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Abstract Spheres can be written as homogeneous spaces G/H for compact
Lie groups in a small number of ways. In each case, the decomposition of
L2(G/H) into irreducible representations of G contains interesting informa-
tion. We recall these decompositions, and see what they can reveal about the
analogous problem for noncompact real forms of G and H .

Keywords Harmonic Analysis on Symmetric and Spherical Spaces · Orbit
Method

1 Introduction

The sphere has a Riemannian metric, unique up to a positive scale, that is
preserved by the action of the orthogonal group. Computing the spectrum of
the Laplace operator is a standard and beautiful application of representation
theory. These notes will look at some variants of this computation, related to
interesting subgroups of the orthogonal group.

The four variants presented in Sections 2, 3, 4, and 5 correspond to the fol-
lowing very general fact, due to Élie Cartan: if G/K is an irreducible compact
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Riemannian symmetric space of real rank 1, then K is transitive on the unit
sphere in TeK(G/K). (The only caveat is in the case of the one-dimensional
symmetric space S1. In this case one needs to use the full isometry group O(2)
rather than its identity component to get the transitivity.) The isotropy group
of a point on the sphere is often called M in the theory; so the conclusion is
that

sphere of dimension (dim G/K − 1) ≃ K/M (1.1)

The calculations we do correspond to the rank one symmetric spaces

O(n + 1)/O(n), Sn−1 ≃ O(n)/O(n − 1) (Section 2),

SU(n + 1)/U(n), S2n−1 ≃ U(n)/U(n− 1) (Section 3),

Sp(n + 1)/[Sp(n)× Sp(1)],
S4n−1 ≃ [Sp(n)× Sp(1)]/

[Sp(n− 1)× Sp(1)∆]
(Section 4), and

F4/ Spin(9) S15 ≃ Spin(9)/ Spin(7)′ (Section 5).

The representations of O(n), U(n), Sp(n)×Sp(1), and Spin(9) that we are
computing are exactly the K-types of the spherical principal series represen-
tations for the noncompact forms of the symmetric spaces.

Rank one symmetric spaces provide three infinite families (and one excep-
tional example) of realizations of spheres as homogeneous spaces (for compact
Lie groups). A theorem due to Montgomery-Samelson and Borel ([15] and [3];
there is a nice account in [27, (11.3.17)]) classifies all such realizations. In
addition to some minor variants on those above, like

S2n−1 ≃ SU(n)/SU(n− 1), S4n−1 ≃ Sp(n)/Sp(n− 1),

the only remaining possibilities are

S6 ≃ G2,c/SU(3) (Section 6), and

S7 ≃ Spin(7)/G2,c (Section 7).

After recalling in Sections 2–7 the classical harmonic analysis related to
these various realizations of spheres, we will examine in Sections 8–10 what
these classical results say about invariant differential operators.

In Sections 11–16 we examine what this information about harmonic anal-
ysis on spheres can tell us about harmonic analysis on hyperboloids. With
n = p + q the symmetric spaces

Hp,q = O(p, q)/O(p − 1, q), (0 ≤ q ≤ n)

are said to be real forms of each other (and thus in particular of

Sn−1 = O(n)/O(n− 1) = Hn,0).

Similarly, each of the realizations listed above of Sn−1 as a non-symmetric
homogeneous space for a subgroup of O(n) corresponds to one or more non-
compact real forms, realizing some of the Hp,q as non-symmetric homoge-
neous spaces for subgroups of O(p, q). These realizations exhibit the hyperbolic
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spaces as examples of real spherical spaces of rank one, and as such our interest
is primarily with their discrete series. These and related spaces have previously
been studied by T. Kobayashi (see [9–12]). In Sections 12–16 we give an es-
sentially self-contained treatment, in some cases giving slightly more refined
information. In particular, we obtain some interesting discrete series represen-
tations for small parameter values for the real forms of S6 ≃ G2,c/SU(3).

For information about real spherical spaces and their discrete series in
general we refer to [14]; this paper was intended in part to examine some
interesting examples of those results. In particular, we are interested in formu-
lating the parametrization of discrete series in a way that may generalize as
much as possible. We are very grateful to Job Kuit for extensive discussions
of this parametrization problem.

One such formulation involves the “method of coadjoint orbits:” represen-
tations of G are parametrized by certain orbits G · λ of G on the real dual
vector space

g∗
0 =def HomR(Lie(G), R) (1.2a)

(often together with additional data). The orbits corresponding to represen-
tations appearing in G/H typically have representatives

λ ∈ [g0/h0]
∗. (1.2b)

We mention this at the beginning of the paper because this coadjoint orbit
parametrization is often not a familiar one (like that of representations of
compact groups by highest weights). We will write something like

π(orbit λ, Λ) (1.2c)

for the representation of G parametrized by G · λ (and sometimes additional
data Λ). If G is an equal-rank reductive group and λ ∈ g∗

0 is a regular elliptic
element (never mind exactly what these terms mean), then

π(orbit λ) = discrete series with Harish-Chandra parameter iλ; (1.2d)

so this looks like a moderately familiar parametrization. (Here “discrete series
representation” has the classical meaning of an irreducible summand of L2(G).
Soon we will use the term more generally to refer to summands of L2(G/H).)
But notice that (1.2d) includes the case of G compact. In that case λ is not
the highest weight, but rather an exponent in the Weyl character formula.

Here is how most of our discrete series will arise. Still for G reductive, if λ
is elliptic but possibly singular, define

Gλ = L, q = l + u (1.2e)

to be the θ-stable parabolic subalgebra defined by the requirement that

iλ(α∨) > 0, (α ∈ ∆(u, h)). (1.2f)

The “additional data” that we sometimes need is a one-dimensional character

Λ : L→ C×, dΛ = iλ + ρ(u). (1.2g)
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(If Gλ is connected, which is automatic if G is connected and λ is elliptic, then
Λ is uniquely determined by λ; the existence of Λ is an integrality constraint
on λ.) Attached to (λ, Λ) is a cohomologically induced unitary representation
π(orbit λ, Λ) satisfying

infinitesimal character = iλ− ρL = dΛ− ρ.

lowest K-type = Λ− 2ρ(u ∩ k)

= iλ− ρ(u ∩ p) + ρ(u ∩ k).

(1.2h)

If λ is small, the formula for the lowest K-type can fail: one thing that is true
is that this representation of K appears if the weight is dominant for K.

In [25], the representation π(orbit λ, Λ) was called Aq(Λ − 2ρ(u)).

If G = K is compact, then

π(orbit λ) = repn of highest weight iλ + ρ(u). (1.2i)

If this weight fails to be dominant, then (still in the compact case) π(orbit λ, Λ) =
0. A confusing but important aspect of this construction is that the same rep-
resentation of G may be attached to several different coadjoint orbits. Still for
G = K compact, the trivial representation is attached to the orbit of iρ(u)
for each of the (2semisimple rank(K)) different K conjugacy classes of parabolic
subalgebras q. If we are looking at the trivial representation inside functions
on a homogeneous space G/H , then the requirement (1.2b) will “prefer” only
some of these orbits: different orbits for different H .

Notational convention. If (π, Vπ) is a representation of a group G, and
H ⊂ G is a subgroup, we write

(πH , V H
π ), (1.3a)

or often just πH for the subspace of H-fixed vectors in Vπ . If T ∈ End(Vπ)
preserves V H

π , then we will write

πH(T ) =def T |V H
π

(1.3b)

for the restriction of T to the invariant vectors. This notation may be confusing
because we often write a family of representations of G as something like

{πG
s | s ∈ S}; (1.3c)

then in the notation [πG
s ]H , the superscripts G and H have entirely different

meanings. We hope that no essential ambiguity arises in this way.
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2 The classical calculation

Suppose n ≥ 1 is an integer. Write O(n) for the orthogonal group of the
standard inner product on Rn, and

Sn−1 = {v ∈ Rn | 〈v, v〉 = 1} (2.1a)

for the (n− 1)-dimensional sphere. We choose as a base point

e1 = (1, 0, . . . , 0) ∈ Sn−1, (2.1b)

which makes sense by our assumption that n ≥ 1. Then O(n) acts transitively
on Sn−1, and the isotropy group at e1 is

O(n)e1 ≃ O(n − 1); (2.1c)

we embed O(n−1) in O(n) by acting on the last n−1 coordinates. This shows

Sn−1 ≃ O(n)/O(n− 1). (2.1d)

Now Frobenius reciprocity guarantees that if H ⊂ G are compact groups,
then

L2(G/H) ≃
∑

(π,Vπ)∈Ĝ

Vπ ⊗ (V ∗
π )H . (2.2)

In words, the multiplicity of an irreducible representation π of G in L2(G/H) is
equal to the dimension of the space of H-fixed vectors in π∗. So understanding
functions on G/H amounts to understanding representations of G admitting
an H-fixed vector. All of the compact homogeneous spaces G/H that we will

consider are Gelfand pairs, meaning that dim(Vπ∗)H ≤ 1 for every π ∈ Ĝ.
Here’s how that looks for our example. We omit the cases n = 1 and n = 2,

which are degenerate versions of the same thing; so assume n ≥ 3. A maximal
torus in O(n) is

T = SO(2)[n/2], (2.3a)

so a weight is an [n/2]-tuple of integers. For every integer a ≥ 0 there is an

irreducible representation π
O(n)
a of highest weight

(a, 0, . . . , 0), dimπO(n)
a =

(a + n/2− 1)
∏n−3

j=1 (a + j)

(n/2− 1) · (n− 3)!
. (2.3b)

Notice that the polynomial function of a giving the dimension has degree n−2.

One natural description of π
O(n)
a is

πO(n)
a = Sa(Cn)/r2Sa−2(Cn); (2.3c)

what we divide by is zero if a < 2. We will be interested in the infinitesimal

characters of the representations π
O(n)
a ; that is, the scalars by which elements

of
Z(o(n)) =def U(o(n)C)O(n) (2.3d)
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act on π
O(n)
a . According to Harish-Chandra’s theorem, infinitesimal charac-

ters may be identified with Weyl group orbits of complexified weights. The
infinitesimal character of a finite-dimensional representation of highest weight
λ is given by λ + ρ, with ρ half the sum of the positive roots. Using the
calculation of ρ given in (2.8a), we get

infinitesimal character(πO(n)
a ) = (a+(n−2)/2, (n−4)/2, (n−6)/2, · · ·). (2.3e)

The key fact (in the notation explained in (1.3)) is that

dim[πO(n)
a ]O(n−1) = 1 (a ≥ 0), dim πO(n−1) = 0 (π 6≃ πO(n)

a ). (2.3f)

Therefore

L2(Sn−1) ≃

∞∑

a=0

πO(n)
a (2.3g)

as representations of O(n).

If n = 1, the definition (2.3c) of π
O(1)
a is still reasonable. Then π

O(1)
a is

one-dimensional if a = 0 or 1, and zero for a ≥ 2. The formula (2.3g) is still
valid.

If n = 2, the definition (2.3c) of π
O(2)
a is still reasonable, and (2.3g) is still

valid. Then π
O(2)
a is one-dimensional if a = 0, and two-dimensional for a ≥ 1.

Here is the orbit method perspective. The Lie algebra g0 consists of n ×
n skew-symmetric matrices; h0 is the subalgebra in which the first row and
column are zero. We can identify g∗

0 with g0 using the invariant bilinear form

B(X, Y ) = tr(XY ).

Doing that, define

aorbit = a + (n− 2)/2 (2.4a)

λ(aorbit) =





0 aorbit/2 0 . . . 0
−aorbit/2 0 0 . . . 0

0 0
...

... 0(n−2)×(n−2)

0 0





∈ (g0/h0)∗. (2.4b)

The isotropy group for λ(aorbit) is

O(n)λ(aorbit) = SO(2)×O(n− 2) =def L. (2.4c)

With this notation,

πO(n)
a = π(orbit λ(aorbit)). (2.4d)
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The reason this is true is that the infinitesimal character of the orbit method
representation on the right is (by (1.2h))

λ(aorbit)− ρL = (a + (n− 2)/2,−(n− 4)/2,−(n− 6)/2, · · · )

= infinitesimal character of πO(n)
a .

(2.4e)

An aspect of the orbit method perspective is that the “natural” dominance
condition is no longer a ≥ 0 but rather

aorbit > 0 ⇐⇒ a > −(n− 2)/2. (2.4f)

For the compact group O(n) we have

π(orbit λ(aorbit)) = 0, 0 > a > −(n− 2)/2, (2.4g)

(for example because the infinitesimal characters of these representations are
singular) so the difference is not important. But matters will be more inter-
esting in the noncompact case (Section 11).

Back in the general world of a homogeneous space G/H for compact groups,
fix a (positive) G-invariant metric on g0 = Lie(G), and write

ΩG = −(sum of squares of an orthonormal basis). (2.5)

for the corresponding Casimir operator. (We use a minus sign because natural
choices for the metric are negative definite rather than positive definite.) The
G-invariant metric on g0 defines an H-invariant metric on g0/h0 ≃ Te(G/H),
and therefore a G-invariant Riemannian structure on G/H . Write

L = negative of Laplace-Beltrami operator on G/H , (2.6)

a G-invariant differential operator. According to [7, Exercise II.A4], the action
of ΩG on functions on G/H is equal to the action of L. (The Exercise is stated
for symmetric spaces, but the proof on page 568 works in the present setting.)
Consequently

on an irreducible G-representation π ⊂ C∞(G/H),
L acts by the scalar π(ΩG).

So we need to be able to calculate these scalars. If T is a maximal torus in
G, and π has highest weight λ ∈ t∗, then

π(ΩG) = 〈λ + 2ρ, λ〉 = 〈λ + ρ, λ + ρ〉 − 〈ρ, ρ〉. (2.7)

Here 2ρ ∈ t∗ is the sum of the positive roots. (The second formula relates this
scalar to the infinitesimal character written in (2.3e) above.)

Now we’re ready to calculate the spectrum of the spherical Laplace operator

L. We need to calculate π
O(n)
a (ΩO(n)). The sum of the positive roots is

2ρ(O(n)) = (n− 2, n− 4, · · · , n− 2[n/2]). (2.8a)
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(Recall that we have identified weights of T = SO(2)[n/2] with [n/2]-tuples of
integers.) Because our highest weight is

λ = (a, 0, . . . , 0), (2.8b)

we find

πO(n)
a (ΩO(n)) = a2 + (n− 2)a = a2

orbit − (n− 2)2/4. (2.8c)

Theorem 1 Suppose n ≥ 3. The eigenvalues of the (negative) Laplace-Beltrami
operator L on Sn−1 are a2 +(n−2)a, for all non-negative integers a. The mul-
tiplicity of this eigenvalue is

(a + n/2− 1)
∏n−3

j=1 (a + j)

(n/2− 1) · (n− 3)!
,

a polynomial in a of degree n− 2.

In Sections 3–5 we’ll repeat this calculation using other groups.

3 The complex calculation

Suppose n ≥ 1 is an integer. Write U(n) for the unitary group of the standard
Hermitian inner product on Cn, and

S2n−1 = {v ∈ Cn | 〈v, v〉 = 1} (3.1a)

for the (2n− 1)-dimensional sphere. We choose as a base point

e1 = (1, 0, . . . , 0) ∈ S2n−1, (3.1b)

which makes sense by our assumption that n ≥ 1. Then U(n) acts transitively
on S2n−1, and the isotropy group at e1 is

U(n)e1 ≃ U(n− 1); (3.1c)

we embed U(n−1) in U(n) by acting on the last n−1 coordinates. This shows

S2n−1 ≃ U(n)/U(n− 1). (3.1d)

Here is the representation theory. We omit the case n = 1, which is a
degenerate version of the same thing; so assume n ≥ 2. A maximal torus in
U(n) is

T = U(1)n (3.2a)

so a weight is an n-tuple of integers. For all integers b ≥ 0 and c ≥ 0 there is

an irreducible representation π
U(n)
b,c (n) of highest weight

(b, 0, . . . , 0,−c), dimπ
U(n)
b,c =

(b + c + n− 1)
∏n−2

j=1 (b + j)(c + j)

(n− 1) · [(n− 2)!]2
. (3.2b)
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Notice that the polynomial giving the dimension has degree 2n − 3 in the
variables b and c. A natural description of the representation is

π
U(n)
b,c ≃ Sb(Cn)⊗ Sc(C

n
)/r2Sb−1(Cn)⊗ Sc−1(C

n
); (3.2c)

what we divide by is zero if b or c is zero. The space is (a quotient of) polyno-
mial functions on Cn, homogeneous of degree b in the holomorphic coordinates
and homogeneous of degree c in the antiholomorphic coordinates.

