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Abstract In this paper, we explore neural network models
that learn to associate segments of spoken audio captions
with the semantically relevant portions of natural images
that they refer to. We demonstrate that these audio-visual as-
sociative localizations emerge from network-internal repre-
sentations learned as a by-product of training to perform an
image-audio retrieval task. Our models operate directly on
the image pixels and speech waveform, and do not rely on
any conventional supervision in the form of labels, segmen-
tations, or alignments between the modalities during train-
ing. We perform analysis using the Places 205 and ADE20k
datasets demonstrating that our models implicitly learn se-
mantically coupled object and word detectors.

Keywords Vision and language, sound, speech, multimodal
learning, language acquisition, visual object discovery,
unsupervised learning, self-supervised learning
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Fig. 1: The input to our models: images paired with wave-
forms of speech audio.

1 Introduction

Babies face an impressive learning challenge: they must learn
to visually perceive the world around them, and to use lan-
guage to communicate. They must discover the objects in
the world and the words that refer to them. They must solve
this problem when both inputs come in raw form: unseg-
mented, unaligned, and with enormous appearance variabil-
ity both in the visual domain (due to pose, occlusion, illumi-
nation, etc.) and in the acoustic domain (due to the unique
voice of every person, speaking rate, emotional state, back-
ground noise, accent, pronunciation, etc.). Babies learn to
understand speech and recognize objects in an extremely
weakly supervised fashion, aided not by ground-truth anno-
tations, but by observation, repetition, multimodal context,
and environmental interaction [12,55]. In this paper, we do
not attempt to model the cognitive development of humans,
but instead ask whether a machine can jointly learn spoken
language and visual perception when faced with similar con-
straints; that is, with inputs in the form of unaligned, unan-
notated raw speech audio and images (Figure 1). To that end,
we present models capable of jointly discovering words in
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raw speech audio, objects in raw images, and associating
them with one another.

There has recently been a surge of interest in bridging
the vision and natural language processing (NLP) commu-
nities, in large part thanks to the ability of deep neural net-
works to effectively model complex relationships within mul-
timodal data. These visual-linguistic models have immense
potential to address challenging problems within both com-
munities. Language offers a far more flexible and naturalis-
tic way of annotating visual data that goes beyond rigidly de-
fined class labels. It also opens the door for completely new
problems, such as caption generation and visual question an-
swering (VQA). Because human language is grounded in the
real world, the linguistic representations that can be learned
with the benefit of visual context have the potential to be far
more semantically rich than text-only models.

Current work bringing together vision and language [2,
14,16,29,33,39,40,46,47,58,59,62] relies on written text.
In this situation, the linguistic information is presented in
a pre-processed form in which words have been segmented
and clustered. The text word car has no variability between
sentences (other than synonyms, capitalization, etc.), and it
is already segmented apart from other words. This is dra-
matically different from how children learn language. The
speech signal is continuous, noisy, unsegmented, and ex-
hibits a wide number of non-lexical variabilities. The prob-
lem of segmenting and clustering the raw speech signal into
discrete words is analogous to the problem of visual object
discovery in images - the goal of this paper is to address both
problems jointly.

Recent work has focused on cross modal learning be-
tween vision and sounds [3,4,42,43]. This work has focused
on using ambient sounds and video to discover sound gen-
erating objects in the world. In our work we will also use
both vision and audio modalities except that the audio corre-
sponds to speech. In this case, the problem is more challeng-
ing as the portions of the speech signal that refer to objects
are shorter, creating a more challenging temporal segmenta-
tion problem, and the number of categories is much larger.
Using vision and speech was first studied in [23], but it was
only used to relate full speech signals and images using a
global embedding. Therefore the results focused on image
and speech retrieval. Here we introduce a model able to seg-
ment both words in speech and objects in images without
supervision.

The premise of this paper is as follows: given an im-
age and a raw speech audio recording describing that im-
age, we propose a neural model which can highlight the rel-
evant regions of the image as they are being described in
the speech. What makes our approach unique is the fact that
we do not use any form of conventional speech recognition
or transcription, nor do we use any conventional object de-
tection or recognition models. In fact, both the speech and

images are completely unsegmented, unaligned, and unan-
notated during training, aside from the assumption that we
know which images and spoken captions belong together as
illustrated in Figure 1. We train our models to perform se-
mantic retrieval at the whole-image and whole-caption level,
and demonstrate that detection and localization of both vi-
sual objects and spoken words emerges as a by-product of
this training.

2 Prior Work

2.1 Visual Object Recognition and Discovery

Classification of visual objects (or other patterns) is a long-
standing problem within the computer vision community,
with the MNIST [35] handwritten digit task being a clas-
sic and widely known example. Recent progress in the field
has been driven in part by recurring challenge competitions
such as ISLVRC [51]. Since 2012, the task has been domi-
nated by deep convolutional neural networks (CNNs), popu-
larized by [34]. Since that time, improved variants of the ba-
sic CNN architecture have continued to push the state of the
art [24,54]. While classification asks the question of “what”,
object detection and localization (also part of the ISLVRC
suite of tasks) address the problem of “where”. State of the
art systems are trained using bounding box annotations for
the training data [19,45], however other works investigate
weakly-supervised or unsupervised object localization [5,7,
9,65]. A large body of research has also focused on unsuper-
vised visual object discovery, in which case there is no la-
beled training dataset available. One of the first works within
this realm is [60], which utilized an iterative clustering and
classification algorithm to discover object categories. Fur-
ther works borrowed ideas from textual topic models [52],
assuming that certain sets of objects generally appear to-
gether in the same image scene. More recently, CNNs have
been adapted to this task [10,20], for example by learning to
associate image patches which commonly appear adjacent
to one another.

2.2 Unsupervised Speech Processing

Automatic speech recognition (ASR) systems have recently
made great strides thanks to the revival of deep neural net-
works. Training a state-of-the-art ASR system requires thou-
sands of hours of transcribed speech audio, along with expert-
crafted pronunciation lexicons and text corpora covering mil-
lions, if not billions of words for language model training.
The reliance on expensive, highly supervised training paradigms
has restricted the application of ASR to the major languages
of the world, accounting for a small fraction of the more than
7,000 human languages spoken worldwide [37]. Within the
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speech community, there is a continuing effort to develop
algorithms less reliant on transcription and other forms of
supervision. Generally, these take the form of segmentation
and clustering algorithms whose goal is to divide a collec-
tion of spoken utterances at the boundaries of phones or
words, and then group together segments which capture the
same underlying unit. Popular approaches are based on dy-
namic time warping [26,28,44], or Bayesian generative mod-
els of the speech signal [31,36,41]. Neural networks have
thus far been mostly utilized in this realm for learning frame-
level acoustic features [30,48,56,64].

