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Abstract In this paper, we study the popularly dubbed ma-
trix completion problem, where the task is to “fill in” the
unobserved entries of a matrix from a small subset of ob-
served entries, under the assumption that the underlying ma-
trix is of low-rank. Our contributions herein, enhance our
prior work on nuclear norm regularized problems for ma-
trix completion (Mazumder et al., 2010) by incorporating a
continuum of nonconvex penalty functions between the con-
vex nuclear norm and nonconvex rank functions. Inspired by
SOFT-IMPUTE (Mazumder et al., 2010; Hastie et al., 2016),
we propose NC-IMPUTE — an EM-flavored algorithmic
framework for computing a family of nonconvex penalized
matrix completion problems with warm-starts. We present
a systematic study of the associated spectral thresholding
operators, which play an important role in the overall al-
gorithm. We study convergence properties of the algorithm.
Using structured low-rank SVD computations, we demon-
strate the computational scalability of our proposal for prob-
lems up to the Netflix size (approximately, a 500, 000 ×
20, 000 matrix with 108 observed entries). We demonstrate
that on a wide range of synthetic and real data instances,
our proposed nonconvex regularization framework leads to
low-rank solutions with better predictive performance when
compared to those obtained from nuclear norm problems.
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1 Introduction

In several problems of contemporary interest, arising for in-
stance, in recommender system applications, for example,
the Netflix Prize competition (SIGKDD and Netflix, 2007),
observed data is in the form of a large sparse matrix, Yij ,
(i, j) ∈ Ω, where Ω ⊂ {1, . . . ,m} × {1, . . . , n}, with
|Ω| � mn. Popularly dubbed as the matrix completion
problem (Candès and Recht, 2009; Mazumder et al., 2010),
the task is to predict the unobserved entries, under the as-
sumption that the underlying matrix is of low-rank. This
leads to the natural rank regularized optimization problem:

min
X

1
2
‖PΩ(X − Y )‖2F + λ rank(X), (1)

where, PΩ(X) denotes the projection ofXm×n onto the ob-
served indices Ω and is zero otherwise; and ‖ · ‖F denotes
the usual Frobenius norm of a matrix. Problem (1), however,
is computationally difficult due to the presence of the com-
binatorial rank constraint (Chistov and Grigor’ev, 1984). A
natural convexification (Fazel, 2002; Recht et al., 2010) of
rank(X) is ‖X‖∗, the nuclear norm of X , which leads to
the following surrogate of Problem (1):

min
X

1
2
‖PΩ(X − Y )‖2F + λ‖X‖∗. (2)

Candès and Recht (2009); Candès and Plan (2010) show
that under some assumptions on the underlying “population”
matrix, a solution to Problem (2) approximates a solution to
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Problem (1) reasonably well. The estimator obtained from
Problem (2) works quite well: the nuclear norm shrinks the
singular values and simultaneously sets many of the singu-
lar values to zero, thereby encouraging low-rank solutions.
It is thus not surprising that Problem (2) has enjoyed a sig-
nificant amount of attention in the wider statistical com-
munity over the last decade. There have been impressive
advances in understanding its statistical properties (Candès
and Plan, 2010; Candès and Tao, 2010; Recht et al., 2010;
Recht, 2011; Gross, 2011; Rohde and Tsybakov, 2011; Koltchin-
skii et al., 2011; Negahban and Wainwright, 2011; Chen,
2015; Lecué and Mendelson, 2018; Chen et al., 2019b). Mo-
tivated by the work of Candès and Recht (2009); Cai et al.
(2010), the authors in Mazumder et al. (2010) proposed SOFT-
IMPUTE, an EM-flavored (Dempster et al., 1977) algorithm
for optimizing Problem (2). For some other computational
work in developing scalable algorithms for Problem (2), see
the papers Jaggi and Sulovský (2010); Freund et al. (2015);
Hastie et al. (2016), and references therein. Typical assump-
tions under which the nuclear norm works as a good proxy
for the low-rank problem require the entries of the singu-
lar vectors of the “true” low-rank matrix to be sufficiently
spread, and the missing pattern to be roughly uniform. The
proportion of observed entries needs to be sufficiently larger
than the number of parameters of the matrix O ((m+ n)r),
where, r denotes the rank of the true underlying matrix.
Some extensions under general sampling distribution has
been made in Klopp (2014); Alquier (2015). Negahban and
Wainwright (2012) proposes improvements with a (convex)
weighted nuclear norm penalty in addition to spikiness con-
straints for the noisy matrix completion problem.

The nuclear norm penalization framework, however, has
limitations. If some conditions mentioned above fail, Prob-
lem (2) may fall short of delivering reliable low-rank esti-
mators with good prediction performance (on the missing
entries). Since the nuclear norm shrinks the singular val-
ues, in order to obtain an estimator with good explanatory
power, it often results in a matrix estimator with high nu-
merical rank — thereby leading to models that have higher
rank than what might be desirable. The limitations men-
tioned above, however, should not come as a surprise to
an expert — especially, if one draws a parallel connection
to the LASSO (Tibshirani, 1996), a popular sparsity induc-
ing shrinkage mechanism effectively used in the context of
sparse linear modeling and regression. In the linear regres-
sion context, the LASSO often leads to dense models and
suffers when the features are highly correlated — the lim-
itations of the LASSO are quite well known in the statis-
tics literature, and there have been major strides in moving
beyond the convex `1-penalty to more aggressive forms of
nonconvex penalties (Fan and Li, 2001; Zou and Li, 2008;
Mazumder et al., 2011; Zhang, 2010; Zhang and Zhang,
2012; Loh and Wainwright, 2015; Bertsimas et al., 2016;

Zheng et al., 2017; Feng and Zhang, 2017). The key prin-
ciple in these methods is the use of nonconvex regulariz-
ers that better approximate the `0-penalty, leading to possi-
bly nonconvex estimation problems. Thusly motivated, we
study herein, the following family of nonconvex regularized
estimators for the task of (noisy) matrix completion:

min
X

1
2
‖PΩ(X − Y )‖2F +

min{m,n}∑

i=1

P (σi(X);λ, γ)

︸ ︷︷ ︸
:=f(X)

,
(3)

where, σi(X), i ≥ 1 are the singular values of X and σ 7→
P (σ;λ, γ) is a concave penalty function on [0,∞) that takes
the value∞ whenever σ < 0. We will denote an estimator
obtained from Problem (3) by X̂λ,γ . The family of penalty
functions P (σ;λ, γ) is indexed by the parameters (λ, γ) —
these parameters together control the amount of noncon-
vexity and shrinkage — see for example Mazumder et al.
(2011); Zhang and Zhang (2012) and also Section 2, herein,
for examples of such nonconvex families.

A caveat in considering problems of the form (3) is that
they lead to nonconvex optimization problems and thus ob-
taining a certifiably optimal global minimizer is generally
difficult. Fairly recently, Bertsimas et al. (2016); Mazumder
and Radchenko (2015) have shown that subset selection prob-
lems in sparse linear regression can be computed using ad-
vances in mixed integer quadratic optimization. Such global
optimization methods, however, do not apply to matrix vari-
ate problems involving spectral1 penalties, as in Problems (1)
or (3). The main focus in our work herein is to develop
a computationally scalable algorithmic framework that al-
lows us to obtain high quality stationary points or upper
bounds2 for Problem (3) — we obtain a path of solutions
X̂λ,γ across a grid of values of (λ, γ) for Problem (3) by em-
ploying warm-starts, following the path-following scheme
proposed in Mazumder et al. (2011). Leveraging problem
structure, modern advances in computationally scalable low-
rank SVDs and appropriately advancing the tricks success-
fully employed in Mazumder et al. (2010); Hastie et al. (2016),
we empirically demonstrate the computational scalability of
our method for problems of the size of the Netflix dataset,
a matrix of size (approx.) 480, 000 × 18, 000 with ∼ 108

observed entries. Perhaps most importantly, we demonstrate

1 We say that a function is a spectral function of a matrix X , if
it depends only upon the singular values of X . The state of the art
algorithmics in mixed integer Semidefinite optimization problems is in
its nascent stage; and not even comparable to the technology for mixed
integer quadratic optimization.

2 Since the problems under consideration are nonconvex, our meth-
ods are not guaranteed to reach the global minimum – we thus refer to
the solutions obtained as upper bounds. In many synthetic examples,
however, the solutions are indeed seen to be globally optimal. We do
show rigorously, however, that these solutions are first order stationary
points for the optimization problems under consideration.
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empirically that the resultant estimators lead to better statis-
tical properties (i.e., the estimators have lower rank and en-
joy better prediction performance) over nuclear norm based
estimates, on a variety of problem instances.

Some recent works (Jain et al., 2010, 2013; Hardt, 2014;
Hardt and Wootters, 2014; Chen and Wainwright, 2015; Ma
et al., 2017; Chen et al., 2019a) study the scope of alternat-
ing minimization or (projected) gradient stylized algorith-
mic strategies for the rank constrained optimization prob-
lem, similar to Problem (1) — see also Hastie et al. (2016)
for related discussions. We should emphasize that our work
herein, studies the entire family of nonconvex spectral pe-
nalized problems of the form of Problem (3), and is hence
more general than the class of estimation problems consid-
ered in those works. We establish empirically that this flex-
ible family of nonconvex penalized estimators leads to so-
lutions with better statistical properties than those available
from particular instantiations of the penalty function — nu-
clear norm regularization (2) and rank regularization (1).
Along the lines of the aforementioned works, there exists
an active stream of research on characterizing the global
optimality of local algorithms for various matrix factoriza-
tion based formulations (Bhojanapalli et al., 2016; Ge et al.,
2016; Sun and Luo, 2016; Zheng and Lafferty, 2016; Ge
et al., 2017; Shapiro et al., 2018). Our paper focuses on a
more general family of nonconvex regularization, with ad-
mittedly less strong algorithmic guarantees. Finally, a series
of iterative reweighted algorithms have been proposed and
discussed (Mazumder et al., 2010; Mohan and Fazel, 2010;
Fornasier et al., 2011; Mohan and Fazel, 2012; Gu et al.,
2017), largely motivated by the reweighting ideas from sparse
recovery problems (Zou, 2006; Candes et al., 2008; Daubechies
et al., 2010). Different weight formulas have been suggested
to improve the statistical and computational efficiency. These
are, however, beyond the scope of the current paper.

1.1 Contributions and Outline

The main contributions of our paper can be summarized as
follows:

– We propose a computational framework for nonconvex
penalized matrix completion problems of the form (3).
Our algorithm: NC-IMPUTE, may be thought of as a
novel adaptation (with important enhancements and mod-
ifications) of the EM-stylized procedure SOFT-IMPUTE

(Mazumder et al., 2010) to more general nonconvex pe-
nalized thresholding operators.

– We present an in-depth investigation of nonconvex spec-
tral thresholding operators, which form the main build-
ing block of our algorithm. We also study their effective
degrees of freedom (df ), which provide a simple and in-
tuitive way to calibrate the two-dimensional grid of tun-

ing parameters, extending the scope of the method pro-
posed in nonconvex penalized (least squares) regression
by Mazumder et al. (2011) to spectral thresholding op-
erators. We propose computationally efficient methods
to approximate the df using tools from random matrix
theory.

– We provide comprehensive computational guarantees of
our algorithm — this includes the number of iterations
needed to reach a first order stationary point and the
asymptotic convergence of the sequence of estimates pro-
duced by NC-IMPUTE.

– Every iteration of NC-IMPUTE requires the computation
of a low-rank SVD of a structured matrix, for which we
propose new methods. Using efficient warm-start tricks
to speed up the low-rank computations, we demonstrate
the effectiveness of our proposal to large scale instances
up to the Netflix size in reasonable computation times.