Using the calculation of ρ given in (3.4a) below, we find

infl. char.
(
π

U(n)
b,c

)
= (b + (n − 1)/2, (n − 3)/2, · · · , −(n − 3)/2, −(c + (n − 1)/2). (3.2d)

The key fact (again in the notation of (1.3)) is that

dim[π
U(n)
b,c ]U(n−1) = 1 (b ≥ 0, c ≥ 0), dimπU(n−1) = 0 (π 6≃ π

U(n)
b,c ).

(3.2e)
Therefore

L2(S2n−1) ≃
∑

b≥0, c≥0

π
U(n)
b,c (3.2f)

as representations of U(n).
We add one more piece of representation-theoretic information, without

explaining yet why it is useful. If we write U(1) for the multiplication by unit
scalars in the first coordinate, then U(1) commutes with U(n − 1). In any
representation of U(n), U(1) therefore preserves the U(n − 1)-fixed vectors.
The last fact is

U(1) acts on [π
U(n)
b,c ]U(n−1) by the weight b− c. (3.2g)

Here is the orbit method perspective. The Lie algebra g0 consists of n× n
skew-hermitian matrices; h0 is the subalgebra in which the last row and column
are zero. We can identify g∗

0 with g0 using the invariant bilinear form

B(X, Y ) = tr(XY ).

Doing that, define

borbit = b + (n− 1)/2, corbit = c + (n− 1)/2. (3.3a)

We need also an auxiliary parameter

rorbit = (borbitcorbit)
1/2. (3.3b)

Now define a linear functional

λ(borbit, corbit) =





i(borbit − corbit) rorbit 0 . . . 0
−rorbit 0 0 . . . 0

0 0
...

... 0(n−2)×(n−2)

0 0





∈ (g0/h0)∗. (3.3c)
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This skew-hermitian matrix has been constructed to be orthogonal to h0,
and to have eigenvalues iborbit, −icorbit, and n− 2 zeros. Its isotropy group is
(as long as rorbit 6= 0)

U(n)λ(borbit,corbit) = U(1)× U(n− 2)× U(1) =def L; (3.3d)

the first and last U(1) factors are not the usual “coordinate” U(1) factors, but
rather correspond to the iborbit and −icorbit eigenspaces respectively. With this

notation,

π
U(n)
b,c = π(orbit λ(borbit, corbit)). (3.3e)

An aspect of the orbit method perspective is that the “natural” dominance
condition is no longer b, c ≥ 0 but rather

borbit > 0 ⇐⇒ b > −(n− 1)/2, corbit > 0 ⇐⇒ c > −(n− 1)/2. (3.3f)

For the compact group U(n) we have

π(orbit λ(borbit, corbit)) = 0 if 0 > b > −(n− 1)/2

or 0 > c > −(n− 1)/2,
(3.3g)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 12).

Now we’re ready for spectral theory. We need to calculate π
U(n)
b,c (ΩU(n)).

The sum of the positive roots is

2ρ(U(n)) = (n− 1, n− 3, · · · ,−(n− 1)). (3.4a)

(Recall that we have identified weights of T = U(1)n with n-tuples of integers.)
Because our highest weight is

λ = (b, 0, . . . ,−c), (3.4b)

we find

π
U(n)
b,c (ΩU(n)) = b2 + c2 + (n− 1)(b + c)

= b2
orbit + c2

orbit − (n− 1)2/2.
(3.4c)

Just as for the representation theory above, we’ll add one more piece of
information without explaining why it will be useful:

[π
U(n)
b,c ]U(n−1)(ΩU(1)) = (b− c)2 = b2 + c2 − 2bc. (3.4d)

Combining the last two equations gives

[π
U(n)
b,c ]U(n−1)(2ΩU(n) −ΩU(1)) = (b + c)2 + (2n− 2)(b + c). (3.4e)



Laplacians on spheres 11

Table 1 Casimir eigenvalues and multiplicities on S3

b c π
U(n)
b,c (ΩU(2)) [π

U(n)
b,c ]U(1)(2ΩU(2) − ΩU(1)) dim a π

O(4)
a (ΩO(4)) dim

0 0 0 0 1 0 0 1
0 1 2 3 2 1 3 4
1 0 2 3 2
0 2 6 8 3 2 8 9
1 1 4 8 3
2 0 6 8 3
0 3 12 15 4 3 15 16
1 2 8 15 4
2 1 8 15 4
3 0 12 15 4

Theorem 2 Suppose n ≥ 2. The eigenvalues of the (negative) Laplace-Beltrami
operator LU on S2n−1 are b2 + c2 +(n−1)(b+ c), for all non-negative integers
b and c. The multiplicity of this eigenvalue is

(b + c + n− 1)
∏n−2

j=1 (b + j)
∏n−2

k=1 (c + k)

(n− 1) · (n− 2)! · (n− 2)!

a polynomial in b and c of total degree 2n− 3.
A little more precisely, the multiplicity of an eigenvalue λ is the sum over

all expressions

λ = b2 + c2 + (n− 1)(b + c)

(with b and c nonnegative integers) of the indicated polynomial in b and c.

Let us compute the first few eigenvalues when n = 2, so that we are looking
at S3. Some numbers are in Table 3. We have also included eigenvalues and
multiplicities from the calculation with O(4) acting on S3, and the peculiar
added calculations from (3.2g) and (3.4e).

Since each half (left and the right) of the table concerns S3, there should
be some relationship between them. There are indeed relationships, but they
are not nearly as close as one might expect. What is being calculated in each
case is the spectrum of a Laplace-Beltrami operator. It is rather clear that the
spectra are quite different: the multiplicities calculated with U(2) are smaller
than the multiplicities calculated with O(4), and the actual eigenvalues are
smaller for U(2) as well.

The reason for this is that metric gO that we used in the O(2n) calculation
is not the same as the metric gU that we used in the U(n) calculation. There
are two aspects to the difference. Recall that

Te1(S
n−1) = {(0, v2, · · · , vn) | vj ∈ R} ≃ Rn−1. (3.5)

In this picture, we will see that gO is the usual inner product on Rn−1. In the
U(n) picture,

Te1(S
2n−1) = {(it1, z2, · · · , zn) | t ∈ R, zj ∈ C} ≃ R + Cn−1. (3.6)
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In this picture, gU is actually twice the usual inner product on Cn−1:

|(0, x2 + iy2, · · · , xn + iyn)|2gU
= 2|(0, 0, x2, y2, · · · , xn, yn)|2gO

. (3.7)

Here is how to see this factor of two. The Riemannian structure gO for O(n)
is related to the invariant bilinear form on o(n)

〈X, Y 〉O(n) = (1/2) tr(XY ). (3.8)

The reason for the factor of 1/2 is so that the form restricts to (minus) the
“standard” inner product on the Cartan subalgebra so(2)[n/2] ≃ R[n/2]. Now
suppose that

v ∈ Rn−1 ≃ Te1(S
n−1).

The tangent vector v is given by the n× n skew-symmetric matrix A(v) with
first row (0, v), first column (0,−v)t, and all other entries zero. Then

|v|2gO
= −〈A(v), A(v)〉O(n) = −(1/2)(tr(A(v)A(v))) = |v|2, (3.9)

proving the statement after (3.5) about g0.
For similar reasons, gU is related to the invariant form on u(n)

〈Z, W 〉U(n) = Re tr(ZW ) = (1/2)(tr(ZW ) + tr(ZW )). (3.10)

If z ∈ Cn−1 ⊂ Te1(S
2n−1), then the tangent vector z is given by the n × n

skew-Hermitian matrix B(z) with first row (0, z), first column (0,−z)t, and
all other entries zero. Therefore

|z|2gU
= −〈B(z), B(z)〉U(n) = −Re(tr(B(z)B(z)) = 2|z|2. (3.11)

Now equations (3.9) and (3.11) prove (3.7)
Doubling the Riemannian metric has the effect of dividing the Laplace

operator by two, and so dividing the eigenvalues by two. For this reason, the
eigenvalues computed using U(n) ought to be half of those computed using
O(2n).

But that is still not what the table says. The reason is that in the U(n)
picture, there is a “preferred” line in each tangent space, corresponding to the
fibration

S1 → S2n−1 → CPn−1.

In our coordinates in (3.6), it is the coordinate t1. The skew-Hermitian matrix
C(it1) involved has it1 in the first diagonal entry, and all other entries zero.

|(it1, 0, · · · , 0)|2gU
= −〈C(it1), C(it1)〉U(n) = t21 = |(0, t1, 0, 0, · · · , 0, 0)|2gO

:
(3.12)

no factor of two. So the metric attached to the U(n) action is fundamentally
different from the metric attached to the O(2n) action. In the U(n) case,
there is a new (non-elliptic) Laplacian LU(1) acting in the direction of the S1

fibration only. The remarks about metrics above say that

LO = 2LU − LU(1). (3.13)
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(The reason is that the sum of squares of derivatives in LO is almost exactly
twice the sum of squares LU ; except that this factor of two is not needed in the
direction of the U(1) fibration.) The “extra” calculations (3.2g) and (3.4e) are
calculating the spectrum of LU(1) representation-theoretically; so the column

[π
U(n)
b,c ]U(1)(2ΩU(2) −ΩU(1))

in the table above is calculating the spectrum of the classical Laplacian LO.
Here is a final representation-theoretic statement, explaining how the U(n)

and O(2n) calculations fit together.

Theorem 3 Suppose n ≥ 2, and a is a non-negative integer. Using the inclu-
sion U(n) ⊂ O(2n), we have

πO(2n)
a |U(n) =

∑

0≤b,c
b+c=a

π
U(n)
b,c .

The contribution of these representations to the spectrum of the O(2n)-invariant
Laplacian LO is

πO(2n)
a (ΩO(2n)) = a2 + (2n− 2)a

= (b + c)2 + 2(n− 1)(b + c)

= [π
U(n)
b,c ]U(n−1)(2ΩU(n) −ΩU(1)).

4 The quaternionic calculation

Suppose n ≥ 1 is an integer. Write Sp(n) for the unitary group of the standard
Hermitian inner product on Hn. This is a group of H-linear transformations;
that is, R-linear transformations commuting with scalar multiplication by H.
Because H is noncommutative, these scalar multiplications do not commute
with each other, and so are not linear. It is therefore possible and convenient
to enlarge Sp(n) to

Sp(n)× Sp(1) = Sp(n)linear × Sp(1)scalar; (4.1a)

the second factor is scalar multiplication by unit quaternions. This enlarged
group acts on Hn, by the formula

(glinear, zscalar) · v = gvz−1; (4.1b)

we need the inverse to make the right action of scalar multiplication into a left
action. The action preserves length, and so can be restricted to the (4n− 1)-
dimensional sphere

S4n−1 = {v ∈ Hn | 〈v, v〉 = 1} (4.1c)

We choose as a base point

e1 = (1, 0, . . . , 0) ∈ S4n−1, (4.1d)
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which makes sense by our assumption that n ≥ 1. Then Sp(n) × Sp(1) acts
transitively on S2n−1, and the isotropy group at e1 is

[Sp(n)× Sp(1)]e1 ≃ Sp(n− 1)× Sp(1)∆. (4.1e)

Here we embed Sp(n − 1) in Sp(n) by acting on the last n − 1 coordinates,
and the last factor is the diagonal subgroup in Sp(1)linear (acting on the first
coordinate) and Sp(1)scalar. This shows

S4n−1 ≃ [Sp(n)× Sp(1)]/[Sp(n− 1)× Sp(1)∆]. (4.1f)

Here is the representation theory. We omit the case n = 1, which is a
degenerate version of the same thing; so assume n ≥ 2. A maximal torus in
Sp(n) is

T = U(1)n, (4.2a)

n copies of the unit complex numbers acting diagonally on Hn. A weight
is therefore an n-tuple of integers. For all integers d ≥ e ≥ 0 there is an
irreducible representation

π
Sp(n)
d,e of highest weight (d, e, 0, . . . , 0, 0),

dim π
Sp(n)
d,e =

(d + e + 2n− 1)(d− e + 1)
∏2n−3

j=1 (d + j + 1)(e + j)

(2n− 1)(2n− 2) · [(2n− 3)!]2
.

(4.2b)

A maximal torus in Sp(1) is U(1), and a weight is an integer. For each
integer f ≥ 0 there is an irreducible representation

π
Sp(1)
f of highest weight f, dimπ

Sp(1)
f = f + 1. (4.2c)

We are interested in the representations (for d ≥ e ≥ 0)

π
Sp(n)×Sp(1)
d,e = π

Sp(n)
d,e ⊗ π

Sp(1)
d−e

dim π
Sp(n)×Sp(1)
d,e =

(d + e + 2n − 1)(d − e + 1)2
∏2n−3

j=1 (d + j + 1)(e + j)

(2n − 1)(2n − 2) · [(2n − 3)!]2
.

(4.2d)

Notice that the polynomial giving the dimension has degree 4n− 3.
Using the calculation of ρ given in (4.4a) below, we find

infl. char.(π
Sp(n)×Sp(1)
d,e ) = (d + n, e + (n − 1), n − 2, · · · , 1)(d − e + 1). (4.2e)

The key fact is that

dim[π
Sp(n)×Sp(1)
d,e ]Sp(n−1)×Sp(1)∆ = 1 (d ≥ e ≥ 0),

dimπSp(n−1)×Sp(1)∆ = 0 (π 6≃ π
Sp(n)×Sp(1)
d,e ).

(4.2f)

Therefore
L2(S4n−1) ≃

∑

d≥e≥0

π
Sp(n)×Sp(1)
d,e (4.2g)
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as representations of Sp(n)× Sp(1).
Here is one more piece of representation-theoretic information. We saw

that Sp(n − 1) × Sp(1)∆ ⊂ Sp(n − 1) × Sp(1) × Sp(1) ⊂ Sp(n) × Sp(1); so
inside any representation of Sp(n)× Sp(1) we get a natural representation of
Sp(1)×Sp(1) generated by the Sp(n−1)×Sp(1)∆ fixed vectors. The last fact
is

[Sp(1)× Sp(1)] · [π
Sp(n)×Sp(1)
d,e ]Sp(n−1)×Sp(1)∆

= irr of highest weight (d− e, d− e).
(4.2h)

This representation has infinitesimal character

infl. char.
(
[Sp(1)× Sp(1)] · [π

Sp(n)×Sp(1)
d,e ]Sp(n−1)×Sp(1)∆

)

= (d− e + 1, d− e + 1).
(4.2i)

Here is the orbit method perspective. (To simplify the notation, we will
discuss only G = Sp(n) rather than Sp(n)×Sp(1).) The Lie algebra g0 consists
of n× n skew-hermitian quaternionic matrices; h0 is the subalgebra in which
the last row and column are zero. Define

dorbit = d + (n− 1), eorbit = e + (n− 2). (4.3a)

We need also an auxiliary parameter

rorbit = (dorbiteorbit)
1/2. (4.3b)

Now define a linear functional

λ(dorbit, eorbit) =





i(dorbit + eorbit) rorbit 0 . . . 0
−rorbit 0 0 . . . 0

0 0
...

... 0(n−2)×(n−2)

0 0





∈ (g0/h0)∗. (4.3c)

This skew-hermitian matrix has been constructed to be orthogonal to h0,
and to be conjugate by G to





idorbit 0 0 . . . 0
0 ieorbit 0 . . . 0

0 0
...