2.3 Fusion of Vision with Language and Sound

Joint modeling of images and natural language text has gained
rapidly in popularity, encompassing tasks such as image cap-
tioning [14,33,29,58,62], visual question answering (VQA)
[2,16,39,40,47], multimodal dialog [59], and text-to-image
generation [46]. While most work has focused on represent-
ing natural language with text, there are a growing num-
ber of papers attempting to learn directly from the speech
signal. A major early effort in this vein was the work of
Roy [50,49], who learned correspondences between images
of objects and the outputs of a supervised phoneme recog-
nizer. Recently, it was demonstrated by Harwath et al [23]
that semantic correspondences could be learned between im-
ages and speech waveforms at the signal level, with subse-
quent works providing evidence that linguistic units approx-
imating phonemes and words are implicitly learned by these
models [1,8,11,21,32]. This paper follows in the same line
of research, introducing the idea of “matchmap” networks
which are capable of directly inferring semantic alignments
between acoustic frames and image pixels.

A number of recent models have focused on integrating
other acoustic signals to perform unsupervised discovery of
objects and ambient sounds [3,4,42,43]. Our work concen-
trates on speech and word discovery. But combining both
types of signals (speech and ambient sounds) opens a num-
ber of opportunities for future research beyond the scope of
this paper.

3 Spoken Captions Dataset

For training our models, we use the Places Audio Caption
dataset [23,21]. This dataset contains approximately 200,000
recordings collected via Amazon Mechanical Turk of people
verbally describing the content of images from the Places
205 [67] image dataset. We augment this dataset by collect-
ing an additional 200,000 captions, resulting in a grand total
of 402,385 image/caption pairs for training and a held-out
set of 1,000 additional pairs for validation.

(a) (b)

(c) (d)

Fig. 2: Statistics of the 400k spoken captions. From left to
right, the plots represent (a) the histogram over caption du-
rations in seconds, (b) the histogram over caption lengths in
words, (c) the estimated word frequencies across the cap-
tions, and (d) the number of captions per speaker. Note that
the rapid dropoff in the tail of (d) is assocated with the
speakers who only provided a single caption.

In order to perform a fine-grained analysis of our models
ability to localize objects and words, we collected an addi-
tional set of captions for 9,895 images from the ADE20k
dataset [68] whose underlying scene category was found in
the Places 205 label set. The ADE20k data contains pixel-
level object labels, and when combined with acoustic frame-
level ASR hypotheses, we are able to determine which un-
derlying words match which underlying objects. In all cases,
we follow the original Places audio caption dataset and col-
lect 1 caption per image. Aggregate statistics over the data
are shown in Figure 2.

While we do not have exact ground truth transcriptions
for the spoken captions, we use the Google ASR engine
to derive hypotheses which we use for experimental anal-
ysis (but not training, except in the case of the text-based
models). A vocabulary of 44,342 unique words were rec-
ognized within all 400k captions, which were spoken by
2,683 unique speakers. The distributions over both words
and speakers follow a power law with a long tail (Figure
2). We also note that the free-form nature of the spoken
captions generally results in longer, more descriptive cap-
tions than exist in text captioning datasets. While MSCOCO
[38] contains an average of just over 10 words per caption,
the places audio captions are on average 20 words long,
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with an average duration of 10 seconds. The extended Places
205 audio caption corpus, the ADE20k caption data, and
a PyTorch implementation of the model training code are
available at http://groups.csail.mit.edu/sls/
downloads/placesaudio/.

4 Models

Our model (Figure 3) is similar to that of Harwath et al [23],
in which a pair of convolutional neural networks (CNN) [35]
are used to independently encode a visual image and a spo-
ken audio caption into a shared embedding space. What dif-
ferentiates our models from prior work is the fact that in-
stead of mapping entire images and spoken utterances to
fixed points in an embedding space, we learn representations
that are distributed both spatially and temporally, enabling
our models to directly co-localize within both modalities.

In this section, we begin by describing the model archi-
tectures used for the vision and audio branches of our model
(Sections 4.1 and 4.2). Next, we describe the various ways
we can compute a similarity score between an image and
an audio caption from the outputs of both branches (Section
4.3). Finally, we describe the loss functions and optimiza-
tion methods used to train the models (Section 4.4).

4.1 Image Modeling

For the purpose of modeling images, we make use of two
different CNN architectures: the VGG16 network [54] as
well as the ResNet50 [24] network. In the majority of prior
work on two-branched neural models of visually grounded
speech, the image branch utilized the VGG16 network [54]
[23,21,17,8,1,32]. In all of these cases, the weights of the
image network were pre-trained on ImageNet, and thus had
a significant amount of visual discriminative ability built-
in from the start. In this work, we demonstrate how both
branches could be trained end-to-end in a completely unsu-
pervised fashion, without the need for ImageNet pre-training.
Additionally in these prior works, the entire network be-
low the classification layer was utilized to derive a single,
global image embedding. One problem with this approach
is that coupling the output of the final convolutional layer
to a fully connected involves a flattening operation, which
makes it difficult to recover associations between any neuron
above the final convolution and the spatially localized stim-
ulus which was responsible for its output. We address this is-
sue here by retaining only the convolutional banks of the net-
works. For VGG16, we keep all layers up through conv5,
discarding pool5 and everything above it. For ResNet50,
we keep all layers up through the final residual block, dis-
carding the global average pooling and fully connected layer.

For a 224 by 224 pixel input image, the output of the net-
work would be a 14 by 14 feature map across 512 channels
(for VGG16), or a 7 by 7 feature map across 2048 channels
(for ResNet50). In either case, each location within the map
possesses a receptive field that can be related directly back to
the input. In order to map an image into an embedding space
of the same dimension as the output of the audio branch, we
apply a final 1024-channel linear convolution with no non-
linearity. In the case of ResNet50, we use a 1x1 convolution,
while for VGG16 we use a 3x3 convolution due to the its
output feature map is of higher resolution than ResNet50.

For both network architectures, image pre-processing for
training and retrieval evaluation consists of resizing the small-
est dimension to 256 pixels, taking a random 224 by 224
crop (the center crop is taken for validation), and normaliz-
ing the pixels according to a global pixel mean and variance.
When producing the matchmap visualizations, such as those
depicted in Figures 14 and 15, we resize the smallest image
dimension to 256, but do not perform any cropping.

4.2 Audio Modeling

To model the spoken audio captions, we use two model ar-
chitectures: the DAVEnet (Deep Audio-Visual Embedding
network) 5-layer model (detailed in [22]), and a residual ver-
sion, ResDAVEnet, which is inspired by the ResNet [24] ar-
chitecture. The 5 layer DAVEnet is similar to that of [21],
but modified to output a feature map across the audio dur-
ing training, rather than a single embedding vector. The au-
dio waveforms are represented as log Mel filter bank spec-
trograms. Computing these involves first removing the DC
component of each recording via mean subtraction, followed
by pre-emphasis filtering. The short-time Fourier transform
is then computed using a 25 ms Hamming window with a
10 ms shift. We take the squared magnitude spectrum of
each frame and compute the log energies within each of
40 Mel filter bands. We treat these final spectrograms as 1-
channel images, and model them with the CNN displayed in
Figure 3. [23] utilized truncation and zero-padding of each
spectrogram to a fixed length of 2048 frames, or approxi-
mately 20 seconds. We then truncate the output feature map
of each caption on an individual basis to remove the frames
corresponding to zero-padding - although surprisingly, we
found that doing this padding compensation made very little
difference in terms of the retrieval recall scores compared to
a model which did not truncate the output at the beginning
of the padding. Rather than manually normalizing the spec-
trograms, we employ a BatchNorm [25] layer at the front of
the network.

