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Abstract. For Weyl groups of classical types, we present formulas to calculate the
restriction of Springer representations to a maximal parabolic subgroup of the same
type. As a result, we give recursive formulas for Euler characteristics of Springer fibers
for classical types. We also give tables of those for exceptional types.

1. Introduction

Suppose that we have a reductive group G over an algebraically closed field k
and its Lie algebra g. Let B be the set of Borel subalgebras of g and for any N ∈ g
define

BN := {b ∈ B | N ∈ b}

which we call the Springer fiber corresponding to N . It is currently one of the main
objects in (geometric) representation theory. In this paper we deal with the case
when N is nilpotent.

Let W be the Weyl group of G. In [20] Springer defined an action of W on
the cohomology of Springer fibers when k is an algebraic closure of some finite
field, which is now called the Springer representation. It was reconstructed in a
more general setting by Lusztig [11] using the theory of perverse sheaves, which
differs from [20] by tensoring with the sign character of W . On the other hand,
the stabilizer of N in G acts on BN by g · b := Ad(g)(b), thus also acts on the
cohomology of BN . As the action of a connected group on the cohomology of a
variety is trivial, this action factors through the component group of the stabilizer
of N in G, denoted AN . It is known that the action of W and AN on the
cohomology of BN commute, thus we may regard it as a representation of W×AN .

In this paper we present formulas to calculate the restriction of such representa-
tions to W ′ × AN ⊂ W × AN , where W ′ ⊂ W is a maximal parabolic subgroup
of the same type when G is of classical type. In particular, we have recursive
formulas for Euler characteristics of Springer fibers. For G of exceptional type, we
give a table for such multiplicities in each Springer representation in Appendix B.

In some special cases we also have such recursive formulas for the multiplicities
of irreducible representations of AN in each degree of the cohomology of Springer
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fibers. As a result we present closed formulas of such multiplicities and in particular
the Betti numbers of Springer fibers for “two-row” cases.

Note that the Green functions of G can be calculated using the Lusztig-Shoji
algorithm (e.g., [18], [12]), and it is also possible to obtain information about
Springer representations from Green functions. But our method is more elementary
and does not use orthogonality of Green functions, which is crucial for the Lusztig-
Shoji algorithm.

Acknowledgement. The author thanks George Lusztig for giving thoughtful
comments, revising drafts of this paper, and encouraging the author to publish it.
Also he thanks anonymous referees for their detailed comments.

2. Notations and preliminaries

2.1.

Let k be an algebraically closed field. Throughout this paper we assume that G
is GLn, SO2n+1, Sp2n, or SO2n over k, except in Appendix B. Here n > 1, unless
G = SO2n in which case n > 2. We identify G with the set of its k-points G(k).
We also assume that chark is good; there is no assumption on chark if G = GLn
and chark 6= 2 otherwise. If G = GLn (resp. G = SO2n+1,Sp2n,SO2n) we define
V to be a k-vector space of dimension n (resp. 2n+1, 2n, 2n) on which G naturally
acts. Also when G = SO2n+1, (resp. Sp2n,SO2n,) V is equipped with a symmetric
(resp. symplectic, symmetric) bilinear form 〈 , 〉 which is invariant under the action
of G, i.e., for any v, w ∈ V and g ∈ G we have 〈gv, gw〉 = 〈v, w〉 .

2.2.

Let W be the Weyl group of G and S = {s1, . . . , sn} ⊂ W be the set of simple
reflections of W such that (W,S) is a Coxeter group. We choose si such that the
labeling corresponds to one of the following Dynkin diagrams:

type An: s1 s2 s3 · · · sn

type BCn: s1 s2 s3 · · · sn

type Dn:

s1

s2

s3 · · · sn

2.3.

Let g = gln (resp. so2n+1, sp2n, so2n) be the Lie algebra of G = GLn (resp. SO2n+1,
Sp2n, SO2n). Then if g = so2n+1, sp2n, or so2n there is a natural Lie algebra
action of g on V which respects 〈 , 〉, i.e., for any v, w ∈ V and N ∈ g we have
〈Nv,w〉+ 〈v,Nw〉 = 0.

2.4.

Let B be the flag variety of G, i.e., the set of Borel subgroups of G, or equivalently,
the set of Borel subalgebras of g. If G = GLn, then B is isomorphic to the variety
of full flags in V . If G = SO2n+1 or Sp2n, then B is isomorphic to the variety of full
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isotropic flags in V . If G = SO2n, then B is isomorphic to the variety of isotropic
flags 0 ( V1 ( · · · ( Vn−1 in V where dimVi = i. For N ∈ g, we write BN to be
the Springer fiber of N , i.e., the set of Borel subalgebras of g that contains N .

2.5.