... 0(n−2)×(n−2)
0 0




(4.3d)

With this notation,

π
Sp(n)
d,e = π(orbit λ(dorbit, eorbit)). (4.3e)



16 Henrik Schlichtkrull et al.

An aspect of the orbit method perspective is that the “natural” dominance
condition is no longer d ≥ e ≥ 0 but rather

dorbit > eorbit > 0 ⇐⇒ d + 1 > e > −(n− 1). (4.3f)

For the compact group Sp(n) we have

π(orbit λ(dorbit, eorbit)) = 0 if 0 > e > −(n− 1) (4.3g)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 13).

Now we’re ready for spectral theory. Because the group is a product, it
is natural to calculate the eigenvalues of the Casimir operators from the two

factors separately. We calculate first π
Sp(n)×Sp(1))
d,e (ΩSp(n)). The sum of the

positive roots is
2ρ(Sp(n)) = (2n, 2n− 2, · · · , 2). (4.4a)

Because our highest weight for Sp(n) is

λ = (d, e, 0, . . . , 0), (4.4b)

we find
π

Sp(n)
d,e (ΩSp(n)) = d2 + e2 + 2nd + 2(n− 1)e

= d2
orbit + e2

orbit − n2 − (n− 1)2.
(4.4c)

Similarly

π
Sp(n)×Sp(1)
d,e (ΩSp(1)) = (d− e)2 + 2(d− e) = d2 + e2 − 2de + 2(d− e). (4.4d)

Combining the last two equations gives

π
Sp(n)×Sp(1)
d,e (2ΩSp(n) −ΩSp(1)) = (d + e)2 + (4n− 2)(d + e)

= π
O(4n)
d+e (ΩO(4n)).

(4.4e)

This formula is first of all just an algebraic identity, obtained by plugging in
a = d+e and 4n in the formula (2.8c). But it has a more serious meaning. Let us
directly compare the metrics gO and gSp on S4n−1, as we did for gU in Section
3. We find that on a (4n − 4)-dimensional subspace of the tangent space,
gO is some multiple x · gSp; and on the orthogonal 3-dimensional subspace
(corresponding to the Sp(1) ≃ S3 fibers of the bundle S4n−1 → Pn−1(H))
there is a different relationship gO = y · gSp. (It is not difficult to check by
more careful calculation that x = 2 and z = 1, but we are looking here for
what is obvious.) It follows that

LO = xLSp − zLSp(1),

exactly as in (3.13). If now

π
Sp(n)×Sp(1)
d,e ⊂ πO(4n)

a ,
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then we conclude (by computing the Laplacian separately in these two repre-
sentations) that there is (for all integers d ≥ e ≥ 0) an algebraic identity

x(d2 + e2 + 2nd + 2(n− 1)e)− z((d− e)2 + 2(d− e)) = a2 + (4n− 2)a;

here a ≥ 0 is some integer depending on d and e. Since every integer a ≥ 0
must appear in such an identity, it follows easily that x = 2 and z = 1, and
that a = d + e. In particular,

LO = 2LSp − LSp(1). (4.4f)

This means that the equation (4.4e) is describing two calculations of LO, in
the subrepresentation

π
Sp(n)×Sp(1)
d,e ⊂ π

O(4n)
d+e . (4.4g)

Here is what we have proven about how the Sp(n) and O(4n) calculations
fit together.

Theorem 4 Suppose n ≥ 2, and a is a non-negative integer. Using the map
Sp(n)× Sp(1)→ O(4n), we have

πO(4n)
a |Sp(n)×Sp(1) =

∑

d≥e≥0
d+e=a

π
Sp(n)×Sp(1)
d,e .

The contribution of these representations to the spectrum of the O(4n)-
invariant Laplacian LO is

πO(4n)
a (ΩO(4n)) = a2 + (4n− 2)a

= (d + e)2 + (4n− 2)(d + e)

= π
Sp(n)×Sp(1)
d,e (2ΩSp(n) −ΩSp(1)).

5 The octonionic calculation

We will make no explicit discussion of octonions, except to say that F4 is re-
lated; and that the non-associativity of octonions makes it impossible to define
a “projective space” except in octonionic dimension one. That is why this ex-
ample is not part of an infinite family like the real, complex, and quaternionic
ones.

Write Spin(9) for the compact spin double cover of SO(9). This group
can be defined using a spin representation σ, which has dimension 2(9−1)/2 =
16. The representation is real, so we fix a realization (σR, VR) on a sixteen-
dimensional real vector space. Of course the compact group Spin(9) preserves
a positive definite inner product on VR, and

S15 = {v ∈ VR | 〈v, v〉 = 1} (5.1a)

We choose as a base point
v1 ∈ S15, (5.1b)
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Then Spin(9) acts transitively on S15. (Once one knows that F4,c/ Spin(9) is
a (sixteen-dimensional) rank one Riemannian symmetric space, and that the
action of Spin(9) on the tangent space at the base point is the spin represen-
tation, then this is Cartan’s result (1.1).) The isotropy group at v1 is

Spin(9)v1 ≃ Spin(7)′. (5.1c)

The embedding of Spin(9)v1 in Spin(9) can be described as follows. First, we
write

Spin(8) ⊂ Spin(9) (5.1d)

for the double cover of SO(8) ⊂ SO(9). Next, we embed

Spin(7)′ spin
−→ Spin(8). (5.1e)

(We use the prime to distinguish this subgroup from the double cover of
SO(7) ⊂ SO(8), which we will call Spin(7) ⊂ Spin(8).) The way this works
is that the spin representation of Spin′(7) has dimension 2(7−1)/2 = 8, is real,
and preserves a quadratic form, so Spin′(7) ⊂ SO(8). (Another explanation
appears in (7.1) below.) Now take the double cover of this inclusion. This
shows

S15 ≃ Spin(9)/ Spin(7)′. (5.1f)

Here is the representation theory. A maximal torus in Spin(9) is a double
cover of SO(2)4 ⊂ SO(9). A weight is either a 4-tuple of integers (the weights
factoring to SO(2)4) or a 4-tuple from Z + 1/2. For all integers x ≥ 0 and
y ≥ 0 there is an irreducible representation

π
Spin(9)
x,y of highest weight (y/2 + x, y/2, y/2, y/2),

dimπ
Spin(9)
x,y =

(2x + y + 7)
∏3

j=1(x + j)(y + j + 1)(y + 2j − 1)(x + y + j + 3)

7! · 6! · (1/2)

(5.2a)

Notice that the polynomial giving the dimension has degree 13.
Using the calculation of ρ given in (5.4a) below, we find

infl. char.(π
Spin(9)
x,y ) = ((2x + y + 7)/2, (y + 5)/2, (y + 3)/2, (y + 1)/2). (5.2b)

The key fact is that

dim[πSpin(9)
x,y ]Spin(7)′

= 1 (x ≥ 0, y ≥ 0),

dimπSpin(7)′

= 0 (π 6≃ πSpin(9)
x,y ).

(5.2c)

Therefore

L2(S15) ≃
∑

x≥0, y≥0

πSpin(9)
x,y (5.2d)

as representations of Spin(9).
Here is one more piece of representation-theoretic information. We saw that

Spin(7)′ ⊂ Spin(8) ⊂ Spin(9); so inside any representation of Spin(9) we get a
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natural representation of Spin(8) generated by the Spin(7)′ fixed vectors. The
last fact is

Spin(8) · [π
Spin(9)
x,y ]Spin(7)′

= irr of highest weight (y/2, y/2, y/2, y/2). (5.2e)

This representation has infinitesimal character

infl. char.
(
Spin(8) · [π

Spin(9)
x,y ]Spin(7)′

)
= ((y + 6)/2, (y + 4)/2, (y + 2)/2, y/2). (5.2f)

Here is why this is true. Helgason’s theorem about symmetric spaces says
that the representations of Spin(8) of highest weights

(y/2, y/2, y/2, y/2) (5.2g)

are precisely the ones having a Spin(7)′-fixed vector, and furthermore this fixed
vector is unique. The corresponding statement for Spin(8)/ Spin(7) is the case
n = 8 of Theorem 1. In that case the highest weights for Spin(8) appearing
are the multiples of the fundamental weight (1, 0, 0, 0) (corresponding to the
simple root at the end of the “long” leg of the Dynkin diagram of D4. For
Spin(8)/ Spin(7)′, the weights appearing must therefore be multiples of the
fundamental weight (1/2, 1/2, 1/2, 1/2) for a simple root on one of the “short”
legs of the Dynkin diagram, proving (5.2g).

To complete the proof of (5.2c) using (5.2g) we need only the classical
branching theorem for Spin(8) ⊂ Spin(9) (see for example [8, Theorem 9.16]).

Here is the orbit method perspective. Define

xorbit = x + 2, yorbit = y + 3. (5.3a)

Then it turns out that there is a 9×9 real skew-symmetric matrix λ(xorbit, yorbit)
(which we will not attempt to write down) with the properties

λ(xorbit, yorbit) ∈ (g0/h0)
∗

λ(xorbit, yorbit) has eigenvalues

±i(xorbit/2 + yorbit/4) and ±i(yorbit/4) (three times).
(5.3b)

Consequently
πSpin(9)

x,y = π(orbit λ(xorbit, yorbit)). (5.3c)

An aspect of the orbit method perspective is that the “natural” dominance
condition is no longer x, y ≥ 0 and but rather

xorbit, yorbit > 0 ⇐⇒ x > −2, y > −3. (5.3d)

For the compact group Spin(9) we have

π(orbit λ(xorbit, yorbit)) = 0 if 0 > x > −2 or 0 > y > −3; (5.3e)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 14).
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Now we’re ready for spectral theory. We need to calculate π
Spin(9)
x,y (ΩSpin(9)).

The sum of the positive roots is

2ρ(Spin(9)) = (7, 5, 3, 1). (5.4a)

Because our highest weight is

λ = (y/2 + x, y/2, y/2, y/2), (5.4b)

we find

πSpin(9)
x,y (ΩSpin(9)) = x2 + y2 + xy + 8y + 7x. (5.4c)

Just as for the representation theory above, we’ll add one more piece of
information without explaining why it will be useful:

(
Spin(8) · [πSpin(9)

x,y ]Spin(7)′
)

(ΩSpin(8)) = y2 + 6y (5.4d)

Combining the last two equations gives

(
Spin(8) · [πSpin(9)

x,y ]Spin(7)′
)

(4ΩSpin(9) − 3ΩSpin(8)) = (2x + y)2 + 14(2x + y)

= π
O(16)
2x+y (ΩO(16)).

(5.4e)
The last equality can be established exactly as in (4.4e).

Here is how the Spin(9) and O(16) calculations fit together.

Theorem 5 Using the inclusion Spin(9) ⊂ O(16) given by the spin represen-
tation, we have

πO(16)
a |Spin(9) =

∑

x≥0, y≥0
2x+y=a

πSpin(9)
x,y .

The contribution of these representations to the spectrum of the O(16)-invariant
Laplacian LO is

πO(16)
a (ΩO(16)) = a2 + (16− 2)a

= (2x + y)2 + 14(2x + y)

=
(
Spin(8) · [πSpin(9)

x,y ]Spin(7)′

]
)

(4ΩSpin(9) − 3ΩSpin(8)).

6 The small G2 calculation

Write G2,c for the 14-dimensional compact connected Lie group of type G2.
There is a 7-dimensional real representation (τR, WR) of G2,c, whose (complex-
ified) weights are zero and the six short roots. The representation τR preserves
a positive definite inner product, and so defines inclusions

G2,c →֒ SO(WR), G2,c →֒ Spin(WR). (6.1a)
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The corresponding action of G2,c on S6 is transitive. An isotropy group is
isomorphic to SU(3); this is a subgroup generated by a maximal torus and
the long root SU(2)s. Therefore

S6 = {w ∈WR | 〈v, v〉 = 1} ≃ G2,c/SU(3). (6.1b)

Here is the representation theory. Having identified a subgroup of G2,c with
SU(3), we may as well take for our maximal torus in G2,c the diagonal torus

T = S(U(1)3) ⊂ SU(3). (6.2a)

The weights of T are therefore

X∗(T ) = {λ = (λ1, λ2, λ3) | λi − λj ∈ Z, λ1 + λ2 + λ3 = 0}. (6.2b)

For each integer a ≥ 0 there is an irreducible representation

πa highest wt (2a/3,−a/3,−a/3), dimπa =
(2a + 5)

∏4
j=1(a + j)

5!
(6.2c)

Notice that the polynomial giving the dimension has degree 5. In fact it is

exactly the polynomial of (2.3b) giving the dimension of π
O(7)
a .

Using the calculation of ρ given in (6.4a) below, we find

infinitesimal character of πa = ((2a + 5)/3,−(a + 1)/3,−(a + 4)/3). (6.2d)

The key fact is that

dimπSU(3)
a = 1 (a ≥ 0), dimπSU(3) = 0 (π 6≃ πa). (6.2e)

Therefore
L2(S6) ≃

∑

a≥0

πa (6.2f)

as representations of G2,c.
Here is the orbit method perspective. Define

aorbit = a + 5/2. (6.3a)

Then it turns out that there is an element λ(aorbit) ∈ g∗
0 (which we will not

attempt to write down) with the properties

λ(aorbit) ∈ (g0/h0)
∗

λ(aorbit) is conjugate to

aorbit · (2/3,−1/3,−1/3).

(6.3b)

Consequently
πa = π(orbit λ(aorbit)). (6.3c)

An aspect of the orbit method perspective is that the “natural” dominance
condition is no longer a ≥ 0 and but rather

aorbit > 0 ⇐⇒ a > −5/2. (6.3d)
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For the compact group G2,c we have

π(orbit λ(aorbit)) = 0 if 0 > a > −5/2; (6.3e)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 15).

Now we’re ready for spectral theory. We need to calculate πa(ΩG2,c
). The

sum of the positive roots is

2ρ(G2,c) = (10/3,−2/3,−8/3). (6.4a)

Because our highest weight is

λ = (2a/3,−a/3,−a/3) (6.4b)

we find
πa(ΩG2,c

) = 2a2/3 + 10a/3 = 2(a2 + 5a)/3

= (2/3)(a2
orbit − 25/4)

(6.4c)

Here is how the G2,c and O(7) calculations fit together.

Theorem 6 Using the inclusion G2,c ⊂ O(7), we have

πO(7)
a |G2,c

= πG2,c
a .

The contribution of these representations to the spectrum of the O(7)-invariant
Laplacian LO is

πO(7)
a (ΩO(7)) = a2 + 5a

= πG2,c
a (3ΩG2,c

/2).

This is a consequence of the equality of dimensions observed at (6.2c), together
with the fact that the inclusion of G2,c in O(7) carries (some) short roots to
(some) short roots.

7 The big G2 calculation

Suppose n is an integer at least two. The group Spin(2n), or equivalently
the Lie algebra spin(2n), has an interesting outer automorphism of order two:
conjugation by the orthogonal matrix

σ = Ad





1 0 · · · 0 0
0 1 · · · 0 0

. . .

0 0 · · · 1 0
0 0 · · · 0 −1




. (7.1a)

The group of fixed points of σ is the “first 2n− 1 coordinates”

Spin(2n− 1) = Spin(2n)σ. (7.1b)
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The automorphism σ implements the automorphism of the Dynkin diagram

s s s. . . s

s

s

✡✡

❏❏ ←
→

exchanging the two short legs. If n = 4, the Dynkin diagram

s s

s

s

✡✡

❏❏

has two additional involutive automorphisms, exchanging the other two pairs
of legs. This gives rise to two additional (nonconjugate) automorphisms σ′

and σ′′ of Spin(8). Their fixed point groups are isomorphic to Spin(7), but not
conjugate to the standard one (or to each other). We call them

Spin(8)σ′

= Spin(7)′, Spin(8)σ′′

= Spin(7)′′. (7.1c)

The full automorphism group of the Dynkin diagram is the symmetric group
S3; σ0 and σ± are the three transpositions, any two of which generate S3. The
fixed point group of the full S3 is

Spin(8)S3 = G2,c = Spin(7) ∩ Spin(7)′; (7.1d)

this is a classical way to construct G2,c. It follows that

S7 = Spin(8)/ Spin(7) ⊃ Spin(7)′/G2,c. (7.1e)

Because the last homogeneous space is also seven-dimensional, the inclusion
is an equality

S7 = Spin(7)′/G2.c. (7.1f)

Here is the representation theory. We take for our maximal torus in Spin(7)′

the double cover T+ of
SO(2)3 ⊂ SO(7). (7.2a)

The weights of T+ are

X∗(T ) = {λ = (λ1, λ2, λ3) | λi ∈ Z (all i) or λi ∈ Z + 1/2 (all i)}. (7.2b)

For each integer a ≥ 0 there is an irreducible representation

πSpin(7)′

a highest wt (a/2, a/2, a/2),

dim πSpin(7)′

a =
(a + 3)

∏5
j=1(a + j)

3 · 5!