The ResDAVEnet model features a cascade of four ResNet-
style residual blocks, but which in our case are designed
to model 1-dimensional inputs (i.e. a temporal sequence of
features). Because each of the four ResDAVEnet residual
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512 x 256
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128 x 1024
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Ir,c,u

At,u

56 x 56 x 64

conv1d
9 x Cout

Stride 2

BatchNorm

Stride 2

BatchNorm

BatchNorm
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9 x Cout
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1 x Cout
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9 x Cout

BatchNorm BatchNorm
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+

+ Output

Input

Single ResDAVEnet Block

ReLU
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ReLU

Fig. 3: The ResNet-ResDavenet variant of our model architecture (upper left), along with an example matchmap output
(upper right), displaying a 3-D density of spatio-temporal similarity. The image branch is based on the ResNet network
architecture, while the audio branch depicted is the ResDAVENet model. Red blocks represent convolutional layers, gray
blocks indicate BatchNorm layers, yellow block MaxPooling layers, and purple blocks ReLU activations. The four blue
blocks in the image branch represent the four bottleneck residual blocks in the ResNet50 model, while the four green blocks
in the speech branch represent ResDAVEnet blocks. A schematic diagram of a single ResDAVEnet block is shown in the
bottom half of the figure.

blocks involves an overall downsampling factor of two, the
final temporal resolution of the ResDAVEnet outputs is half
that of the DAVEnet-5 model.

Next, we discuss methods for relating the visual and au-
ditory feature maps to one another.

4.3 Computing Image-Speech Similarity

Many cross-modal grounding models operate by indepen-
dently encoding each of their inputs into an embedding vec-
tor representation [13,14,33]. These vectors are constrained
to live within the same space, enabling arithmetic operations

to be applied between the representations, despite the fact
that the inputs may have originated in very different modal-
ities (such as visual images and written text - or in our case,
speech audio). Semantic similarity between cross-modal in-
puts is typically assumed to correlate with vector space sim-
ilarities, such as cosine similarity, dot product similarity, in-
verse Euclidean distance, etc. Under this formulation, se-
mantic nearest neighbors can be efficiently computed across
modalities, enabling applications such as semantic image
search based on natural language queries. In our case, we
are only tangentially interested in semantic cross-modal re-
trieval; our ultimate goal is to co-segment visual and audio
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inputs into object-like and word-like patterns. In this section,
we describe how we can adapt retrieval-inspired cross modal
fusion techniques for this purpose. We observe that there is
a an interesting similarity between inferring latent semantic
alignments in our case and other vision-and-language tasks
such as captioning and VQA (which is often accomplished
through an attention mechanism [53,61])

Zhou et al [66] demonstrate that global average pooling
applied to the conv5 layer of several popular CNN archi-
tectures not only provides good accuracy for image classi-
fication tasks, but also enables the recovery of spatial ac-
tivation maps for a given target class at the conv5 layer,
which can then be used for object localization. The idea that
a pooled representation over an entire input used for train-
ing can then be unpooled for localized analysis is powerful
because it does not require localized annotation of the train-
ing data, or even any explicit mechanism for localization in
the objective function or network itself, beyond what already
exists in the form of convolutional receptive fields. Although
our models perform a ranking task and not classification, we
can apply similar ideas to both the image and speech fea-
ture maps in order to compute their pairwise similarity, in
the hopes to recover localizations of objects and words.

Let I represent the output feature map output of the im-
age network branch, A be the output feature map of the au-
dio network branch, and Ī and Ā be their globally average-
pooled counterparts:

Ī =
1

NrNc

Nr∑

r=1

Nc∑

c=1

Ir,c,: (1)

Ā =
1
Nt

Nt∑

t=1

At,: (2)

Here we use the colon (:) to indicate selection of all ele-
ments across an indexing plane; in other words, Ir,c,: is a
1024-dimensional vector representing the (r, c) coordinate
of the image feature map, and At,: is a 1024-dimensional
vector representing the tth frame of the audio feature map.
One straightforward choice of similarity function between
and image and audio caption is the dot product between the
global average pooled embeddings,

S(I, A) = ĪT Ā (3)

Substituting Equations 1 and 2 into Equation 3, we have that

S(I, A) = (
1

NrNc

Nr∑

r=1

Nc∑

c=1

Ir,c,:)T (
1
Nt

Nt∑

t=1

At,:) (4)

By distributing between the summations and collecting the
coefficients, we can write the similarity as

S(I, A) =
1

NrNcNt

Nr∑

r=1

Nc∑

c=1

Nt∑

t=1

IT
r,c,:At,: (5)

We can see from Equation 5 that the combination of global
average pooling and the dot product results in the similar-
ity score taking on large values when all local regions of
the image feature map exhibit a large dot product with all
local regions of the audio feature map. We also notice that
implicit in this computation is a 3rd order tensor M , where
Mr,c,t = IT

r,c,:At,:. Because M reflects the localized simi-
larity between a small image region (possibly containing an
object, or part of an object) and a segment of speech au-
dio (possibly containing a word or short phrase), we dub
M the “matchmap” tensor between and image and an audio
caption. Explicitly computing M ideally enables us to learn
a latent semantic alignment between matching objects and
words. Under this view, the similarity between the global av-
erage pooled image and audio representations can be found
by averaging the similarity between all audio frames and all
image regions. We call this similarity scoring function SISA
(sum image, sum audio):

SISA(M) =
1

NrNcNt

Nr∑

r=1

Nc∑

c=1

Nt∑

t=1

Mr,c,t (6)

For the sake of computational efficiency, at training time we
compute the SISA scoring function by using global average
pooling and a dot product. In our experiments exploring ob-
ject and word discovery (detailed in Section 5.1), we explic-
itly utilize the matchmap M . If we are willing to incur the
extra computational cost of computingM at train time, there
are a multitude of ways in which we can reduce a matchmap
to a single scalar-valued score, two of which we describe
here.

Because it is not completely realistic to expect all words
within a caption to simultaneously match all objects within
an image, we consider computing the similarity between an
image and an audio caption using several alternative func-
tions of the matchmap density. By replacing the averaging
summation over image patches with a simple maximum,
MISA (max image, sum audio) effectively matches each frame
of the caption with the most similar image patch, and then
averages over the caption frames:

MISA(M) =
1
Nt

Nt∑

t=1

max
r,c

(Mr,c,t) (7)

By preserving the sum over image regions but taking the
maximum across the audio caption, SIMA (sum image, max
audio) matches each image region with only the audio frame
with the highest similarity to that region:

SIMA(M) =
1

NrNc

Nr∑

r=1

Nc∑

c=1

max
t

(Mr,c,t) (8)

Next, we describe the how these similarities are integrated
into the loss functions used to train our models.
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4.4 Training

Our models are trained to optimize a ranking-based crite-
rion [6], such that images and captions that belong together
are more similar in the embedding space than mismatched
image/caption pairs. Specifically, across a batch of B im-
age/caption pairs (Ij , Aj) (where Ij represents the output of
the image branch of the network for the jth image, and Aj

the output of the audio branch for the jth caption) we first
randomly select impostor samples according to

Âj ∼ UniformCategorical({A1, . . . , AB} \Aj) (9)

Îj ∼ UniformCategorical({I1, . . . , IB} \ Ij) (10)

We then compute the sampling-based triplet loss as:

Ls =
B∑

j=1

(
max(0, S(Ij , Âj)− S(Ij , Aj) + η)

+ max(0, S(Îj , Aj)− S(Ij , Aj) + η)
)
,

(11)

where S(I, A) represents the similarity score between an
image I and audio caption A and η is a margin hyperparam-
eter.

