blowup for simple isentropic plane waves

Simple isentropic plane waveg are a subc ane symmetric solutions. By
“plane symmetric soluti% e mean solutions that depend only on ¢ and z!
and such that v? = 8 / To further explain simple isentropic plane wave
solutions, we will present some standard material without providing proofs. M“ﬂ
Readers can COIlSLllt, for examglke’[j_r]_?] for additional details Ve start ky 25

defining the Riemann invariantst

Ry :=v' + F(p). (4.1.1)

The function F in (4.1.1) solves the following initial value problem, where ¢
is the speed of sound (and we suppress the dependence of ¢ on s since s is
constant by assumption):

d

%F@)=dw, F(p=0)=0, (4.12)
where F(p = 0) = 0 is a convenient normalization condition. In one spatial di-
mension, in terms of R, the compressible Euler equations (1.3.11a)-(1.3.11c)
with constant entropy are equivalent to the system

LR_ =0, LRy =0, (4.1.3)
where
L= 8, + (v' + )0y, L:= 0+ (v* — )8 (4.1.4)

are null vectorfields relative to the acoustical metric of Def. 4. That is, one can
easily check that g(L, L) = g(L, L) = 0. The initial data are R4|i=o (together
with the initial constant value of the entropy, which we suppress for the rest of
the discussion). A simple isentropic plane wave is a solution such that one of
the Riemann invariants, say R_, completely vanishes. Note that by the first
equation in (4.1.3), the condition R_ = 0 is propagated by the flow of the
equations if it is verified at time 0.

The simple isentropic plane wave solutions described in the previous para-
graph typically form a shock in finite time via the same mechanism that leads
to singularity formation in solutions to Burgers’ equation. For illustration,

33 In one spatial dimension, wave equations are essentially transport equations and thus
their solutions do not experience dispersive decay.
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we now quickly sketch the argument. We assume the simple isentropic plane
wave condition R_ = 0, which implies that the system (4.1.3) reduces to
{8+ f(R4)01}R+ = 0, where f is a smooth function determined by F. It can
be shown that f is not a constant-valued function of R, except in the case of

C
the equation of state of a Chaplygin gas, which is p = p(p) = Cp — ?1, where

Co € R and C; > 0. We now take a 8y derivative of the evolution equation
for R4 to deduce the equation {8; + f(Ry)01}1Ry = —f (RL(G1RL)2.
Since R. is constant along the integral curves of 9, + f{R )8 (which are also
known as “characteristics” in the present context), the above equation can be
viewed as a Riccati-type ODE for §; R+ along the characteristics, specifically
the ODE

4

O Ry = k(81 R1)?, (4.1.5)

where the constant k is equal to —f/(R4) evaluated at the point on the z*-
axis from which the characteristic emanates. Thus, we can easily deduce that
for initial data such that 6;R+ and k have the same (non-zero) sign at some
point along the z! axis, the solution 8; R4 to (4.1.5) will blow up in finite time
along the corresponding characteristic, even though R, remains bounded; this
is essentially the crudest picture of the formation of a shock singularity. Note
that there is no blowup in the case of the Chaplygin gas since f/ = 0 in that
case; see Footnote 43 for related remarks.

4.2 Fundamental ingredients in the proof of shock formation in more than
one spatial dimension

We can view the simple isentropic plane waves described in Subsect.4.1 as
solutions in three spatial dimension that have symmetry. In our forthcoming
work on shock formation in three spatial dimensions, we will study pertur-
bations (without symmetry assumptions) of simple isentropic plane waves,
and will prove that the shock formation illustrated in Subsect. 4.1 is stable.
For technical convenience, instead of considering data on R3, we will consider
initial data on the spatial manifold

X =R x T?,

where the factor of T? (equal to the two-dimensional torus) corresponds to
perturbations away from plane symmetry. This allows us to circumvent some
technical difficulties, such as the fact that non-trivial plane wave solutions
have infinite energy when viewed as solutions with symmetry on the spacetime
RM3,

Although the method of Riemann invariants allows for an easy proof of
shock formation for simple isentropic plane waves, the method is not available
in more than one spatial dimension. Another key feature of the study of shock
formation in more than one spatial dimension is that all known proofs rely on
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sharp estimates that provide much more information compared to the proof

of blowup for simple plane waves from Subsect.4.1. Therefore, in our forth-
coming proof of shock formation for perturbations of simple isentropic plane
waves, we will use the geometric formulation of the equations provided by
Theorem 1.3 We will show that these equations have the right structure such

that they can be incorporated into an extended version of the paradigm for
proving shock formation initiated by Alinhac [1-4] and significantly advanced

by Christodoulou [6].

The most fundamental ingredient in the approaches of Alinhac and Christodoulou

is a system of geometric coordinates

(t, u, 9, 9%) (4.2.1)

that are dynamically adapted to the solution. We denote the corresponding
partial derivative vectorfields as follows:

8 a9 o0 0
{E’EE’W,W}. (4'212)

Here, t is the standard Cartesian time function, while u is an eikonal function
adapted to the acoustical metric. That is, u solves the following fully nonlinear
hyperbolic PDE, known as the eikonal equation:

(97 1) (8aw)Bpu = 0, Byu > 0, (4.2.3a)
ulpmg = 1 — 2. (4.2.3b)

Above and throughout the rest of the article, g is the acoustical metric from
Def. 4. We construct the geometric torus coordinates 94 by solving the trans-
port equations

(971 (Bau)Bp9” =0, (4.2.4a)

’191],5=0 = .’122, 192“:0 = CES, (424b)

where z2 and z3 are standard (locally defined) Cartesian coordinates on T?;

see Footnote 2 regarding the Cartesian coordinates in the present context.

For various reasons, when differentiating the equations to obtain estimates for

the solution’s derivatives, one needs to use geometric vectorfields, described

below, rather than the partial derivative vectorfields in (4.2.2). For this reason,

the coordinates (91,92) play only a minor role in the analysis, and we will
downplay their significance for most of the remaining discussion.

Note that the Cartesian components gops depend on the fluid variables

p, v*, and s (see (2.1.1a)). Therefore, the regularity properties of the eikonal

function are tied to that of the fluid solution; below we will further discuss this

crucial issue. The initial conditions (4.2.3b) are adapted to the approximate

34 In applications, it is sometimes preferable to work with unknowns that are equal to
nonlinear functions of p and v, for example unknowns in the spirit of the Riemann invariants
that have proven to be useful in the 1D case. We will ignore this issue throughout the rest
of Sect. 4.

N v\/i\'
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plane symmetry of the solutions, t

we plan to study.3? sets of u
are known as the “characteristi he “wave characteristi or the “acoustic
characteristics,” and we deno em by P,. The P, are“full hypersurfaces
relative to the acoustical metric g. As we further explain below, the intersection
of the level sets of the function u (viewed as an R-valued function of the
Cartesian coordinates) corresponds to the formation of a shock singularity
and the blowup of the first Cartesian coordinate partial derivatives of the
density and velocity. As we will explain below, u can be viewed as a “sharp
coordinate” that is dynamically adapted to the fluid flow, that can be used to
reveal special structures in the equations, and that can be used to construct
geometric objects adapted to the characteristics. The price that one pays for
the precision is that the top-order regularity theory for u is very complicated
and tensorial in nature. As we later explain, the regularity theory is especially
difficult near the shock and leads to degenerate high-order energy estimates
for the fluid.

The first use of an eikonal function in proving a global result for a non-
linear hyperbolic system occurred in the celebrated proof {7] of the stability
of the Minkowski spacetime as a solution to the Einstein-vacuum equations.3®
Eikonal functions have also played a central role in proofs of low-regularity
well-posedness for guasilinear hyperbolic equations, most notably the recent
Klainerman—Rodnianski-Szeftel proof of the bounded L? curvature conjecture
[20].

The paradigm for proving shock formation originating in the works [1-4, 6]
can be summarized as follows:

To the extent possible, prove “long-time-existence-type” estimates for
the solution relative to the geometric coordinates and then recover the
formation of the shock singularity as a degeneration between the ge-
ometric coordinates and the Cartesian ones. In particular, prove that
the solution remains many times differentiable relative to the geomet-
ric coordinates, even though the first-order Cartesian coordinate partial
derivatives of the density and velocity blow up.

The most important quantity in connection with the above paradigm for
proving shock formation is the inverse foliation density.

Definition 10 (Inverse foliation density of the P,) We define the inverse
foliation density p > 0 of the characteristics P, as follows:

-1

h = B (0a )G (4.2.5)

1, . s .
— is a measure of the density of the characteristics P, relative to the constant-

time hypersurfaces X;. When p vanishes, the density becomes infinite, the

35 For other applications, it might be necessary to choose different initial conditions for u.
36 Roughly, [7] is a small-data global existence result for the Einstein-vacuum equations.
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=0 ~ 1.%Christodoulou was the first to introduce p in the context
of proving shock formation in more than one spatial dimension [6]. However,
before Christodoulou’s work, quantities in the spirit of p had been used in
one spatial dimension, for example, by John in his proof [17] of blowup for
solutions to a large class of quasilinear hyperbolic systems. In short, to prove
a shock formation result under Christodoulou’s approach, one must control
the solution all the way up until the time of first vanishing of w.

4.3 Summary of the proof of shock formation

Having introduced the geometric coordinates and the inverse foliation density,
we are now ready to summarize the main ideas in the proof of shock formation
for perturbations of simple isentropic plane wave solutions to the compressible
Euler equations in three spatial dimensions with spatial topology X' =R x T2
For convenience, we will study solutions with very small initial data given along
a portion of the characteristic Py and “interesting” data (whose derivatives
can be large in directions transversal to the characteristics) along a portion of
Yo ~ R x T?; see Fig. 1 below for a schematic depiction of the setup.

Given the structures revealed by Theorems 1 and 2, much of the proof is
based on frameworks developed in prior works, as we now quickly summarize.
The bulk of the framework originated in Christodoulou’s groundbreaking work
[6] in the irrotational case, with some key contributions (especially the idea to
rely on an cikonal function) coming from Alinhac’s earlier work [1-4] on scalar
wave equations. The relevance of the strong null condition in the context of
proving shock formation was first recognized in [14,28]. The crucial new ideas
needed to handle the transport equations and the elliptic operators/estimates
originated in [21,22]. Three key contributions of the present work are showing
i) that one can gain a derivative for the entropy s, which is needed to ensure
that all terms in our new formulation of the compressible Euler equations have
a consistent amount of regularity (see Step 8 below for further discussion); ii)
the inhomogeneous terms generated by including s in our new formulation all
have a good null structure; and iii) that in the context of shock formation,
one needs to rely on transport-div-curl estimates for the entropy gradient S
in order to avoid uncontrollable error terms; see Remark 1 and Step 2 below
for further discussion on this last point.