(7.2c)

Notice that the polynomial giving the dimension has degree 6; in fact it is

exactly the polynomial (2.3b) giving the dimension of π
O(8)
a .

Using the calculation of ρ given in (7.4a) below (or in (2.8a)) we find

infl. char.(πSpin(7)′

a ) = ((a + 5)/2, (a + 3)/2, (a + 1)/2). (7.2d)
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The key fact is that

πO(8)
a |Spin(7)′ = πSpin(7)′

a . (7.2e)

Therefore

L2(S7) ≃
∑

a≥0

πSpin(7)′

a (7.2f)

as representations of Spin(7)′.
Here is the orbit method perspective. Define

aorbit = a + 3. (7.3a)

Then it turns out that there is a 7 × 7 skew-symmetric real matrix λ(aorbit)
(which we will not attempt to write down) with the properties

λ(aorbit) ∈ (g0/h0)
∗

λ(aorbit) has eigenvalues ± aorbit/4 (three times).
(7.3b)

Consequently

πSpin(7)′

a = π(orbit λ(aorbit)). (7.3c)

An aspect of the orbit method perspective is that the “natural” dominance
condition is no longer a ≥ 0 and but rather

aorbit > 0 ⇐⇒ a > −3. (7.3d)

For the compact group G2,c we have

π(orbit λ(aorbit)) = 0 if 0 > a > −3; (7.3e)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 16).

Now we’re ready for spectral theory. We need to calculate πa(ΩSpin(7)′).
The sum of the positive roots is

2ρ(Spin(7)′) = (5, 3, 1). (7.4a)

Because our highest weight is

λ = (a/2, a/2, a/2) (7.4b)

we find

πSpin(7)′

a (ΩSpin(7)′) = 3a2/4 + 9a/2 = 3(a2 + 6a)/4

= (3/4)(a2
orbit − 9)

= (3/4)πO(8)
a (ΩO(8)).

(7.4c)

Here is a summary.
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Theorem 7 Using the inclusion Spin(7)′ ⊂ O(8), we have

πO(8)
a |Spin(7)′ = πSpin(7)′

a .

The contribution of these representations to the spectrum of the O(8)-invariant
Laplacian LO is

πO(8)
a (ΩO(8)) = a2 + 6a

= πSpin(7)′

a (4ΩSpin(7)′/3).

8 Invariant differential operators

Suppose H ⊂ G is a closed subgroup of a Lie group G. Write

D(G/H) = G-invariant differential operators on G/H, (8.1a)

an algebra. Following for example Helgason [7, pages 274–275], we wish to un-
derstand this algebra and its spectral theory as a way to understand functions
on G/H . A first step is to describe the algebra in terms of the Lie algebras of
G and H . This is done in [5] when H is reductive in G (precisely, when the
Lie algebra h0 has an Ad(H)-stable complement in g0). Ways to remove this
hypothesis have been understood for a long time; we follow the nice account
in [13].

Write

g0 = Lie(G) = real left-invariant vector fields on G

g = g0 ⊗R C = complex left-invariant vector fields on G
(8.1b)

These vector fields act on functions by differentiating “on the right:”

(Xf)(g) =
d

dt
(f(g exp(tX))) |t=0 (X ∈ g0). (8.1c)

As usual we can therefore identify the enveloping algebra

U(g) = left-invariant complex differential operators on G. (8.1d)

We can identify

C∞(G/H) = {f ∈ C∞(G) | f(xh) = f(x) (x ∈ G, h ∈ H)}. (8.1e)

Now consider the space

I(G/H) =def

[
U(g)⊗U(h) C

]Ad(H)⊗1
(8.1f)

Before we pass to Ad(H)-invariants, we have only a left U(g) module: no
algebra structure. But Ad(H)-invariants inherit the algebra structure from
U(g)⊗C C; so I(G/H) is an algebra. The natural action

U(g)⊗ C∞(G)→ C∞(G) (8.1g)
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(which is a left algebra action, but comes by differentiating on the right)
restricts to a left algebra action

I(G/H)⊗ C∞(G/H)→ C∞(G/H) (8.1h)

on the subspace C∞(G/H) ⊂ C∞(G).
Suppose more generally that (τ, Vτ ) is a finite-dimensional (and therefore

smooth) representation of H . Then

Vτ = G×H Vτ (8.1i)

is a G-equivariant vector bundle on G/H . The space of smooth sections is

C∞(Vτ ) = {f ∈ C∞(G, Vτ ) | f(xh) = τ(h)−1f(x) (x ∈ G, h ∈ H)}. (8.1j)

Now consider the space

Iτ (G/H) =
[
U(g)⊗U(h) End(Vτ )

](Ad ⊗ Ad)(H)
(8.1k)

(The group H acts by automorphisms on both the algebra U(g) and the algebra
End(Vτ ), in the latter case by conjugation by the operators τ(h). The H-
invariants are taken for the tensor product of these two actions.) Before we pass
to Ad(H)-invariants, we have only a left U(g) module: no algebra structure.
But Ad(H)-invariants inherit the algebra structure from U(g)⊗C End(Vτ ); so
Iτ (G/H) is an algebra. The natural action

[U(g)⊗C End(Vτ )]⊗ C∞(G, Vτ )→ C∞(G, Vτ ) (8.1l)

(which is a left algebra action, but comes by differentiating on the right)
restricts to a left algebra action

Iτ (G/H)⊗ C∞(Vτ )→ C∞(Vτ ). (8.1m)

Proposition 1 (Helgason [5, Theorem 10]; [6, pages 758–759]; Koorn-
winder [13, Theorem 2.10]) Suppose H is a closed subgroup of the Lie group
G. The action (8.1m) identifies the algebra Iτ (G/H) with

Dτ (G/H) = G-invariant differential operators on the vector bundle Vτ .

The action of Iτ (G/H) on formal power series sections of Vτ at the identity
is a faithful action.

Helgason’s idea for invariant harmonic analysis (see for example [7, In-
troduction]) is to understand the spectral theory of the algebra I(G/H) =
D(G/H) on C∞(G/H); or, more generally, of Dτ (G/H) on smooth sections
of Vτ . Suppose for example that D(G/H) is abelian, and fix an algebra homo-
morphism

λ : D(G/H)→ C, λ ∈ MaxSpec(D(G/H)). (8.2a)

Then the collection of simultaneous eigenfunctions

C∞(G/H)λ =def {f ∈ C∞(G/H) | Df = λ(D)f | D ∈ D(G/H)} (8.2b)
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is naturally a representation of G (by left translation). The question is for
which λ the space C∞(G/H)λ is nonzero; and more precisely, what represen-
tation of G it carries. We can define

Spec(G/H) = {λ ∈Max Spec(D(G/H)) | C∞(G/H)λ 6= 0}. (8.2c)

All of these remarks apply equally well to vector bundles.
How can we identify interesting or computable invariant differential oper-

ators? The easiest way is using the center of the enveloping algebra

Z(g) =def U(g)G. (8.3a)

(If G is disconnected, this may be a proper subalgebra of the center.) The
obvious map

iG : Z(g)→ Iτ (G/H), z 7→ z ⊗ IVτ
(8.3b)

is an algebra homomorphism. Here is how the spectral theory of the differential
operators iG(Z(g)) is related to representation theory. Suppose that (π, Eπ) is
a smooth irreducible representation of G. Under a variety of mild assumptions
(for example, if G is reductive and π is quasisimple) there is a homomorphism

χπ : Z(g)→ C (8.3c)

called the infinitesimal character of π so that

dπ(z) = χπ(z) · IEπ
. (8.3d)

Suppose now that there is a G-equivariant inclusion

jG : Eπ → C∞(G/H,Vτ ). (8.3e)

Finding inclusions like (8.3e) is one of the things harmonic analysis is about.
One reason we care about it is the consequences for spectral theory:

iG(z) acts on jG(Eπ) ⊂ C∞(Vτ ) by the scalar χπ(z) (z ∈ Z(g)). (8.3f)

Here is a generalization. Suppose G1 is a subgroup of G normalized by H :

G1 ⊂ G, Ad(H)(G1) ⊂ G1. (8.4a)

(The easiest way for this to happen is for G1 to contain H .) Then H acts on
Z(g1), so we get

iG1 : Z(g1)
H → Iτ (G/H), z1 7→ z1 ⊗ IVτ

. (8.4b)

These invariant differential operators are acting along the submanifolds

xG1/(G1 ∩H) ⊂ G/H (x ∈ G) (8.4c)

of G/H . An example is the first coordinate G1 = U(1) introduced in (3.2),
for H = U(n − 1). The operator ΩU(1) on S2n−1 (acting along the fibers of



28 Henrik Schlichtkrull et al.

the map S2n−1 → CPn−1) is one of these new invariant operators. A more
interesting example is G1 = Sp(1)× Sp(1) studied in (4.2h).

Here is how the spectral theory of these new operators is related to repre-
sentation theory. The map (8.3e) is (by Frobenius reciprocity) the same thing
as an H-equivariant map

jH : Eπ → Vτ (8.4d)

or equivalently
j∗
H : V ∗

τ → E∗
π. (8.4e)

It makes sense to define

(E∗
π)G1,jH = G1 representation generated by j∗

H(V ∗
τ ) ⊂ π∗. (8.4f)

If the G1 representation (π∗)G1,jH has infinitesimal character χ∗
1 (the contra-

gredient of the infinitesimal character χ1), then

iG1(z1) acts on jG(Eπ) ⊂ C∞(Vτ ) by the scalar χ1(z1) (z1 ∈ Z(g1)
H).

(8.4g)
The homomorphisms iG of (8.3b) and (8.4b) define an algebra homomor-

phism from the abstract (commutative) tensor product algebra

iG ⊗ iG1 : Z(g)⊗C Z(g1)→ Iτ (G/H). (8.4h)

The reason for this is that Z(g) commutes with all of U(g).
Now that we understand the relationship between representations in C∞(Vτ )

and the spectrum of invariant differential operators, let us see what the results
of Sections 2–7 can tell us: in particular, about the kernel of the homomor-
phism iG⊗iG1 of (8.4h). We begin with G = O(n), H = O(n−1) as in Section
2. Write n = 2m + ǫ, with ǫ = 0 or 1. A maximal torus in G is

T = SO(2)m, t0 = Rm, t = Cm. (8.5a)

The Weyl group W (O(n)) acts by permutation and sign changes on these m
coordinates. Harish-Chandra’s theorem identifies

Z(g) ≃ S(t)W (O(n)) = C[x1, · · · , xm]W (O(n)). (8.5b)

Therefore
(maximal ideals in Z(g))↔ Cm/W (O(n)). (8.5c)

Suppose z ∈ Z(g) corresponds to p ∈ C[x1, · · · , xm]W (O(n)) by (8.5b). Accord-
ing to (8.3f) and (2.3e), the invariant differential operator iG(z) will act on
πa ⊂ C∞(G/H) by the scalar

p(a + (n− 2)/2, (n− 4)/2, · · · , (n− 2m)/2).

Recalling that n− 2m = ǫ = 0 or 1, we write this as

p(a + (n− 2)/2, (n− 4)/2, · · · , ǫ/2). (8.5d)

Here is the consequence we want.
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Proposition 2 With notation as above, the polynomial

p ∈ C[x1, · · · , xm]W (O(n))

vanishes on the (affine) line

{(α, (n− 4)/2, · · · , ǫ/2) | α ∈ C}.

if and only if iG(z) ∈ I(G/H) is equal to zero.

Proof The statement “if” is a consequence of (8.5d): if the differential operator
is zero, then p must vanish at all the points (a+(n−2)/2, (n−4)/2, · · · ) with
a a non-negative integer. These points are Zariski dense in the line. For “only
if,” the vanishing of the polynomial makes the differential operator act by zero
on all the subspaces πa ⊂ C∞(G/H). The sum of these subspaces is dense (for
example as a consequence of (2.3g)); so the differential operator acts by zero.
The faithfulness statement in Proposition 1 then implies that iG(z) = 0.

Corollary 1 The O(n) infinitesimal characters factoring to iG(Z(g)) are in-
dexed by weights

(α, (n− 4)/2, · · · , ǫ/2) (α ∈ C). (8.5a)

Suppose (π, Eπ) is a representation of o(n, C) having an infinitesimal char-
acter, and that (E∗

π)o(n−1,C) 6= 0. Then π has infinitesimal character of the
form (8.5a).

Exactly the same arguments apply to the other examples treated in Sec-
tions 2–7. We will just state the conclusions.

Suppose G = U(n), H = U(n − 1) as in Section 3. A maximal torus in G
is

T = U(1)n, t0 = Rn, t = Cn. (8.6a)

The Weyl group W (U(n)) acts by permutation on these n coordinates. Harish-
Chandra’s theorem identifies

Z(g) ≃ S(t)W (U(n)) = C[x1, · · · , xn]W (U(n)). (8.6b)

Therefore

(maximal ideals in Z(g))↔ Cn/W (U(n)). (8.6c)

Suppose z ∈ Z(g) corresponds to p ∈ C[x1, · · · , xn]W (U(n)) by (8.6b). Accord-
ing to (8.3f) and (3.2d), the invariant differential operator iG(z) will act on
πb,c ⊂ C∞(G/H) by the scalar

p((b + (n− 1))/2, (n− 3)/2, · · · ,−(n− 3)/2,−(c + (n− 1))/2). (8.6d)
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Proposition 3 With notation as above, the polynomial

p ∈ C[x1, · · · , xn]W (U(n))

vanishes on the (affine) plane

{(ξ, (n− 3)/2, · · · ,−(n− 3)/2,−τ) | (ξ, τ) ∈ C2}.

if and only if iG(z) ∈ I(G/H) is equal to zero.

Corollary 2 The U(n) infinitesimal characters factoring to iG(Z(g)) are in-
dexed by weights

(ξ, (n− 3)/2, · · · ,−(n− 3)/2,−τ) ((ξ, τ) ∈ C2). (8.6a)

Suppose (γ, Fγ) is a representation of u(n, C) having an infinitesimal char-
acter, and that (F ∗

γ )u(n−1,C) 6= 0. Then Fγ has infinitesimal character of the
form (8.6a). The parameters ξ and τ may be determined as follows. The central
character of γ (scalars by which the one-dimensional center of the Lie algebra
acts) is given by ξ− τ . If in addition Fγ ⊂ Eπ for some representation (π, Eπ)
of o(2n, C) as in Corollary 1, then we may take ξ+τ = α. (Replacing α by the
equivalent infinitesimal character parameter −α has the effect of interchanging
ξ and −τ , which defines an equivalent infinitesimal character parameter.)

Suppose next that G = Sp(n) × Sp(1), H = Sp(n − 1) × Sp(1)∆ as in
Section 4. A maximal torus in G is

T = U(1)n × U(1), t0 = Rn × R, t = Cn × C. (8.7a)

The Weyl group W (Sp(n) × Sp(1)) acts by sign changes on all n + 1 coordi-
nates, and permutation of the first n coordinates. Harish-Chandra’s theorem
identifies

Z(g) ≃ S(t)W (Sp(n)×Sp(1)) = C[x1, · · · , xn, y]W (Sp(n)×Sp(1)). (8.7b)

Therefore

(maximal ideals in Z(g))↔ Cn+1/W (Sp(n)× Sp(1)). (8.7c)

Suppose z ∈ Z(g) corresponds to p ∈ C[x1, · · · , xn, y]W (Sp(n)×Sp(1)) by (8.7b).
According to (8.3f) and (4.2e), the invariant differential operator iG(z) will
act on πd,e ⊂ C∞(G/H) by the scalar

p((d + n, e + (n− 1), n− 2, · · · , 1), (d− e + 1)). (8.7d)

Proposition 4 With notation as above, the polynomial

p ∈ C[x1, · · · , xn, y]W (Sp(n)×Sp(1))

vanishes on the (affine) plane

{(ξ, τ, n− 2, · · · , 1)(ξ − τ) | (ξ, τ) ∈ C2}.

if and only if iG(z) ∈ I(G/H) is equal to zero.