Hard negative mining has been shown to offer substan-
tial improvements over the standard triplet loss formulation
in the context of cross-modal retrieval [13]. Rather than ran-
domly sampling impostors (or summing over all possible
impostors within a batch), only the impostor sample with
the largest similarity with respect to the anchor is considered
when computing the loss. Semi-hard negative mining [27] is
a variant of hard negative mining in which the impostors are
constrained to be less similar to the anchor than its paired
sample (Figure 4). Semi-hard negative mining can help to
mitigate the detrimental effect of label noise on regular hard
negative mining. We chose to use semi-hard negative min-
ing because in our experience, we found standard negative
mining to be highly unstable during training.

Mathematically, we first select the candidate image neg-
atives Īj and candidate audio negatives Āj to be the set of all
images (or audio captions) less similar to the anchor image
(or caption) than the anchor’s paired caption (or image):

Āj = {A ∈ {A1, . . . , AN}|S(Ij , A) < S(Ij , Aj)}, (12)

Īj = {I ∈ {I1, . . . , IN}|S(I, Aj) < S(Ij , Aj)}. (13)

Then, we construct the semi-hard negative triplet loss by
maximizing over all candidate negatives:

Lh =
B∑

j=1

(
max(0, max

A∈Āj

(S(Ij , A))− S(Ij , Aj) + η)

+ max(0,max
I∈Īj

(S(I, Aj))− S(Ij , Aj) + η)
)
,

Positive Negative

!

Fig. 4: We utilize a training scheme inspired by [27], where
the negative sample is selected as the hardest sample in the
batch which is, at most, as similar to the positive sample than
the ground truth. This strategy avoids training instabilities
due to noise in the training data.

(14)

In the case that there are no potential semi-hard negatives
that satisfy Equations 12 or 13, we default to randomly sam-
pling the negatives. Empirically, we found that semi-hard
negative training on its own was unstable to train, and worked
much better when combined with the sampling-based triplet
loss Ls. For our models which utilize semi-hard negative
training, the loss function becomes:

L = Ls + Lh (15)

Although in theory the two losses could be assigned differ-
ent weights, in our experiments we weight them equally with
good results.

For both the randomly sampled and semi-hard negative
mined loss functions, the imposter images and captions for
each image/caption pair are selected from the same mini-
batch. We also fix η to 1 in all of our experiments. The
choice of similarity function S(I, A) is flexible, which we
explore in Section 4.3. This criterion directly enables seman-
tic retrieval of images from captions and vice versa, but in
this paper much of our focus is to explore how object and
word co-localization naturally emerges as a by-product of
this training scheme.

An important issue to consider with hard negative min-
ing in the context of our models is computational complex-
ity. Several of our matchmap similarity functions (MISA and
SIMA) require explicit computation of the full matchmap
between an image-caption pair, which requires O(T ∗ H ∗
W ∗D) multiply-adds, where T is the caption duration, H
and W are the image height and width, and D is the em-
bedding dimension. Semi-hard negative mining using full
matchmap-based similarity scores increases this complexity
by a factor ofB2; in practice, we found that even with paral-
lel training across multiple GPUs, this was computationally
impractical. The exception to this is the SISA loss computed
via global average pooling, for which the within-batch sim-
ilarity matrix can be computed in O(D ∗ B2) time. For this
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reason, all of our models which rely on semi-hard negative
mining utilize the SISA matchmap similarity function.

4.5 Pre-Training Methods

A core issue which we investigate is the manner in which
various forms of pre-training influence our model’s ability to
learn. Many previously published works on visually grounded
speech utilized an audio network which was trained from a
random initialization, but used a vision model which under-
went supervised pre-training e.g. on ImageNet [23,21,17,8,
1,32]. This leads to the question of whether the model able
to learn new concepts by grounding speech to images, or if
the audio network is simply learning to predict the image
features that were originally derived from a supervised clas-
sification task. To that end, we consider three methods for
initializing our models:

1. Fully random initialization. Under this condition, the
weights of both the image and audio branches of the
model are randomly initialized at the start of training.

2. Unsupervised pre-training on Flickr Natural Sounds.
Under this condition, the models are pre-trainied with-
out labels using a database of videos containing natural
sounds [57]. Similar to [4], we use videos from Flickr
selected by querying popular words and tags. We take
the audio track and sample image frames from these
videos and then use the semi-hard negative triplet loss
(Section 4.4) to train our model to recognize pairs of
audio-image from the same video (positive exampled)
and audio-image pairs from different videos (negative
examples). We use 2,146,055 Flickr videos for pre-training,
and achieve an average Recall@10 score of 0.441 on this
task, using 500 validation samples.

3. Fully supervised pre-training on ImageNet and Au-
dioSet. In this case, both the image and audio branches
of the network are pre-trained in a supervised fashion.
We use ImageNet classification to pre-train the image
branch, and AudioSet sound classification [18] to pre-
train the audio branch. For the AudioSet classification,
we subsample a class-balanced subset of the total train-
ing set. We take the global maxed pooled outputs of the
audio branch and add one final fully connected layer
with a softmax activation on top of it. We use a Cross-
Entropy loss for training randomly sampling the train-
ing class at every iteration; average per class AUC was
found to be 0.891 on the validation set.

4.6 Training Details

All models were trained using stochastic gradient descent
with a batch size of 80, a fixed momentum of 0.9. We use

learning of 0.001 for the randomly initialized ResNet50 +
ResDAVEnet models and all VGG16 + DAVENet models,
0.01 for the ResNet50 + ResDAVEnet models with AudioSet
+ ImageNet initialization and 0.03 for the ResNet50 + Res-
DAVEnet models initialized with Natural Sounds. Anecdo-
tally, we found that the higher learning rates could lead to
instability for randomly initialized models, but not for the
models which had already undergone pre-training. We de-
cayed the learning rate by a factor of 10 every 30 epochs
and initially trained for a minimum of 90 epochs; however,
we found that some of the models (especially the randomly
initialized models) began to overfit the training data in later
epochs. For this reason, all of the results presented in this
paper were computed with models that were subject to early
stopping at 40 epochs. In the models trained using a blend of
the sampled and semi-hard negative triplet losses, we simply
weighted the loss terms equally.