We now summarize the main ideas behind our forthcoming proof of shock
formation. Most of the discussion will be at a rough, schematic level.

1. (Commutation vectorfields adapted to the characteristics). With
the help of the eikonal function u {see Subsect.4.2), construct a set of

37 uli—o depends on the data for the fluid variables.
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/ x/ltel;eS{ l /a/

Fig. 1 The vectorfield frame % at two distinct points in P, and the integral curves of B
(along which {2, s, and S are transported), with one spatial dimension suppressed.

geometric vectorfields
% = {L,X,%,Y} (4.3.1)

that are adapted to the characteristics P,; see Fig. 1. Readers can consult
[14,21,22] for details on how to use u to construct 2. Here, we only note
some basic properties of these vectorfields. The subset

Z = {L,11,Ya} (4.3.2)

spans the tangent spaces of P, while the vectorfield X is transversal to P
L is a g-null (that is, g(L, L) = 0) generator of P, normalized by Lt = 1,

while X = Bu + Error, where Exror is a small vectorfield tangent to the

co-dimension-two tori P, N ;. The vectorfields {Y3, Y2} span the
spaces of P, N X,.

The elements of 2 are designed to have good commutatio
each other and also, as we describe below, with uD
show that we have the following schematic re

(Z, 2]~ 2.

(4.3.3)

38 A more precise statement would indicate that the coefficients on RHS (4.3.3) depend
on the second derivatives of the eikonal function, but we suppress this issue here.
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In the rest of the discussion, Z denotes a generic element of 2 and P
denotes a generic element of & or, more generally, a P,-tangent differepit
operator.

It is straightforward to derive the following relationships, which a
understanding the shock formation, where d schematically denote
combinations of the Cartesian coordinate partial derivative vectorfields:

P~ 9, X ~ud. (4.3.4)
We also note the complementary schematic relation
ud ~ X 4 puP, (4.3.5)

which we will refer to in Step 2. At the end of Step 5, we will clarify the
role of the second relation in (4.3.4) in tying the vanishing of the inverse
foliation density p (see Def. 10) to the blowup of the solution’s first-order
Cartesian coordinate partial derivatives. In the proof of shock formation,
one uses the elements of & to differentiate the equations and to obtain
estimates for the solution’s derivatives. The goal is to show that up to a
sufficiently high order, the 2 -derivatives of the solution remain uniformly
bounded, all the way up to the time of first vanishing of w. Note that by
(4.3.4), we have |P| = O(1), while |X| = O(1). The relation IX] = O
implies that deriving uniform bounds for the solution’s X-derivatives is
tantamount to having only very weak estimates in regions where p is small
(i.e., near the shock); one might think of the boundedness of the solution’s
X- derlvatwes as “degenerate estimates” for the solution’s P,-transversal
derivatives, consistent with an order-unity transversal derivative of the

1
solution blowing up like — as g — 0. In contrast, the relation [P} =

O(1) implies that uniform bounds for the derivatives of the solution with
respect to the elements of & yield non-degenerate estimates for the Py-
tangential derivatives of the solution. We will revisit these crucial issues

v

in Step 3. We now note that one can derive the relations L = —, X =

ot
-(?— + Error, Y4 = z + Error, A = 1,2, where Error denotes small

vectorﬁelds that are tangent to the tori P, N X;. Hence, deriving estimates
for the %-derivatives of the solution is equivalent to deriving estimates for
the derivatives of the solution relative to the geometric coordinates. The
elements of (4.3.1) are replacements for the geometric coordinate partial
derivative vectorfields (4.2.2) that, as it turns out, enjoy better regularity
properties. Specifically, an important point, which is not at all obvious,
g 0
Ou’ 89’ 992
covariant wave operator U, from LHSs (3.1.1a)-(3.1.1c), generate error
terms that lose a derivative and thus are uncontrollable at the top-order. In

is that the elements of , when commuted through the

39 Throughout, we use the notation a ~ b to imprecisely indicate that a is well-
approximated by b.
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contrast, the elements Z € 2 are adapted to the acoustical metric g in such
a way that the commutator operator [l]y, Z] generates controllable error
terms. We note that one includes the factor of p in the previous commutator
because it leads to essential cancellations. Although achieving control of
the commutator error terms at the top-order derivative level is possible,
it is quite difficult and in fact constitutes the main step in the proof.
The difficulty is that the Cartesian components of Z € 2 depend on the
Cartesian coordinate partial derivatives of u, which we can schematically
depict as follows: Z* ~ du. Therefore, the regularity of the vectorfields
Z themselves depends on the regularity of the fluid solution through the
dependence of the eikonal equation (4.2.3a) on the fluid variables. In fact,
some of the commutator terms generated by [{u0,, Z] eppear, at first glance,
to suffer from the loss of a derivative. Fortunately, the derivative loss can
be overcome using ideas originating in [7,19)] and, in the context of shock
formation, in [6]. However, as we explain in Step 7, one pays a steep price in
overcoming the loss of a derivative: the only known procedure for gaining
back the derivative leads to degenerate estimates in which the high-order
energies are allowed to blow up as ¢t — 0. On the other hand, to close the
proof and show that the shock forms, one must prove that the low-order
energies remain bounded all the way up to the singularity. Establishing
this hierarchy of energy estimates is the main technical step in the proof.

. (Multiple speeds and commuting geometric vectorfields through

first-order operators). The compressible Euler equations with vorticity
and entropy feature two kinds of characteristics: the acoustic characteris-
tics P, and the integral curves of the material derivative vectorfield B; see
Fig. 1. That is, the system features multiple characteristic speeds, which
creates new difficulties compared to the case of the scalar wave equations
treated in the works [1-4,6,9,21,22, 25,29]. Another new difficulty com-
pared to the scalar wave equation case is the presence of the operators div
and curl in the equations of Theorem 1. The first proof of shock formation
for a quasilinear hyperbolic system in more than one spatial dimension
featuring multiple speeds and the operators div and curl was our prior
work [21,22] on the compressible Euler equations in the barotropic case.
We now review the main difficulties corresponding to the presence multi-
ple speeds and the operators div and curl. We will then explain how to
overcome them; it turns out that essentially the same strategy can be used
to handle all of these first-order operators. Since the formation of a shock
is tied to the intersection of the wave characteristic P, (as we clarify in
Step 5), our construction of the geometric vectorfields Z € % from Step
1 was, by necessity, adapted to g; indeed, this seems to be the only way
to ensure that the commutator terms [udy, Z] are controllable up to the
shock. This begs the question of what kind of commutation error terms
are generated upon commuting the Z through first-order operators such as
B, div, and curl. The resolution was provided by the following key insight
from [21,22]: the elements of % have just enough structure such that their
commutator with an appropriately weighted, but otherwise arbitrary, first-
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order differential operat@ roduces controllable error terms, consistent
with the solution remaining bounded relative to the geometric coordinates
at the lower derivative levels.¥Specifically, one can show that we have the

schematic commutation relation
(1o, Z] ~ X + P, (4.3.6)

which is suggested by the schematic relations (4.3.3) and (4.3.5). The im-
portant point is that RHS (4.3.6) does not feature any singular factor of
1

'}‘Lhe above discussion suggests the following strategy for treating the first-
order equations of Theorem 1: weight them with a factor of u so that
the principal part is of the schematic form pd. Then by (4.3.6), upon
commuting the weighted equation with elements of 2°, we generate only

1
commutator terms that do not feature any damaging factor of —. We stress
that the property (4.3.6) does not generalize to second-order operators.

1
That is, we have the schematic relation [pd, g, 2] ~ E.ﬂ",@" + -+, which

1
features uncontrollable factors of —. This is the reason that in deriving

elliptic estimates for the entropy s,%ve work the divergence and curl of the
entropy gradient vectorfield S* = ;s instead of As (see also Remark 1);
the div-curl formulation allows us to avoid commuting the elements of
% through the (second-order) flat Laplacian A and therefore to avoid
uncontrollable error terms.

3. (L* bootstrap assumptions). Formulate appropriate uniform L boot-
strap assumptions for the % -derivatives of the solution, up to order ap-
proximately 10, on a region on which the solution exists classically. In
particular, these 2°-derivatives of the solution will not blow up, even as
the shock forms. We now describe some crucial implications of these uni-
form bounds. We start by recalling the following facts, which we alluded to
just below (4.3.5): the Cartesian components of the element X in & are of
size ©O(), while the elements L,Y1,Y; of the P,-tangent subset & of Z
have Cartesian components of size @(1). This leads to the foliowing point
which is central for all aspects of the proof of shock formation:

Uniform L bounds for the solution’s Z-derivatives imply that the
derivatives of the solution with respect to any orgér-unidy-lengtk

vectorfield that is tangent to the acoustic charagteristics Ppvremain
uniformly bounded all the way up to the shock¥In contrast, a uni-
form L* bound for the solution’s X-derivative allows for the possi-
bility that order-unity-length derivatives of the solution in directions
transversal to P, can blow up like O(1/u) as p — 0. This is in direct

40 Here, by a “first-order differential operat we mean a differential operator equal to a
regular function times a Cartesian coordinatefpartial derivative.

41 Here, by the “length” of a vectorfield, we mean the size of its Cartesian components.

7”5
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analogy to the behavior exhibited by solutions to Bdrgers’ equation,

in which the derivatives of the sg)

characteristics remain bquf J i e solution’s transversal

derivatives can blow up.
Just below equation (4.3.11g), we explain why the proof requires so many
derivatives. The bootstrap assumptions are tensorial in nature and involve
several parameters measuring the size of various directional derivatives
of the solution. We will not discuss the bootstrap assumptions in detail
here. Instead, we simply note that they reflect our expectation that the
solution remains a small perturbation of a simple isentropic plane wave at
the lower 2’-derivative levels; readers can consult [21,22] for more details
on the bootstrap assumptions in the barotropic case and keep in mind that
in our forthcoming work, we will make similar bootstrap assumptions, the

new feature being smallness assumptions on the derivatives of s.