Laplacians on spheres 31

Corollary 3 The infinitesimal characters for Sp(n) × Sp(1) which factor to
iG(Z(g)) are indexed by weights

(ξ, τ, n− 2, · · · , 1)(ξ − τ) ((ξ, τ) ∈ C2). (8.7a)

Suppose (γ, Fγ) is a representation of sp(n, C) × sp(1, C) having an in-
finitesimal character, and that (F ∗

γ )sp(n−1,C)×sp(1,C)∆ 6= 0. Then Fγ has in-
finitesimal character of the form (8.7a); ξ− τ is the infinitesimal character of
the sp(1, C) factor. If in addition Fγ ⊂ Eπ for some representation (π, Eπ) of
o(4n, C) as in Corollary 1, then we may take ξ + τ = α.

This is a good setting in which to consider the more general invariant
differential operators from (8.4). Suppose in that general setting that G1 is
reductive, and choose a Cartan subalgebra t1 ⊂ g1, with (finite) Weyl group

W (G1) =def NG1(C)(t1)/ZG1(C)(t1) ⊂ Aut(t1), Z(g1) ≃ S(t)W1 . (8.8a)

The adjoint action of H on G1 defines another Weyl group, which normalizes
W (G1):

W (G1)⊳WH(G1) =def NH(C)(t1)/ZH(C)(t1) ⊂ Aut(t1), Z(g1)
H ≃ S(t1)

WH (G1).
(8.8b)

Under mild hypotheses (for example G1 is reductive algebraic and the adjoint
action of H is algebraic) then WH(G1) is finite, so the algebra Z(g1) is fi-
nite over Z(g1)

H , and the maximal ideals in this smaller algebra are given by
evaluation at

µ ∈ t∗1/WH(G1). (8.8c)

In the case G1 = Sp(1)×Sp(1), the adjoint action of H on G1 is contained in
that of G1, so W (G1) = WH(G1), and Z(g1)

H = Z(g1). We have

T1 = U(1)2, t1,0 = R2, t1 = C2. (8.8d)

The Weyl group W (G1) = WH(G1) acts by sign changes on each coordinate,
so the Harish-Chandra isomorphism is

Z(g1)
H = Z(g1) ≃ S(t1)

W (G1) = C[u1, u2]
W (G1) (8.8e)

Suppose therefore that z1 ∈ Z(g1) corresponds to p1 ∈ C[x1, x2]
W (G1).

According to (8.4g) and (4.2i), the invariant differential operator iG1(z1) acts

on π
Sp(n)×Sp(1)
d,e ⊂ C∞(G/H) by the scalar

p1(d− e + 1, d− e + 1). (8.8f)

Proposition 5 With notation as above, suppose that

P ∈ C[x1, · · · , xn, y, u1, u2]
W (G)×W (G1),

and write Z ∈ Z(g) ⊗ Z(g1)
H for the corresponding central element. Then P

vanishes on the affine plane

{(ξ, τ, n− 2, · · · , 1)(ξ − τ)(ξ − τ, ξ − τ) | (ξ, τ) ∈ C2}.

if and only if (iG ⊗ iG1)(Z) ∈ I(G/H) is equal to zero.
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Corollary 4 In the setting G/H = (Sp(n) × Sp(1))/(Sp(n − 1) × Sp(1)∆),
G1 = Sp(1)×Sp(1), the characters of the tensor product algebra (8.4h) which
factor to the image in I(G/H) are indexed by weights

(ξ, τ, n− 2, · · · , 1)(ξ − τ)(ξ − τ, ξ − τ). (8.8a)

Here the first n coordinates are giving the infinitesimal character for Sp(n);
the next is the infinitesimal character for the Sp(1) factor of G; and the last
two are the infinitesimal character for G1.

Suppose (γ, Fγ) is an sp(n, C) representation as in Corollary 3. Then the
g1 representation generated by (F ∗

γ )sp(n−1,C) has infinitesimal character (ξ −
τ, ξ − τ).

Suppose next that G = Spin(9), H = Spin(7)′ as in Section 5. A maximal
torus in G is

T = double cover of SO(2)4, t0 = R4, t = C4. (8.9a)

The Weyl group W (Spin(9)) acts by permutation and sign changes on these
four coordinates. Harish-Chandra’s theorem identifies

Z(g) ≃ S(t)W (Spin(9)) = C[x1, · · · , x4]
W (Spin(9)). (8.9b)

Therefore

(maximal ideals in Z(g))←→ C4/W (Spin(9)). (8.9c)

Suppose z ∈ Z(g) corresponds to p ∈ C[x1, · · · , x4]
W (Spin(9)) by (8.9b). Ac-

cording to (8.3f) and (5.2b), the invariant differential operator iG(z) will act

on π
Spin(9)
x,y ⊂ C∞(G/H) by the scalar

p((2x + y + 7)/2, (y + 5)/2, (y + 3)/2, (y + 1)/2). (8.9d)

Proposition 6 With notation as above, the polynomial

p ∈ C[x1, · · · , x4]
W (Spin(9))

vanishes on the (affine) plane

{(ξ, τ + 5/2, τ + 3/2, τ + 1/2) | (ξ, τ) ∈ C2}.

if and only if iG(z) ∈ I(G/H) is equal to zero.

Corollary 5 The infinitesimal characters for Spin(9) factoring to iG(Z(g))
are indexed by weights

(ξ, τ + 5/2, τ + 3/2, τ + 1/2) ((ξ, τ) ∈ C2). (8.9a)

Suppose (γ, Fγ) is a representation of spin(9, C) having an infinitesimal
character, and that (F ∗

γ )h(C) 6= 0. Then Fγ has infinitesimal character of the

form (8.7a). If the spin(8, C)-module generated by (F ∗
γ )h(C) has a submodule



Laplacians on spheres 33

with an infinitesimal character, then we may choose τ so that this infinitesimal
character is

(τ + 3, τ + 2, τ + 1, τ). (8.9b)

If in addition Fγ ⊂ Eπ for some representation (π, Eπ) of o(16, C) as in
Corollary 1 (with infinitesimal character parameter α) then we may choose
ξ = α/2.

For the last two cases we write even less.

Corollary 6 When G/H = G2,c/SU(3), the infinitesimal characters for G2,c

which factor to iG(Z(g)) are indexed by weights

(2ξ, (1/2)− ξ,−(1/2)− ξ) (ξ ∈ C). (8.9a)

Suppose (γ, Fγ) is a representation of g2(C) having an infinitesimal char-
acter, and that (F ∗

γ )u(3,C) 6= 0. Then the infinitesimal character of Fγ is of
the form in (8.9a). If in addition Fγ ⊂ Eπ for some representation (π, Eπ) of
o(7, C) as in Corollary 1, then we may take ξ = α/3.

Corollary 7 When G/H = Spin(7)′/G2,c, the infinitesimal characters for
Spin(7)′ which factor to iG(Z(g)) are indexed by weights

(ξ + 1, ξ, ξ − 1) (ξ ∈ C). (8.9a)

Suppose (γ, Fγ) is a representation of spin(7, C)′ having an infinitesimal
character, and that (F ∗

γ )g2(C) 6= 0. Then the infinitesimal character of Fγ is of
the form in (8.9a). If in addition Fγ ⊂ Eπ for some representation (π, Eπ) of
o(8, C) as in Corollary 1, then we may take ξ = α/2.

9 Changing real forms

Results like (8.3f) and its generalization (8.4g) explain why it is interesting
to study the representations of G appearing in C∞(Vτ ) and the invariant
differential operators on this space. In this section we state our first method
for doing that.

Definition 1 Suppose G1 and G2 are Lie groups with closed subgroups H1

and H2. Assume that there is an isomorphism of complexified Lie algebras

i : g1
∼
−→ g2, i(h1) = h2. (9.0a)

Finally, assume that i identifies the Zariski closure of Ad(H1) in Aut(g1) with
the Zariski closure of Ad(H2) in Aut(g2). (This is automatic if H1 and H2 are
connected.) Then we say that the homogeneous space G2/H2 is another real
form of the homogeneous space G1/H1.

Given representations (τi, Vτi
) of Hi, we say that Vτ2 is another real form

of Vτ1 if there is an isomorphism

i : Vτ1

∼
−→ Vτ2 (9.0b)
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respecting the actions of h, and identifying the Zariski closure of Ad(H1) in
End(Vτ1) with the Zariski closure of Ad(H2) in End(Vτ2).

Whenever Vτ2 is another real form of Vτ1 , we get an algebra isomorphism

i : Dτ1(G1/H1)
∼
−→ Dτ2(G2/H2). (9.0c)

We will use these isomorphisms together with results like Corollaries 2–7
(proven using compact homogeneous spaces G1/H1) to control the possible
representations appearing in some noncompact homogeneous spaces G2/H2.

10 Changing the size of the group

Our second way to study representations and invariant differential operators
is this. In the setting (8.1), suppose that S ⊂ G is a closed subgroup, and that

dimG/H = dimS/(S ∩H). (10.1a)

Equivalent requirements are

s/(s ∩ h) = g/h (10.1b)

or
s + h = g (10.1c)

or
S/(S ∩H) is open in G/H. (10.1d)

Because of this open embedding, differential operators on S/(S ∩H) are more
or less the same thing as differential operators on G/H . The condition of
S-invariance is weaker than the condition of G-invariance, so we get natural
inclusions

D(G/H) →֒ D(S/(S ∩H)), Dτ (G/H) →֒ Dτ (S/(S ∩H)). (10.1e)

(notation as in (8.1)). In terms of the algebraic description of these operators
given in Proposition 1, notice first that the condition in (10.1b) shows that
the inclusion s →֒ g defines an isomorphism

U(s)⊗s∩h End(Vτ ) ≃ U(g)⊗h End(Vτ ) (10.1f)

Therefore

[U(g)⊗h End(Vτ )](Ad ⊗ Ad)(H) →֒ [U(g)⊗h End(Vτ )](Ad ⊗ Ad)(S∩H)

≃ [U(s)⊗s∩h End(Vτ )](Ad ⊗ Ad)(S∩H).
(10.1g)

That is,
Iτ (G/H) →֒ Iτ (S/(S ∩H)). (10.1h)

This algebra inclusion corresponds to the differential operator inclusion (10.1e)
under the identification of Proposition 1.

Here is a useful fact.
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Proposition 7 Let G be a connected reductive Lie group, and let H and
S be closed connected reductive subgroups. Assume the equivalent conditions
(10.1a)-(10.1d). Then

1. G = SH, and
2. there is a Cartan involution for G preserving both S and H.

Proof Part (1) is due to Onishchik [16, Theorem 3.1]. For (2), since H is
reductive in G, there is a Cartan involution θH for G preserving H , and likewise
there is one θS preserving S. By the uniqueness of Cartan involutions for G, θS

is the conjugate of θH by some element g ∈ G, which by (1) can be decomposed
as g = sh. The h-conjugate of θH , which is also the s−1-conjugate of θS , has
the required property.

It follows from (1) that if (Gc, Sc, Hc) is a triple of a compact Lie group
and two closed subgroups such that Gc = ScHc, and if (G, S, H) is a triple
of real forms (that is, G/S is a real form of Gc/Sc and G/H a real form of
Gc/Hc), then S acts transitively on G/H . Conversely, by (2) every transitive
action on a reductive homogeneous space G/H by a reductive subgroup S ⊂ G
is obtained in this way.

In the following sections we shall apply this principle to the real hyperboloid
(11.1a), which is a real form of Sp+q−1 = O(p + q)/O(p + q − 1).

The hypothesis that both S and H be reductive is certainly necessary.
Suppose for example that S is a noncompact real form of the complex reductive
group G, and that H is a parabolic subgroup of G (so that S and G are
reductive, but H is not). Then S has finitely many orbits on G/H ([26]),
and in particular has open orbits (so that the conditions (10.1a)–(10.1d) are
satisfied); but the number of orbits is almost always greater than one (so
G 6= SH).

11 Classical hyperboloids

In this section we recall the classical representation-theoretic decomposition
of functions on real hyperboloids: that is, on other real forms of spheres. The
spaces are

Hp,q = {v ∈ Rp,q | 〈v, v〉p,q = 1} = O(p, q)/O(p − 1, q). (11.1a)

Here 〈, 〉p,q is the standard quadratic form of signature (p, q) on Rp+q. The in-
clusion of the right side of the equality in the middle is just given by the action
of the orthogonal group on the basis vector e1; surjectivity is Witt’s theorem.
This realization of the hyperboloid is a symmetric space, so the Plancherel
decomposition is completely known. In particular, the discrete series may be
described as follows. To avoid degenerate cases, we assume that

p ≥ 2. (11.1b)
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There is a “compact Cartan subspace” with Lie algebra

ac = 〈e12 − e21〉. (11.1c)

The first requirement is that

ac ⊂ k = o(p)× o(q). (11.1d)

That this is satisfied is a consequence of (11.1b). The second requirement is
that ac belongs to the −1 eigenspace of the involutive automorphism

σ = Ad (diag(−1, 1, 1, . . . , 1)) (11.1e)

with fixed points the isotropy subgroup O(p−1, q). (More precisely, the group
of fixed points of σ is O(1)×O(p−1, q); so our hyperboloid is a 2-to-1 cover of
the algebraic symmetric space O(p, q)/[O(1)×O(p− 1, q)]. But the references
also treat analysis on this cover.)

For completeness, we mention that whenever

q ≥ 1. (11.1f)

there is another conjugacy class of Cartan subspace, represented by

as = 〈e1,p+1 + ep+1,1〉. (11.1g)

This one is split, and corresponds to the continuous part of the Plancherel
formula.

The discrete series for the symmetric space Hp,q is constructed as follows.
Using the compact Cartan subspace ac, construct a θ-stable parabolic

qO(p,q) = lO(p,q) + uO(p,q) ⊂ o(p + q, C); (11.1h)

the corresponding Levi subgroup is

LO(p,q) = [O(p, q)]ac = SO(2)×O(p − 2, q) (11.1i)

We will need notation for the characters of SO(2):

ŜO(2) = {χℓ | ℓ ∈ Z}. (11.1j)

The discrete series consists of certain irreducible representations

AqO(p,q) (λ), λ : LO(p,q) → C×. (11.1k)

The allowed λ are (first) those trivial on

LO(p,q) ∩O(p− 1, q) = O(p− 2, q). (11.1l)

These are precisely the characters of SO(2), and so are indexed by integers
ℓ ∈ Z. Second, there is a positivity requirement

ℓ + (p + q − 2)/2 > 0. (11.1m)
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We write
λ(ℓ) =def χℓ ⊗ 1: LO(p,q) → C×,

π
O(p,q)
ℓ = AqO(p,q) (λℓ) (ℓ > (2− p− q)/2).

(11.1n)

The infinitesimal character of this representation is

infl char(π
O(p,q)
ℓ ) = (ℓ+(p+q−2)/2, (p+q−4)/2, (p+q−6)/2, · · · ). (11.1o)

The discrete part of the Plancherel decomposition is

L2(Hp,q)disc =
∑

ℓ>−(p+q−2)/2

π
O(p,q)
ℓ . (11.1p)

This decomposition appears in [20, page 360], and [18, page 449, Theorem 10,
and page 471]. What Strichartz calls N and n are for us p and q; his d is our
ℓ. What Rossmann calls q and p are for us p and q; his ν − ρ is our ℓ; and his
ρ is (p + q− 2)/2. The identification of the representations as cohomologically
induced may be found in [23, Theorem 2.9].