For G = GLn with n > 1, (resp. SO2n+1 with n > 1, Sp2n with n > 1, SO2n with
n > 2,) we define G′ = GLn−1 (resp. SO2n−1, Sp2n−2,SO2n−2) and g′ = gln−1
(resp. g′ = so2n−1, sp2n−2, so2n−2). Also we define B′ to be the flag variety of G′

and W ′ to be the Weyl group of G′. We regard W ′ as a subgroup of W generated
by S′ = {s1, . . . , sn−1} ⊂ S, except when G = SO4 in which case we regard
W ′ = {id} ⊂ W . If N ′ ∈ g′, let B′N ′ be the Springer fiber corresponding to N ′

with respect to G′.

2.6.

For a variety X, let H∗(X) :=
∑
i∈N(−1)iHi(X,Q`) be the alternating sum of

`-adic cohomology of X in the Grothendieck group of vector spaces. If k = C,
then by comparison theorem (e.g., see [14, Thm. III.3.12] for the case when X is
smooth) it is equivalent to the alternating sum of complex cohomology of Xan.
Similarly, let H∗c (X) :=

∑
i∈N(−1)iHi

c(X,Q`) be the alternating sum of `-adic
cohomology with compact support of X.

2.7.

Let λ be a partition. We write λ ` n or |λ| = n if λ is a partition of n. We describe
each part of λ by writing λ = (λ1, λ2, . . . , λr) ` n where λ1 > λ2 > · · · > λr > 0
and |λ| = n. Or we also write λ = (1r12r23r3 · · · ) which means that λ consists of
r1 parts of 1, r2 parts of 2, and so on.

2.8.

We recall the correspondence between nilpotent adjoint orbits in g under the
adjoint action of G and partitions (see [1, Chap. 5.1]) If G = GLn then such
orbits are parametrized by partitions of n. This correspondence is given by taking
the sizes of Jordan blocks of any element in a nilpotent orbit regarded as an
endomorphism on V . Likewise, if G = SO2n+1, then nilpotent adjoint orbits in
g are parametrized by λ = (1r12r23r3 · · · ) ` 2n + 1 such that r2i ≡ 0 (mod 2)
for i > 1. If G = Sp2n, then nilpotent adjoint orbits in g are parametrized by
λ = (1r12r23r3 · · · ) ` 2n such that r2i−1 ≡ 0 (mod 2) for i > 1. In these cases we
write Nλ ∈ g to be such a nilpotent element corresponding to λ ` n. It is well
defined up to adjoint action by G.

If G = SO2n, then it is almost the same as the case G = SO2n+1, so if λ =
(1r12r23r3 · · · ) ` 2n is a partition of the sizes of Jordan blocks of some nilpotent
element in g, then r2i ≡ 0 (mod 2) for i > 1. However this correspondence is no
longer one-to-one since a partition consisting of even parts with even multiplicities,
which we call very even, corresponds to two adjoint nilpotent orbits in g. Thus
if λ ` 2n is not very even, we write Nλ ∈ g to be such a nilpotent element
corresponding to λ which is again well defined up to adjoint action by G. If λ ` 2n
is very even, then we write Nλ+, Nλ− to distinguish two such nilpotent elements
corresponding to λ in different adjoint orbits. If there is no ambiguity or need to
differentiate Nλ+ and Nλ−, we still write Nλ.
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2.9.

Let G̃ = GLn (resp. O2n+1,Sp2n,O2n) if G = GLn (resp. SO2n+1,Sp2n,SO2n).

For a nilpotent N ∈ g, we define ÃN to be the component group of the stabilizer
of N in G̃. Also for a partition λ, define Ãλ := ÃNλ . If G = SO2n and λ is

very even, then as ÃNλ+ = ÃNλ− = {id}, we define Ãλ := {id}. If G̃ = GLn,

any ÃN is trivial. Otherwise if G̃ = Sp2n (resp. O2n+1 or O2n) and if a partition

λ = (1r12r2 · · · ) corresponds to a nilpotent element in g, then Ãλ is a product
of Z/2 generated by zi for each even i (resp. odd i) such that ri > 0. (Here
we adopt the convention that zi = id if i does not satisfy the aforementioned
condition.) Likewise, we define AN to be the component group of the stabilizer
of N in G and Aλ := ANλ , again even when λ is very even (in which case Aλ is

trivial). Then AN can be considered as a subgroup of ÃN . If G = GLn or Sp2n,

AN = ÃN . Otherwise, for λ = (1r12r2 · · · ) Aλ is the subgroup of Ãλ generated by
{zizj | i, j odd, ri, rj > 0}. (See [1, Chap. 6.1] or [18, 1.1] for more information.)

2.10.