. {The role of Theorem 2). We now clarify the importance of the good

null structures revealed by Theorem 2, thereby fleshing out the discussion
from Subsect. 1.5. Let V denote the solution array (2.2.4). As we alluded to
above, before commuting the equations of Theorem 1 with elements of %,
we first multiply the equations by a factor of pt. The main point is that by
Theorem 2, all derivative-quadratic inhomogeneous terms (more precisely,
the Type iii terms in theorem) in p-weighted versions of the equations of
Theorem 1 can be decomposed in the following schematic form, where we
ignore the order-unity coefficients:

udv . v = XV . PV + uPV . PV, (4.3.7)

where P is as in Step 1. The decomposition (4.3.7) is precisely what is
afforded by the strong null condition, which is available in view of Prop. 1.
The reader might have noticed that Def.7 of the strong null condition
is based on decompositions relative to standard g-null frames, while the
terms on RHS (4.3.7) are decomposed relative to the elements of 2. That
is, one needs some minor observations in order to translate the strong
null condition into the statement (4.3.7). The main idea is to consider
the strong null condition under a null frame (2.2.1) in which L is the
vectorfield from (4.3.1) and the vectorfields {e;, es} have the same span as
{¥1,Y2}, in which case both of the sets {L, e1, ez} and {L,Y;,Y,} span the
tangent spaces of P,. From these considerations, it is easy to see that given
any derivative-quadratic term verifying the strong null condition, we can
decompose it into factors such that each factor contains at least one P~
tangent differentiation, which is precisely what is indicated on RHS (4.3.7).
In particular, on RHS (4.3.7), there are no terms proportional to XV - X V,
which, by signature considerations, would have to be multiplied by an

1
uncontrollable factor of — that would blow up at the shock. Such a term,

had it have been present, would have completely obstructed the goal of

42 Tor Burgers’ equation solutions, the tangential derivatives in fact completely vanish.
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. (Tying the singularity formation to the vanishing of p)

obtaining regular estimates for the solution’s low-level 2-derivatives that
hold all the way up to the shock.

We have therefore explained the good structure of Type iii terms from The-
orem 2, The only other kind of inhomogeneous terms that one encounters
in the p-weighted equations of Theorem 1 are at most linear in 8V, that
is, p-weighted versions of the Type i and Type ii terms from Theorem 2.
The linear terms pdV can be decomposed (schematically) as

wov = XV + uPv, (4.3.8)
the key point being that RHS (4.3.8) does not feature any singular factor of
1 -
= For this reason, all linear terms pdV remain uniformly bounded all the

way up to the shock and are admissible within the scope of our app
Similar remarks of course apply to terms that depend on V but

following evolution equation for p, written in schematic form:

7] 8 ;4
EZHN a;v + Error.

Then, using the L® bootstrap assumptions from Step 3, show that for

1

data near that of a simple plane wave, —5—1; is negative and approximately
U

constant in time (relative to the geometric coordinates) and that Error is
small in L™, all the way up to the shock. Thus, from (4.3.9}, we deduce

that u will vanish in finite time. Moreover, since Xo! and 6—7)1 agree up
u
)
to small error terms and since a—vl is strictly non-zero at any point where
u

1
i vanishes, it follows from the second relation in (4.3.4) that |6vll ~

in a past neighborhood of any point where W vanishes. In particular, some
first-order Cartesian coordinate partial derivative of v* must blow up like

1
— at points where y vanishes.

(Pointwise estimates and sharp estimates for u). Commute all of
the equations of Theorem 1 up to top-order (i.e., u
times) with the elements of 2, and similarly f the transport equations

43 It turns out that the coefficient of the “main term” on RHS (4.3.9), which we have

2
schematically depicted as «_Z_ 1" vanishes precisely in the case of the Chaplygin gas equa-
ou Y

C
tion of state, which is p = p(g) = Co— ———1—, where Cp € R and C; > 0. Since the “main term”

is precisely the one that drives the vanishing of y, our proof of shock formation does not
apply for the Chaplygin gas. This is connected to the following well-known fact: in one spa-
tial dimension under the Chaplygin gas equation of state, the compressible Euler equations
form a totally linearly degenerate PDE system, which is not expected to admit shock-forming
solutions; see [23] for additional discussion on totally linearly degenerate PDEs.

44" Deriving estimates for yt and the L is essentially equivalent to deriving estimates for

the first derivatives of the eikonal function, that is, for the first derivatives of solutions to

the eikonal equation (4.2.3a). For y, this is apparent from equation (4.2.5).
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vepified by w and the Cartesian components L¢, (1 = 1, 2, 3)A‘or brevity, we
d¢ not provide these transport equations in detail here (we schematically
splayed the one for y in (4.3.9)). Instead, we only note that the inhomo-
eneous terms in the transport equations exhibit structures similar to the
nes enjoyed by the simple Type i and type Type ii terms from Theorem 2.
he reason that we must estimate the derivatives of u and L? is that they
ppear as source terms when we commute the equations of Theorem 1 with
he elements Z € 2 (see (4.3.1)). After commuting the equations, one uses
the L bootstrap assumptions from Step 3 to derive suitable pointwise es-
tjmates for all of the error terms and inhomogeneous terms in the equations
to top-order. A key point is that all good null structures, such as the
ructure displayed in (4.3.7), are preserved under differentiations of the
quations with the elements of 2. Moreover, since the elements Z € &
are adapted to u[l,, the commutator terms corresponding to the operator
[1Oy, Z] also exhibit a similar good null structure.

Another key step in the proof is to derive very sharp pointwise estimates
for p capturing exactly how it vanishes. More precisely, through a detailed
study of equation (4.3.9), one can show that for the solutions under study,

;M is quantitatively negative in regions where p is near 0, which implies
that p vanishes linearly. It turns out that these facts are crucial for closing
the energy estimates.

. (Energy estimates). Using the pointwise estimates and the sharp esti-

mates for u from Step 6, derive energy estimates up to top-order. This is
the main technical step in the proof. Null structures such as (4.3.7) are
again critically important for the energy estimates, since our energies (de-
scribed below) are designed to control error integrals that are generated by
special products of the form RHS (4.3.7) and their higher-order analogs. To
control some of the terms in the energy estimates, we also need elliptic esti-
mates along X, which we describe in Step 8. As a preliminary step, we now
briefly describe, from the point of view of regularity, why our proof funda-
mentally relies on the transport-div-curl-type equations (3.1.3a)-(3.1.4b)
and elliptic estimates. In reality, we need elliptic estimates only to control
the solution’s top-order derivatives, that is, after commuting the equations
many times with the elements of 2. However, for convenience, here we
ignore the need to commute the equations and instead focus our discussion
on how to derive a consistent amount of Sobolev regularity for solutions
to the non-commuted equations. In proving shock formation, we are pri-
marily interested in deriving estimates for solutions to the wave equations
(3.1.1a)~(3.1.1b); given suitable estimates for their solutions, the rest of
the proof of the formation of the shock is relatively easy. To proceed, we
first note that the inhomogeneous terms C and D (see Def. 3) on the right-
hand sides of the wave equations (3.1.1a)-(3.1.1b) are, from the point of
view of regularity, at the level of 82 and 85, plus easier terms that can
be treated using energy estimates for wave equations (and that we will
therefore ignore in the present discussion). On the other hand, the trans-
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port equations (3.1.2a) and (3.1.2c) for {2 and S have source terms that
depend on Av and dp. Since solutions to transport equations are typically
only as regular as their source terms, this falsely suggests that {2 and S
have the same Sobolev regularity as v and 8p (and therefore that 42
and &S have the same Sobolev regularity as 8%v and 8%p) which, from the
point of view of regularity, would be inconsistent with the presence of the
inhomogeneous terms §{2 and 85 on the right-hand side of the wave equa-
tions; the inconsistency would come from the fact that energy estimates
for the wave equations yield L?-control only over v and 8p and thus dv
and dp cannot have more L? regularity than the wave equation source
terms 842 and 9S. To circumvent this difficulty, one needs to rely on the
transport-div-curl-type equations (3.1.3a)-(3.1.4b) and elliptic estimates to
control 812 and 8S in L2(%;), using only that dv* and p are in L2(Xy).
We further explain this in Step 8. A key reason behind the viability of this
approach is that even though equations {3.1.3a)-(3.1.4b) are obtained by
differentiating the transport equations (3.1.2a) and (3.1.2c) (which feature
inhomogeneous terms of the schematic form 9v), the inhomogeneous terms
on RHSs (3.1.3a)-(3.1.4b) do not feature the terms 8%v or &?p; this is a sur-
prising structural feature of the equations that is based on the observation
of cancellations and that should not be taken for granted.

The main technical difficulty that one encounters in the proof o

turns out that the maximum pegSible energy blowup-rates-can be expressed

in terms of negative powers o

pa(t) = nzx:in{l, T (4.3.10)

t

Note that the formation of the shock corresponds to p, — 0. Just below,
we will roughly describe the hierarchy of energy estimates. The energy es-
timates involve energies E(w,ye) for the “wave variables” {p,vl, v%,v%} as
well as energies E(rransport) for the “transport variables” {s, 2}, 22, (23, S,
We use the notation Eqweye);1op t0 denote a wave energy that controls the
top-order % -derivatives?® of the wave variables (here we are not specific
about how many derivatives correspond to top-order), Ewave);Top—1 de-
note a just-below-top-order wave energy, E(wayc);miq denote a mid-order
wave energy (we also are not specific about how many derivatives cor-
respond to mid-order), E(wave);1 correspond to the energy after a single

45 In practice, one needs to rely on a slightly different definition of y, one that is localized
along portions of Xy and that is allowed to depend on u; we will ignore this issue here.

46 Actually, in practice, one can close the proof by deriving energy estimates only for the
P.commuted equations, where & is defined in (4.3.2). We will ignore this technical detail
for the rest of the discussion.

§2,58,Ct,C?,C3, D).
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commutation,?” and similarly fo e transport equation energies. The hi-
erarchy of energy estimateS that one can derive roughly has the following
structurg,*®where K =~ 20 is a universal constant (independent, of the spe-
cific structure of the compressible Euler equations) and € is a small param-
eter representing the size of a seminorm that, roughly speaking, measures
how far the initial data are from the data of a simple isentropic plane wave:

]E(Wave);Top(t), IE(T'ransport);Top(t) S, ézu:K(t); (43113)
E(Wave);Top—l(t)» ]E(Transport);Top~1(t) 5 é2 Hz_K (t)) (4311

]E(Wave);Top—2(t): ]E(Transport);Top—Z(t> 5 ézuin (t); 311C)

. (4.3.11d)

}E(sze);Mid(t): ]E(Transport);Mid(t) 5 éz: (4'3'116)
. (4.3.11f)

B rransporty;1 (t) S €2, (4.3.11g)

The difficult partsgthe proof/are controlling the maximum possible top-
order blowup—rat X (t)As well as establishing the “descent scheme”
showing the 6p-order energies become successively less degen-
erate unfll one Teaches the level (4.3.11e), below which the energies do not
blow up.escent schemes of this type originated in the works [1-4, 6] of
Alinhac and Christodoulou and have played a key role in all prior works
on shock formation in more than one spatial dimension. From the non-
degenerate energy estimates (4.3.11e)-(4.3.11g), Sobolev embedding, and a
smallness assumption on the data-size parameter &, one can justify (that
is, improve) the non-degenerate L™ bootstrap assumptions from Step 3.
To close the proof, we need the energies to remain uniformly bounded (up
to the singularity) starting at a level representing, roughly, slightly more
than half of the top-order number of derivatives. Consequently, the proof
requires a lot of regularity, and “top-order” corresponds to commuting the
equations roughly 20 times with the elements of % (see Footnote 46).
The precise numerology behind the hierarchy (4.3.11a)-(4.3.11g) is compli-
cated, but the following two features seem fundamental: i) The top-order
blowup-rate p;*(t), since, as we explain below, the blowup-exponent K
is tied to universal structural constants in the equations that are indepen-
dent of the number of times that we commute them. ii) An improvement
of precisely u2(t) at each step in the descent, which is tied to the fact that
t«(t) vanishes linearly (as we mentioned at the end of Step 6).