– Over a wide range of synthetic and real-data examples,
we show that our proposed nonconvex penalized frame-
work leads to high quality solutions with excellent sta-
tistical properties, which are often found to be signifi-
cantly better than nuclear norm regularized solutions in
terms of producing low-rank solutions with good predic-
tive performances.

– Implementations of our algorithms in the R program-
ming language have been made publicly available on
github at: https://github.com/diegofrasal/
ncImpute.

The remainder of the paper is organized as follows. Sec-
tion 2 studies several properties of nonconvex spectral penal-
ties and associated spectral thresholding operators, includ-
ing their effective degrees of freedom. Section 3 describes
our algorithmic framework NC-IMPUTE and studies the con-
vergence properties of the algorithm. Section 4 presents nu-
merical experiments demonstrating the usefulness of non-
convex penalized estimation procedures in terms of supe-
rior statistical properties on several synthetic datasets — we
also show the usefulness of these estimators on several real
data instances. Section 5 contains the conclusions and dis-
cusses several important future research directions. To im-
prove readability, some technical materials and empirical re-
sults are relegated to Section 6.

Notation: For a matrix Am×n, we denote its (i, j)th entry
by aij . PΩ(A) is a matrix with its (i, j)th entry given by aij
for (i, j) ∈ Ω and zero otherwise, with Ω ⊂ {1, . . . ,m} ×
{1, . . . , n}. We use the notation P⊥Ω (A) = A − PΩ(A) to
denote the projection of A onto the complement of Ω. Let
σi(A), i = 1, . . . ,max{m,n} denote the singular values of
A, with σi(A) ≥ σi+1(A) (for all i) – we will use the no-
tation σ(A) to denote the vector of singular values. When
clear from the context, we will simply write σ instead of
σ(A). For a vector a = (a1, . . . , an) ∈ Rn, we will use the
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notation diag(a) to denote an n × n diagonal matrix with
ith diagonal entry being ai.

2 Spectral Thresholding Operators

We begin our analysis by considering the fully observed ver-
sion of Problem (3), given by:

min
X

1
2
‖X − Z‖2F +

min{m,n}∑

i=1

P (σi(X);λ, γ)

︸ ︷︷ ︸
:=g(X)

(4)

where, for a given matrix Z, a minimizer of the function
g(X), denoted by Sλ,γ(Z), is the spectral thresholding op-
erator induced by the spectral penalty

∑
i P (σi(X);λ, γ).

Suppose Udiag(σ)V ′ denotes the SVD of Z. For the nu-
clear norm regularized problem with the penalty function
P (σi(X);λ, γ) = λσi(X), the corresponding thresholding
operator, denoted by Sλ,`1(Z) (say), is given by the famil-
iar soft-thresholding operator (Cai et al., 2010; Mazumder
et al., 2010):

Sλ,`1(Z) := Udiag(sλ,`1(σ))V ′ (5)

where, sλ,`1(σi) := (σi − λ)+, (·)+ = max{·, 0} and
sλ,`1(σi) is the ith entry of sλ,`1(σ) (due to separability of
the thresholding operator). Here, Sλ,`1(Z) is the the soft-
thresholding operator on the singular values of Z and plays
a crucial role in the SOFT-IMPUTE algorithm (Mazumder
et al., 2010). For the rank regularized problem, with

P (σi(X);λ, γ) = λ1(σi(X) > 0),

the thresholding operator denoted by Sλ,`0(Z) is given by
the hard-thresholding operator (Mazumder et al., 2010):

Sλ,`0(Z) := Udiag(sλ,`0(σ))V ′ (6)

with sλ,`0(σi) = σi1(σi >
√

2λ). A closely related thresh-
olding operator that retains the top r singular values and
sets the remaining to zero formed the basis of the HARD-
IMPUTE algorithm in Mazumder et al. (2010); Troyanskaya
et al. (2001). The results in (5) and (6) suggest a curious
link — the spectral thresholding operators (for the two spe-
cific choices of the spectral penalty functions given above)
are tied to the corresponding thresholding functions that op-
erate only on the singular values of the matrix — in other
words, the operators Sλ,`1(Z), Sλ,`0(Z) do not change the
singular vectors of the matrix Z. It turns out that a similar
result holds true for more general spectral penalty functions
P (·;λ, γ) as the following proposition illustrates.

Proposition 1 Let Z = Udiag(σ)V ′ denote the SVD of Z,
and sλ,γ(σ) denote the following thresholding operator on
the singular values of Z:

sλ,γ(σ) ∈ arg min
α≥0

1
2
‖α− σ‖22 +

min{m,n}∑

i=1

P (αi;λ, γ)

︸ ︷︷ ︸
:=ḡ(α)

.

(7)

Then Sλ,γ(Z) = Udiag(sλ,γ(σ))V ′.

Proof Note that by the Wielandt-Hoffman inequality (Horn
and Johnson, 2012) we have that: ‖X − Z‖2F ≥ ‖σ(X) −
σ(Z)‖22, where, for a vector a, ‖a‖2 denotes the standard
Euclidean norm. Equality holds when X and Z share the
same left and right singular vectors. This leads to:

1
2
‖X − Z‖2F +

min{m,n}∑

i=1

P (σi(X);λ, γ)

≥1
2
‖σ(X)− σ(Z)‖22 +

min{m,n}∑

i=1

P (σi(X);λ, γ).

In the above inequality, note that the left hand side is g(X)
(defined in (4)) and right hand side is ḡ(σ(X)) (defined
in (7)). It follows that

min
X

g(X) ≥ min
σ(X)

ḡ(σ(X)) = ḡ (sλ,γ(σ)) , (8)

where, we used the observation thatσ(X) ≥ 0 and sλ,γ(σ),
as defined in (7) minimizes ḡ(σ(X)). In addition, this min-
imum is attained by the function g(X), at the choice X =
Udiag(sλ,γ(σ))V ′. This completes the proof of the propo-
sition.

Due to the separability of the optimization Problem (7)
across the coordinates, i.e., ḡ(α) =

∑
i ḡi(αi) (where, ḡi(·)

is defined in (9)), it suffices to consider each of the subprob-
lems separately. Let sλ,γ(σi) denote a minimizer of ḡi(α),
i.e.,

sλ,γ(σi) ∈ arg min
α≥0

ḡi(α) :=
1
2

(α−σi)2 +P (α;λ, γ). (9)

It is easy to see that the ith coordinate of sλ,γ(σ) is given
by sλ,γ(σi). This discussion suggests that our understanding
of the spectral thresholding operator Sλ,γ(Z) is intimately
tied to the univariate thresholding operator (9). Thusly mo-
tivated, in the following, we present a concise discussion
about univariate penalty functions and the resultant thresh-
olding operators. We begin with some examples of concave
penalties that are popularly used in statistics in the context
of sparse linear modeling.
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Families of Nonconvex Penalty Functions: Several types of
nonconvex penalties are popularly used in high-dimensional
regression frameworks—see for example, Nikolova (2000);
Lv and Fan (2009); Zhang and Zhang (2012). For our setup,
since these penalty functions operate on the singular val-
ues of a matrix, it suffices to consider nonconvex functions
that are defined only on the nonnegative real numbers. We
present a few examples below:

– The `γ penalty (Frank and Friedman, 1993) given by

P (σ;λ, γ) = λσγ ,

where λ > 0 and 0 ≤ γ < 1.
– The SCAD penalty (Fan and Li, 2001) is defined via:

P ′(σ;λ, γ) = λ1(σ ≤ λ) +
(γλ− σ)+

γ − 1
1(σ > λ),

where λ > 0, γ > 2, and P ′(σ;λ, γ) denotes the deriva-
tive of σ 7→ P (σ;λ, γ) on σ ≥ 0 with P (0;λ, γ) = 0.

– The MC+ penalty (Zhang, 2010; Mazumder et al., 2011)
defined as

P (σ;λ, γ) =λ
(
σ − σ2

2λγ

)
1(0 ≤ σ < λγ)

+
λ2γ

2
1(σ ≥ λγ),

with λ > 0, γ > 0.
– The log-penalty, with

P (σ;λ, γ) = λ log(γσ + 1)/ log(γ + 1)

on λ > 0 and γ > 0.

Figure 1 shows some members of the above nonconvex
penalty families. The `γ penalty function is non differen-
tiable at σ = 0, due to the unboundedness of P ′(σ;λ, γ)
as σ → 0+. The nonzero derivative at σ = 0+ encourages
sparsity. The `γ penalty functions show a clear transition
from the `1 penalty to the `0 penalty — similarly, the re-
sultant thresholding operators show a passage from the soft-
thresholding to the hard-thresholding operator. Let us exam-
ine the analytic form of the thresholding function induced
by the MC+ penalty (for any γ > 1):

sλ,γ(σ) =





0, if σ ≤ λ(
σ−λ

1−1/γ

)
, if λ < σ ≤ λγ

σ, if σ > λγ.

(10)

It is interesting to note that for the MC+ penalty, the deriva-
tives are all bounded and the thresholding functions are con-
tinuous for all γ > 1. As γ → ∞, the threshold opera-
tor (10) coincides with the soft-thresholding operator. How-
ever, as γ → 1+ the threshold operator approaches the dis-
continuous hard-thresholding operator σ1(σ ≥ λ) — this

is illustrated in Figure 1 and can also be observed by in-
specting (10). Note that the `1 penalty penalizes small and
large singular values in a similar fashion, thereby incurring
an increased bias in estimating the larger coefficients. For
the MC+ and SCAD penalties, we observe that they penal-
ize the larger coefficients less severely than the `1 penalty
— simultaneously, they penalize the smaller coefficients in
a manner similar to that of the `1 penalty. On the other hand,
the `γ penalty (for small values of γ) imposes a more severe
penalty for values of σ ≈ 0, quite different from the behav-
ior of other penalty functions. In general, for a given family
of nonconvex penalties P (σ;λ, γ), the effect of (λ, γ) on
the nonconvexity can be characterized through the general
concavity quantity φP that is to be introduced in (11).

2.1 Properties of Spectral Thresholding Operators

The nonconvex penalty functions described in the previous
section are concave functions on the nonnegative real line.
We will now discuss measures that may be thought (loosely
speaking) to measure the amount of concavity in the func-
tions. For a univariate penalty function α 7→ P (α;λ, γ) on
α ≥ 0, assumed to be differentiable on (0,∞), we intro-
duce the following quantity (φP ) that measures the amount
of concavity (see also, Zhang (2010)) of P (α;λ, γ):

φP := inf
α,α′>0

P ′(α;λ, γ)− P ′(α′;λ, γ)
α− α′ , (11)

where P ′(α;λ, γ) denotes the derivative of P (α;λ, γ) wrt
α on α > 0.

We say that the function g(X) (as defined in (4)) is τ -
strongly convex if the following condition holds:

g(X) ≥ g(X̃) + 〈∇g(X̃), X − X̃〉+
τ

2
‖X − X̃‖2F , (12)

for some τ ≥ 0 and all X, X̃ . In inequality (12), ∇g(X̃)
denotes any subgradient (assuming it exists) of g(X) at X̃ .
If τ = 0 then the function is simply convex3. Using standard
properties of spectral functions (Borwein and Lewis, 2006;
Lewis, 1995), it follows that g(X) is τ -strongly convex iff
the vector function:

ḡ(α) =
1
2
‖α− σ(Z)‖22 +

min{m,n}∑

i=1

P (αi;λ, γ) (13)

is τ -strongly convex on {α : α ≥ 0}, where σ(Z) denotes
the singular values of Z. Let us recall the separable decom-
position of ḡ(α) =

∑
i ḡi(αi), with ḡi(α) as defined in (9).