5 Experiments

5.1 Image and Caption Retrieval

We first present experiments detailing the performance of
our models for an image/caption retrieval task. We use a
held-out set of 1,000 image/caption pairs from the Places au-
dio caption dataset to validate the models on the image/caption
retrieval task, similar to the one described in [23,21,8,1].
This task serves to provide a single, high-level metric which
captures how well the model has learned to semantically
bridge the audio and visual modalities. While providing a
good indication of a model’s overall ability, it does not di-
rectly examine which specific aspects of language and visual
perception are being captured, which we later investigate in
Sections 5.3, 5.4, 5.5, and 5.6.

The core retrieval results for our unsupervised models
are summarized in Table 1. A comparison against previously
published baselines, as well as our supervised pre-training
results, are shown in Table 2. Finally, we show retreival re-
sults for text-based models which operate on the text tran-
scripts of the spoken captions (estimated using the Google
public speech recognition API) rather than the speech audio
in Table 3.

In Table 1, we anchor our analysis to our best-performing
unsupervised model (last row, bold) and ablate the model in
a variety of ways. The main takeaways from these results are
detailed below:

1. Pre-training on natural sounds dramatically helps retrieval
performance. In the second-to-last row of Table 1, we
compare a randomly initialized version of the ResNet50
+ ResDAVEnet model trained using the SISA objective
with semi-hard negative mining to a version of the same
model pre-trained on the Flickr natural sound videos.
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Table 1: Ablation study for unsupervised models: Recall scores on the held out set of 1,000 images/captions for our
various ablations of the speech-image grounding model. SHN stands for semi-hard negative training, while the RN prefix
indicates the use of a ResNet50 image branch and a ResDAVEnet audio branch. VGG refers to the model using the VGG16
architecture in the image branch, and the audio branch on the DAVEnet-5 architecture.

Speech to Image Image to Speech
Model Loss Pretrained R@1 R@5 R@10 R@1 R@5 R@10

VGG SISA-SHN Natural Sounds .145 .382 .503 .115 .352 .471
RN SIMA Natural Sounds .118 .331 .463 .126 .347 .461
RN SISA Natural Sounds .132 .376 .490 .112 .318 .445
RN MISA Natural Sounds .143 .364 .514 .096 .311 .458
RN SISA-SHN No .147 .375 .512 .099 .328 .452
RN SISA-SHN Natural Sounds .268 .545 .684 .211 .528 .660

Table 2: Supervised baseline comparison: Recall scores on
the held out set of 1,000 images/captions comparing the un-
supervised pre-training approaches (top two rows) against
supervised models (bottom three rows). The top three rows
in this table use the ResNet50/ResDAVEnet architecture.

Speech to Image Image to Speech
Method R@1 R@5 R@10 R@1 R@5 R@10

Random .147 .375 .512 .099 .328 .452
Natural Sounds .268 .545 .684 .211 .528 .660

ImageNet/AudioSet .276 .584 .716 .218 .551 .690
[23] .148 .403 .548 .121 .335 .463
[21] .161 .404 .564 .130 .378 .542

Table 3: Text-based models: Recall scores on the held
out set of 1,000 images/captions for our various text-image
grounding models. SHN stands for semi-hard negative train-
ing. All models use a ResNet50 image branch and a 2-layer
text branch with 1-D convolutional layers that operate on
input sequences of word embeddings.

Text to Image Image to Text
Loss Pretrained R@1 R@5 R@10 R@1 R@5 R@10

SIMA No .018 .135 .294 .071 .217 .325
SISA No .105 .309 .419 .064 .220 .332
MISA No .100 .283 .395 .048 .185 .308

SISA-SHN No .206 .481 .632 .138 .398 .558
SISA-SHN ImageNet .322 .659 .782 .235 .551 .719

We see that the average Recall@10 score increases from
.482 to .672 when pre-training with natural sounds, rep-
resenting a 39.4% relative improvement over the exact
same model with a random initialization.

2. Semi-hard negative mining is also immensely beneficial
for the model. Even when retaining the residual archi-
tecture and natural sound pre-training, a model trained
without semi-hard negative mining (third row) achieves
an average Recall@10 of .468.

3. The residual architecture (ResNet50 + ResDAVEnet) sig-
nificantly outperforms VGG16 + DAVEnet. We trained

a VGG16 + DAVEnet model with the SISA semi-hard
negative loss and natural sound pre-training (first row),
which resulted in an average Recall@10 of .487.

4. For models trained without semi-hard negative mining,
MISA outperforms SISA which outperforms SIMA - but
the differences between these models are small com-
pared to the impact of natural sound pre-training, semi-
hard negative mining, and the residual model architec-
ture.

In Table 2, we examine the ResNet50 + ResDAVEnet
model trained with the SISA-SHN loss under random ini-
tialization, natural sound pre-training, and supervised clas-
sification pre-training. We see a clear ranking between the
methods, with natural sound pre-training outperforming ran-
dom initialization but supervised pre-training coming out on
top. What is interesting to note, however, is the fact that
the gap between the average Recall@10 score for the nat-
ural sound pre-trained model and the supervised pre-trained
model is much smaller than between the random model and
the natural sound model. While natural sound pre-training
offers a nearly 40% relative improvement, supervised pre-
training offers only an additional 4.6% relative improvement.
This suggests that the performance gap between our pre-
trained and non-pre-trained models is not solely due to su-
pervised labeling information leaking into the network weights,
but instead is more likely a function of the total amount of
training data seen by the model. This is an extremely encour-
aging result not only because it implies that we have not yet
exhausted the learning capacity of our models, but also be-
cause it indicates that synergies between different domains
within the same modality (natural sounds vs. speech audio)
can be exploited to our benefit.

We also compare our models against reimplementations
of two previously published speech-to-image models (both
of which utilized ImageNet pre-trained image branches) in
Table 2. Both previously published baselines we compare to
used the full VGG16 network, deriving an embedding for
the entire image from the fc2 outputs. By contrast, all of
our models output spatial and temporal feature maps. The
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Fig. 5: Value of sampled and semi-hard triplet losses as a
function of training epoch. The sampled loss term decays
more quickly than the semi-hard negative loss term, but does
not disappear completely.

fact that all of our models either outperform or perform com-
parably to these baselines suggests that there is not much to
be lost when doing away with the fully connected layers that
hamper localization.

In Table 3, we compare against baselines that operate on
automatic speech recognition (ASR) derived text transcrip-
tions of the spoken captions. The text-based model we used
is based on the two-branch topology of the speech and im-
age model, but replaces the speech audio branch with a CNN
that operates on word sequences. The ASR text network uses
a 200-dimensional word embedding layer, followed by a
512 channel, 1-dimensional convolution across windows of
3 words with a ReLU nonlinearity. A final convolution with
a window size of 3 and no nonlinearity maps these activa-
tions into the 1024 multimodal embedding space. Because
the use of text as an input effectively solves half the prob-
lem faced by our models (recognizing words in raw speech
signals), the retrieval scores are unsurprisingly higher rel-
ative to the speech-based models, representing an approxi-
mate upper bound on the performance we can expect from
the speech audio-based models.