"To construct energies that result in controllable error terms, we must weight
various energy integrand terms with factors of u, a difficulty that lies at
the heart of the analysis. For example, the energies E(Wwave) for the “wave

47 1t turns out that we can avoid relying on energies corresponding to zero commutations.
48 In practice, the blowup-rate for E(Transport);Top(t) might not coincide with the blowup-
rate for E(yygue);70p(t), but we have ignored this issue in (4.3.11a).

49 Recall that p, — 0 corresponds to the formation of the shock.
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variables” ¥ € {p,v’,v?,v%} are constructed®® so that, at the level of thg
undifferentiated equations, we have, relative to the geometric coordina Ei

(4.2.1) and the vectorfields in (4.3.1), the following schematic relatio
{()hv)2 +u (L2)? + (P)? + (ngp)?)} 49t dodu.

(4.3.12)

mmmmm~/

X

The energy E(wave);Top(t) on LHS (4.3.11a) schematically represents one
of the quantities K qve)[Z Niop ] (t), where Nyop ~ 20 is the maximum
number of times that we need to commute the equations in order to close
the estimates. The factor of p in (4.3.12) is chosen so that only control-
lable error terms are generated in the energy identities (it is true, though
not obvious, that RHS (4.3.12) has the right strength). Note that some
components of the energies become very weak near the shock (that is,
in regions where p is small), namely the products on RHS (4.3.12) that
are explicitly p-weighted. This makes it difficult to control the dangerous
non-p-weighted error terms that one encounters in the energy identities.
To control such “strong” error terms, one usesyfh addifion to the ener-
gies (4.3.12), energies along P, (known as
fluxes”) as well as a coercive friction-type’spacetime inte al, which is avail-

We must also derive exérgy estimates for ghe transport equations in Theo- fo

102 08 81,52, 88,C1,C?,C, DY, W

E(Transport) [P]() ~ / ud? o' dv? du. (4.3.13)
P

As in the case of the wave variable energies, the factor of p in (4.3.13) is
chosen so that only controllable error terms are generated in the energy
identities.

We now sketch some of the most important steps in the proof of the degen-
erate top-order energy estimate (4.3.11a). We will focus only on the wave

50 The energies for solutions to the wave equations of Theorem 1 can be constructed with
the help of the vectorfield multiplier method, based on the energy-momentum tensor for
wave equations and the multiplier vectorfield (1 -+ 2u)L + 2X; see [21,22,29].

51 In reality, one must work with energies E(w ave) [¥] = E(wave) [#](t,u) that are localized
along portions of 3 that depend on the eikonal function u. We will suppress this issue in
our summary of the main ideas of the proof.

52 More precisely, the energy (4.3.13) is useful below the top derivative level, but it is
not adequate for controlling the top-order derivatives of the transport variables; at the top
derivative level, one must rely on the elliptic estimates that we describe in Step 8.
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equation energy estimates since the transport equation energy estimates
are much easier to derive.5® The basic difficulty is that, on the basis of
energy identities, the following integral inequality is the best that we are
able to obtain:

8
s
7

} ]E(Wave);Top(S) ds -+ - ,
(4.3.14)

t
]E(che);Top(t) < Céz + A/ {Sup
3=0 X

where A is a universal positive constant that is independent of the
equation of state and the number of times that the equations

are commuted, and - .. denotes similar or less degenerate error terms.
9

Below, we explain the origin of the degenerate factor ! B—ELH on RHS (4.3.14)

(which blows up as the shock forms), whose presence is tied to an issue
that we highlighted earlier: the required top-order regularity properties of
the eikonal function are difficult to derive. To apply Gronwall’s inequality
to the inequality (4.3.14), we need the following crucial estimate:

t
/ sup
8=0 X5

where 1, is defined in (4.3.10). The estimate (4.3.15) can be derived with
the help the estimates

Bl
Bs M

ds ~ |Inp;t|, (4.3.15)

Wa(t) ~ 1 — b8, (4.3.16)

~ b, (4.3.17)
L°°(Zg)

0
ot
where 5, > 0 is a data-dependent parameter that, roughly speaking, mea-

sures the L size of the term —azvl on RHS (4.3.9). We note that to close
u

the proof, one needs to consider initial data such that & is small relative to

6. (though 8, might be small in an absolute sense). We also note that the

estimates (4.3.16)-(4.3.17) fall under the scope of the sharp estimates for p

from Step 6. Moreover, we point out that the aforementioned fact that My

vanishes linearly is important for deriving (4.3.15). Finally, we note that
1

1
(4.3.15) is just a quasilinear version of the estimate / —ds <In(t™1), in
s

=t
which s = 0 represents the time of first vanishing of },L:and s = 1 represents
the “initial” data time.

53 1t turns out, however, that the g-timelike nature of the transport operator B (as shown
by Lemma 1) is important for the transport equation energy estimates; see [21] for further
discussion on this point.



W0~ Ul > W N

40 Jared Speck

After we have derived (4.3.14) and (4.3.15), we can apply Gronwall’s in-
equality (ignoring the terms --- on RHS (4.3.14)) to obtain the following
bound:

E(waveyrop(t) < CEU;A(2). (4.3.18)

The bound (4.3.18) is essentially the top-order energy estimate (4.3.11a).

However, in reality, the blowup-exponent K on RHS (4.3.11a) is larger

than the blowup-exponent A on RHS (4.3.18) because the correct estimate

(4.3.11a) is influenced by additional difficult error terms that we have ig-

nored in deriving (4.3.18). .
‘We now briefly explain the origin of the difficult error integral OW 7
Let ¥ := {p,v',v?,v3} denote the array of “wave variableﬁan let ¥ de-

note any element of ¥. The difficulty arises from the wb¥ét commutator

error terms that are generated when one commutes the elements of 2 (see

(4.3.1)) through the wave operator pld, in the wave equation satisfied by

¥. To explain the main ideas, we consider only the wave equation verified

by YNW, where YV schematically denotes an order N differential opera-

tor corresponding to repeated differentiation with respect to elements of

the set {¥1, Ya}; similar difficulties arise upon commuting ul, with other

strings of vectorfields from . Specifically, one can show that upon com-

muting any of the p-weighted wave equations (3.1.1a)-(3.1.1b) with YV,

we obtain an inhomogeneous wave equation of the schematic form

nO, YN0 = (XO)Y NVrgx + - . (4.3.19)

The term x on RHS (4.3.19) is the null second fundamental form of the co-
dimension-two tori P, N X}, that is, the symmetric type (g) tensorfield on

PN X} whose components areX_o__o = g(@_a_x L, W)’ where 2 is the
av 8¢ 89

Levi-Civita connection of g. Moreover, tryx is the trace of x with respect to
the Riemannian metric ¢ induced on P,NX; by g. Geometrically, tryx is the
null mean curvature of Py. Analytically, YV trgx is a difficult commutator
term in which the maximum possible number of derivatives falls on the
eikonal function (recall that L ~ du and thus x ~ %u). As we mentioned
earlier, the main difficulty is that a naive treatment of terms involving
the maximum number of derivatives of the eikonal function would lead to
the loss of a derivative and obstruct the closure of the top-order energy
estimates. This difficulty is visible directly from the evolution equation

satisfied by Y Vtrgx, which can be derived fr eometric considerations®4
and which takes the following schematic fom%%mll that P schematically

54 The precise version of equation (4.3.20) that one needs in a detailed proof is essentially
Raychaudhuri’s equation for tryx, an evolution equation whose main source term is the “LL”
onent of the Ricci curvature of the acoustical metric g.
he precise version of (4.3.20) involves, in addition to the wave variables &, the entropy
/s, since the computations involve the wave equation (3.1.1c) verified by s; we will ignore
this issue here.
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; denotes elements of the P,-tangent set & defined in (4.3.2
3 O N Ng, 0 NG
2 where A is the covariant Laplacian induced on P, N X by 4 and Lo.t. de-
7 notes terms with an allowgble amount of regularity, involving, for example,
8 < N +1 derivative of ¥¥The difficulty with equation (4.3.20) is that the
g two explicitly displayed terms on RHS (4.3.20) depend on N + 2 deriva-
10 tives of Li, which is one more than we can control by energy estimates
11 . for the wave equation (4.3.19). That is, the two terms on RHS (4.3.20)
12 seem to lose a derivative. To overcome this difficulty for the second term
12 %PYN !l:/’, we can simply bring it over to the left so that equation (4.3.20)
iz becomes % {YNtrdX - PYNQ—;} = AYMF + Lot. To handle the term
17 AYN !5, we can use a similar — but more complicated - strategy, first em-
18 ployed in [19] in the context of low-regularity local well-posedness and later
19 by Christodoulou [6] in the context of shock formation: by decomposing
20 the principal parts of the YV-commuted wave equations (3.1.1a)-(3.1.1b),
2; we can obtain the following algebraic relation, written in schematic form:
23 uAYNLf = % {JV(YN!I_; + uPYNLZ_;} + lot., where P € &. Bringing the
gé perfect time derivative term % {X YNG uPY ¥ !ﬁ} over to LHS (4.3.20
26 as well, and accounting for the factor of y, we obtain
27 bl “ - -
28 g {pYNtrdx—XYN!l? —wPYNG
29 ot
30 The key point is that all inhomogengoTls terms on RHS (4.3.21) now featu
31 an allowable amount of regularity,"®which implies that we gain back
32 the derivative by deriving estimates for a “modified” Aquantity with the
33 following schematic structure:
34
35 pY Ny — Xy NG — uPYNG, (4.3.22)
gs We have therefore explained how to avoid the derivative loss that was
38 threatened by the term YV trgx on RHS (4.3.19). However, our approach
39 comes with a large price: the inhomogeneous term on RHS (4.3.19) involves
40 the factor YV trgx, while (4.3.21) yields an evolution equation only for the
&£
2; i In reality, in three or more spatial dimensions, there remain some additional terms
on RHS (4.3.21) that depend on the top-order derivatives of the eikonal function. These
43 terms are schematically of the form of the top-order derivatives of the trace-free part of
X, traditionally denoted by % (note that ¥ = 0 in two spatial dimensions). From the prior
45 discussion, one might think that these terms result in the loss of a derivative and obstruct
46 the closure of the energy estimates. However, it turns out that one can avoid the derivative
47 loss for ¥ by exploiting geometric Codazzi-type identities and elliptic estimates on the co-
dimensjon-two tori P, N X;. Such elliptic estimates for § have been well-understood since [7]
48 and, in the context of shock formation, since [6]. For this reason, we do not further discuss
49 this technical issue here.
50
51
52
53
54
55
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modified version of pYVtryx stated in (4.3.22); the discrepancy factor of
1
u is what leads to the dangerous factor of m on RHS (4.3.14). Moreover,

from a careful analysis that takes into account the evolution equation for g
as well as the precise structure of the factor X% on RHS (4.3.19) and the

terms on LHS (4.3.21), one can deduce the presence of the factor a—p. on
s

RHS (4.3.14), whose precise form is important for the proof of the estimate
(4.3.15). We have therefore explained the main ideas behind the origin of
the main error integral displayed on RHS (4.3.14).