Clearly, the function α 7→ ḡ(α) is τ -strongly convex (on
the nonnegative reals) iff each summand ḡi(α) is τ -strongly

3 Note that we consider τ ≥ 0 in the definition so that it includes
the case of (non strong) convexity.
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Fig. 1 [Top panel] Examples of nonconvex penalties σ 7→ P (σ;λ, γ) with λ = 1 for different values of γ. [Bottom Panel] The corresponding
scalar thresholding operators: σ 7→ sλ,γ(σ). At σ = 1, some of the thresholding operators corresponding to the `γ penalty function are
discontinuous, and some of the other thresholding functions are “close” to being so.

convex on α ≥ 0. Towards this end, notice that ḡi(α) is
convex on α ≥ 0 iff 1 + φP ≥ 0 — in particular, ḡi(α) is
τ -strongly convex with parameter τ = 1+φP , provided this
number is nonnegative. In this vein, we have the following
proposition:

Proposition 2 Suppose φP > −1, then the function X 7→
g(X) is τ -strongly convex with τ = 1 + φP .

For the MC+ penalty, the condition τ = 1 + φP > 0 is
equivalent to γ > 1. For the `γ penalty function, with γ < 1,
the parameter τ = −∞, and thus the function g(X) is not
strongly convex.

Proposition 3 Suppose 1 + φP > 0, then Z 7→ Sλ,γ(Z) is
Lipschitz continuous with constant 1

1+φP
, i.e, for all Z1, Z2

we have:

‖Sλ,γ(Z1)− Sλ,γ(Z2)‖F ≤
1

1 + φP
‖Z1 − Z2‖F . (14)

Proof We rewrite g(X) as:

g(X) =
{

1
2
‖X − Z‖2F −

ψ

2
‖X‖2F

}
+





min{m,n}∑

i=1

P (σi(X);λ, γ) +
ψ

2
‖X‖2F



 . (15)

We have that ‖X‖2F =
∑min{m,n}
i=1 σ2

i (X). Using the short-
hand notation P̃ (σi(X)) = P (σi(X);λ, γ) + ψ

2 σ
2
i (X), and

rearranging the terms in (15), it follows that Sλ,γ(Z), a min-
imizer of g(X), is given by:

Sλ,γ(Z) ∈ arg min
X

{
1− ψ

2
‖X − 1

1− ψZ‖
2
F

+
min{m,n}∑

i=1

P̃ (σi(X))
}
.

(16)

If ψ + φP > 0, the function σi 7→ P̃ (σi) is convex for
every i. If 1 − ψ > 0, then the first term appearing in
the objective function in (16) is convex. Thus, assuming
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ψ + φP > 0, 1 − ψ > 0 both summands in the above ob-
jective function are convex. In particular, the optimization
problem (16) is convex and Z 7→ Sλ,γ(Z) can be viewed as
a convex proximal map (Rockafellar, 1970). Using standard
contraction properties of proximal maps, we have that:

‖Sλ,γ(Z1)− Sλ,γ(Z2)‖F ≤
∥∥∥∥

Z1

1− ψ −
Z2

1− ψ

∥∥∥∥
F

≤ 1
1− ψ ‖Z1 − Z2‖F .

Since the above holds true for any ψ as chosen above, opti-
mizing over the value of ψ such that Problem (16) remains
convex gives us ψ̂ = −φP , i.e., 1/(1 − ψ̂) = 1/(1 + φP ),
thereby leading to (14).

2.2 Effective Degrees of Freedom for Spectral
Thresholding Operators

In this section, to better understand the statistical proper-
ties of spectral thresholding operators, we study their de-
grees of freedom. The effective degrees of freedom or df is
a popularly used statistical notion that measures the amount
of “fitting” performed by an estimator (Efron et al., 2004;
Hastie et al., 2009; Stein, 1981). In the case of classical
linear regression, for example, df is simply given by the
number of features used in the linear model. This notion
applies more generally to additive fitting procedures. Fol-
lowing Efron et al. (2004); Stein (1981), let us consider an
additive model of the form:

Zij = µij + εij with εij
iid∼ N(0, v2), (17)

for i = 1, . . . ,m, j = 1, . . . , n. The df of µ̂ := µ̂(Z), for
the fully observed model above, i.e., (17) is given by:

df(µ̂) =
∑

ij

Cov(µ̂ij , Zij)/v2,

where µij denotes the (i, j)th entry of the matrix µ. For the
particular case of a spectral thresholding operator we have
µ̂ = Sλ,γ(Z). When Z 7→ µ̂(Z) satisfies a weak differen-
tiability condition, the df may be computed via a divergence
formula (Stein, 1981; Efron et al., 2004):

df(µ̂) = E ((∇ · µ̂(Z)) · (Z)) , (18)

where (∇ · µ̂) · (Z) =
∑
ij ∂µ̂(Zij)/∂Zij . For the spectral

thresholding operator Sλ,γ(·), expression (18) holds if the
map Z 7→ Sλ,γ(Z) is Lipschitz and hence weakly differen-
tiable — see for example, Candès et al. (2013). In the light
of Proposition 3, the map Z 7→ Sλ,γ(Z) is Lipschitz when
φP + 1 > 0. Under the model (17), the singular values of
Z will have a multiplicity of one with probability one. We
assume that the univariate thresholding operators are differ-
entiable, i.e., s′λ,γ(·) exists. With these assumptions in place,

the divergence formula for Sλ,γ(Z) can be obtained fol-
lowing Candès et al. (2013), as presented in the following
proposition.

Proposition 4 Assume that 1 + φP > 0 and the model (17)
is in place. Then the degrees of freedom of the estimator
Sλ,γ(Z) is given by:

df(Sλ,γ(Z)) =E
∑

i

(
s′λ,γ(σi) + |m− n|sλ,γ(σi)

σi

)
+

2E
∑

i 6=j

σisλ,γ(σi)
σ2
i − σ2

j

, (19)

where the σi’s are the singular values of Z.

We note that the above expression is true for any value of
1 + φP > 0. For the MC+ penalty function, expression (19)
holds for γ > 1. As soon as γ ≤ 1, the above method of de-
riving df does not apply due to the discontinuity in the map
Z 7→ Sλ,γ(Z). Values of γ close to one (but larger), how-
ever, give an expression for the df near the hard-thresholding
spectral operator, which corresponds to γ = 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
7

0.
8

0.
9

1.
0

log(γ)

df
/(

m
n)

λ=0.5
λ=1
λ=1.5

Fig. 2 Figure showing the df for the MC+ thresholding operator for a
matrix with m = n = 10, µ = 0 and v = 1. The df profile as a func-
tion of γ (in the log scale) is shown for three values of λ. The dashed
lines correspond to the df of the spectral soft-thresholding operator,
corresponding to γ = ∞. We propose calibrating the (λ, γ) grid to a
(λ̃, γ̃) grid such that the df corresponding to every value of γ̃ matches
the df of the soft-thresholding operator — as shown in Figure 3.

To understand the behavior of the df as a function of
(λ, γ), let us consider the null model with µ = 0 and the
MC+ penalty function. In this case, for a fixed λ (see Fig-
ure 2 with a fixed λ > 0), the df is seen to increase with
smaller γ values: the soft-thresholding function shrinks the
large coefficients and sets all coefficients smaller than λ to
be zero; the more aggressive (closer to the hard threshold-
ing operator) shrinkage operators (sλ,γ(σ)) shrink less for
larger values of σ and set all coefficients smaller than λ to
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zero. Thus, intuitively, the more aggressive thresholding op-
erators should have larger df since they do more “fitting” —
this is indeed observed in Figure 2. Mazumder et al. (2011)
studied the df of the univariate thresholding operators in the
linear regression problem, and observed a similar pattern in
the behavior of the df across (λ, γ) values. For the linear
regression problem, Mazumder et al. (2011) argued that it
is desirable to choose a parametrization for (λ, γ) such that
for a fixed λ, as one moves across γ, the df should be the
same. We follow the same strategy for the spectral regu-
larization problem considered herein — we reparametrize a
two-dimensional grid of (λ, γ) values to a two-dimensional
grid of (λ̃, γ̃) values, such that the df remain calibrated in
the sense described above — this is illustrated in Figure 2
(see the horizontal dashed lines corresponding to the con-
stant df values, after calibration). Figure 3 shows the lattice
of (λ̃, γ̃) after calibration. The values of (λ̃, γ̃) on each curve
induce the same df. As γ̃ moves down (the penalty becomes
more “nonconvex”), the corresponding λ̃ (the shrinkage) has
to increase to maintain the same df.

0.2 0.6 1.0 1.4

1
2

5
10

20
50

10
0

λ

γ

Fig. 3 Figure showing the calibrated (λ̃, γ̃) lattice — for every fixed
value of λ̃, the df of the MC+ spectral threshold operators are the same
across different γ̃ values. The df computations have been performed
on a null model using Proposition 5.

The study of df presented herein provides a simple and
intuitive explanation about the roles played by the param-
eters (λ, γ) for the fully observed problem. The notion of
calibration provides a new parametrization of the family of
penalties. From a computational viewpoint, since the gen-
eral algorithmic framework presented in this paper (see Sec-
tion 3) computes a regularization surface using warm-starts
across adjacent (λ, γ) values on a two-dimensional grid; it
is desirable for the adjacent values to be close — the df cal-
ibration also ensures this in a simple and intuitive manner.

Computation of df: The df estimate as implied by Proposi-
tion 4 depends only upon singular values (and not the singu-
lar vectors) of a matrix and can hence be computed with cost
O(min{m,n}2). The expectation can be approximated via
Monte-Carlo simulation — these computations are easy to
parallelize and can be done offline. Since we compute the df
for the null model, for larger values of m,n we recommend
using the Marchenko-Pastur law for iid Gaussian matrix en-
sembles to approximate the df expression (19). We illustrate
the method using the MC+ penalty for γ > 1. Towards this
end, let us define a function on β ≥ 0

gζ,γ(β) =





0, if
√
β ≤ ζ

γ
γ−1 (1− ζ√

β
), if ζ <

√
β ≤ ζγ

1, if
√
β > ζγ .

For the following proposition, we will assume (for sim-
plicity) that m ≥ n.

Proposition 5 Let m,n → ∞ with n
m → α ∈ (0, 1], then

under the model Zij
iid∼ N(0, 1), we have

lim
m,n→∞

df(Sλ,γ(Z))
mn

=




0 if λ√
m
→∞

(1− α)Egζ,γ(T1)+

αE
(
T1gζ,γ(T1)−T2gζ,γ(T2)

T1−T2

)
if λ√

m
→ ζ

1 if λ√
m
→ 0

where Sλ,γ(Z) is the thresholding operator corresponding
to the MC+ penalty with λ ≥ 0, γ > 1 and the expectation
is taken with respect to T1 and T2 independently generated
from the Marchenko-Pastur distribution (see Lemma 1, Sec-
tion 6.1).

Proof For a proof, see Section 6.1.1.

Note that the variance v2 in model (17) can always be
assumed to be one (by adjusting the value of the tuning pa-
rameter accordingly4).