Here is the orbit method perspective. Just as for O(n), we use a trace form
to identify g∗

0 with g0. We find

(g0/h0)
∗ ≃ Rp−1,q, (11.2a)

respecting the action of H = O(p− 1, q). The orbits of H of largest dimension
are given by the value of the quadratic form: positive for the orbits represented
by nonzero elements x(e12 − e21) of the compact Cartan subspace of (11.1c);
negative for nonzero elements of the split Cartan subspace y(e1,p+1 + ep+1,1);
and zero for the nilpotent element (e12 − e21 + e1,p+1 + ep+1,1).

Define
ℓorbit = ℓ + (n− 2)/2,

λ(ℓorbit) = ℓorbit · ((e12 − e21)/2).
(11.2b)

Then the coadjoint orbits for discrete series have representatives in the com-
pact Cartan subspace

π
O(p,q)
ℓ = π(orbit λ(ℓorbit)). (11.2c)

Now this representation is an irreducible unitary cohomologically induced rep-
resentation whenever

ℓorbit > 0 ⇐⇒ ℓ > −(n− 2)/2. (11.2d)

One of the advantages of the orbit method picture is that the condition
ℓorbit > 0 is simpler than the one ℓ > (−(n− 2)/2) arising from more straight-
forward representation theory as in (11.1n). Of course we always need also the
integrality condition

ℓorbit ≡ (n− 2)/2 (mod Z) ⇐⇒ ℓ ≡ 0 (mod Z). (11.2e)
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For completeness we mention also the continuous part of the Plancherel
decomposition. The split Cartan subspace as (defined above as long as p and
q are each at least 1) gives rise to a real parabolic subgroup

PO(p,q) = MO(p,q)AsN
O(p,q), MO(p,q) = {±1} ×O(p− 1, q − 1). (11.3a)

Here As = exp(as) ≃ R, and {±1} is

O(1)∆ ⊂ O(1)×O(1) ⊂ O(1, 1);

we have
{±1} ×As = SO(1, 1) ≃ R×,

an algebraic split torus. Therefore

PO(p,q) = SO(1, 1)×O(p− 1, q − 1)×NO(p,q). (11.3b)

The characters of SO(1, 1) are

̂SO(1, 1) = {χǫ,ν | ǫ ∈ Z/2Z, ν ∈ C}, χǫ,ν(r) = |r|ν · sgn(r)ǫ. (11.3c)

We define

πO(p,q)
ǫ,ν = Ind

O(p,q)

P O(p,q)

(
χǫ,ν ⊗ 1O(p−1,q−1) ⊗ 1NO(p,q)

)
. (11.3d)

Here (in contrast to the definition of discrete series π
O(p,q)
ℓ ) we use normalized

induction, with a ρ shift. As a consequence, the infinitesimal character of this
representation is

infl char(πO(p,q)
ǫ,ν ) = (ν, (p + q − 4)/2, (p + q − 6)/2, · · · ); (11.3e)

The continuous part of the Plancherel decomposition is

L2(Hp,q)cont =
∑

ǫ∈Z/2Z

∫

ν∈iR≥0

πO(p,q)
ǫ,ν . (11.3f)

Just as for the discrete part of the decomposition, all (not just almost all) of

the representations π
O(p,q)
ǫ,ν are irreducible (always for ν ∈ iR).

There is an orbit-theoretic formulation of these parameters as well, corre-
sponding to elements −iν · (e1,p+1 + ep+1,1)/2 of the split Cartan subspace.
We omit the details.

We will need to understand the restriction of π
O(p,q)
ℓ to the maximal com-

pact subgroup
K = O(p) ×O(q) ⊂ O(p, q). (11.4a)

This computation requires knowing

LO(p,q) ∩K = SO(2)×O(p− 2)×O(q), u ∩ s = χ1 ⊗ 1⊗ Cq; (11.4b)

here g = k⊕ s is the complexified Cartan decomposition. Consequently

Sm(u ∩ s) = χm ⊗ 1⊗ Sm(Cq) =
∑

0≤k≤m/2

χm ⊗ 1⊗ π
O(q)
m−2k. (11.4c)
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Now an analysis of the Blattner formula for restricting cohomologically induced
representations to K gives

π
O(p,q)
ℓ |O(p)×O(q) =

∞∑

m=0

∑

0≤k≤m/2

π
O(p)
m+ℓ+q ⊗ π

O(q)
m−2k. (11.4d)

If p is much larger than q, then some of the parameters for representations of
O(p) are negative. Those representations should be understood to be zero.

A description of the restriction to O(p) × O(q) is in [18, Lemma 11]. In
Rossmann’s coordinates, what is written is

{πO(p)
m ⊗ πO(q)

n | −(m + (p− 2)/2) + (n + (q − 2)/2) ≥ ν,

m + n ≡ ν − ρ− p (mod 2)}.

Converting to our coordinates as explained after (11.1p) gives

{πO(p)
m ⊗ πO(q)

n | (m + (p− 2)/2)− (n + (q − 2)/2) ≥ ν,

m− n ≡ ν − ρ + q (mod 2)},
(11.4e)

or equivalently

{πO(p)
m ⊗ πO(q)

n | m− n ≥ ℓ + q − 1, m− n ≡ ℓ + q (mod 2)}. (11.4f)

The congruence condition makes the inequality into

m− n ≥ ℓ + q,

which matches the description in (11.4d)
Finally, we record the easier formulas

πO(p,q)
ǫ,ν |O(p)×O(q) =

∑

m,m′≥0
m−m′≡ǫ (mod 2)

πO(p)
m ⊗ π

O(q)
m′ . (11.4g)

12 Hermitian hyperboloids

In this section we see what the ideas from Sections 8 and 11 say about the
discrete series of the non-symmetric spherical spaces

H2p,2q = {v ∈ Cp,q | 〈v, v〉p,q = 1} = U(p, q)/U(p− 1, q). (12.1a)

Here 〈, 〉p,q is the standard Hermitian form of signature (p, q) on Cp+q. The
inclusion of the right side in the middle is just given by the action of the unitary
group on the basis vector e1; surjectivity is Witt’s theorem for Hermitian
forms. These discrete series were completely described by Kobayashi in [10,
Theorem 6.1].

To simplify many formulas, we write in this section

n = p + q. (12.1b)
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Our approach (like Kobayashi’s) is to restrict the discrete series represen-

tations π
O(2p,2q)
ℓ of (11.1p) to U(p, q).

We should mention at this point that the homogeneous space U(n)/U(n−1)
has another noncompact real form GL(n, R)/GL(n − 1, R), arising from the
inclusion

GL(n, R) →֒ O(n, n) (12.1c)

as a real Levi subgroup. For this real form (as Kobayashi observes) the dis-

crete series representations π
O(n,n)
ℓ decompose continuously on restriction to

GL(n, R), and consequently this homogeneous space has no discrete series.
(More precisely, the character x − y of the center of U(1) of U(p, q) (an inte-
ger) appearing in the analysis below must be replaced by a character of the
center R× of GL(n, R) (a real number and a sign).)

We begin by computing the restriction to U(p)×U(q). What is good about
this is that the representations of O(2p) and O(2q) appearing in (11.4d) are
representations appearing in the action of O on spheres. We already computed
(in Theorem 3) how those branch to unitary groups. The conclusion is

πO(2p,2q)
ℓ

|U(p)×U(q) =
∑

0≤b,c
b+c≥ℓ+2q

∑

0≤b′,c′

b′+c′≤b+c−ℓ−2q

b′+c′≡b+c−ℓ (mod 2)

π
U(p)
b,c ⊗ π

U(q)
b′,c′ . (12.1d)

This calculation, together with Corollary 2, proves most of

Proposition 8 Suppose p and q are nonnegative integers, each at least two;
and suppose ℓ > −(n − 1). Then the restriction of the discrete series repre-

sentation π
O(2p,2q)
ℓ to U(p, q) is the direct sum of the one-parameter family of

representations
πU(p,q)

x,y , x, y ∈ Z, x + y = ℓ.

The infinitesimal character of π
U(p,q)
x,y corresponds to the weight

(x + (n− 1)/2, (n− 3)/2, . . . ,−(n− 3)/2,−y − (n− 1)/2).

Restriction to the maximal compact subgroup is

πU(p,q)
x,y |U(p)×U(q) =

∑

r,s≥0

min(r,s)∑

k=0

π
U(p)
x+q+r,y+q+s ⊗ π

U(q)
s−k,r−k.

If one of the two subscripts in a U(p) representation is negative, that term is
to be interpreted as zero.

Each of the representations π
U(p,q)
x,y is irreducible.

The “one parameter” referred to in the proposition is x − y; the pair (x, y)
can be thought of as a single parameter because of the constraint x + y = ℓ.
What we have done is sorted the representations of U(p)×U(q) appearing in
(12.1d) according to the character of the center U(1) of U(p, q); this character
is (b− c)+ (b′− c′), and we call it x− y in the rearrangement in Proposition 8.
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The corresponding representation of U(p, q) (the part of π
O(2p,2q)
ℓ where U(1)

acts by x−y) is what we call π
U(p,q)
x,y . In order to prove most of the proposition,

we just need to check that the same representations of U(p)×U(q) appear in
(12.1d) and in Proposition 8, and this is easy. We will prove the irreducibility
assertion (using [10]) after (12.2o) below.

Having identified the restriction to U(p)×U(q), we record for completeness
Kobayashi’s identification of the actual representations of U(p, q). These come
in three families, according to the values of the integers x and y. The families
are cohomologically induced from three θ-stable parabolic subalgebras:

q
U(p,q)
+ = l

U(p,q)
+ + u

U(p,q)
+ ⊂ u(n, C); (12.2a)

with Levi subgroup

L
U(p,q)
+ = U(1)p × U(1)q × U(p− 1, q − 1); (12.2b)

q
U(p,q)
0 = l

U(p,q)
0 + u

U(p,q)
0 ⊂ u(n, C); (12.2c)

with Levi subgroup

L
U(p,q)
0 = U(1)p × U(p− 2, q)× U(1)p; (12.2d)

and
q

U(p,q)
− = l

U(p,q)
− + u

U(p,q)
− ⊂ u(n, C); (12.2e)

with Levi subgroup

L
U(p,q)
− = U(p− 1, q − 1)× U(1)q × U(1)p. (12.2f)

(We write U(1)p for a coordinate U(1) ⊂ U(p), and U(1)q ⊂ U(q) similarly.
More complete descriptions of these parabolics are in [10].) Suppose first that

x > ℓ + (n− 1)/2, y < −(n− 1)/2. (12.2g)

(Since x + y = ℓ, these two inequalities are equivalent.) Write ξx for the char-
acter of U(1) corresponding to x ∈ Z. Consider the one-dimensional character

λ+
x,y = ξx ⊗ ξ−(y+n−2) ⊗ det1 (12.2h)

of L
U(p,q)
+ . What Kobayashi proves in [10, Theorem 6.1] is

πU(p,q)
x,y = A

q
U(p,q)
+

(λ+
x,y) (x > ℓ + (n− 1)/2). (12.2i)

Suppose next that

ℓ + (n− 1)/2 ≥ x ≥ −(n− 1)/2, −(n− 1)/2 ≤ y ≤ ℓ + (n− 1)/2. (12.2j)

(Since x + y = ℓ, these two pairs of inequalities are equivalent.) Consider the
one-dimensional character

λ0
x,y = ξx ⊗ 1⊗ ξ−y (12.2k)
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of L
U(p,q)
0 . Kobayashi’s result in [10, Theorem 6.1] is now

πU(p,q)
x,y = A

q
U(p,q)
0

(λ0
x,y) (−(n− 1)/2 ≤ x ≤ ℓ + (n− 1)/2). (12.2l)

The remaining case is

x < −(n− 1)/2, y > ℓ + (n− 1)/2. (12.2m)

(Since x + y = ℓ, these two inequalities are equivalent.) Write

λ−
x,y = det−1 ⊗ ξx+n−2 ⊗ ξ−y (12.2n)

of L
U(p,q)
− . In this case Kobayashi proves

πU(p,q)
x,y = A

q
U(p,q)
−

(λ−
x,y) (x < −(n− 1)/2). (12.2o)

Here is the orbit method perspective. Just as for U(n), we use a trace form
to identify g∗

0 with g0. The linear functionals vanishing on h∗
0 are

λ(t, u, v) =




it u v

−u

v 0(n−1)×(n−1)



 ≃ R + Cp−1,q (12.3a)

with t ∈ R, u ∈ Cp−1, v ∈ Cq.
The orbits of H = U(p − 1, q) of largest dimension are given by the real

number t, and the value of the Hermitian form on the vector (u, v): positive for
the orbits represented by nonzero elements r(e12 − e21) (nonzero eigenvalues
i(t ± a)/2, with a = (t2 + 4r2)1/2); negative for nonzero elements s(e1,p+1 +
ep+1,1) (nonzero eigenvalues i(t ± a)/2, with a = (t2 − 4s2)1/2); and zero for
the nilpotent element (e12 − e21 + e1,p+1 + ep+1,1) (two nonzero eigenvalues
it/2).

Define

ℓorbit = ℓ +(n− 1), xorbit = x+ (n− 1)/2, yorbit = y +(n− 1)/2. (12.3b)

The coadjoint orbits for discrete series have representatives

λ(xorbit, yorbit) =






ixorbite1 − iyorbitep+1 xorbit > 0 > yorbit

ixorbite1 + (e2,p − ep,2)

+(e2,p+1 + ep+1,2) xorbit > 0 = yorbit

ixorbite1 − iyorbitep xorbit > yorbit > 0

iyorbitep + (e1,2 − e2,1)

+e1,p+1 + ep+1,1) xorbit = 0 > yorbit

ixorbitep − iyorbitep+q 0 > xorbit > yorbit.

(12.3c)

Then
πU(p,q)

x,y = π(orbit λ(xorbit, yorbit)). (12.3d)
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(We have not discussed attaching representations to partly nilpotent coadjoint
orbits like λ(xorbit, 0) (with xorbit > 0); suffice it to say that the definitions
given above using q0 are reasonable ones. It would be equally reasonable to use
instead q+. We will see in (12.4a) that this leads to the same representation.)

In the orbit method picture the condition (12.2g) simplifies to

xorbit > yorbit > 0. (12.3e)

Similarly, (12.2m) becomes

xorbit < yorbit < 0. (12.3f)

Finally, (12.2j) is
xorbit ≥ 0 ≥ yorbit; (12.3g)

equality in either of these inequalities is the case of partially nilpotent coadjoint
orbits. In all cases we need also the genericity condition

ℓorbit > 0 ⇐⇒ ℓ > −(n− 1), (12.3h)

and the integrality conditions

xorbit ≡ (n− 1)/2 (mod Z), yorbit ≡ (n− 1)/2 (mod Z). (12.3i)

Here now is a sketch of a proof of the irreducibility assertion from Propo-
sition 8. Each of the cohomologically induced representations above is in the
weakly fair range. The general results for the weakly fair range of [22] together
with [21, Section 16] apply to show that they are irreducible or zero. The key
point is that the moment map for the cotangent bundle to a relevant partial
flag variety is birational onto its image. This is automatic in type A, which is
why the arguments in [21] for GL(n, R) also apply to U(p, q).