Having provided an overview of the derivation of the top-order energy esti-
mate (4.3.11a), we now describe why the below-top-order energies become
successively less singular as one descends below top-order, that is, how
to implement the energy estimate descent scheme resulting in the esti-
mates (4.3.11b)-(4.3.11g); recall that the non-degenerate energy estimates
(4.3.11e)-(4.3.11g) are needed to improve, by Sobolev embedding and a
small-data assumption, the L® bootstrap assumptions from Step 2, which
are central to the whole process. A key ingredient in the energy estimate
descent scheme is the following estimate, valid for constants b > 0, which
shows that integrating the singularity in time reduces its strength:

¢
| rds S, (43.23)
§=0

The estimate (4.3.23) is easy to obtain thanks to the sharp information that
we have about the linear vanishing rate of L, (see (4.3.16)). We note that
(4.3.23) is just a quasilinear version of the estimate fslzt s7bds <170 for
0 < t < 1, where s = 0 represents the vanishing of y1,. A second key ingredi-
ent in implementing the descent scheme is to exploit that below top-order,
we can estimate the difficult term YV trgx on RHS (4.3.19) in a different
way; recall that this term was the main driving force behind the degener-
ate top-order energy estimates. Specifically, for N below top-order, we can
directly estimate YV trgx by integrating the transport equation (4.3.20) in
time, without going through the procedure that led to equation (4.3.21)
in the top-order case. This approach results in a loss of one derivative
(which is permissible below top-order) caused by the two explicitly dis-
played terms on RHS (4.3.20) and therefore couples the below-top-order
energy estimates to the top-order ones. However, the integration in time
allows one to employ the estimate (4.3.23), which implies that below top-
order, YNtryx is less singular than RHS (4.3.20); this is the crux of the
descent scheme. We also note that this procedure allows one to avoid the
difficult factor of p, which in the top-order case appeared on LHS (4.3.21)
and which drove the blowup-rate of the top-order energies.

We have thus explained one step in the descent. One can continue the
descent, noting that at each stage, we can directly estimate the difficult
term YN tryx by integrating the transport equation (4.3.20) in time and
allowing the loss of one derivative coming from the terms on RHS (4.3.20).
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This procedure couples the energy estimates at a given derivative level
to the estimates for the (already controlled) next-highest-energy, but it
nonetheless allows one to derive the desired improvement in the energy
blowup-rate by downward induction, thanks to the integration in time and
the estimate (4.3.23).

. (Elliptic estimates along X;). We now confront an important issue

that we ignored in Step 7: to close the energy estimates, we are forced to
control some of the inhomogeneous terms in the equations using elliptic
estimates along X;. This major difficulty is not present in works on shock
formation for wave equations; it was encountered for the first time in our
earlier work on shock formation [21] for barotropic fluids with vorticity. A
key aspect of the difficulty is that elliptic estimates along X, necessarily
involve controlling the derivatives of the solution in a direction transversal
to the acoustic characteristics P,, that is, in the singular direction. We
need elliptic estimates to control the source terms on RHSs (3.1.3b) and
(3.1.4a) that depend on 9f2 and 85, where 9 denotes the gradient with
respect to the Cartesian spatial coordinates. More precisely, we need the
elliptic estimates only at the top derivative level, but we will ignore that
issue and instead focus on the main issue: the degeneracy of the elliptic
estimates with respect to .

The elliptic estimates can easily be derived relative to the Cartesian co-
ordinates and the Euclidean volume form daldz?dz® on X,. However, in
order to compare the strength of the elliptic estimates to that of the wave
energies (4.3.12) and the transport energies (4.3.13), we need to understand
the relationship between the Euclidean volume form and the volume form
dudy*did? featured in the energies. Specifically, by studying the Jacobian
of the change of variables map between the geometric and the Cartesian
coordinates, one can show that there is an O(W) discrepancy factor between
the two forms:

daetde?dz® ~ p dudd*d¥?. (4.3.24)

In the rest of this discussion, our notion of an L?(X;) norm is in terms of
the volume form dudd'd¥?. That is, we set

an%zwt) :=/fz(t,u,ﬂl,ﬂz)dudﬁldﬂz. (4.3.25)

We now further explain some aspects of the elliptic estimates. For conve-
nience, we focus on the estimates for 95, where as before, 8 denotes the
gradient with respect to the Cartesian spatial coordinates. One also needs
similar elliptic estimates to obtain control over 82, but we omit those
details; see [21] for an overview of how to control 912 in the barotropic
case. Our elliptic estimates are essentially standard div-curl estimates of
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the form@

/ 18S)? da'dz?de® S / |divS|? deldz?da® + / lcurlS|® dz'dz?da®.
3y P P
(4.3.26)

With the help of (4.3.24) and (4.3.25), we can re-express (4.3.26) as follows:

Vi8Sl 2z S IVRdivS|lza(s,) + lvBeurlS|lz(z,).- (4.3.27)

We now explain the role that (4.3.27) plays in closing the energy estimates.
Our main goal is to show how to derive the bound

“\/L_LQSH%Z(E!) S ézp:a(t) 4y,

where T > 0 is a small constant and - -+ dengtes error terms that can be
controlled without elliptic estimates (for-€xample, via the wave-equatien
energies). We stress that (4.3.28)4smeant to be inperpreted as representing
the kind of estimate thafierie needs at the top dgrivative level, since below
top-order, one can avoi A‘@ sing elliptic estimatesfWVe also stress that, since
(4.3.11a) implies that the top-order wave energies can be very degenerate,
some of the terms in -+ on RHS (4.3.28) can in fact blow up at a much
worse rate than the one u;%(t) that we have explicitly displayed. The
point of writing the estimate for ||/RdS||2, x,) in the form (4.3.28) is that
this form emphasizes the following point: t;Le self-interaction terms in the
elliptic estimates are not the ones driving the blowup-rate of the top-order
derivatives of S; instead, the blowup-rate of || /1052, (5,) is driven by the
blowup-rate of the top-order derivatives of the wave variables {p, v!,v?,v°},
which are hidden in the - - terms on RHS (4.3.28). It turns out that, as a
consequence, the blowup-rates for the top-order wave energies are exactly
the same as they are in the irrotational and isentropic case. That is, our
approach to energy estimates yields the same blowup-exponent K in the
energy hierarchy (4.3.11a)-(4.3.11g) compared to the exponent that our
approach would yield in the irrotational and isentropic case.

To explain how to derive (4.3.28), we start by discussing energy estimates
for the transport equation (3.1.4a) for D. We again remind the reader that
the elliptic estimate approach to deriving (4.3.28) is needed mainly at the
top-order, but for convenience, we discuss here only the non-differentiated
equations. Specifically, by deriving standard transport equation energy es-
timates for the weighted transport equation p x (3.1.4a), by using the L®®
bootstrap assumptions of Step 3 (which in particular can be used to derive

87 We clarify that the elliptic estimate (4.3.26) holds for solutions that are compactly
supported in space (and thus there are no boundary terms).

58 In fact, one should avoid using elliptic estimates below the top-order and instead control
the below-top-order derivatives of S using the transport equation (3.1.2c); this is important
for implementing the descent scheme described above, in which, in particular, the mid-order-
and-below derivatives of S with respect to the geometric vectorfields are shown to remain
bounded.
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the bound [[ud,v°|| L (5,) < 1), and taking into account definition (4.3.10),
one can obtain the following integral inequality:

¢
1
IWEDIany <7 [ IV sy ds . (43.29)
§=0 },L,,(S)
In (4.3.29), - - denotes simpler error terms that can be treated without

elliptic estimates and, by judicious use of Young’s inequality, it can be
arranged that -y is a small positive constant.?® Substituting the estimate
(4.3.27) into (4.3.29) and using equation (3.1.4b), we obtain

¢
1 .
IWADsny <7 [ Vv sy ds o, (4330)
=0 p.*(S)
where - -+ is as above. From the L™ bootstrap assumptions of Step 3, one

can show that exp(2p) < 1. Thus, in view of definition (1.3.13b), we deduce
H\/ﬁdivS]]%z(Ea)_ < Hﬁp”i’(ﬂs) +e where_~ o 'denotes terms that can
be controlled without elliptic estimates, that is, via energy estimates for
the wave equations (3.1.1a)-(3.1.1b) and the transport equations (3.1.2a)-
(3.1.2c). From these considerations and (4.3.30), we deduce
2 ! 2
D < —_— D

VAP <7 | s ViDL,
where we again emphasize that y > 0 ¢
Then from (4.3.16), (4.3.31), Greffwall’s inequality, and an appropriate
O(€)-size small-data assumption, ) we deduce that

IvVEDI 225, S YO+,

where ¥ > 0 is a small constant whose smallness is controll

(4.3.33)

One can obtain similar but muclf simpler - estimates for ||,/pcurlS ]]%2( )

£D(3.1.4b)

59 v can be chosen to be small by using Young’s inequality in the form ab < ya® +

directly from equatio hen inserting these bounds into {4.3.27),

1
;bz on the relevant error integrands. It turns out that the large-coefficient error integral,

1
which corresponds to the integrand —b? and which we have relegated to the terms .- -

on RHS (4.3.29), is much less degeanate than the one we have explicitly displayed on
RHS (4.3.29) and in particular, it does not contribute to the blowup-rate of the top-order
energies. A full discussion of this issue would involve a lengthy interlude in which we describe
the need to rely, in addition to energies along X:, energies along the acoustic characteristics
Pu. For this reason, we avoid further discussing this technical detail here.