In Figure 5, we plot the values of the randomly sam-
pled and semi-hard negative triplet losses as a function of
training epoch. It is reasonable to hypothesize that at some
point during training, the model would become powerful
enough that the sampled loss would vanish (or plateau at a
very small value) and the gradient would become dominated
by the semi-hard negative loss; however, we did not observe
this during the first 40 epochs of training (where we perform
early stopping).
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Fig. 6: Performance as a function of training data amount
for 3 different pre-training scenarios. The same ResNet50-
ResDaveNet model architecture is used throughout. We
evaluate three different methods of model initialization: ran-
dom, an image branch pretrained on ImageNet and the audio
branch in AudioSet, and both the image and audio branches
pretrained on videos with natural sounds.

5.2 Varying the Amount of Training Data

Here, we examine varying the amount of training data influ-
ences the performance of our model under the various pre-
training regimes. In Figure 6, we display the learning curves
of 3 different models in terms of the average of the caption
to image and image to caption Recall@10 on the Places au-
dio validation set. The models were trained on subsets com-
prised of 10%, 20%, and 50% of the full 400k training set.
We note that the trends observed in Table 2 are reflected in
Figure 6 for all training set sizes. Namely, both supervised
and unsupervised pre-training consistently improves the per-
formance of the model regardless of how much training data
is available. Without any pre-training, the model struggles to
reach 0.1 R@10 with 20% of the training data (correspond-
ing to 80,000 examples), even with semi-hard negative train-
ing. The fact that none of the curves have levelled off sug-
gests that even larger training datasets would be helpful for
achieving further performance improvements.

5.3 Speech-Prompted Object Detection and Localization

To evaluate our models’ ability to detect and segment visual
objects given a spoken prompt, we use the spoken captions
for the ADE20k [68] dataset. The ADE20k images contain
pixel-level object masks and labels - in conjunction with a
time-aligned transcription produced via ASR (we use the
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Fig. 7: Comparison of speech-prompted object localization heatmaps for 8 different word/object pairs and the three pre-
training conditions (Random, Natural Sounds, ImageNet+AudioSet), using the ResNet50 + ResDAVEnet model and the
SISA-SHN loss function.
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public Google Speech Recognition API for this purpose),
we can associate each matchmap cell with a specific visual
object label as well as a word label. These labels enable us
to analyze which words are being associated with which ob-
jects. We do this by performing speech-prompted object de-
tection and localization, which we evaluate separately.

Because there are a very large number of different words
appearing in the speech, and no one-to-one mapping be-
tween words and ADE20k objects exists, we manually de-
fine a set of 100 word-object pairings. We choose commonly
occurring (at least 9 occurrences) pairs that are unambigu-
ous, such as the word “building” and object “building,” the
word “man” and the “person” object, etc. For each word
type, we isolate all occurrences of that word in the ADE20k
spoken captions and compute an embedding vector for each
one by feeding the isolated words into the audio branch of
our model and averaging the output across the time dimen-
sion. We then compute a single embedding representing the
word category by averaging the individual embeddings for
all instances of the word.

To perform word-prompted object detection for a given
word-object pair, we compute a score for every ADE20k im-
age by taking the dot product of the aggregate word embed-
ding with each spatial position of the image branch’s output
feature map. We then apply a global max pooling operation
to this score map to derive a single score for each image.
Using these scores, we compute the average precision for
each word-object pairing, and take the mean average preci-
sion (mAP) across the 100 word-object pairs.

To evaluate object localization separately from object
detection, we select only the subset of the ADE20k images
which contain the target object for a given word-object pair-
ing. Next, we compute a heatmap over each image by taking
the dot product of the word embedding with each spatial
output of the image branch. We normalize this heatmap to
sit within the interval [0, 1], upsample it to the same size
as the ADE20k pixel-level segmentation, apply a threshold
(0.5 in all of our experiments), and then compute intersec-
tion over union (IoU), intersection over detection (IoD), and
intersection over target (IoT) with respect to the target object
label.

The results for both object detection and localization are
summarized in Table 4. We evaluate all of the unsupervised
models from Table 1, as well as the highest performing over-
all model which underwent supervised pre-training on Ima-
geNet and AudioSet from Table 2. We also compare to a
full-frame baseline, which assumes that the target object is
always present in every image, and hypothesizes the entire
image frame for the segmentation. We found that generally
speaking, all of our models perform much better at detecting
the presence of objects than segmenting them, as indicated
by the fact that the mAP scores are several times higher than
the full-frame baseline, but the mIoU scores are only 45%

Table 4: Speech-prompted object detection and localization
scores on ADE20K for the 100 handcrafted word-object
pairs and various models. For the model type, VGG indi-
cates a model based on the VGG16 + DAVEnet architecture,
while RN indicates a model based on the ResNet50 + Res-
DAVEnet architecture. For pre-training, NS indicates unsu-
pervised pre-training on natural sounds, while IN+AS in-
dicates supervised pre-training on ImageNet and AudioSet.
To evaluate object detection, we report mean average preci-
sion (mAP) for predicting whether or not a particular object
exists anywhere in an image. We evaluate segmentation per-
formance using mean intersection over union (mIoU), mean
intersection over detection (mIoD), and mean intersection
over target (mIoT). Segmentation scores are computed for
each word-object pair only on the subset of the ADE20k
images that contain the target object. In all cases, the thresh-
old was set at 0.5, which we found produced near-optimal
results for IoU for all models.

Model Loss Pre-trained mAP mIoU mIoD mIoT
Full Frame N/A N/A .129 .11 .11 1.0

VGG SISA-SHN NS .329 .12 .16 .69
RN MISA NS .224 .11 .12 .68
RN SIMA NS .158 .11 .12 .88
RN SISA NS .283 .12 .15 .61
RN SISA-SHN None .297 .13 .15 .64
RN SISA-SHN NS .368 .15 .21 .62
RN SISA-SHN IN+AS .440 .16 .23 .63

higher than the full-frame baseline in the best case. We note
that the relative performance differences between the mod-
els in terms of object detection mAP closely mirror the re-
trieval results shown in Tables 1 and 2.