3 The NC-IMPUTE Algorithm

In this section, we present algorithm NC-IMPUTE. The al-
gorithm is inspired by an EM-stylized procedure, similar to
SOFT-IMPUTE (Mazumder et al., 2010), but has important
innovations, as we will discuss shortly. It is helpful to re-
call that, for observed data: PΩ(Y ), the algorithm SOFT-
IMPUTE relies on the following update sequence

Xk+1 = Sλ,`1
(
PΩ(Y ) + P⊥Ω (Xk)

)
, (20)

4 This follows from the simple observation that saλ,γ(ax) =
asλ,γ(x) and s′aλ,γ(ax) = s′λ,γ(x).
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which can be interpreted as computing the nuclear norm
regularized spectral thresholding operator for the following
“fully observed” problem:

Xk+1 ∈

arg min
X

{
1
2

∥∥X −
(
PΩ(Y ) + P⊥Ω (Xk)

)∥∥2
F

+ λ‖X‖∗
}
,

where, the missing entries are filled in by the current esti-
mate, i.e., P⊥Ω (Xk). We refer the reader to Mazumder et al.
(2010) for a detailed study of the algorithm. Mazumder et al.
(2010) suggest, in passing, the notion of extending SOFT-
IMPUTE to more general thresholding operators; however,
such generalizations were not pursued by the authors. In
this paper, we present a thorough investigation about non-
convex generalized thresholding operators — we study their
convergence properties, scalability aspects and demonstrate
their superior statistical performance across a wide range of
numerical experiments.

Update (20) suggests a natural generalization to more
general nonconvex penalty functions, by simply replacing
the spectral soft thresholding operator Sλ,`1(·) with more
general spectral operators Sλ,γ(·):

Xk+1 = Sλ,γ
(
PΩ(Y ) + P⊥Ω (Xk)

)
. (21)

While the above update rule works quite well in our numeri-
cal experiments, it enjoys limited computational guarantees,
as suggested by our convergence analysis in Section 3.1. We
thus propose and study a seemingly minor generalization of
the rule (21) — this modified rule enjoys superior finite time
convergence rates to a first order stationary point. We de-
velop our algorithmic framework below.

Let us define the following function:

F`(X;Xk) :=
1
2
‖PΩ(X − Y )‖2F +

1
2
‖P⊥Ω (X −Xk)‖2F+

`

2
‖X −Xk‖2F +

min{m,n}∑

i=1

P (σi(X);λ, γ),

(22)

for ` ≥ 0. Note that F`(X;Xk) majorizes the objective
function f(X) defined in (3), i.e., F`(X;Xk) ≥ f(X) for
any X and Xk, with equality holding at X = Xk. In an at-
tempt to obtain a minimum of Problem (3), we propose to
iteratively minimize F`(X;Xk), an upper bound to f(X),
to obtainXk+1 — more formally, this leads to the following
update sequence:

Xk+1 ∈ arg min
X

F`(X;Xk). (23)

Note that Xk+1 is easy to compute; by some rearrangement
of (22) we see:

Xk+1 ∈

arg min
X

`+ 1
2
‖X − X̃k‖2F +

min{m,n}∑

i=1

P (σi(X);λ, γ)

︸ ︷︷ ︸
:=S`λ,γ(X̃k)

,

(24)

where X̃k =
(
PΩ(Y ) + P⊥Ω (Xk) + `Xk

)
/(` + 1). Note

that (24) is a minor modification of (21) — in particular, if
` = 0, then these two update rules coincide.

The sequence Xk defined via (24) has desirable conver-
gence properties, as we discuss in Section 3.1. In particu-
lar, as k → ∞, the sequence reaches (in a sense that will
be made more precise later) a first order stationary point for
Problem (3). We also provide a finite time convergence anal-
ysis of the update sequence (24).

We intend to compute an entire regularization surface
of solutions to Problem (3) over a two-dimensional grid of
(λ, γ)-values, using warm-starts. We take the MC+ family of
functions as a running example, with (λ, γ) ∈ {λ1 > λ2 >
· · · > λN} × {∞ := γ1 > γ2 > . . . > γM}. At the begin-
ning, we compute a path of solutions for the nuclear norm
penalized problem, i.e., Problem (3) with γ = ∞ on a grid
of λ values. For a fixed value of λ, we compute solutions to
Problem (3) for smaller values of γ, gradually moving away
from the convex problems. In this continuation scheme, we
found the following strategies useful:

– For every value of (λi, γj), we apply two copies of the
iterative scheme (23) initialized with solutions obtained
from its two neighboring points (λi−1, γj) and (λi, γj−1).
From these two candidates, we select the one that leads
to a smaller value of the objective function f(·) at (λi, γj).

– Instead of using a two-dimensional rectangular lattice,
one can also use the recalibrated lattice, suggested in
Section 2.2, as the two-dimensional grid of tuning pa-
rameters.

The algorithm outlined above, called NC-IMPUTE is sum-
marized as Algorithm 1.

We now present an elementary convergence analysis of
the update sequence (24). Since the problems under investi-
gation herein are nonconvex, our analysis requires new ideas
and techniques beyond those used in Mazumder et al. (2010)
for the convex nuclear norm regularized problem.

3.1 Convergence Analysis

By the definition of Xk+1 we have that:

F`(Xk+1;Xk) = min
X

F`(X;Xk) ≤ F`(Xk;Xk) = f(Xk).
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Algorithm 1 NC-IMPUTE

1. Input: A search grid λ1 > λ2 > · · · > λN ; +∞ := γ1 >
γ2 > · · · > γM . Tolerance ε.

2. Compute solutions X̂λi,γ1 for i = 1, . . . , N , for the nuclear
norm regularized problem.

3. For every (γ, λ) ∈ {γ2, . . . , γM} × {λ1, . . . , λN}:
(a) Initialize

Xold = arg min
X

{
f(X), X ∈

{
X̂λi−1,γj , X̂λi,γj−1

}}
.

(b) Repeat until convergence, i.e., ‖Xnew − Xold‖2F <
ε‖Xold‖2F :

(i) Compute Xnew ∈ arg min
X

F`(X;Xold).

(ii) Assign Xold ← Xnew.
(c) Assign X̂λi,γj ← Xnew.

4. Output: X̂λi,γj for i = 1, . . . , N , j = 1, . . . ,M .

Let us define the quantities:

ν(`) := 1 + φP + ` and ν†(`) := max {ν(`), 0} ,

where, if ν(`) ≥ 0, then the function X 7→ F`(X;Xk) is
ν(`)-strongly convex. In particular, from (23), it follows that
∇F`(Xk+1;Xk), a subgradient of the mapX 7→ F`(X;Xk)
(evaluated at Xk+1) equals zero. We thus have:

F`(Xk;Xk)− F`(Xk+1;Xk) ≥ ν(`)
2
‖Xk+1 −Xk‖2F .

(25)

Now note that, by the definition of Xk+1, we always have:
F`(Xk;Xk) ≥ F`(Xk+1;Xk), which combined with (25)
leads to (replacing ν(`) by ν†(`)):

F`(Xk;Xk)− F`(Xk+1;Xk) ≥ ν†(`)
2
‖Xk+1 −Xk‖2F .

(26)

In addition, we have:

F`(Xk+1;Xk)

=
1
2
‖PΩ(Xk+1 − Y )‖2F +

min{m,n}∑

i=1

P (σi(Xk+1);λ, γ)

+
1
2
‖P⊥Ω (Xk+1 −Xk)‖2F +

`

2
‖Xk+1 −Xk‖2F

=f(Xk+1) +
1
2
‖P⊥Ω (Xk+1 −Xk)‖2F +

`

2
‖Xk+1 −Xk‖2F .

(27)

Combining (26) and (27), and observing that F`(Xk;Xk) =
f(Xk), we have:

f(Xk)− f(Xk+1)

≥ν
†(`)
2
‖Xk+1 −Xk‖2F +

`

2
‖Xk+1 −Xk‖2F

+
1
2
‖P⊥Ω (Xk+1 −Xk)‖2F

=
ν†(`) + `

2
‖Xk+1 −Xk‖2F +

1
2
‖P⊥Ω (Xk+1 −Xk)‖2F

︸ ︷︷ ︸
:=∆`(Xk;Xk+1)

.

(28)

Since ∆`(Xk;Xk+1) ≥ 0, the above inequality immedi-
ately implies that f(Xk) ≥ f(Xk+1) for all k; and the im-
provement in objective values is at least as large as the quan-
tity ∆`(Xk;Xk+1). The term ∆`(Xk;Xk+1) is a measure
of progress of the algorithm, as formalized by the following
proposition.

Proposition 6 (a): Let ν†(`) + ` > 0 and for any Xa, let
us consider the update Xa+1 ∈ arg minX F`(X;Xa). Then
the following are equivalent:

(i) f(Xa+1) = f(Xa)
(ii) ∆`(Xa;Xa+1) = 0

(iii) Xa is a fixed point, i.e., Xa+1 = Xa.

(b): If ν†(`), ` = 0 and ∆`(Xa;Xa+1) = 0 then Xa+1

is a fixed point.

Proof Proof of Part (a):
We will show that (i) =⇒ (ii) =⇒ (iii) =⇒ (i); by ana-
lyzing (28). If f(Xa+1) = f(Xa) then ∆`(Xa;Xa+1) = 0.
Since ν†(`) + ` > 0, we have that Xa+1 = Xa, which triv-
ially implies (i).

Proof of Part (b):
If ν†(`)+ ` = 0, Part (a) needs to be slightly modified. Note
that ∆`(Xa;Xa+1) = 0 iff P⊥Ω (Xa+1) = P⊥Ω (Xa). Since
` = 0, we have that Xa+2 = Sλ,γ

(
PΩ(Y ) + P⊥Ω (Xa+1)

)
.

The condition P⊥Ω (Xa+1) = P⊥Ω (Xa), implies that

Sλ,γ(PΩ(Y ) + P⊥Ω (Xa+1)) = Sλ,γ
(
PΩ(Y ) + P⊥Ω (Xa)

)
,

where the term on the right equals Xa+1. Thus, Xa+1 =
Xa+2 = · · · , i.e., Xa+1 is a fixed point.

Since the f(Xk)’s form a decreasing sequence which is
bounded from below, they converge to f̂ , say — this im-
plies that ∆`(Xk;Xk+1) → 0 as k → ∞. Let us now con-
sider two cases, depending upon the value of ν†(`) + `. If
ν†(`)+` > 0, then we haveXk+1−Xk → 0 as k →∞. On
the other hand, if the quantities ν†(`) = 0, ` = 0, the con-
clusion needs to be modified: ∆`(Xk;Xk+1) → 0 implies
that P⊥Ω (Xk+1 −Xk)→ 0 as k →∞.

Motivated by the above discussion, we make the fol-
lowing definition of a first order stationary point for Prob-
lem (3).
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Definition 1 Xa is said to be a first order stationary point
for Problem (3) if ∆`(Xa;Xa+1) = 0. Xa is said to be
an ε-accurate first order stationary point for Problem (3) if
∆`(Xa;Xa+1) ≤ ε.

Proposition 7 The sequence f(Xk) is decreasing and sup-
pose it converges to f̂ . Then the rate of convergence of Xk

to this first order stationary point is given by:

min
1≤k≤K

∆`(Xk;Xk+1) ≤ 1
K
(
f(X1)− f̂

)
. (29)

Proof The arguments presented preceding Proposition 7 es-
tablish that the sequence f(Xk) is decreasing and converges
to f̂ , say.

Consider (28) for any 1 ≤ k ≤ K. We have that
∆`(Xk;Xk+1) ≤ f(Xk) − f(Xk+1) — summing this in-
equality for k = 1, . . . ,K we obtain:

K min
1≤k≤K

∆`(Xk;Xk+1) ≤
∑

1≤k≤K
∆`(Xk;Xk+1)

≤ f(X1)− f(XK+1) ≤ f(X1)− f̂ ,

where in the last inequality we used the simple fact that
f(Xk) ↓ f̂ . Gathering the left and right parts of the above
chain of inequalities leads to (29).