%0 We again note that the smallness assumption guarantees, roughly, that the data are
near that of a simple isentropic plane wave solution.

61 The bound is completely trivial at the level of the undifferentiated equations since
curlS = 0. The needed bound is less trivial after one commutes equation (3.1.4b) with the
elements of 2 since one must control the commutator terms.
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we finally obtain the desired bound (4.3.28). We have therefore presented
the main ideas behind the elliptic estimates. This completes our overview
of our forthcoming proof of shock formation.

5 Proof of Theorem 1

In this section, we prove Theorem 1. The theorem is a conglomeration of
Lemmas 3, 4, 5, 6, 8, 9, and 10, in which we separately derive the equations
stated in the theorem. Actually, to obtain Theorem 1 from the lemmas, one
must slightly reorganize the terms in the equations and relabel some of the
indices; we omit those minor details.

Throughout Sect. 5, we freely use the following identity (see (1.3.6)):

w' = exp(p) 2. (5.0.1)

5.1 Deriving the transport and transport-div-curl equations

In this subsection, we derive the transport and transport-divergence-curl equa-
tions in Theorem 1.

5.1.1 Deriving the transport equations for {{2'}i12,3

We now establish the transport equations (3.1.2a) for the Cartesian compo-
nents {Oi}i:1,2,3.

Lemma 3 (Transport equations for £2*) For C? solutions of the compress-
ible Euler equations (1.3.11a)-(1.3.11c), the Cartesian components {£2*}i—1,23
of the specific vorticity vectorfield from Def. 1 verify the following transport
equations:

B2 = 20,0 — exp(-Zp)c—z%emb(Bv“)sb. (5.1.1)

Proof We first note the following chain rule identity, which follows easily from
1 . ig o

definitions (1.3.6) and (1.3.9): 3 exp(—p)Gip = c25’“6Gp+exp(—p)p§5’“8as. It

; 1
follows that (RHS (1.3.11b))" = ~7 exp(—p)0;p. Hence, applying exp(—p)curl

to (1.3.11b) and using definition (1.3.8), the antisymmetry of ¢, and the
symmetry property 0,0,p = 0,9,p, we deduce the following identity:

exp(—p) (curl RHS(1.3.11b))* = exp(~2p)%eiub(6ap)8bs (5.1.2)
= exp(—2p)p—geiab(6ap)5b.

Next, in view of the definition (1.3.6) of {2, we commute equation (1.3.11b)
with the operator exp(—p)curl and use equations (1.3.11a) and (1.3.12), the
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antisymmetry of ¢, the identity €;qp€dep = ia0ae — Jicdad, and the identity
(6.1.2) to deduce

B = — exp(—p)cias (0av4)0s0° — exp(—p)(Bp)w' + exp(—Zp)%eiab(Bap)Sb
(5.1.3)
= — exp(—p)cias(Bav))Bav® + (8,0%) 2 + exp(—zp)%ie,-a,,(aap)sb
= — exp(—p)e€iap(Dav?) (Bgv® — Bpv?) + (8,v%) 2
+ exp(—2p)%eiab(6ap)5b

= —€iap€ape 2°(0av?) + (8,0°) 62" + GXP(*-?P)%ﬁiab(aap)Sb

= Ciabaes 2°(8av?) + (040°) 2 + exp(—zm%emb(aap)sb

= (BiaBae — Sie0aa) 2°0uv + (0av™) 92 + exp(—zm?gem(aap)sb
= 2°(8,0%) + exp(-zm”—ge,-ab(aap)sb.

Next, we use equation (1.3.11b), the definition S* = 8;s, and the antisymmetry
of €. to derive the identity €;45(8.p)S® = —c~2¢;05(Bv*)S?. Substituting this
identity into the last product on RHS (5.1.3), we arrive at (5.1.1).

5.1.2 Deriving the transport equations for s and {S'}i1,2,3

We now establish the transport equations (3.1.2b)-(3.1.2¢) for s and the Carte-
sian components {S%}i=1,2,3.

Lemma 4 (Transport equations for s and §%) For C? solutions of the
compressible Buler equations (1.3.11a)-(1.3.11c), the entropy s and the Carte-
sian components {S*};=1,2 3 of the entropy gradient vectorfield defined in (1.3.8)
verify the following transport equations:

Bs=0, (5.1.4a)
BS' = —5%9,v" + exp(p)eiqp2°S°. (5.1.4b)
Proof Equation (5.1.4a) is just a restatement of (1.3.11c).

To derive (5.1.4b), we first commute equation (5.1.4a) with &; and use
definition (1.3.12), the definition S* = 8;s, and the identity (5.0.1) to obtain

BS* = —§,4(8;v%)S® (5.1.5)
= —805(0av*)S® + 845 (Bar’ — Biv?) 5P
= —S§%8,0" + eaijij“
= —8%0,v" + exp(p)eqs; 27 5°.

Equation (5.1.4b) now follows from (5.1.5) and the antisymmetry of €__.
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5.1.8 Deriving the transport-divergence-curl equations for D and
{(curlS) }iz1,23

We now establish the transport-divergence-curl equations (3.1.4a)-(3.1.4b) for
D and the Cartesian components {(curlS)*};=1,2,3.

Lemma 5 (Transport-divergence-curl equations for D and curlS?)
For C3 solutions of the compressible Euler equations (1.3.11a)-(1.3.11c), the
modified fluid variable D defined in (1.3.13b) and the Cartesian components
{(curl8)*}i=1,2,3 of the curl of the entropy gradient vectorfield defined in (1.3.8)
verify the following transport-divergence-curl equations:
BD = 2 exp(—2p) { (82v*)85S® — (8av)3p 5"} (5.1.6a)
+ 2exp(—2p) {S“(@avb)abp - (Bav“)Sbabp}
+ exp(—p)dap(curl2)® 5,
(curlS)* = 0. (5.1.6b)
Proof Equation (5.1.6b) is a simple consequence of the fact that S'is a (spatial)
gradient vectorfield.

To derive (5.1.6a), we first commute the already established equation (5.1.4b)
with 8; and use definition (1.3.12) and to deduce

BdivS = —2(8,0")8,S% — 58, divv + exp(p)eias(9:p) 2°S° (5.1.7)
+ exp(p)€iab(8;02%)S” + exp(p)eiar 2°8;S°.
From equation (5.1.6b), we see that the last product on RHS (5.1.7) vanishes.
Also noting that eiqp(8;12%) = (curl§2)?, we deduce from (5.1.7) that
BdivS = —5%9,divv — 2(8,0)0,5° + exp(p)eiap(0ip) 2°5°
+ exp(p)das (curl2)®5°. (5.1.8)
Next, using equation (1.3.11a) to substitute for the term dive on RHS (5.1.8)
and using equation (1.3.12), we find that
BdivS = 8§°8,(Bp) — 2(8,v°)355 + exp(p)eias (8;p) 2°5°
+ exp(p)das(curl2)®S® (5.1.9)
= B(8°0ap) + S*(820")86p — (BS*)0ap — 2(0a0")8pS"
+ exp(p)eias(8:p) 122 S® + exp(p)dap (curls2)®S°.

Using equation (5.1.4b) to substitute for the factor BS* on RHS (5.1.9), we
deduce

BdivS = B(8%8,p) — 2(8,0°)8,5% + 25°(8,v°)8yp + exp(p)dap(curl2)*S°.
(5.1.10)
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Bringing the term B(S%8,p) on RHS (5.1.10) over to the left and then com-
muting the equation with exp(—2p), we obtain

B {exp(—2p)div.S — exp(—2p)S°8,p} (5.1.11)
= —2exp(—2p)(8,v°)8,S* — 2exp(—2p)(Bp)divS

+ 2 exp(—2p)S®(8,v°)sp + 2 exp(—2p)(Bp) S8, p

+ exp(—p)bap(curl2)25°,

Finally, using equation (1.3.11a) to substitute for the two factors of Bp on
RHS (5.1.11) and referring to definition (1.3.13b), we arrive at the desired
equation (5.1.6a).

5.1.4 Deriving the transport-divergence-curl equations for div{2 and
{C'}ic1,2,3

We now establish the transport-divergence-curl equations (3.1.3a)-(3.1.3b) for
div{? and the Cartesian components {Ci}izl’z,s.

Lemma 6 (Transport-divergence-curl equations for div{? and C?) For
C3 solutions of the compressible Euler equations (1.3.11a)-(1.3.11c), the Carte-
stan components {C*}i—1 2.3 of the modified fluid variable defined in (1.3.13a)
and the divergence of the specific vorticity vectorfield defined in (1.3.6) verify
the following transport-divergence-curl equations:

divi2 = —2°0,p, (5.1.12a)
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BC = —28;1€iap exp(—p)(8av?)8p 2% + €4k exp(—p)(8av*)0; 2% (5.1.12b)

+ exp(—3p)c_2% {(BS“)@avi — (Bv")8,5%}

+ exp(~—3p)c*2z—1iji {(Bv“)aaSi — (0,v*)BS*}

+ exp(—3p)c_2%5i {(8avb)6bv“ ~ (Bav®)Bpv"}

+ exp(—3p)c 2P {(8,0%)S°Bpv* — S*(av®) By}
+ 2exP(—3p)c*2p—5 {S(Bap) Bv* — (Bp)S*Bev'}

+ 26Xp(—3p)c“sc;p% {S"(Bap)Bvi — (Bp)S®0,v*}
+exp(~3p)e ™ P2 {(Bp) 000" — 5°(9up) Bv')
+exp(~3p)e *HIL 5 {(Bv*)dap ~ (B0)a0")

+2 exp(—3p)c_2%5i {(Bp)av® — (Bv™)8ap}

+ 2exp(—3p)c'3c;pp—58i {(Bp)Bav® ~ (Bv*)0.0}
+2 e)gp(~3p)c_3c;sz~z_)—s(Bvi)éabS“Sb - 2exp(—3p)c_sc;s%’iéabS“(Bvl’)Si

+ exp(~3p)c’21-1;-;;—;55ub(3v“)5b5i - exp(—3p)c_2p;%;s(Bvi)éabS“Sb.

Proof Equation (5.1.12a) follows easily from applying the operator div to equa-
tion (5.0.1) and noting that since w = curlv, we have divw = 0.