We close with a comment about how the three series of derived functor
modules fit together. If we relax the strict inequalities on x (and y) in (12.2g),
then we are at one edge of the weak inequalities in (12.2j). For these values of
x and y (which occur only when n is odd), namely

(x, y) = (ℓ + (n− 1)/2,−(n− 1)/2) ,

or equivalently
(xorbit, yorbit) = (ℓorbit, 0) ,

we claim
A

q
U(p,q)
+

(λ+
x,y) ≃ A

q
U(p,q)
0

(λ0
x,y). (12.4a)

To see this, one can begin by checking they have the same associated variety:

the U(p, C)× U(q, C) saturations of u
U(p,q)
+ ∩ s and u

U(p,q)
0 ∩ s coincide. (The

dense orbit of U(p, C)×U(q, C) is one of the two possibilities with one Jordan
block of size 3 and the others of size 1.) A little further checking shows that they
also have the same annihilator: for ℓ ≤ (n− 2)/2, given the associated variety
calculation, there is a unique possibility for the annihilator; a slightly more
refined analysis handles larger ℓ. Given that their annihilators and associated
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varieties are the same, the main result of [2] implies (12.4a). Similarly, for the
other edge of the inequalities in (12.2j), namely

(x, y) = (−(n− 1)/2, ℓ + (n− 1)/2) ,

we have

A
q

U(p,q)
0

(λ0
x,y) ≃ A

q
U(p,q)
−

(λ−
x,y) (12.4b)

by a similar argument.

13 Quaternionic hyperboloids

In this section we use the ideas from Section 8 to investigate the discrete series
of the non-symmetric spherical spaces

H4p,4q = {v ∈ Hp,q | 〈v, v〉p,q = 1}

= [Sp(p, q)× Sp(1)]/[Sp(p− 1, q)× Sp(1)∆].
(13.1a)

Here 〈, 〉p,q is the standard Hermitian form of signature (p, q) on Hp+q. We are
using the action of a real form of the enlarged group from (4.1a), namely

Sp(p, q)× Sp(1) = Sp(p, q)linear × Sp(1)scalar; (13.1b)

The inclusion of the last side of the equality (for H4p,4q) in the middle is just
given by the action of this enlarged quaternionic unitary group on the basis
vector e1; surjectivity is Witt’s theorem for quaternionic Hermitian forms. To
avoid talking about degenerate cases, we will assume

p, q ≥ 2. (13.1c)

Just as in Section 12, we will simplify many formulas by writing

n = p + q. (13.1d)

The homogeneous space Sp(n)/Sp(n−1) has another noncompact real form
[Sp(2n, R)×Sp(2, R)]/[Sp(2(n−1), R)×Sp(2, R)∆], arising from an inclusion

Sp(2n, R)× Sp(2, R) →֒ O(2n, 2n). (13.1e)

This real form certainly has discrete series: we expect that the discrete sum-

mands of the restriction of π
O(2n,2n)
ℓ are indexed by discrete series represen-

tations of Sp(2, R), just as we find below (for Sp(p, q)) that they are indexed
by irreducible representations of the compact group Sp(1). But we have not
carried out this analysis.

Our goal is to restrict the discrete series representations π
O(4p,4q)
ℓ of (11.1p)

to Sp(p, q), and so to understand some representations in the discrete series
of (Sp(p, q)× Sp(1))/(Sp(p− 1, q)× Sp(1)).
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We have calculated in Theorem 4 how the O(4p) and O(4q) representations
appearing in (11.4d) restrict to Sp. The result is

π
O(4p,4q)
ℓ |[Sp(p)×Sp(1)]×[Sp(q)×Sp(1)] =

∞∑

m=0
0≤k≤m/2

∑

0≤e≤d

0≤e′≤d′

d+e=m+ℓ+4q

d′+e′=m−2k

π
Sp(p)×Sp(1)
d,e ⊗π

Sp(q)×Sp(1)
d′,e′ .

(13.2a)

The group to which we are restricting here is actually a little larger than the
maximal compact subgroup of Sp(p, q)× Sp(1), which is

Sp(p)× Sp(q)× Sp(1)∆; (13.2b)

the subscript ∆ indicates that this Sp(1) factor (corresponding to scalar mul-
tiplication on Hp,q)) is diagonal in the Sp(1)×Sp(1) of (13.2a) (corresponding
to separate scalar multiplications on Hp and Hq). The branching (G×G)|G∆

is tensor product decomposition, which is very simple for Sp(1). We find

π
O(4p,4q)
ℓ |[Sp(p)×Sp(q)×Sp(1)] =

∞∑

m=0
0≤k≤m/2

∑

0≤e≤d

0≤e′≤d′

d+e=m+ℓ+4q
d′+e′=m−2k

min(d−e,d′−e′)∑

j=0

π
Sp(p)
d,e ⊗ π

Sp(q)
d′,e′ ⊗ π

Sp(1)
d+d′−e−e′−2j

. (13.2c)

It will be useful to rewrite this formula. The indices m and k serve only to
bound some of the other indices, so we can eliminate them by rewriting the
bounds. We find

π
O(4p,4q)
ℓ |[Sp(p)×Sp(q)×Sp(1)] =

∑

0≤e≤d 0≤e′≤d′

d′+e′≤d+e−ℓ−4q

d′+e′≡d+e−ℓ (mod 2)

∑

|(d−e)−(d′−e′)|≤f

≤(d−e)+(d′−e′)

f≡(d−e)+(d′−e′) (mod 2)

π
Sp(p)
d,e ⊗ π

Sp(q)
d′,e′ ⊗ π

Sp(1)
f .

(13.2d)

For each of these representations of K, define integers x and y by solving
the equations

x + y = ℓ, x− y = f. (13.2e)

The congruence condition on f guarantees that x and y are indeed integers.
Conversely, given any integers x and y satisfying

x + y = ℓ, x ≥ y (13.2f)

we can define

πSp(p,q)×Sp(1)
x,y = subrepresentation of π

O(4p,4q)
ℓ |Sp(p,q)×Sp(1)

where Sp(1) acts with infl. char. x− y + 1.
(13.2g)

Equivalently, we are asking that Sp(1) act by a multiple of π
Sp(1)
x−y .

This calculation, together with Corollary 3, proves most of
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Proposition 9 Suppose p and q are nonnegative integers, each at least two;
and suppose ℓ > −2n + 1. Then the restriction of the discrete series repre-

sentation π
O(4p,4q)
ℓ to Sp(p, q)× Sp(1) is the direct sum of the one-parameter

family of representations

πSp(p,q)×Sp(1)
x,y , x ≥ y ∈ Z, x + y = ℓ.

The infinitesimal character of π
Sp(p,q)×Sp(1)
x,y corresponds to the weight

(x + n, y + n− 1, n− 2, . . . , 1)(x− y + 1).

Restriction to the maximal compact subgroup is

π
Sp(p,q)×Sp(1)
x,y |Sp(p)×Sp(q)×Sp(1) =

∑

0≤e≤d 0≤e′≤d′

d′+e′≤d+e−(x+y)−4q

d′+e′≡d+e−(x+y) (mod 2)

∑

|(d−e)−(d′−e′)|≤x−y

x−y≤(d−e)+(d′−e′)

(d−e)+(d′−e′)≡x−y (mod 2)

π
Sp(p)
d,e ⊗ π

Sp(q)
d′,e′ ⊗ π

Sp(1)
x−y .

Each of the representations π
Sp(p,q)
x,y is irreducible.

We will prove the irreducibility assertions (using [10]) after (13.3j) below.
Having identified the restriction to Sp(p)×Sp(q)×Sp(1), we want to record

Kobayashi’s identification of the actual representations of Sp(p, q) × Sp(1).
These come in two families, according to the values of the integers x and y. The
families are cohomologically induced from two θ-stable parabolic subalgebras.
The first is

q
Sp(p,q)×Sp(1)
+ = l

Sp(p,q)×Sp(1)
+ + u

Sp(p,q)×Sp(1)
+ ⊂ sp(n, C)× sp(1, C), (13.3a)

with Levi subgroup

L
Sp(p,q)×Sp(1)
+ = [U(1)p × U(1)q × Sp(p− 1, q − 1)]× U(1). (13.3b)

(The first three factors are in Sp(p, q). We write U(1)p for a coordinate U(1) ⊂
U(p), and U(1)q ⊂ U(q) similarly.) The second parabolic is

q
Sp(p,q)×Sp(1)
0 = l

Sp(p,q)×Sp(1)
0 + u

Sp(p,q)×Sp(1)
0 ⊂ sp(n, C)× sp(1, C), (13.3c)

with Levi subgroup

L
Sp(p,q)×Sp(1)
0 = [U(1)p × U(1)p × Sp(p− 2, q)]× U(1). (13.3d)

More complete descriptions of these parabolics are in [10].) Suppose first that

x > ℓ + (n− 1), y < −(n− 1). (13.3e)

(Since x + y = ℓ, these two inequalities are equivalent.) Write ξx for the char-
acter of U(1) corresponding to x ∈ Z. Consider the one-dimensional character

λ+
x,y =

[
ξx ⊗ ξ−(y+2n−2) ⊗ 1

]
⊗ ξx−y (13.3f)
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of L
Sp(p,q)×Sp(1)
+ . What Kobayashi proves in [10, Theorem 6.1] is

πSp(p,q)×Sp(1)
x,y = A

q
Sp(p,q)×Sp(1)
+

(λ+
x,y) x > ℓ + (n− 1). (13.3g)

Suppose next that

ℓ + (n− 1) ≥ x > ℓ/2, −(n− 1) ≤ y < ℓ/2. (13.3h)

(Since x + y = ℓ, these two pairs of inequalities are equivalent.) Consider the
one-dimensional character

λ0
x,y = [ξx ⊗ ξy ⊗ 1]⊗ ξx−y (13.3i)

of L
Sp(p,q)×Sp(1)
0 . Kobayashi’s result in [10, Theorem 6.1] is now

πSp(p,q)×Sp(1)
x,y = A

q
Sp(p,q)×Sp(1)
0

(λ0
x,y) ℓ/2 < x ≤ ℓ + (n− 1)). (13.3j)

Here is the orbit method perspective. Use a trace form to identify g∗
0 with

g0. Linear functionals vanishing on h∗
0 are quaternionic matrices

λ(z, u, v) =








z u v

−u

v 0(n−1)×(n−1)



 ,−z



 ≃ sp(1) + Hp−1,q (13.4a)

with z ∈ sp(1) (the purely imaginary quaternions), u ∈ Hp−1, v ∈ Hq.
The orbits of H = Sp(p−1, q)×Sp(1)∆ of largest dimension are given by |z|,

and the value of the Hermitian form on the vector (u, v): positive for the orbits
represented by nonzero elements r(e12−e21) (nonzero eigenvalues i(|z|±a)/2,
with a = (|z|2 + 4r2)1/2); negative for nonzero elements s(e1,p+1 + ep+1,1)
(nonzero eigenvalues i(|z| ± a)/2, with a = (|z|2 − 4s2)1/2); and zero for the
nilpotent element (e12 − e21 + e1,p+1 + ep+1,1) (nonzero eigenvalues i|z|/2).

Define

ℓorbit = ℓ + (2n− 1), xorbit = x + n, yorbit = y + n− 1. (13.4b)

The coadjoint orbits for discrete series have representatives

λ(xorbit, yorbit) =






[ixorbite1 − iyorbitep+1, i(xorbit − yorbit)]

xorbit > 0 > yorbit

[ixorbite1 + (e2,p − ep,2 + e2,p+1 + ep+1,2), ixorbit]

xorbit > 0 = yorbit

[ixorbite1 + iyorbite2, i(xorbit − yorbit)]

xorbit > yorbit > 0

(13.4c)
Then

πSp(p,q)
x,y = π(orbit λ(xorbit, yorbit)). (13.4d)
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(The partly nilpotent coadjoint orbits λ(xorbit, 0) (with xorbit > 0) can be
treated as for U(p, q).)

In the orbit method picture the condition (13.3e) simplifies to

xorbit > 0 > yorbit. (13.4e)

Similarly, (13.3h) becomes

xorbit > yorbit ≥ 0; (13.4f)

equality in the inequality is the case of partially nilpotent coadjoint orbits. In
all cases we need also the genericity condition

ℓorbit > 0 ⇐⇒ ℓ > −(2n− 1), xorbit − yorbit > 0 ⇐⇒ x− y + 1 > 0
(13.4g)

and the integrality conditions

xorbit ≡ n (mod Z), yorbit ≡ n− 1 (mod Z). (13.4h)

Here is a sketch of proof of the irreducibility assertion from Proposition
9. Each of the cohomologically induced representations above is in the weakly
fair range, so the general theory of [22] applies. One conclusion of this theory
is that the cohomologically induced representations are irreducible modules
for a certain twisted differential operator algebra Dx,y; but in contrast to the
U(p, q) case, the natural map

U(sp(p + q, C)× sp(1, C))→ Dx,y

need not be surjective: some of the cohomologically induced modules corre-
sponding to discrete series for [Sp(2n, R)/Sp(2n− 4, R) × Sp(2, R)∆ are re-
ducible.

Here is an irreducibility proof for the case (13.3j). We begin by defining

q
Sp(p,q)×Sp(1)
0,big = l

Sp(p,q)×Sp(1)
0,big + u

Sp(p,q)×Sp(1)
0,big ⊃ q

Sp(p,q)×Sp(1)
0 (13.5a)

with Levi subgroup

L
Sp(p,q)×Sp(1)
0,big = [U(2)p × Sp(p− 2, q)]× U(1). (13.5b)

Define
λ0,big

x,y =
[
πU(2)

x,y ⊗ 1
]
⊗ ξx−y. (13.5c)

Induction by stages proves that

πSp(p,q)×Sp(1)
x,y = A

q
Sp(p,q)×Sp(1)
0,big

(λ0,big
x,y ) ℓ/2 < x ≤ ℓ + (n− 1)). (13.5d)

In this realization, the irreducibility argument from the U(p, q) case goes
through. The moment map from the cotangent bundle of the (smaller) partial
flag variety is birational onto its (normal) image; so the map

U(sp(p + q, C)× sp(1, C))→ Dsmall
x,y
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is surjective, proving irreducibility. (The big parabolic subalgebra defines a
small partial flag variety, which is why we label the twisted differential operator
algebra “small.”)

This argument does not apply to the case (13.3g), since the corresponding
larger Levi subgroup has a factor U(1, 1), and the corresponding representation
there is a discrete series. In that case we have found only an unenlightening
computational argument for the irreducibility, which we omit.

Finally, the two series of derived functor modules fit together as follows. If
we consider the edge of the inequalities in (13.3e) and (13.3h), namely

(x, y) = (ℓ + (n− 1),−(n− 1)) ,

then we have
A

q
Sp(p,q)×Sp(1)
+

(λ+
x,y) = A

q
Sp(p,q)×Sp(1)
0

(λ0
x,y). (13.5e)

For this equality, as for the irreducibility of A
q

Sp(p,q)×Sp(1)
+

(λ+
x,y), we have found

only an unenlightening computational argument, which we omit.

14 Octonionic hyperboloids

We look for noncompact forms of the non-symmetric spherical space

S15 = Spin(9)/ Spin(7)′

studied in Section 5. The map from Spin(p, q) (with p + q = 9) to a form of
O(16) will be given by the spin representation, which is therefore required to
be real. The spin representation is real if and only if p + q and p− q are each
congruent to 0, 1, or 7 modulo 8. The candidates are

G = Spin(5, 4) or G = Spin(8, 1), (14.1a)

with maximal compact subgroups

K = Spin(5)×{±1} Spin(4) or Spin(8); (14.1b)

in the first case this means that the natural central subgroups {±1} in Spin(5)
and Spin(4) are identified with each other (and with the natural central {±1}
in Spin(5, 4)). In each case the sixteen-dimensional spin representation of G is
real and preserves a quadratic form of signature (8, 8). One way to see this is
to notice that the restriction of the spin representation to K is a sum of two
irreducible representations

spin(5)⊗ spin(4)± or spin(8)± (14.1c)

Here spin(2m)± denotes the two half-spin representations, each of dimension
2m−1, of Spin(2m). We are therefore looking at the hyperboloid

H8,8 = {v ∈ R8,8 | 〈v, v〉8,8 = 1}

= Spin(5, 4)/ Spin(3, 4)′ or

= Spin(8, 1)/ Spin(7)′.