Proposition 7 shows that the sequence Xk reaches an ε-
accurate first order stationary point within Kε = (f(X1) −
f̂)/ε many iterations. The number of iterations Kε, depends
upon how close the initial estimate f(X1) is to the even-
tual solution f̂ . Since NC-IMPUTE employs warm-starts,
the constant appearing in the rhs of (29) suggests that the
number of iterations required to a reach an approximate first
order stationary point is quite low — this is indeed observed
in our experiments, and this feature of using warm-starts
makes our algorithm particularly attractive from a practical
viewpoint.

3.1.1 Rank Stabilization

Let us consider the thresholding function S`λ,γ(X̃k) defined
in (24), which expresses Xk+1 as a function of Xk. Using
the development in Section 2, it is easy to see that the spec-
tral operator S`λ,γ(X̃k) is closely tied to the following vector
thresholding operator (30), acting on the singular values of
X̃k. Formally, for a given nonnegative vector x̃, if we de-
note:

s`λ,γ(x̃) ∈ arg min
α≥0

{
`+ 1

2
‖α− x̃‖22

+
min{m,n}∑

i=1

P (αi;λ, γ)
}
,

(30)

then
S`λ,γ(X̃) = Ũdiag(s`λ,γ(x̃))Ṽ ′,

where X̃ = Ũdiag(x̃)Ṽ ′ is the SVD of X̃ . Thus, properties
of the thresholding function S`λ,γ(X̃) are closely related to
those of the vector thresholding operator s`λ,γ(x̃). Due to
the separability of the vector thresholding operator s`λ,γ(x̃),
across each coordinate of x̃, we denote by s`λ,γ(x̃i), the ith
coordinate of s`λ,γ(x̃).

We now investigate what happens to the rank of the se-
quence Xk as defined via (23). In particular, does this rank
converge? We show that the rank stabilizes after finitely many
iterations, under an additional assumption — namely the
spectral thresholding operator is discontinuous — see Fig-
ure 1 for examples of discontinuous thresholding functions.

Proposition 8 Consider the update sequence

Xk+1 = S`λ,γ(X̃k)

as defined in (24); and let ν†(`) + ` > 0. Suppose that there
is a λS > 0 such that, for any scalar x̃ ≥ 0, the following
holds: s`λ,γ(x̃) 6= 0 =⇒ |s`λ,γ(x̃)| > λS — i.e., the scalar
thresholding operator x̃ 7→ s`λ,γ(x̃) is discontinuous. Then
there exists an integer K∗ such that for all k ≥ K∗, we have
rank(Xk) = r, i.e., the rank stabilizes after finitely many
iterations.

Proof Using (28) it follows that

f(Xk)− f(Xk+1) ≥ ν†(`) + `

2
‖Xk+1 −Xk‖2F

≥ ν†(`) + `

2
‖σk+1 − σk‖22,

where the last inequality follows from Wielandt-Hoffman
inequality (Horn and Johnson, 2012) and σk := σ(Xk) de-
notes the vector of singular values ofXk. Let 1(σ) be an in-
dicator vector with ith coordinate being equal to 1(σi 6= 0).
We will prove the result of rank stabilization via the method
of contradiction. Suppose the rank does not stabilize, then
1(σk+1) 6= 1(σk) for infinitely many k values. Thus there
are infinitely many k′ values such that:

‖σk′+1 − σk′‖22 ≥ σ2
k′+1,i ,

where i is taken such that σk′+1,i 6= 0 but σk′,i = 0. Note
that by the property of the thresholding function s`λ,γ(·) we
have that s`λ,γ(x̃) 6= 0 =⇒ |s`λ,γ(x̃)| > λS . This implies
that ‖σk′+1 − σk′‖22 ≥ λ2

S for infinitely many k′ values,
which is a contradiction to the convergence: f(Xk+1) −
f(Xk) → 0. Thus the support of σ(Xk) converges, and
necessarily after finitely many iterations — leading to the
existence of an iteration number K∗, after which the rank of
Xk remains fixed. This completes the proof of the proposi-
tion.

Remark 1 If ` = 0, the discontinuity of the thresholding
operator sλ,γ(·) (as demanded by Proposition 8) occurs for
the MC+ penalty function as soon as γ ≤ 1. For a general
` > 0, discontinuity in s`λ,γ(·) occurs as soon as γ ≤ 1

`+1 .
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3.1.2 Subspace Stabilization

We study herein, the properties of the left and right singu-
lar subspaces associated with the sequence Xk. The stabi-
lization of subspaces has important implications in the main
bottleneck of the NC-IMPUTE algorithm, i.e., the SVD com-
putations — we discuss this in further detail in Section 3.2.
The study of singular subspace stabilization requires subtle
analysis based on matrix perturbation theory (Stewart and
Sun, 1990), since the left (and right) singular subspace, cor-
responding to the top r singular values of a matrix is not a
continuous function of the matrix argument.

Towards this end, we first recall a standard notion of
distance between two subspaces (with same dimension) in
terms of canonical angles.

Definition 2 Let S1 ∈ Rm×` and S2 ∈ Rm×` be two or-
thonormal matrices and let us define S⊥1 such that [S1, S

⊥
1 ]

forms an orthonormal basis for Rm. The canonical angles
between these two subspaces denoted by the vectorΘ(S1, S2)
are defined as:

Θ(S1, S2) := sin−1 (σ1(X), . . . , σ`(X)) ,

where, σi(X), i ≤ ` are the singular values of the matrix
X := (S⊥1 )′S2.

We now present a result regarding perturbation of sin-
gular subspaces, taken from Stewart and Sun (1990). Be-
fore stating the proposition, we introduce some notation. Let
U1 ∈ Rm×r1 (V1 ∈ Rn×r1 ) denote a matrix of the r1 left
singular vectors (respectively, right) of a matrix A — with
Σ1 being a diagonal matrix of the corresponding top r1 sin-
gular values. Similarly, we use the notation Ũ1, Ṽ1, Σ̃1 to
denote the triplet of left and right singular vectors and sin-
gular values (corresponding to the top r1 singular values) for
a matrix Ã. We use the following matrices

R = AṼ1 − Ũ1Σ̃1, Q = A′Ũ1 − Ṽ1Σ̃1,

to measure a notion of proximity between A and Ã. The
distance between the left (and also right) singular subspaces
(corresponding to the top r1 singular values) of A and Ã
may be measured by the following quantity:

ρr1(A, Ã) :=

max
{∥∥∥sin

(
Θ(U1, Ũ1)

)∥∥∥
2
,
∥∥∥sin

(
Θ(V1, Ṽ1)

)∥∥∥
2

}
, (31)

where, the notation ‖A‖2 denotes the spectral norm of A.
With the above notations in place, we present the following
proposition (Stewart and Sun, 1990) regarding the perturba-
tion of singular subspaces of matrices.

Proposition 9 Suppose there exists α, δ > 0 such that

min(Σ̃1) ≥ α+ δ, and max (Σ2) ≤ α,

where, Σ2 is a diagonal matrix with the remaining singular
values of A. Then,

ρr1(A, Ã) ≤ max {‖R‖2, ‖Q‖2} /δ.

The above proposition informs us about the proximity of
the left (and also right) singular subspaces across successive
iterates Xk, as presented in the following proposition:

Proposition 10 Suppose ν†(`) + ` > 0 and let

δk,p = σp+1(Xk)− σp(Xk+1),

for 1 ≤ p ≤ min{m,n}. If lim infk→∞ δk,p > 0 then
ρp(Xk, Xk+1)→ 0 as k →∞.

Proof The proof is presented in Section 6.1.2.

Remark 2 Let the assumptions of Proposition 8 be in place
– this implies that there exists an integer K∗ such that

rank(Xk) = r, for all k ≥ K∗.

Hence, in particular, there is a separation between σr(Xk)
and σr+1(Xk+1) for all k sufficiently large. This implies
that ρr(Xk, Xk+1) → 0 as k → ∞, i.e., in words: the dis-
tance between the left (and right) singular subspaces corre-
sponding to the top r singular values of Xk and Xk+1 con-
verges to zero, as k →∞.

3.1.3 Asymptotic Convergence.

We now investigate the asymptotic convergence properties
of the sequence Xk, k ≥ 1. Proposition 8 shows that under
suitable assumptions, the sequence rank(Xk), k ≥ 1 con-
verges. The existence of a limit point of Xk is guaranteed
if the singular values of σ(Xk) remain bounded. It is not
immediately clear whether the sequence σ(Xk) will remain
bounded since several spectral penalty functions (like the
MC+ penalty) are bounded5. We address herein, the exis-
tence of a limit point of the sequence σ(Xk), and hence the
sequence Xk.

For the following proposition, we will assume that the
concave penalty function σ 7→ P (σ;λ, γ) on σ ≥ 0 is dif-
ferentiable and the gradient is bounded.

Proposition 11 LetUkdiag(σk)V ′k denote the rank-reduced
SVD of Xk. Let Ūm×r, V̄m×r denote a limit point of the se-
quence {Uk, Vk}, k ≥ 1, such that (Unk , Vnk) → (Ū , V̄ )
along a subsequence nk → ∞. Let ūi denote the ith col-
umn of Ū (and similarly for v̄i, V̄ ) and let us denote Θ̄ =
[vec(PΩ(ū1v̄

′
1)), . . . , vec(PΩ(ūrv̄′r))]. We have the follow-

ing:

5 Due to the boundedness of the penalty function, the boundedness
of the objective function does not necessarily imply that the sequence
σ(Xk) will remain bounded.
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(a) If rank(Θ̄) = r, then the sequenceXnk has a limit point
which is a first order stationary point.

(b) If λmin(Θ̄′Θ̄) + φP > 0, then the sequence Xnk con-
verges to a first order stationary point: X̄ = Ūdiag(σ̄)V̄ ′,
where σnk → σ̄.

Proof See Section 6.1.3

Proposition 8 describes sufficient conditions under which
the rank of the sequence Xk stabilizes after finitely many
iterations — it does not describe the boundedness of the
sequence Xk, which is addressed in Proposition 11. Note
that Proposition 11 does not imply that the rank of the se-
quence Xk stabilizes after finitely many iterations (recall
that Proposition 11 does not assume that the thresholding
operators are discontinuous, an assumption required by Propo-
sition 8).