We now derive (5.1.12b). First, commuting the already established equation
(5.1.1) with the operator curl and using definitions (1.3.8) and (1.3.12) and
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equation (5.0.1), we compute that

B(curl2)! = 2°0,0" + €i05(8 2%)0a0® — €i0p(0av%) 002 (5.1.13)
— €apepik0a {exp(—29)0_2%(3vj)5k}

= (exp p)2°0, 02" + (exp p)§2:2°8,p
+ €iab(022%) 040 — €30p(0a0%)Da 12"

+ 2¢€iab€05%(0ap) {GXP(—ZP)C_Z%(BW)S’C}

+ 2¢€;0p€05% (0aP) {exp(—2p)c_3c;p%(3”j)5k}
+ 2€;0b€p515° {exp(—29)0_3c;sz)§(31)j)5k}

~ €iab€hjk(0ap) {eXP(“QP)C—Zp;—;e(BUj)Sk}
— €iab€binS® {BXP(—2P)C_2%(B”j)Sk}
 custge {exp(-20)e7 0,00 0u07)5"

~ €iabEbjk {exp(—2p)cw2%(33avj)5k}

— €iab€bjk {eXp(—2p)c_2%(ij)8aS’°} )

Next, using the identity €;op¢;qp = 655004 — 6:00,; and the antisymmetry of
€..., we rewrite the third and fourth terms on RHS (5.1.13) as follows:

€iab(02129)040° — €10y (0av) 04028 (5.1.14)
= — 20,1 €iap(Dav” ) By 02"
+ €iab(0a2%) (Bav® — By?) + €iap(Bav?) (Bp02% — 802%)
= —20;k€iab(0av?)062* + €iab€ian (0a 2N)w? + €iapejpa(Bav®)(curl2)?
= —28;k€iab(0217)8p02% + exp(p)(div2) 2" — exp(p)42°8,42°
+ (curl2)?8,v* — (8,v%) (curl2)?,

Substituting RHS (5.1.14) for the third and fourth terms on RHS (5.1.13),
using equation (5.1.12a) for substitution, and using the identities (curl2)28,v* =
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€ajk(020%)0; 2% and €iapenji = 0ij0ak — Oikdaj, we compute that

B(curlf2)? (5.1.15)
= —28;1€1a5(0av7) 0 2% — (8,07 (curl2)* + €ajk(0av*)0; 028

+2 exp(~2p)c_2%3—5a(3ap)Bvi - 2exp(—Zp)c"z%(Bv“)(aap)Si

+ 2exp(—~2p)c_sc;p%S“(aap)Bvi ~ 2exp(—2p)c“30;p%(Bv“)(aap)Si

+ 2exp(——2p)c'3c;s%(Bvi)éabS"Sb -2 exp(~2p)c_3c;s%5abS“(Bvb)Si

+ exp(—zp)c—23§i(3va)(6ap)si - exp(—2p)c~2l’%£sa(aap)3vi

+ exp(~2p)c_28~g;—sdab(3v“)5b5i - exp(~2p)c-2p‘—;i(3vi)5absasb

+ exp(w2p)c"2p%(&vb)(abv“)Si - exp(—Zp)c_Z%Sa(aavb)ﬁbvi

+ exp(—Zp)c”z%_i(Bé‘av“)Si — exp(—Zp)c_z%S“Baavi

+ exp(—zp)c—z%i(Bva)aasi — exp(—2p)c=2P52 (Bv)a, 5%,

[~

We now bring the terms exp(—Zp)c”z% (Bauv“)Si—exp(—Zp)c”Z%S"B&lvi

from the next-to-last line of RHS (5.1.15) over to the left under the transport
operator B, which generates some additional commutator terms on the RHS
(note that by (1.3.11c), the additional terms that feature a factor of Bs com-
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pletely vanish). In total, we obtain

B {(curl())i + exp(—2p)c“2%55“8avi - exp(—2p)c‘2%}(6&v“)5’i}
(5.1.16)
= —(0,v%)(curl2)?
— 26,k €iab(0av” )0 2% + €051(0av")8; 02

-2 exp(—2p)c‘2%(5’p)5“8ﬂvi -2 exp(—2p)c“3c;p%(Bp)S“aav"

+ exp(—Zp)c”zp;Z;p (Bp)Se8,v*

+ exp(—2p)c‘2p~; (BS%)8,v'

+ 2exp(~2p)c ™27 (B0)(0a0%)5" + 2exp(~20)e o T2 (Bp) (00%) "
— exp(~20)c P52 (Bp) (90°) '

- exp(—2p)c_2%(6ava)BSi

+ 2exp(—2p)c—2%sa(aap)3vi - 2exp(-2p)c-2p—g(3ua)(aap)si

+2 exp(—2p)c“3c;p%S“(@ap)Bvi -2 exp(—2p)c_sc;p%(Bv“)(@ap)Si
+ 2exp(—2p)c‘3c;s%(Bv")éabSaSb -2 exp(—2p)c“3c;a%6abSa(Bvb)Si
+ exp(=2p)c 2P (Bu")(9,0)S" — exp(~2p)e > 225" (Bup) B’

+ exp(—Zp)c_ZB%iéab(Bva)SbSi - exp(—2p)c”2?%(Bvi)5abS“Sb

+ exp(—2p)c‘“2%(aavb)(abv”)si - exp(—zp)c“z%sa(aavb)abvi

+ exp(—Zp)c“z%i(Bv“)BaSi - exp(—2p)c_2%i)—s(Bvi)6aS“.

Next, we add — exp(—Zp)c_z%(aav“)Sbabvi + exp(—Zp)c_z%(aavaﬁSi

to the first line of RHS (5.1.16), subtract the same terms on a different line,
use equation (1.3.11a) to substitute 8,v® with —Bp for some factors, and
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rearrange the terms to deduce

B {(curl.(l)i + exp(—Zp)c_gz%sSaaavi - exp(—Zp)c_"’p—;(@av“)Si
(5.1.17)

= (Bp) {(curl())i + exp(—2p)c‘2%5“8avi - exp(—Zp)c_z%((‘?av“)Si}
+ exp(—~2p)c_2%;—s(BS“)8avi - exp(—zp)c~29§(3vi)aasa

+ exp(—Zp)c‘z%(Bv“)(’?aSi — exp(—2p)c_2pi(0av“)BSi

o)

- 26jke,-ab(8avj)6b(2’° + Eajk(aavi)ajgk
+ exp(—2p)c'2%(c’)avb)(6bv“)Si - exp(—QQ)c_zp—;(aav“)QSi

+ exp(—zp)a?%(auva)sbabvi - exp(—zp)aﬂ%sa(aavb)a,,vi
+2 exp(—2p)c‘2p§5“(6ap)Bvi -2 exp(—2p)c‘2%(Bp)S“6avi

+2 exp(—2p)c"‘3c;p%S“(Bap)Bui - 2exp(—2p)c‘3c;pp—g(Bp)S“@avi

+ exp(—«2p)c‘2p‘3;p (Bp)S28,v* — exp(—2p)c‘2p;—;_”’—$'“(8ap)Bvi

[~

+ exp(—2p)c 2 P50 (By?)(8,p)S° — exp(—2p)c“2p;gp (Bp)(8v®) S
5 (Bp)(8,v°)S* — 2exp(—2p)c"2%(Bv“)(6ap)Si
+ 2exp(~2p)c“sc;p%(Bp)(@av“)Si -2 exp(—2p)c'3c;p%(Bv“)(aap)Si

n

+ 2exp(—2p)c?

¥

+ 2exp(—Zp)c“Bc;s%i(B'ui)dabS“Sb - 2exp(—2p)c_3c;s%5ab5“(Bvb)Si

+ exp(~2p)c’2p‘—%'s(5ab(3v“)5b5’i — exp(—2p)c_2%(Bvi)éabS“Sb.

We now multiply both sides of (5.1.17) by exp(—p) and bring the fac-
tor of exp(—p) under the operator B on the LHS. The commutator term
(Bexp(—p)) x --- completely cancels the first line of RHS (5.1.17), which
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therefore yields

B {exp(—p)(curlﬂ)i + exp(—3p)c”2p§5“8avi — exp(~3p)c—2p—g(6av“)5i}
(5.1.18)

= ~28jx€iab exp(—p)(0av?) 092" + €ajk exp(—p) (8,018, 02

+ exp(—3p)c"2%(BS“)6avi - exp(—Sp)c_z%(Bvi)aaS“

+ exp(~3p)c_2%i(Bv“)6aSi — exp(—3p)c“2p§(6av“)BSi

+ exp(—?»p)c*%(aav"xaw“)sf ~ exp<—3p>c*2p§<aav°)zsi

+ exp(—Sp)c_Z%(aav“)Sbabvi - exp(—3p)c_2%5“(8avb)abvi

+2 exp(—3p)c‘2%}5“(3ap)Bvi -2 exp(—3p)c_2%(3p)5“8avi

+2 exp(—3p)c_3c:;p%Sa(ﬁap)Bvi —2 exp(——3p)c“3c;p%(Bp)S“@avi

+ exp(—3p)c—2p;—ge(Bp)S"8avi - exp(-3p)c'2&;—psa(8ap)3vi

+ exp(=3p)c AL (B0)(009) S — exp(~3p)c™* P22 (Bp) (9n0°) '

+2 eXp(_3P)C_2%(BP)(3ava)5i -2 BXP(—?)P)C“z%(Bva)(@aP)Si

+2 exp(—Bp)c"sc;pp—L;i(Bp) (0,v*) 8" — 2 exp(—3p)c_3c;pp—5(Bv“)(6a p)S"

+2 exp(-3p)c“3c;a%(Bvi)dabS“Sb - 2exp(—3p)c"3c;s%’Q(SQI,S“(Bvb)Si

+ exp(—3p)c_2~p%5ab(Bv")SbSi - exp(—3p)c"2%i(Bvi)éabS“Sb.

From equation (5.1.18) and definition (1.3.13a), we conclude the desired equa-
tion (5.1.12Db).

5.2 Deriving the covariant wave equations

In this subsection, we derive the covariant wave equations in Theorem 1.

5.2.1 An explicit expression for the covariant wave operator in Cartesian
coordinates

Recall that the covariant wave operator [y is defined in Def. 9. In the next
lemma, we provide an explicit expression for Og¢ that holds relative to the
Cartesian coordinates.
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Lemma 7 (0, relative to the Cartesian coordinates) Let g be the acous-
tical metric from Def. 4. The covariant wave operator Uy acts on scalar func-
tions ¢ via the following identity, where RHS (5.2.1) is expressed in Cartestan
coordinates:

Oy¢ = —BB¢ + c26°°8,0,¢ (5.2.1)
+2¢7 1, (Bp)Bg — (8av”) B — ¢ e;p(971) %P (0ap) 85
— ¢¢,55%00¢ + 3¢ c;s(Bs) Bo.