(14.1d)
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The discrete series for the second case was described by Kobayashi in con-
nection with branching from SO(8, 8) to Spin(8, 1) in [12, Section 5.2]. Here
we carry out an approach using the development above. The harmonic analysis
problem is

L2(H8,8) ≃ L2(Spin(8, 1))Spin(7)′

; (14.2a)

the Spin(7)′ action is on the right. This problem is resolved by Harish-Chandra’s
Plancherel formula for Spin(8, 1): the discrete series are exactly those of Harish-
Chandra’s discrete series that contain a Spin(7)′-fixed vector, and the multi-
plicity is the dimension of that fixed space. Because of Helgason’s branching
law from Spin(7)′ to Spin(8) (5.2g), the number in question is the sum of the
multiplicities of the Spin(8) representations of highest weights

µy = (y/2, y/2, y/2, y/2) (y ∈ N). (14.2b)

Corollary 5 constrains the possible infinitesimal characters, and therefore
the Harish-Chandra parameters, of representations appearing on this hyper-
boloid. Here are the discrete series having these infinitesimal characters. Sup-
pose x is an integer satisfying 2x + y + 7 > 0. Define

π
Spin(8,1)
x,y,± =






discrete series with parameter
((2x+y+7)/2,(y+5)/2,(y+3)/2,±(y+1)/2) x ≥ 0

0 0 > x > −4
discrete series with parameter

((y+5)/2,(y+3)/2,(y+1)/2,±(2x+y+7)/2) −4 ≥ x > −(y + 7)/2.

(14.2c)
We can now use Blattner’s formula to determine which of these discrete series
contain Spin(8) representations of highest weight µy. The representations with
a subscript − are immediately ruled out (since the last coordinate of the
highest weight of any K-type of such a discrete series must be negative).
Similarly, in the first case with + the lowest K-type has highest weight (2x +
1, 1, 1, 1)+µy, and all other highest weights of K-types arise by adding positive
integers to these coordinates; so µy cannot arise.

In the third case with + the lowest K-type has highest weight (0, 0, 0, x +
4) + µy; we get to µy by adding the nonnegative multiple −x − 4 of the
noncompact positive root e4. A more careful examination of Blattner’s formula
shows that in fact µy has multiplicity one. This proves

L2(H8,8)disc =
∑

y≥1, −4≥x>−(y+7)/2

π
Spin(8,1)
x,y,+ . (14.2d)

Furthermore (by Corollary 5)

π
O(8,8)
ℓ |Spin(9,1) =

∑

y≥1, −4≥x≥−(y+7)/2

2x+y=ℓ

π
Spin(8,1)
x,y,+ . (14.2e)

These discrete series are cohomologically induced from one-dimensional char-
acters of the spin double cover of the compact Levi subgroup

SO(2)× U(3) ⊂ SO(2)× SO(6) ⊂ SO(8) ⊂ SO(8, 1). (14.2f)
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Here is the orbit method perspective. We have

(g0/h0)
∗ ≃ Spin8 +R7

as a representation of H = Spin(7)′; the first summand is the 8-dimensional
spin representation. What distinguishes this from the compact case analyzed
in (5.3) is that the restriction of the natural G-invariant form has opposite
signs on the two summands; we take it to be negative on the first and positive
on the second. Because of (1.2b), the orbits we want are represented by H
orbits of maximal dimension on this space. A generic orbit on R7 is given by
the value of the quadratic form length a7 > 0, and the corresponding isotropy
group is Spin(6)′ ≃ SU(4). As a representation of SU(4),

Spin8 ≃ C4

regarded as a real vector space. Here again the nonzero orbits are indexed by
the value of the Hermitian form bspin < 0. The conclusion is that the regular
H orbits on (g0/h0)

∗ are

λ(a7, bspin) (a7 > 0, bspin < 0).

It turns out that the eigenvalues of such a matrix are ±i(a7/4)1/2 (repeated
three times), ±i(a7/4 + bspin)

1/2, and one more eigenvalue zero. Accordingly
the element is elliptic if and only if a7/4 + bspin ≥ 0. In this case we write

xorbit = (a7/4 + bspin)
1/2 − a

1/2
7 /2, yorbit = a

1/2
7 (a7/4 + bspin ≥ 0)

The elliptic elements we want are

λ(xorbit, yorbit) = (yorbit/2, yorbit/2, yorbit/2, yorbit/2 + x),

(yorbit/2 > −xorbit > 0);

we have represented the element (in fairly standard coordinates) by something
in the dual of a compact Cartan subalgebra [so(2)]4 to which it is conjugate.

If now we define

y = yorbit − 3, x = xorbit − 2,

then

π
Spin(8,1)
x,y,+ = π(orbit λ(xorbit, yorbit)) (0 > xorbit > −yorbit). (14.3a)

When yorbit = 1 or 2 or 3, or xorbit = −1, these representations are zero; that
is the source of the conditions

yorbit ≥ 4, −2 ≥ xorbit − yorbit/2

in (14.2d).
In the first case of (14.1), we are looking at

H8,8 ≃ Spin(5, 4))/Spin(4, 3)′; (14.4a)
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this is the R-split version of Section 5, and so arises from

Spin(4, 3)′ spin
−→ Spin(4, 4) ⊂ Spin(5, 4). (14.4b)

We have not determined the discrete series for this homogeneous space; of
course we expect two-parameter families of representations cohomologically
induced from one-dimensional characters of spin double covers of real forms
of SO(2)× U(3).

15 The split G2 calculation

Write G2,s for the 14-dimensional split Lie group of type G2. There is a 7-
dimensional real representation (τR,s, WR,s) of G2,s, whose weights are zero
and the six short roots. This preserves an inner product of signature (4, 3),
and so defines an inclusion

G2,s →֒ SO(4, 3). (15.1a)

The corresponding actions of G2,s on the hyperboloids

H4,3 = O(4, 3)/O(3, 3), H3,4 = O(3, 4)/O(2, 4) (15.1b)

are transitive. The isotropy groups are real forms of SU(3):

H4,3 ≃ G2,s/SL(3, R), H3,4 ≃ G2,s/SU(2, 1). (15.1c)

The discrete series for these cases are given by Kobayashi (up to two questions
of reducibility) in [10, Thm 6.4] ; see also [11, Theorem 3.5]. We now give a
self-contained treatment of the classification, and resolve the reducibility.

The (real forms of) O(7) representations appearing on these hyperboloids
are all related to the flag variety

O(7, C)/P = isotropic lines in C7,

P = MN, M = GL(1, C)×O(5, C).
(15.2a)

What makes everything simple is that G2(C) is transitive on this flag variety:

isotropic lines in C7 = G2(C)/Q,

Q = LU, L = GL(2, C).
(15.2b)

Precisely, the discrete series for H4,3 are cohomologically induced from the
θ-stable parabolic

p1 = m1 + n1, M1 = SO(2)×O(2, 3). (15.2c)

The discrete series representations are

π
O(4,3)
1,ℓ = Ap1(λ1(ℓ)), ℓ + 5/2 > 0. (15.2d)
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(cf. (12.1)). The inducing representation is the SO(2) character indexed by ℓ,
and trivial on O(2, 3). Similarly, the discrete series for H3,4 are cohomologically
induced from the θ-stable parabolic

p2 = m2 + n2, M2 = SO(2)×O(1, 4). (15.2e)

The discrete series are

π
O(3,4)
2,ℓ = Ap2(λ2(ℓ)), ℓ + 5/2 > 0. (15.2f)

The intersections of these parabolics with G2 are

q1 = l1 + u1, L1 = long root U(1, 1). (15.2g)

and

q2 = l2 + u2, L2 = long root U(2). (15.2h)

(The Levi subgroups are just locally of this form.) Because the G2 actions on
the O(4, 3) partial flag varieties are transitive, we get discrete series represen-
tations for H4,3

π
G2,s

1,ℓ = Aq1(λ1(ℓ)), ℓ + 5/2 > 0. (15.2i)

The character is ℓ times the action of L1 on the highest short root defining q1.
Similarly, for the action on H3,4

π
G2,s

2,ℓ = Aq2(λ2(ℓ)), ℓ + 5/2 > 0. (15.2j)

The atlas software [1] tells us that all of these discrete series representations

of G2 are irreducible, with the single exception of π
G2,s

1,−2 = Aq1(λ1(−2)). That
representation is a sum of two irreducible constituents. One constituent is the
unique non-generic limit of discrete series of infinitesimal character a short
root. In [24, Theorem 18.5], (describing some of Arthur’s unipotent represen-
tations) this is the representation described in (b). The other constituent is
described in part (c) of that same theorem. The irreducible representation

π
G2,s

2,−2 = Aq2(λ2(−2)) appears in part (a) of the theorem. All of these iden-

tifications (including the reducibility of π
G2,s

1,−2) follow from knowledge of the
K-types of these representations (given in (15.4) below) and the last assertion
of [24, Theorem 18.5].

Summarizing, in the notation of [24],

π
G2,s

1,−2 ≃ J−(H2; (2, 0))⊕ J(H2; (1, 1)), π
G2,s

2,−2 ≃ J(H1; (1, 1)). (15.2k)

That is, the first discrete series for these non-symmetric spherical spaces in-
clude three of the five unipotent representations for the split G2 attached to
the principal nilpotent in SL(3) ⊂ G2.

Here is the orbit method perspective. For the case of H4,3, the represen-
tation of H = SL(3, R) on [g0/h0]

∗ is R3 + (R3)∗. The generic orbits of H
are indexed by non-zero real numbers A, the value of a linear functional on
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a vector. We can arrange the normalizations so that the elliptic elements are
exactly those with A > 0; if we define

ℓorbit = A1/2, ℓ = ℓorbit − 5/2,

and write λ1(ℓorbit) for a representative of this orbit, then

π
G2,s

1,ℓ = π(orbit, λ1(ℓorbit)) (ℓorbit > 0).

For the case of H3,4, the representation of H = SU(2, 1) on [g0/h0]
∗ is C2,1;

generic orbits are parametrized by the nonzero values B of the Hermitian form
of signature (2, 1). The elliptic orbits are those with B > 0; if we define

ℓorbit = B1/2, ℓ = ℓorbit − 5/2

then
π

G2,s

2,ℓ = π(orbit, λ2(ℓorbit)) (ℓorbit > 0).

We conclude this section by calculating the restrictions to

K = SU(2)long ×{±1} SU(2)short ⊂ G2,s. (15.4a)

We define
γlong

d = (d + 1)-diml irr of SU(2)long

γshort
d = (d + 1)-diml irr of SU(2)short

(15.4b)

The maximal compact of O(4, 3) is O(4)×O(3). The embedding of G2,s sends
SU(2)long to one of the factors in

O(4) ⊃ SO(4) ≃ SU(2)×{±1} SU(2),

and sends SU(2)short diagonally into the product of the other SU(2) factor
and SO(3) ⊂ O(3) (by the two-fold cover SU(2) → SO(3)). According to
(11.4d),

π
O(4,3)
1,ℓ |O(4)×O(3) =

∑

d−ℓ−3≥e≥0
e≡d−ℓ−3 (mod 2)

π
O(4)
d ⊗ πO(3)

e

π
O(3,4)
2,ℓ |O(3)×O(4) =

∑

d′−ℓ−4≥e′≥0

e′≡d′−ℓ−4 (mod 2)

π
O(3)
d′ ⊗ π

O(3)
e′ .

(15.4c)

By an easy calculation, we deduce

π
G2,s

1,ℓ |K =
∑

d−ℓ−3≥e≥0
e≡d−ℓ−3 (mod 2)

γlong
d ⊗

[
γshort

d ⊗ γshort
2e

]
.

π
G2,s

2,ℓ |K =
∑

d′−ℓ−4≥e′≥0

e′≡d′−ℓ−4 (mod 2)

γlong
e′ ⊗

[
γshort

e′ ⊗ γshort
2d′

] (15.4d)
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The internal tensor products in the short SU(2) factors are of course easy to
compute:

π
G2,s

1,ℓ |K =
∑

d−ℓ−3≥e≥0
e≡d−ℓ−3 (mod 2)

min(d,2e)∑

k=0

γlong
e′ ⊗ γshort

d+2e−2k, (15.4e)

π
G2,s

2,ℓ |K =
∑

d′−ℓ−4≥e′≥0

e′≡d′−ℓ−4 (mod 2)

e′∑

k′=0

γlong
e′ ⊗ γshort

2d′+e′−2k′ (15.4f)

16 The noncompact big G2 calculation

In this section we look at noncompact forms of S7 ≃ Spin(7)′/G2,c from Sec-
tion 7. The noncompact forms of Spin(7) are Spin(p, q) with p+ q = 7, having
maximal compact subgroups Spin(p) ×{±1} Spin(q). None of these compact
subgroups can contain G2,c (unless pq = 0), so the isotropy subgroup we are
looking for is the split form G2,s. The seven-dimensional representation of G2,s

is real, and its invariant bilinear form is of signature (3, 4); so we are looking
at

G2,s →֒ Spin(3, 4), (16.1a)

the double cover of the inclusion (15.1a). This homogeneous space is discussed
briefly in [10, Corollary 5.6(e)], which is proven in part (ii) of the proof on
page 197. We will argue along similar lines, but get more complete conclusions
(parallel to Kobayashi’s results described in Sections 12–13).

The eight-dimensional spin representation of Spin(3, 4) is real and of sig-
nature (4, 4), so we get

Spin(3, 4)′ →֒ Spin(4, 4), Spin(3, 4)′ ∩ Spin(3, 4) = G2,s. (16.1b)

The Spin(3, 4)′ action on

H4,4 = Spin(4, 4)/ Spin(3, 4) (16.1c)

is transitive, so
H4,4 ≃ Spin(3, 4)′/G2,s. (16.1d)

In a similar fashion, we find an identification of six-dimensional complex man-
ifolds

Spin(4, 4)/[Spin(2)×{±1}] Spin(2, 4)] ≃ Spin(3, 4)′/Ũ(1, 2). (16.1e)

The manifold on the left corresponds to the θ-stable parabolic qO(4,4) de-

scribed in (11.1h); the discrete series π
O(4,4)
ℓ for H4,4 are obtained from it by

cohomological induction.
The manifold on the right corresponds to the θ-stable parabolic
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qSpin(3,4)′

= lSpin(3,4)′

+ uSpin(3,4)′

⊂ o(7, C); (16.1f)

the corresponding Levi subgroup is

LSpin(3,4)′

= Ũ(1, 2) (16.1g)

The covering here is the “square root of determinant” cover; the one-dimensional
characters are half integer powers of the determinant. We are interested in

λℓ = detℓ/2 ∈ [LSpin(3,4)′

]̂ (ℓ + 3 > 0).

π
Spin(3,4)′

ℓ = AqSpin(3,4)(λℓ) (ℓ > −3).
(16.1h)

The infinitesimal character of this representation is

infl char(π
Spin(4,3)′

ℓ ) = ((ℓ + 5)/2, (ℓ + 3)/2, (ℓ + 1)/2). (16.1i)

As a consequence of (16.1e),

π
O(4,4)
ℓ |Spin(3,4)′ ≃ π

Spin(3,4)′

ℓ . (16.1j)

The discrete part of the Plancherel decomposition is therefore

L2(H4,4)disc =
∑

ℓ>−3

π
Spin(3,4)′

ℓ . (16.1k)

The “weakly fair” range for π
Spin(3,4)′

ℓ is ℓ ≥ −3, so all the representations

π
Spin(3,4)′

ℓ are contained in the weakly fair range. In particular, [22] establishes
a priori the unitarity of what turn out to be the discrete series representations.
But the results in [22] prove only

π
Spin(3,4)′

ℓ is irreducible for ℓ ≥ 0. (16.1l)

The atlas software [1] proves the irreducibility of the first two discrete series
(those not covered by (16.1l)).

Here is the orbit method perspective. The representation of H = G2,s on
[g0/h0]

∗ is R3,4, the real representation whose highest weight is a short root. We
have already said that this representation carries an invariant quadratic form of
signature (3, 4). The generic orbits of H are indexed by non-zero real numbers
A, the values of the quadratic form. We can arrange the normalizations so
that the elliptic elements are exactly those with A > 0; if we define

ℓorbit = A1/2, ℓ = ℓorbit − 3,

and write λ(ℓorbit) for a representative of this orbit, then

π
Spin(3,4)
ℓ = π(orbit, λ(ℓorbit)) (ℓorbit > 0).
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