3.2 Computing the Thresholding Operators

The operator (24) requires computing a thresholded SVD
of the matrix X̃k, as demonstrated by Proposition 1. The
thresholded singular values s`λ,γ(·) as in (30) will have many
zero coordinates due to the “sparsity promoting” nature of
the concave penalty. Thus, computing the thresholding oper-
ator (24) will typically require performing a low-rank SVD
on the matrix X̃k. While direct factorization based SVD
methods can be used for smaller problems where min{m,n}
is of the order of a thousand or so; for larger matrices, such
methods become computationally prohibitive — we thus re-
sort to iterative methods for computing low-rank SVDs for
large scale problems. Algorithms such as the block power
method; also known as block QR iterations, or those based
on the Lanczos method (Golub and Van Loan, 1983) are
quite effective in computing the top few singular value and
vectors of a matrix A, especially when the operations of
multiplying Ab1 and A′b2 (for vectors b1, b2 of matching
dimensions) can be done efficiently. Indeed, such matrix-
vector multiplications turn out to be quite computationally
attractive for our problem, since the computational cost of
multiplying X̃k and X̃ ′k with vectors of matching dimen-
sions is quite low. This is due to the structure of:

X̃k =
(
PΩ(Y ) + P⊥Ω (Xk) + `Xk

)
/(`+ 1)

=
1

`+ 1
PΩ(Y −Xk)︸ ︷︷ ︸

Sparse

+ Xk︸︷︷︸
Low-rank

, (32)

which admits a decomposition as the sum of a sparse matrix
and a low-rank matrix6. Note that the sparse matrix has the

6 We note that it is not guaranteed that the Xk’s will be of low-
rank across the iterations of the algorithm for k ≥ 1, even if they
are eventually, for k sufficiently large. However, in the presence of
warm-starts across (λ, γ) they are indeed, empirically, found to have

same sparsity pattern as the observed indices Ω. Decompo-
sition (32) is inspired by a similar decomposition that was
exploited effectively in the algorithm SOFT-IMPUTE

(Mazumder et al., 2010), where the authors use PROPACK
(Larsen, 2004) to compute the low-rank SVDs. In this paper,
we use the Alternating Least Squares (ALS)-stylized proce-
dure, which computes a low-rank SVD by solving the fol-
lowing nonlinear optimization problem:

min
Um×r̃,Vn×r̃

1
2
‖X̃k − UV ′‖2F , (33)

using alternating least squares—this is in fact, equivalent to
the block power method (Golub and Van Loan, 1983), in
computing a rank r̃ SVD of the matrix X̃k. Across the itera-
tions of NC-IMPUTE, we pass the warm-start information in
the U, V ’s obtained from a low-rank SVD of X̃k to compute
the low-rank SVD for X̃k+1. Empirically, this warm-start
strategy is found to be significantly more advantageous than
a black-box low-rank SVD stylized approach, as used in the
SOFT-IMPUTE algorithm (for example), where, at every it-
eration, a new low-rank SVD is computed from scratch via
PROPACK. This strategy quite naturally leads to a loss of
useful information about the left and right singular vectors,
which become closer to each other along the course of the
SOFT-IMPUTE iterations (as formalized by Section 3.1.2).
Using warm-start information across successive iterations
(i.e., k values) leads to notable gains in computational speed
(often reduces the total time to compute a family of solutions
by orders of magnitude), when compared to black-box SVD
stylized methods that do not rely on such warm-start strate-
gies. This improvement is also supported by theory — the
computational guarantee of block power iterations (Golub
and Van Loan, 1983) states that the subspace spanned by the
U matrix (in the factorization UV ′ in (33)) converges to that
of the top r̃ left singular vectors at the rate: Cγq , where, q
denotes the number of power iterations, γ depends upon the
ratio between the r̃ + 1 and r̃ singular values of the matrix
X̃k; andC depends upon the distance between: the initial es-
timate of (the subspace spanned by) U and the left top-r̃ set
of singular vectors of X̃k. The constant C is smaller with
a good warm-start, when compared to a random initializa-
tion. A similar argument applies for the right set of singular
vectors.

4 Numerical Experiments

In this section, we present a systematic experimental study
of the statistical properties of estimators obtained from (3)
for different choices of penalty functions. We perform our

low-rank as long as the regularization parameters are large enough to
result in a small rank solution. Typically, as we have observed in our
experiments, in the presence of warm-starts, the rank of Xk is found
to remain low across all iterations.
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experiments on a wide array of synthetic and real data in-
stances. Recall that the majority of the algorithmic guaran-
tees proved in Section 3 rely on the condition ν†(`)+ ` > 0.
For MC+ penalty functions, it is straightforward to verify
that ν†(0) > 0 as long as γ ∈ (1,∞]. Hence we will use
` = 0 in NC-IMPUTE throughout this section.

4.1 Synthetic Examples

We study three different examples, where, for the true low-
rank matrix M = LΦR′, we vary both the structure of the
left and right singular vectors in L and R, as well as the
sampling scheme used to obtain the observed entries in Ω.
Our basic model is Yij = Mij + εij , where we observe
entries (i, j) ∈ Ω. We consider different types of missing
patterns for Ω, and various signal-to-noise (SNR) ratios for
the Gaussian error term ε, defined here to be:

SNR =
var(vec(M))
var(vec(ε))

.

Accordingly, the (standardized) training and test error for
the model are defined as:

Training Error =
‖PΩ(Y − M̂)‖2F
‖PΩ(Y )‖2F

,

Test Error =
‖P⊥Ω (LΦR′ − M̂)‖2F
‖P⊥Ω (LΦR′)‖2F

,

where a value greater than one for the test error indicates that
the computed estimate M̂ does a worse job at estimating M
than the zero solution, and the training error corresponds to
the fraction of the error explained on the observed entries by
the estimate M̂ relative to the zero solution.

Example-A: In our first simulation setting, we use the model

Ym×n = Lm×rΦr×rR
′
r×n + εm×n,

where L and R are matrices generated from the random or-
thogonal model (Candès and Recht, 2009), and the singu-
lar values Φ = diag(φ1, . . . , φr) are randomly selected as
φ1, . . . , φr

iid∼ Uniform(0, 100). The set Ω is sampled uni-
formly at random. Recall that for this model, exact matrix
completion in the noiseless setting is guaranteed as long as
|Ω| ≥ Cmr log4m, for some universal constant C (Recht,
2011). Under the noisy setting, Mazumder et al. (2010) show
superior performance of nuclear norm regularization vis-à-
vis other matrix recovery algorithms (Cai et al., 2010; Ke-
shavan et al., 2010) in terms of achieving smaller test error.
For the purposes herein, we fix (m,n) = (800, 400) and
set the fraction of missing entries to |Ωc|/mn = 0.9 and
|Ωc|/mn = 0.95.

Example-B: In our second setting, we also consider the model

Ym×n = Lm×rΦr×rR
′
r×n + εm×n,

but we now select matrices L and R which do not satisfy
the incoherence conditions required for full matrix recovery.
Specifically, for the choices of (m,n, r) = (800, 400, 10)
and |Ωc|/mn = 0.9, we selectL andR to be block-diagonal
matrices of the form

L = diag(L1, . . . , L5), R = diag(R1, . . . , R5),

where Li ∈ R160×2 and Ri ∈ R80×2, i = 1, . . . , 5, are
random matrices with scaled Gaussian entries. The singular
values are again sampled as φ1, . . . , φr

iid∼ Uniform(0, 100)
with Ω being uniformly random over the set of indices. For
this model, successful matrix completion is not guaranteed
even for the noiseless problem with the nuclear norm re-
laxation, as the left and right singular vectors are not suffi-
ciently spread. We observe the usefulness of the nonconvex
regularized estimators in this regime, in our experimental
results.

Example-C: In our third simulation setting, for the choice
of (m,n, r) = (100, 100, 10), we also generate Ym×n =
Lm×rΦr×rR′r×n+εm×n from the random orthogonal model
as in our first setting, but we now allow the observed entries
inΩ to follow a nonuniform sampling scheme. In particular,
we fix Ωc = {1 ≤ i, j ≤ 100 : 1 ≤ i ≤ 50, 51 ≤ j ≤ 100}
so that

PΩ(Y ) =
[
Y11 0
Y21 Y22

]
where, Y =

[
Y11 Y12

Y21 Y22

]
,

with the fraction of missing entries thus being |Ωc|/mn =
0.25. This is again a challenging simulation setting in which
both the uniform (Candès and Recht, 2009) and independent
(Chen et al., 2014) sampling scheme assumptions in Ω are
violated. Our aim again is to explore whether the nonconvex
MC+ family is able to outperform nuclear norm regulariza-
tion in this regime.

For all three settings above, we choose a 100 × 25 grid
of (λ, γ) values as follows. In each simulation instance we
fix λ1 = ‖PΩ(Y )‖2, the smallest value of λ for which the
nuclear norm regularized solution is zero, and set λ100 =
0.001·λ1. Keeping in mind that NC-IMPUTE benefits greatly
from using warm starts, we construct an equally spaced se-
quence of 100 values of λ decreasing from λ1 to λ100. We
choose 25 γ-values in a logarithmic grid from 5000 to 1.1.
The results displayed in Figures 4 – 6 show averages of
training and test errors, as well as recovered ranks of the
solution matrix M̂λ,γ for the values of (λ, γ), taken over
50 simulations under all three problem instances. The plots
including rank reveal how effective the MC+ family is at
recovering the true rank while minimizing prediction error.
Throughout the simulations we keep an upper bound of the
operating rank as 50.
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Example-A (Low SNR, less missing entries)
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(a) ROM, 90% missing, SNR = 1, true rank =
10
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(b) ROM, 90% missing, SNR = 1, true rank = 5
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(c) ROM, 90% missing, SNR = 1, true rank =
10
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(d) ROM, 90% missing, SNR = 1, true rank = 5

Fig. 4 (Color online) Random Orthogonal Model (ROM) simulations with SNR = 1. The choice γ = +∞ refers to nuclear norm regularization
as provided by the SOFT-IMPUTE algorithm. We also include the choice γ = 1 to represent the rank regularized approach. The least nonconvex
alternatives at γ = 100 and γ = 80 behave similarly to nuclear norm, although with better prediction performance. The choices of γ = 1, 5, 10
result in excessively aggressive fitting behavior for the true rank = 10 case, but improve significantly in prediction error and recovering the true
rank in the sparser true rank = 5 setting. In both scenarios, the intermediate models with γ = 30 and γ = 20 fare the best, with the former
achieving the smallest prediction error, while the latter estimates the actual rank of the matrix. Values of test error larger than one are not displayed
in the figure.

4.1.1 Discussion of Experimental Results

We devote Figures 4 and 5 to analyze the simpler random
orthogonal model (Example-A), leaving the more challeng-
ing coherent and nonuniform sampling settings (Example-
B and Example-C) for Figure 6. In each case, the captions
detail the results which we summarize here. The noise is
quite high in Figure 4 with SNR = 1 and 90% of the en-
tries missing in both displayed settings, while the model
complexity decreases from a true rank of 10 to 5. The un-
derlying true ranks remain the same in Figure 5, but the
noise level has decreased to SNR = 5 with the missing en-
tries increasing to 95%. For each model setting considered,
all nonconvex methods from the MC+ family outperform
nuclear norm regularization in terms of prediction perfor-
mance, while members of the MC+ family with smaller val-
ues of γ are better at estimating the correct rank. The choices
of γ = 30 and γ = 20 have the best performance in Figure

4 (best prediction errors around the true ranks), while more
nonconvex alternatives fare better in the high-sparsity, low-
noise setting of Figure 5. In both figures, the performance of
nuclear norm regularization is somewhat similar to the least
nonconvex alternative displayed at γ = 100, however, the
bias induced in the estimation of the singular values of the
low-rank matrix M leads to the worst bias-variance trade-
off among all training versus test error plots for the settings
considered.

While the nuclear norm relaxation provides a good con-
vex approximation for the rank of a matrix (Recht et al.,
2010), these examples show that nonconvex regularization
methods provide a superior mechanism for rank estimation.
This is reminiscent of the performance of the MC+ penalty
in the context of variable selection within high-dimensional
sparse regression models. Although the `1 penalty function
represents the best convex approximation to the `0 penalty,
the gap bridged by the nonconvex MC+ penalty family pro-
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Example-A (High SNR, more missing entries)
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(a) ROM, 95% missing, SNR = 5, true rank =
10
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(b) ROM, 95% missing, SNR = 5, true rank = 5
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(c) ROM, 95% missing, SNR = 5, true rank =
10
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(d) ROM, 95% missing, SNR = 5, true rank = 5

Fig. 5 (Color online) Random Orthogonal Model (ROM) simulations with SNR = 5. The benefits of nonconvex regularization are more evident in
this high-sparsity, high-missingness scenario. While the γ = 100 and γ = 80 models distance themselves more from nuclear norm, the remaining
members of the MC+ family essentially minimize prediction error while correctly estimating the true rank. This is especially true in panel (d),
where the best predictive performance of the model γ = 5 at the correct rank is achieved under a low-rank truth and high SNR setting.

vides a better basis for model selection, and hence rank es-
timation in the low-rank matrix completion setting.