Proof 1t is straightforward to compute using equations (2.1.1a)-(2.1.1b) that
relative to Cartesian coordinates, we have

detg = —¢7 (5.2.2)

and hence
3

Vl]detglg™ = —¢3B®B+c! Z O ® Oa. (5.2.3)

a=1

Using definition (1.3.8) and equations (3.0.1), (5.2.2), and (5.2.3), we compute
that

Op6 = —c® (B®8a(c™?)) B0pp — (0aB*)BP0pp — (B*0oB")0p¢  (5.2.4)
— B*BP8,8p¢ + 260,05 — c,p6**(8ap)Op9 — cC;s5*Dah.
Finally, from (5.2.4), the expression (1.3.12) for B, the expression (2.1.1b) for
¢~!, and simple calculations, we arrive at (5.2.1).

5.2.2 Deriving the covariant wave equation for p

In the next lemma, we derive the covariant wave equation (3.1.1b) for p.

Lemma 8 (Covariant wave equation for p) For C? solutions of the com-
pressible Buler equations (1.3.11a)-(1.3.11c), the logarithmic density variable p
from Def. 1 verifies the following covariant wave equation, where on RHS (5.2.5),
D is the modified fluid variable from Def. 3:

Ogp = — exp(P)%s*D — 3¢ .o (971) %P (0aP) 0P + {(0av)Bpv® — (Bav®)Bpv*}
(5.2.5)
5 _ g\ Pisip ca _ _ \Pisis a ab
Zexp( p) 3 5%8,p — exp(—p) . SapS2S°.

Proof First, using (5.2.1) with ¢ = p, equation (1.3.11a), and equation (1.3.11c)
(which implies that the last product on RHS (5.2.1) vanishes), we compute
that

Oyp = —BBp + c26%0,85p + 2¢ " ¢;5(Bp)* + (0av*)? (5.2.6)
— ¢ ep(g7)* (8ap)Bpp — cc;s S Bap.
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Next, we use definitions (1.3.8) and (1.3.12), equations (1.3.11a)-(1.3.11c), the

1 i0;s
chain rule identity 2cc,, = (c?),, = —exp(—p)p;p = exp(—p)p’%, and
2 s
the identity p,o,s = p,s;p to compute that
BBp = —8,(Bv®) + (8,v°)8yv° (5.2.7)

=260, 8,p + J“b(ﬁacz)abp + 8, {exp(—p)%fé“babs} + (Bavb)c')bv“
= c25%00,8,p + exp(—p)%faabaaabs + 2¢6,p0%(8,0)Bpp

+200,46°0 (8, p) D5 — exp(—-p)%é“b(aap)abs

o
divS + 2cc, 56 (0ap)Fpp + (8a0°) Opv®

+ exp(—p)&g—péab(aap)abs + exp(—p)zﬂé“b(aas)abs + (aaub)a,,v“
P
0
+9 Pisip ca Pis qa P;s;s agb

exp(wp)TS Oup — exp(wp)?S Oap +exp(—p)76abs S°.

= ¢26%8,8,p + exp(—p)

Finally, using (5.2.7) to substitute for the term —BBp on RHS (5.2.6), us-
ing the identity BpBp — c26°(8,p)Bpp = —(971)*#(8ap)dpp (see (2.1.1b)),
using definition (1.3.13b) to algebraically substitute for the factor of div§ on
RHS (5.2.7), and using the aforementioned chain rule identity to express the
last term —cc;5®8,p on RHS (5.2.6) as —%exp(—p)&z_—‘iS"Bap, we arrive at
the desired expression (5.2.5).

5.2.3 Deriving the covariant wave equations for {'ui}izl,z,g

In the next lemma, we derive the covariant wave equations (3.1.1a) verified by
the Cartesian component functions {v*};_1 2.

Lemma 9 (Covariant wave equations for {’Ui}i_:l,g,g) For C? solutions of
the compressible Buler equations (1.3.11a)-(1.3.11c), the scalar-valued Carte-
sian component functions {vi}izl,u verify the following covariant wave equa-
tions, where on RHS (5.2.8), {C*}i_1,2,3 denotes the Cartesian components of
the modified fluid variable from Def. 3:

ngi = —c?exp(2p)Ct — {1 + C_lcl} (gﬁl)aﬂ(aap)aﬂvi (5.2.8)
+ 2 exp(p)eiap(Bv®)2° — p—;einQ“Sb

1 o .
-3 exp(—p)z)—‘%saaav’

-2 exp(—p)c_lc;p%i(Bp)Si + exp(—p)%;ﬂ(Bp)Si.
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Proof First, we use equation (5.2.1) with ¢ = v*, definition (1.3.8), equa-
tion (1.3.11b), and equation (1.3.11c) (which implies that the last product on
RHS (5.2.1) vanishes), to compute

O,v' = —BBv' + c2§%°9,05v° — 2cc;p(Bp)6™*8,p — Zexp(—p)c_lc;p%—s(Bp)Si
(5.2.9)
— (BB — ¢ teip (g71)*P (0ap)Bpv* — cc,s 89,0

Next, we use definitions (1.3.8) and (1.3.12), equations (1.3.11a)-(1.3.11c), and
the already established equation (5.1.4b) to compute that

BBv' = —¢?6" Bp — 2cc;p(Bp)8™0ap (5.2.10)
+exp(=0) 22 (Bo)S' — exp(—0) P2 (Bp)S* — exp(—9) 2 BS'
= —26%8,(Bp) + ¢?6%(8.v°)8bp — 2cc,p(Bp)6**Dep
+ exp(—p) P (Bo)S* — exp(—p) 222 (Bp)S'
+ exx)(~p)1—)£‘)§3“8av" - eiab%s-msb
= czdiaézaa(abvd) — 6i“6bd(6avb)Bvd
- exp(—p)%a-aijéa,,(ajva)sb — 2, (Bp)5™8ap

+ exp<~p>3§><3p>si - exp<~p>%ﬁ<3p>S"

+ exp(*P)%Saaavi - Eiab%if?asb
= 2§09, 80" + 26404(B,v® — Bgv®)
— (Bv®) 0" + (Bv®) (9.0 — Oiv®)
+ exp(—p)p—‘_sSa(aavi — B8;v%) — 2cc,p(Bp)§**8,p
e
+exp(-0)22 (Bp)S" — exp(~p) PE2(Bp)S' — Peian 275",
Next, we use definitions (1.3.4) and (1.3.8), the identity (5.0.1), equation
(1.3.11b), and the antisymmetry of e... to derive the identities
c26i“6d(6avd — Ogv*) = 2e;ap 0o’ = Aeurlw? (5.2.11)
= ¢ exp(p)curlf2* + ¢ exp(p)€iap2°0ap
= c2 exp(p)eurld2® — exp(p)eiqas(Bv*) 2

+ gg_jieiabgasb)
exp(—p)%iS“(aavi — 8;v%) = %iebaiS“(Zb = %eiabQ“Sb, (5.2.12)

(Bv®)(8,9° — 01v%) = exp(p)ebai(Bv“)ﬂb =— exp(p)eiab(Bv“)(Zb.
(5.2.13)
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Substituting the RHSs of (5.2.11)-(5.2.13) for the relevant terms on RHS (5.2.10),
we obtain

BBv* = c2§°8,0,v° + ¢* exp(p)curl 2 — 2exp(p)eias(Bv®)2° + g 2 6ap 02080
(5.2.14)
— (Bv*)8,v* — 2cc,p(Bp)di®d,p
+exp(=p) 2(Bp)S" — exp(~p) 242 (Bp)S",
Next, substituting —~RHS (5.2.14) for the term —BBv' on RHS (5.2.9), and us-
ing the chain rule identity cc,; = %(cz);s = % (% exp(—p)p;p) } 1 exp( p)p iPis

i

we compute that
Oyv* = —c? exp(p)(curl2)* + 2exp(p)e;ap(Bv®) 2° — ?embﬂ“Sb (5.2.15)
+ {(Bv*)8,v* — (8av®)Bv'} — ¢ e,p (g7 1) %P (8ap) B’
- %exp(—p)?—‘?.sa@avi
- ZeXP(—P)C_IC;pZL_S(BP)Si - ew(w)%(Bp)S‘
+ exp(—p) P22 (BP)S’

We now rewrite the terms in braces on RHS (5.2.15). Specifically, we use
definitions (1.3.8) and (2.1.1b) and equations (1.3.11a)-(1.3.11b) to obtain

(Bu®)0,v* — (8,v%) Bv* = —c26%%(8,p) 8,0 — exp(—p)%S“Havi + (Bp)Bvt
(5.2.16)
= —exp(— p) > 500" ~ (971) P (8ap)0pv*.

Next, substituting (5.2.16) into (5.2.15), we deduce that
Ogv* = —c? exp(p) (curl2)* — {1 +c” p} (971)%P (8p) B (5.2.17)
+ 2 exp(p)eiqp(Bv®) 20 — ?e b f2°8°

Dia i 1 Pipis qa
—exp(—p)—=85%0,v° — = exp(—p)—L2 599,v*
p(—p) 5 5 exp(=p) 7
—2 exp(—p)c-lc;p?i—s(Bmsi - exp(—p)%(BmSi
+exp(—p) 2 "’(Bp)

Finally, we use equation (1.3.13a) to algebraically substitute for the term

(curl2)* on RHS (5.2.17) and equation (1.3.11a) to replace the term — exp(—3p)c_2p—g~(8av“)51

s
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on RHS (1.3.13a) with exp(—Bp)c_zp—is(Bp)Si, which in total yields the de-
o
sired equation (5.2.8).

5.2.4 Deriving the covariant wave equation for s

In the next lemma, we derive the covariant wave equation (3.1.1c) for s, thereby
completing the proof of Theorem 1.

Lemma 10 (Covariant wave equation for s) For C? solutions of the com-
pressible Buler equations (1.3.11a)-(1.3.11c), the entropy variable s verifies the
following covariant wave equation, where on RHS (5.2.18), D is the modified
fluid variable from Def. 3:

Ogs = % exp(2p)D + c25%9,p — cc,pS?0,p — cc;séabS“Sb. (5.2.18)

Proof First, we use equation (5.2.1) with ¢ = s, definition (1.3.8), the expres-
sion (2.1.1b), and equation (1.3.11c) (which in particular implies that many
products on RHS (5.2.1) vanish) to compute

Ogs = Adivs — cc,p8*0ap — cc;séabS“Sb. (5.2.19)

We then use equation (1.3.13b) to algebraically substitute for the factor of
divS on RHS (5.2.19), which immediately yields the desired equation (5.2.18).
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