While the same rankings between the models hold in
terms of object segmentation, e.g. with supervised pre-training
outperforming natural sound pre-training which outperforms
random initialization, the differences in the mIoU scores
here are much smaller. We provide a visual comparison of
the segmentation performance between these models in Fig-
ure 7. Generally speaking, the three models appear to focus
on the same regions of each image, although all of them suf-
fer from similar problems. In the case of smaller objects,
like chandeliers and laptops, all of the models tend to under-
segment, capturing a significant amount of background pix-
els around the target object. In the case of larger objects,
like fields, mountains, and bridges, the models tend to over-
segment, focusing on a few small regions of the target ob-
ject. Although the pre-trained models subjectively appear to
do a better job of capturing a fuller extent of these large ob-
jects, it is interesting to note that the highest scoring regions
of each image tend to be consistent across the models. In
Figure 8, we present many more segmentation examples for
our best unsupervised model.
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Fig. 8: Example speech-prompted object localization heatmaps for several word/object pairs using the natural sounds pre-
trained ResNet50 + ResDAVEnet model, using the SISA-SHN loss function.
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5.4 Clustering of Audio-Visual Patterns

The next experiment we consider is automatic discovery of
audio-visual clusters from the ADE20k matchmaps using
our best unsupervised model (ResNet50 + ResDAVEnet, SISA-
SHN, natural sounds pre-training). Once a matchmap has
been computed for an image and caption pair, we binarize
it according to an absolute score threshold. While we use
a threshold of 400 here, we achieved good results in the
range of 200 to 450. Next, we extract volumetric connected
components and their associated masks over the image and
audio. We average pool the image and audio feature maps
within these masks, producing a pair of vectors for each
component. Because we found the image and speech repre-
sentations to exhibit different dynamic ranges, we first rescale
them by the average L2 norms across all derived image vec-
tors and speech vectors, respectively. We concatenate the
image and speech vectors for each component, and finally
perform hierarchical clustering using the Birch algorithm
[63] which resulted in 423 final clusters. To derive labels
for each cluster, we take the most frequent word label as
overlapped by the components belonging to a cluster. To
generate the object labels, we compute the number of pix-
els belonging to each ADE20k class assigned to a particular
cluster, and take the most common label. We display the la-
bels and their purities for the top 100 most pure clusters in
Figure 9.

5.5 Concept discovery: building an image-word dictionary

The clustering results displayed in Figure 9 indicate that the
audio and image networks are able to agree to a common
representation of knowledge, clustering similar concepts to-
gether. An interesting property of our models is the fact
that because the dot product between embeddings is used to
compute similarity scores, both the image and speech net-
works must learn to agree on the meaning of the different
dimensions of the embedding space. To further explore this
phenomenon, we decided to visualize the concepts associ-
ated with each of these dimensions for both image and audio
networks separately and then find a quantitative strategy to
evaluate the agreement.

To visualize the visual concepts associated with each of
the dimensions in the image output, we use the unit visual-
ization technique introduced in [65]. A set of images is run
through the image network and the ones that most activate
a particular dimension are selected. We then visualize the
spatial activations in these top images. The same procedure
can be done for the audio network, where we search for the
set of audio captions that maximally activate the same neu-
ron. Finally, we extract the segment of the audio caption that
maximally activated the neuron in question. For both modal-
ities, we perform segmentation by first normalizing the acti-

vations for each dimension to have zero mean and unit vari-
ance across the entire dataset. Then, we threshold the acti-
vations within each image at 1.2 and activations within the
caption at 1.3.

We then treat the set of neurons in the embedding layer
as a “picture dictionary,” in which each dimension has the
potential to capture a single concept. A dimension in this
embedding space which has properly learned a concept should
satisfy three requirements. First, it should strongly and reli-
ably activate on image regions containing a specific object
type. Second, it should strongly and reliably activate on spo-
ken caption regions containing a specific word or phrase.
Third, there should exist a semantic agreement between the
word and object which activate this dimension. We cannot
expect every dimension in the embedding space to perfectly
capture a concept, but we would like to be able to find those
that do. To that end, we devise an automatic selection method
for finding the neurons which have captured a concept.

To quantify the quality each dimension in the picture
dictionary, we rely on the object segmentation labels as well
as the ASR-derived text transcripts for the spoken captions
from the ADE20k dataset [68]. Using these, we can rank
the most strongly detected objects for each neuron. We pass
through the image branch of the network approximately 10,000
images from the ADE20k dataset and check for each neu-
ron which classes are most activated for that particular di-
mension. As a result, we have a set of object labels associ-
ated with the image neuron (coming from the segmentation
classes). We do the same with the time-aligned text tran-
scripts of the spoken captions to derive a set of words asso-
ciated with each neuron in the audio branch’s output layer.
To estimate the semantic agreement between words from
the caption transcript and ADE20k object labels, we use
the shortest path distance along the WordNet [15] hyponym-
hypernym tree. We then define the following concept score
metric:

cj =
|Oim|∑

i=1

wiSimwup(oim
i , o

au
j ), (16)

with oim
i ∈ Oim, where Oim is the set of classes present

in the TOP5 segmented images, Simwup(., .) is the Wu and
Palmer WordNet-based similarity, with range [0,1] (higher
is more similar), and oau

j is a word from the top audio acti-
vations. We weight the similarity with wi, which is propor-
tional to intersection over union of the pixels for that class
into the masked region of the image. Using this metric, we
can then assign one value per pair of word and image acti-
vation. To assign one single value to the whole dimension,
we take the maximum among all the concept values cj for
the different audio words. In our experiments, we take at
most 2 words from the audio, only considering words that
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Fig. 9: Some clusters (speech and visual) found by our approach. Each cluster is jointly labeled with the most common word
(capital letters) and object (lowercase letters). For each cluster we show the precision for both the word (blue) and object
(red) labels, as well as their harmonic mean (magenta). The average cluster size across the top 100 clusters was 81.

at least repeat in the 5 audio pieces we consider. The final
concept value c = maxjcj measures how well both the au-
dio network and the image network agree on that particular
concept. Interestingly, the concepts are represented by two
words (if two words are more than one time in the most acti-
vated region) or by one single words. Examples for many
concepts are shown in Figure 10. Anecdotally, we found
c > 0.7 to be a good indicator that a concept has been
learned, and it is the threshold we use to count the num-
ber of concepts learned by the models, shown in Figure 12
as a function of the training epoch. We display some of the
concepts learned at various stages during training in Figure
11.

The pairs image-word allow us to explore multiple ques-
tions. First, can we build an image-word dictionary by only
listening to descriptions of images? As we show in Fig-
ure 10, we do. It is important to remember that these pairs
are learned in a completely unsupervised fashion, without
any concept previously learned by the network. Furthermore,
in the scenario of a language without written representation,
we could just have an image-audio dictionary using exactly
the same technique.

Another important question is whether a better audio-
visual dictionary is indicative of a better model architecture.
We would expect that a better model should learn more total
concepts. In this section we propose a metric to quantify
this dictionary quality. This metric will help us to compute

the quality of each individual neuron and of each particular
model.

Table 5: The number of concepts learned by the different
networks with different losses. We find it is consistently
highest when using semi-hard negative mining and various
forms of pre-training.

Model Loss Pre-trained Concepts
VGG SISA-SHN Natural Sounds 91
RN MISA Natural Sounds 99
RN SIMA Natural Sounds 96
RN SISA Natural Sounds 74
RN SISA-SHN No 58
RN SISA-SH Natural Sounds 109
RN SISA-SH ImageNet/Audioset 126

Finally, we analyze the relation between the concepts
learned and the architecture used in Table 5. Interestingly,
the four maintain the same order in the three different cases,
indicating that the architecture does influence the number of
concepts learned.