For the coherent and nonuniform sampling settings of
Figure 6, we choose the small noise scenario SNR = 10
in order to favor all considered models. Despite the absence
of any theoretical guarantees for successful matrix recovery,
the nuclear norm regularization approach achieves a rela-
tively small prediction error in all displayed instances. Nev-
ertheless, the nonconvex MC+ family of penalties seems
empirically more adept at overcoming the limitations of nu-
clear norm penalizated matrix completion in these challeng-
ing simulation settings. In particular, the most aggressive
nonconvex fitting behavior at γ = 5 achieves excellent pre-
diction performance in the nonuniform sampling setting
while correctly estimating the true rank of the coherent model.

4.2 Real Data Examples: MovieLens and Netflix datasets

We now use the real world recommendation system datasets
ml100k and ml1m provided by MovieLens7, as well as the
famous Netflix competition data to compare the usual nu-
clear norm approach with the MC+ regularizers. The dataset
ml100k consists of 100, 000 movie ratings (1–5) from 943
users on 1, 682 movies, whereas ml1m includes 1, 000, 209
anonymous ratings from 6, 040 users on 3, 952 movies. In
both datasets, for all regularization methods considered, a
random subset of 80% of the ratings were used for training
purposes; the remaining were used as the test set.

We also choose a similar 100× 25 grid of (λ, γ) values,
but for each value of λ in the decreasing sequence, we use an
“operating rank” threshold somewhat larger than the rank of
the previous solution, with the goal of always obtaining so-
lution ranks smaller than the operating threshold. Following
the approach of Hastie et al. (2016), we perform row and col-

7 Available at http://grouplens.org/datasets/
movielens/
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Example-B Example-C
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(a) Coherent, 90% missing, SNR = 10, true rank = 10
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(b) NUS, 25% missing, SNR = 10, true rank = 10
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(c) Coherent, 90% missing, SNR = 10, true rank = 10
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(d) NUS, 25% missing, SNR = 10, true rank = 10

Fig. 6 (Color online) Coherent and Nonuniform Sampling (NUS) simulations with SNR = 10. nonconvex regularization also proves to be a
successful strategy in these challenging scenarios, particularly in the nonuniform sampling setting where the MC+ family exhibits a monotone
decrease in prediction error as γ approaches 1. Again, the model γ = 5 estimates the correct rank under high SNR settings. Although nuclear
norm achieves a relatively small prediction error, compared with previous simulation settings, the MC+ family still provides a superior and more
robust mechanism for regularization.

umn centering of the corresponding (incomplete) data matri-
ces as a preprocessing step.

Figure 7 compares the performance of nuclear norm reg-
ularization with the MC+ family of penalties on these datasets,
in terms of the prediction error (RMSE) obtained from the
left out portion of the data. While the fitting behavior at
γ = 5 seems to be overly aggressive in these instances,
the choice γ = 10 achieves the best test set RMSE with
a minimum solution rank of 20 for the ml100k data. With a
higher test RMSE, nuclear norm regularization achieves its
minimum with a less parsimonious model of rank 62. Simi-
lar results hold for the ml1m data, where the model γ = 15
achieves near optimal test RMSE at a solution rank of 115,
while the best estimation accuracy of SOFT-IMPUTE occurs
for ranks well over 200.

The Netflix competition data consists of 100, 480, 507
ratings from 480, 189 users on 17, 770 movies. A desig-
nated probe set, a subset of 1, 408, 395 of these ratings, was
distributed to participants for calibration purposes, leaving
99, 072, 112 for training. We did not consider the probe set
as part of this numerical experiment, instead choosing

1, 500, 000 randomly selected entries as test data with the
remaining 97, 572, 112 used for training purposes. Similar
to the MovieLens data, we select a 20 × 25 grid of (λ, γ)
values which adaptively chooses an operating rank thresh-
old, and also remove row and columns means for prediction
purposes.

As shown in Figure 8, the MC+ family again yields bet-
ter prediction performance under more parsimonious mod-
els. On average, and for a convergence tolerance of 0.001
in Algorithm 1, the sequence of twenty models took under
10.5 hours of computing on an Intel E5-2650L cluster with
2.6 GHz processor. We note that our main goal here is to
show the feasibility of applying NC-IMPUTE to the MC+
family on a Netflix sized dataset, and further reductions in
computation time may be possible with specialized imple-
mentations. It seems that using a family of nonconvex penal-
ties leads to models with better statistical properties, when
compared to the nuclear norm regularized problem and the
rank constrained problem (obtained via HARD-IMPUTE, for
example).
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Real Data Example: MovieLens
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(a) MovieLens100k, 20% test data
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(b) MovieLens1m, 20% test data
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(c) MovieLens100k, 20% test data
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(d) MovieLens1m, 20% test data

Fig. 7 (Color online) MovieLens 100k and 1m data. For each value of λ in the solution path, an operating rank threshold (capped at 250) larger
than the rank of the previous solution was employed.

Real Data Example: Netflix
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(a) Netflix, test data=1, 500, 000 ratings
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(b) Netflix, test data=1, 500, 000 ratings

Fig. 8 (Color online) Netflix competition data. The model γ = 10 achieves optimal test set RMSE of 0.8276 for a solution rank of 105.

5 Conclusions and Discussions

In this paper we present a computational study for the noisy
matrix completion problem with nonconvex spectral penal-

ties — we consider a family of spectral penalties that bridge
the convex nuclear norm penalty and the rank penalty, lead-
ing to a family of estimators with varying degrees of shrink-
age and nonconvexity. We propose NC-IMPUTE— an al-
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gorithm that appropriately modifies and enhances the EM-
stylized procedure SOFT-IMPUTE (Mazumder et al., 2010),
to compute a two dimensional family of solutions with spe-
cialized warm-start strategies. The main computational bot-
tleneck of our algorithm is a low-rank SVD of a structured
matrix, which is performed using a block QR stylized strat-
egy that makes effective use of singular subspace warm-start
information across iterations. We discuss computational guar-
antees of our algorithm, including a finite time complexity
analysis to a first order stationary point. We present a sys-
tematic study of various statistical and structural properties
of spectral thresholding functions, which form a main build-
ing block in our algorithm. We demonstrate the impressive
gains in statistical properties of our framework on a wide ar-
ray of synthetic and real datasets. The current work leaves
open several important directions for future research.

– Statistical guarantees for the nonconvex method. In ad-
dition to the comprehensive algorithmic analysis pre-
sented in the paper, it is of great importance to estab-
lish statistical theories such as estimation error bounds
to shed new lights on the empirical success of the pro-
posed nonconvex method. In particular, given that our
algorithm returns stationary points, it would be interest-
ing to obtain statistical errors for these local optima. In
fact, such type of results have been derived for regular-
ized M-estimators in some general multivariate analy-
sis settings when the penalty function is separable (Loh
and Wainwright, 2015). A notable difficulty in the ma-
trix completion problem is that the penalty is imposed on
the singular values and is hence a non-separable function
of the matrix, which will require more delicate analyses.
Moreover, we should point out that statistical analysis
of nonconvex optimization methods for matrix comple-
tion has been actively investigated in recent years. See
the works surveyed in the last paragraph of Introduction
and Chi et al. (2019) for a thorough review. However,
the nonconvex methods studied in this line of research
are exclusively based on low-rank matrix factorization
formulation, and the regularization from these methods
is less general than the ones in our method. The noncon-
vexity of the former methods is largely due to the ma-
trix factorization which enables the reduction of mem-
ory and computation costs, while the nonconvexity of
our method arises from the nonconvex penalties that aim
to attenuate the bias.

– Sharp comparison between nonconvex and convex meth-
ods. Referring to both simulation study and real data
analysis in Section 4, we observe that the value of γ lead-
ing to the optimal matrix completion performance lies
between 5 and 30. Recall that the penalty parameter γ in
the MC+ penalties controls the amount of nonconvexity
in the regularization. As γ decreases from∞ down to 1,
the penalty behaves closer to `0 and farther away from

`1. Hence, the empirical results in Section 4 demonstrate
that neither the convex approach (γ = +∞) nor the
most aggressive nonconvex one (γ = 1) is the opti-
mal choice. This phenomenon is in fact a manifestation
of bias-variance tradeoff. A smaller value of γ brings
more “nonconvexity” to the regularization and hence in-
duces less bias as expected. On the other hand, more
“nonconvexity” means more aggressiveness in the selec-
tion of low rank matrices and thus results in larger vari-
ance. Consequently, for a given level of signal-to-noise
ratio in the observations, the optimal γ is the one that
strikes the best balance between bias and variance. This
point of view lends further support to our proposed non-
convex method which incorporates the entire family of
nonconvex penalties instead of some particular instanti-
ations. Recent works by a subset of the authors (Zheng
et al., 2017; Wang et al., 2019) have given sharp the-
oretical characterizations of such a phenomenon in the
high-dimensional sparse regression and variable selec-
tion problems. The results there reveal that among the
`q penalties for q ∈ [0, 2], as the signal-to-noise ra-
tio (SNR) decreases, the optimal value of q will move
from 0 towards 2. See also the work of Hazimeh and
Mazumder (2019); Mazumder et al. (2017) for similar
observations regarding the overfitting of `0-based esti-
mators for low SNR regimes. For the MC+ penalties in
the matrix completion problem, γ plays a similar role as
q does in the regression problem. It would be of great
interest to derive analogue theories for the matrix com-
pletion problem and establish a sharp characterization of
the proposed nonconvex method.

6 Appendix

6.1 Additional Technical Material

Lemma 1 (Marchenko-Pastur law (Bai and Silverstein, 2010)).
LetX ∈ Rm×n, whereXij are iid with E(Xij) = 0,E(X2

ij) =
1, and m > n. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues
of Qm = 1

mX
′X . Define the random spectral measure

µn =
1
n

n∑

i=1

δλi .

Then, assuming n/m→ α ∈ (0, 1], we have

µn(·, ω)→ µ a.s.,

where µ is a deterministic measure with density

dµ

dx
=

√
(α+ − x)(x− α−)

2παx
I(α− ≤ x ≤ α+).

Here, α+ = (1 +
√
α)2 and α− = (1−√α)2.
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6.1.1 Proof of Proposition 5.

Proof In the following proof, we make use of the notation:
Θ1(·) and Θ2(·), defined as follows. For two positive se-
quences ak and bk, we say ak = Θ2(bk) if there exists a
constant c > 0 such that ak ≥ cbk and we say ak = Θ1(bk),
whenever, ak = Θ2(bk) and bk = Θ2(ak).

We first consider the case λn = Θ1(
√
m) For simplicity,

we assume λn = ζ
√
m for some constant ζ > 0. Denote

df(Sλn,γ(Z)) = Dλn,γ , and use Tt1,t2 to represent
√
mt1sλn,γ(

√
mt1)−√mt2sλn,γ(

√
mt2)

mt1 −mt2
1(t1 6= t2).

Adopting the notation from Lemma 1, it is not hard to verify
that

Dλn,γ =nEµn
{
s′λn,γ(

√
mt1) + |m− n|sλn,γ(

√
mt1)√

mt1

}

+ n2Eµn(Tt1,t2) ,

where t1, t2
iid∼ µn. A quick check of the relation between

sλn,γ and gζ,γ yields

Dλn,γ

mn
=

1
m

Eµns′λn,γ(
√
mt1) +

(
1− n

m

)
Eµngζ,γ(t1) +

n

m
Eµn

{
t1gζ,γ(t1)− t2gζ,γ(t2)

t1 − t2
1(t1 6= t2)

}
.

Due to the Lipschitz continuity of the functions sλn,γ(x)
and xgζ,γ(x), we obtain
∣∣∣Dλn,γ

mn

∣∣∣ ≤ γ

m(γ − 1)
+
(

1− n

m

)
+
n

m

(
2γ − 1
2γ − 2

)
.

Hence, there exists a positive constant Cα, such that for suf-
ficiently large n,

∣∣∣Dλn,γ

mn

∣∣∣ ≤ Cα, a.s.

Let T1, T2 be two independent random variables generated
from the Marchenko-Pastur distribution µ. If we can show

Dλn,γ

mn

a.s.→

(1− α)Egζ,γ(T1) + αE
(
T1gζ,γ(T1)− T2gζ,γ(T2)

T1 − T2

)
,

then by the Dominated Convergence Theorem (DCT), we
conclude the proof in the λn = Θ1(

√
m) regime. Note im-

mediately that

1
m

Eµns′λn,γ(
√
mt1)→ 0 a.s. (34)

Moreover, given that gζ,γ(·) is bounded and continuous, the
Marchenko-Pastur theorem in Lemma 1 implies
(

1− n

m

)
Eµngζ,γ(t1)→ (1− α)Eµgζ,γ(T1) a.s. (35)

Since (t1, t2) d→ (T1, T2), and the discontinuity set of the
function t1gζ,γ(t1)−t2gζ,γ(t2)

t1−t2 1(t1 6= t2) has zero probability
under the measure induced by (T1, T2), by the continuous
mapping theorem,

t1gζ,γ(t1)− t2gζ,γ(t2)
t1 − t2

1(t1 6= t2) d→

T1gζ,γ(T1)− T2gζ,γ(T2)
T1 − T2

1(T1 6= T2) as n→∞ .

Also, due to the boundedness of t1gζ,γ(t1)−t2gζ,γ(t2)
t1−t2 1(t1 6=

t2), it holds that

Eµn
{
t1gζ,γ(t1)− t2gζ,γ(t2)

t1 − t2
1(t1 6= t2)

}
a.s.→

Eµ
{
T1gζ,γ(T1)− T2gζ,γ(T2)

T1 − T2
1(T1 6= T2)

}
. (36)

Combining (34) – (36) completes the proof for the λn =
Θ1(
√
m) case.

When λn = o(
√
m), we can readily see that

Eµn1(
√
mt1 ≥ λnγ)→ 1, a.s.

Using that both sλn,γ(
√
mt1)√

mt1
and Tt1,t2 are bounded, we

have, almost surely

Eµn
sλn,γ(

√
mt1)√

mt1
=Eµn1(

√
mt1 ≥ λnγ)+

Eµn
{
sλn,γ(

√
mt1)√

mt1
1(
√
mt1 < λnγ)

}
→ 1

and

Eµn(Tt1,t2) =Eµn1(
√
mt1 ≥ λnγ)1(

√
mt2 ≥ λnγ) + o(1)

→ 1.

Invoking DCT completes the proof. Similar arguments hold
for the case λn = Θ2(

√
m).

6.1.2 Proof of Proposition 10

Proof Observe that R as defined in Proposition 9 can be
written as:

R = ÃṼ1 − Ũ1Σ̃1 + (A− Ã)Ṽ1 = (A− Ã)Ṽ1 (37)

where, above we have used the fact that ÃṼ1 = Ũ1Σ̃1,
which follows from the definition of the SVD of Ã. By a
simple inequality it follows that

‖R‖2 ≤ ‖(A− Ã)‖2‖Ṽ1‖2 = ‖(A− Ã)‖2, (38)

where we have used the the fact that ‖Ṽ1‖2 = 1. Similarly,
we have an analogous result for Q:

‖Q‖2 ≤ ‖(A− Ã)‖2‖Ũ1‖2 = ‖(A− Ã)‖2. (39)
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Note that (38) and (39) together imply that if ‖Ã − A‖2 is
small, then so are ‖R‖2, ‖Q‖2.

We now apply (31) (Proposition 9) with A = Xk and
Ã = Xk+1 and r1 = p, to arrive at the proof of Proposi-
tion 10.

6.1.3 Proof of Proposition 11

Proof Proof of Part (a):
Let us write the stationary conditions for every update:

Xk+1 = arg min
X

F`(X;Xk).

We set the subdifferential of the map X 7→ F`(X;Xk) to
zero at X = Xk+1:
(
Xk+1 −

(
PΩ(Y ) + P⊥Ω (Xk)

))

+ `(Xk+1 −Xk) + Uk+1∇k+1V
′
k+1 = 0, (40)

where Xk+1 = Uk+1diag(σk+1)V ′k+1 is the SVD of Xk+1.
Note that the term: Uk+1∇k+1V

′
k+1 in (40), is a subdiffer-

ential (Lewis, 1995) of the spectral function:

X 7→
∑

i

P (σi(X);λ, γ),

where∇k+1 is a diagonal matrix with the ith diagonal entry
being a derivative of the map σi 7→ P (σi;λ, γ) (on σi ≥ 0),
denoted by ∂P (σk+1,i;λ, γ)/∂σi for all i. Note that (40)
can be rewritten as:

PΩ(Xk+1)− PΩ(Y ) + Uk+1∇k+1V
′
k+1

+
(
P⊥Ω (Xk+1 −Xk) + `(Xk+1 −Xk)

)
︸ ︷︷ ︸

(a)

= 0.

As k → ∞, term (a) converges to zero (See Proposition 7)
and thus, we have:

PΩ(Xk+1)− PΩ(Y ) + Uk+1∇k+1V
′
k+1 → 0.

Let us denote the ith column of Uk by uk,i, and use a similar
notation for Vk and vk,i. Let rk+1 denote the rank of Xk+1.
Hence, we have:
rk+1∑

i=1

σk+1,iPΩ(uk+1,iv
′
k+1,i)−PΩ(Y )+Uk+1∇k+1V

′
k+1 → 0.

Multiplying the left and right hand sides of the above by
u′k+1,j and vk+1,j , we have the following:

rk+1∑

i=1

σk+1,iu
′
k+1,jPΩ(uk+1,iv

′
k+1,i)vk+1,j

− u′k+1,jPΩ(Y )vk+1,j +∇k+1,j → 0,

for j = 1, . . . , rk+1. Let
{
Ū , V̄

}
denote a limit point of

the sequence {Uk, Vk} (which exists since the sequence is

bounded); and let r be the rank of Ū and V̄ . Let us now
study the following equations8:

r∑

i=1

σ̄j ū
′
jPΩ(ūiv̄′i)v̄j−ū′jPΩ(Y )v̄j+∇̄j = 0, j = 1, . . . , r.

(41)

Using the notation θ̄j = vec
(
PΩ(ūj v̄′j)

)
and ȳ = vec(PΩ(Y )),

we note that (41) are the first order stationary conditions for
a point σ̄ for the following penalized regression problem:

min
σ

1
2
‖

r∑

j=1

σj θ̄j − ȳ‖22 +
r∑

j=1

P (σj ;λ, γ), (42)

with σ ≥ 0.
If the matrix Θ̄ = [θ̄1, . . . , θ̄r] (note that Θ̄ ∈ Rmn×r)

has rank r, then any σ that satisfies (41) is finite — in par-
ticular, the sequence σk is bounded and has a limit point: σ̄
which satisfies the first order stationary condition (41).

Proof of Part (b):
Furthermore, if we assume that

λmin(Θ̄′Θ̄) + φP > 0,

then (42) admits a unique solution σ̄, which implies that σk
has a unique limit point, and hence the sequence σk neces-
sarily converges.

6.2 Additional Simulation Results

This section contains additional numerical results from the
simulation study in Section 4.1.

– To demonstrate the variation of the procedures in the ex-
periments, we plot the averaged value and standard error
of both test error and rank for some representative non-
convex penalty functions. Specifically, under each sce-
nario considered in Section 4.1, we pick the nonconvex
penalty that yields the best prediction and rank estima-
tion performance. For each picked penalty, we plot the
averaged value of test error and rank along with the as-
sociated standard error, against the tuning parameter λ.
The results are shown in Figures 9, 10, and 11. As is
clear form the figures, the standard error is typically (at
least) one order of magnitude smaller than the average.
Moreover, the general patterns of test error and rank on
the solution path are expected, except for a few points
corresponding to very small values of λ. The irregular-
ity of these few points occurs probably because the so-
lutions are getting unstable as the nonconvex regulariza-
tion becomes weak when λ is significantly small.

8 Note that we do not assume that the sequence σk has a limit point.
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Example-A (Low SNR, less missing entries)
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(a) ROM, 90% missing, SNR = 1, true rank = 10
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(b) ROM, 90% missing, SNR = 1, true rank = 5
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(c) ROM, 90% missing, SNR = 1, true rank = 10
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(d) ROM, 90% missing, SNR = 1, true rank = 5

Fig. 9 Random Orthogonal Model (ROM) simulations with SNR = 1. The optimal nonconvex penalties are obtained at γ = 30 and γ = 20 under
the two scenarios respectively. The integers from 1 to 100 on the x-axis index the grid of 100 values of λ (from largest to smallest) as described in
Section 4.1.

– To examine the rank dynamics of the updates in NC-
IMPUTE, we compute the number of iterations that the
algorithm takes for the convergence of the rank. We choose
the same six non-convex penalties as above and eval-
uate the rank stabilization for several values of λ. The
results are summarized in Figure 12. One clearly ob-
serves that except for few instances, it takes less than
10 iterations for the rank to stabilize. Moreover, when
the penalty is more “nonconvex” (i.e., γ is smaller), the
rank stabilization occurs earlier. These empirical results
provide complementary information on rank stabiliza-
tion that has been theoretically investigated in 3.1.1.
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Example-A (High SNR, more missing entries)
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Fig. 10 Random Orthogonal Model (ROM) simulations with SNR = 5. The optimal nonconvex penalties are obtained at γ = 30 and γ = 5 under
the two scenarios respectively. The integers from 1 to 100 on the x-axis index the grid of 100 values of λ (from largest to smallest) as described in
Section 4.1.
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Example-B Example-C
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(a) Coherent, 90% missing, SNR = 10, true rank = 10
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(b) NUS, 25% missing, SNR = 10, true rank = 10
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(c) Coherent, 90% missing, SNR = 10, true rank = 10

0 20 40 60 80 100

0
10

20
30

40
50

Index of  λ 

Ra
nk

γ = 5

(d) NUS, 25% missing, SNR = 10, true rank = 10

Fig. 11 Coherent and Nonuniform Sampling (NUS) simulations with SNR = 10. The optimal nonconvex penalties are both obtained at γ = 5
under the two scenarios respectively. The integers from 1 to 100 on the x-axis index the grid of 100 values of λ (from largest to smallest) as
described in Section 4.1.
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Fig. 12 The y-axis denotes the number of iterations NC-IMPUTE takes to stabilize the rank. The integers on the x-axis index some values on a grid
of λ (from largest to smallest) as described in Section 4.1. The six plots represent the six scenarios considered in Section 4.1: (a)-(d) correspond
to the four scenarios of Example-A; (e) covers Example-B; (f) is for Example-C. Each procedure is repeated 10 times.
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