5.6 Matchmap Visualizations and Videos

We can visualize the matchmaps produced by our models in
several ways. The 3-dimensional density shown in Figure 3
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Word Image	Concept Concept	Value

Cloud/Sky 1.00

Asian/Building 1.00

Floor 0.97

Skyscraper 0.96

Distance/Field 0.96

Car 0.91

Car	Parked 0.91

Clothes 0.90

Word Image	Concept Concept	Value

Large/Building 0.82

Book/Bookshelf 0.81

Picture 0.81

Furniture 0.81

Crib/Baby 0.88

Forest/Tree 0.88

Computer/Office 0.88

Statue 0.80

Art/Wall 0.80

Bush 0.79

Field/Corn 0.79

Pool/Blue 0.78

Street 0.78

Door 0.85

Pool 0.84

Road/Highway 0.83

Chair/Table 0.83

Snow/Mountain 0.82

House 0.82

Man 0.77

Bridge 0.76

Desk 0.75

Water/Waterfall 0.64

White/Wearing 0.63

Washing/Laundry 0.61

Chandelier 0.80

Fig. 10: Matching the most activated images in the image network and the activated words in the audio network we can
establish pairs of image-word, as shown in the figure. We also define a concept value, which captures the agreement between
both networks and ranges from 0 (no agreement) to 1 (full agreement).
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Epoch 1 Epoch 5 Epoch 10 Epoch 20 Epoch 30 Epoch 40
1.0 Building/Sky
.97 Building/City
.96 Tree
.95 Building
.94 Building/Window
.94 Street/Tree
.89 Wall
.88 Large/Structure
.88 House/Picture
.87 House/Lighthouse
.87 Mountain
.86 Area/Tree
.83 House
.82 Water
.82 Wall/White
.81 Building/House
.81 Blue/Sky
.80 Flower/Green
.80 Sky
.78 Green/Tree

1.0 Tree
1.0 Building/Skyline
.98 Building/City
.98 Building/Door
.97 Building/Red
.97 Building
.97 Building/Story
.95 Road
.94 Cabinet/Kitchen
.94 Corn/Field
.94 Bedroom/Wall
.93 Brick/Building
.93 Has/Highway
.93 Bed/Bedroom
.92 Field
.92 Cloudy/Sky
.91 Floor/Wall
.89 Water
.89 Skyscraper
.89 River/Road

1.0 Cloudy/Sky
1.0 Bed/Bedroom
1.0 Tree
.97 Brick/Building
.97 Room/Window
.97 Window
.97 Floor/Wall
.96 Road
.96 Restaurant/Window
.95 Bed
.94 Highway/Road
.93 Bed/Size
.93 Grass/Green
.92 Wall/White
.92 House
.91 Home/House
.91 Building/City
.90 Building/Old
.90 City/Skyscraper
.89 Several/Track

1.0 Building
1.0 Corn/Field
1.0 Bed/Hotel
1.0 Asian/Building
.96 City/Skyscraper
.95 Floor
.92 Blue/Structure
.92 Building/Structure
.92 House
.91 Floor/Wall
.91 Building/City
.89 Table/Wooden
.89 Skyscraper
.89 Bed
.89 Three/Window
.88 Car
.88 Table
.88 Pool
.87 Water
.87 Bedroom/Couch

1.0 Cloud/Sky
1.0 Building
1.0 Road
1.0 Corn/Field
.96 Skyscraper
.96 Bed/Bedding
.96 Building/Glass
.96 Distance/Field
.95 City/Skyscraper
.94 Window
.94 Bed/Bedroom
.94 Bed
.94 Highway/Road
.93 Mountain/Snowy
.93 Floor
.93 Clothes/Clothing
.92 Bed/Hotel
.92 Building/Has
.91 Pool
.91 Door/Window

1.0 Asian/Building
1.0 Cloud/Sky
1.0 Truck
.99 Building/City
.97 Floor
.96 Skyscraper
.96 Distance/Field
.93 Mountain/Snow
.93 Building
.92 Glass/Skyscraper
.92 Building/Has
.92 Bed/Size
.91 Car
.91 Window
.91 Car/Parked
.90 Bed
.90 Table
.90 Clothes
.90 Highway/Road
.90 Cabinet/Wooden

Fig. 11: We show the top 20 concepts (by concept score) at various epochs during a single training run of the ResNet50
+ ResDAVEnet SISA-SHN model with natural sound pre-training. The concepts containing words separated by a slash
represent multi-word concepts. We subjectively observe that the concepts learned at earlier epochs tend to be simpler and
larger objects (e.g. building, sky, water).
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Fig. 12: The number of neurons whose concept value ex-
ceeds 0.7 as a function of training epoch for the ResNet50 +
ResDAVEnet + SISA-SHN model using three different ini-
tializations.

is perhaps the simplest, although it can be difficult to read
as a still image. Instead, we can treat it as a stack of masks
overlayed on top of the image and played back as a video.
We use the matchmap score to modulate the alpha channel
of the image synchronously with the speech audio. The re-
sulting video is able to highlight the salient regions of the
images as the speaker is describing them.

We can also apply a threshold to the matchmaps and then
extract volumetric connected components from the density.

We then project them down onto the image and spectro-
gram axes, shown in Figure 13. More visualizations of this
are shown in Figures 14 and 15. In practice, we found that
an absolute score threshold between 100 and 400 generally
produced attractive results, although the threshold required
some hand-tuning between models. Future work should in-
vestigate better ways to normalize and segment the matchmaps.
In Figure 14, we compare the segmented matchmaps com-
puted with ResNet50 + ResDAVEnet SISA-SHN models un-
der the three pre-training regimes. We find that they all do a
good job co-segmenting the speech and image, although ar-
guably the pre-trained models tend to be more precise than
the random model. In Figure 15, we show many more exam-
ple visualizations produced by the natural sound pre-trained
model.

6 Conclusions

In this paper, we introduced audio-visual “matchmap” neu-
ral networks which are capable of directly learning the se-
mantic correspondences between speech frames and image
pixels without the need for annotated training data in ei-
ther modality. We applied these networks for semantic im-
age/spoken caption search, speech-prompted object local-
ization, audio-visual clustering and concept discovery, and
real-time, speech-driven, semantic highlighting. We exam-
ined the various ways in which factors such as the specific
model architecture, training algorithm, and model pre-training
influence the ability of our matchmap networks to learn spo-
ken words, visual objects, and the semantics that link them.
We also introduced an extended version of the Places audio
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Fig. 13: Co-segmentation of the example image-caption pair shown in Figure 3.

caption dataset [23], doubling the total number of captions.
Additionally, we introduced nearly 10,000 captions for the
ADE20k dataset.

There are numerous avenues for future work, includ-
ing expansion of the models to handle videos, additional
languages, richer modeling of environmental sounds, etc.
It may possible to directly generate images given a spoken
description, or generate artificial speech describing a visual
scene. More focused datasets that go beyond simple spoken
descriptions and explicitly address relations between objects
within the scene could be leveraged to learn richer linguis-
tic representations. We are also excited by the potential that
this line of work offers for embodied learning agents. One of
the central difficulties faced by embodied agents in the real
world is learning where their attention should be directed in
the first place. Speech and language offer a way for agents
to share social cues with one another to direct this atten-
tion. Finally, and related to this, a crucial element of human
language learning is the dialog feedback loop, and future
work should investigate the addition of that mechanism to
the models.
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