For a partition λ, define Hi(λ) := Hi(BNλ) and Hi(λ+) := Hi(BNλ+), Hi(λ−) :=
Hi(BNλ−) if G = SO2n and λ is very even. We regard Hi(BN ) as W -modules using

Springer theory, adopting the definition of [11]. We also consider the action of ÃN

on H∗(BN ) which is induced from the action of ÃN on BN . Note that the action

of W and AN ⊂ ÃN commute [20, 6.1]. We denote by TSp(λ) the character of
H∗(λ) as a W × Aλ-module. If G = SO2n and λ is very even, we similarly define
TSp(λ+) and TSp(λ−). Note that this definition does not depend on the base
field k insofar as chark is good. Define EC(λ) := dimH∗(BNλ) to be the `-adic
Euler characteristic of BNλ . This is well defined even when λ is very even as BNλ+
and BNλ− are isomorphic. We also define hk(λ) := dimHk(λ) to be the k-th Betti
number of BNλ .

2.11.

For a partition λ = (1r12r23r3 · · · ) and for i > 1 we define λi, λh,i, λv,i as follows.
(This notation will be used when we state the main theorem of this paper.)

(1) If ri > 1, define λi := (1r12r2 · · · (i − 1)ri−1+1iri−1 · · · ) ` |λ| − 1. This
corresponds to removing a box from the Young diagram of λ.

(2) If ri > 1 and i > 2, we let λh,i := (1r12r2 · · · (i−2)ri−2+1(i−1)ri−1iri−1 · · · ) `
|λ|−2. Here the superscript “h” stands for “horizontal”; λh,i is obtained by
removing a horizontal domino from the Young diagram of λ and rearranging
rows if necessary.

(3) If ri > 2, we let λv,i := (1r12r2 · · · (i− 1)ri−1+2iri−2 · · · ) ` |λ| − 2. Here the
superscript “v” stands for “vertical”; λv,i is obtained by removing a vertical
domino from the Young diagram of λ.

3. Main theorem (weak form)

The (weak version of the) main theorem in this paper is as follows.
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Theorem 3.1. Recall the notations in 2.11.

i) Let G = GLn and λ = (1r12r23r3 · · · ) be a partition corresponding to a
nilpotent adjoint orbit of g. Then we have

EC(λ) =
∑
ri>1

riEC(λi).

ii) Let G = SO2n+1, Sp2n, or SO2n and λ = (1r12r23r3 · · · ) be a partition
corresponding to a nilpotent adjoint orbit of g. Then we have

EC(λ) =
∑

i>2, ri odd

EC(λh,i) +
∑

i>1, ri>2

2
⌊ri

2

⌋
EC(λv,i).

Here bri/2c is the greatest integer that is not bigger than ri/2.

Indeed, this can be deduced from more general statements, i.e., Theorem 4.1,
Theorem 4.4, Theorem 5.3, and Theorem 6.1, which provide isomorphisms of W ′×
Aλ-modules. In subsequent sections we prove such generalizations.

4. Type A

For G = GLn, the following theorem generalizes Theorem 3.1.

Theorem 4.1. Let G = GLn and λ = (1r12r23r3 · · · ) ` n. Then we have

ResWW ′ TSp(λ) =
∑
ri>1

riTSp(λi)

as characters of W ′.

Remark 1. This theorem can also be proved by a combinatorial method: see
Appendix A.

Proof. The method we adopt here using certain geometric properties of Springer
fibers is well known, cf. [21], [16], [19], [18], [24], etc. Let N = Nλ ∈ g be a
nilpotent element corresponding to λ = (1r12r2 · · · ) ` n and P be a variety of
lines in V . Then we have a natural surjective morphism π : B → P which sends
[0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V ] to V1. This restricts to π : BN → PN where
PN is the set of lines annihilated by N . It is easy to show that π : BN → PN is
surjective.

Note that P(kerN) = PN . We have filtration of kerN

kerN = W0 ⊃W1 ⊃W2 ⊃ · · ·
where Wi = kerN ∩ imN i. Now suppose Wi−1/Wi is nonzero. It is equivalent to
N having a Jordan block of size i.

Let η : P(Wi−1)−P(Wi)→ P(Wi−1/Wi) be a canonical affine bundle with fiber

Wi. We stratify P(Wi−1/Wi) into affine spaces, i.e., P(Wi−1/Wi) =
⊔ri−1
j=0 Yj where

Yj ' Aj . Also we let Ỹj := η−1(Yj) and Xj := π−1(Ỹj) = (η ◦ π)−1(Yj). Then we

can choose this stratification so that π : Xj → Ỹj is a locally trivial bundle with
fiber B′Nλi , where λi is defined in 2.11 (see [16]). Thus we have

Hk
c (Xj) '

⊕
k1+k2=k

Hk1
c (Ỹj)⊗Hk2(λi) ' Hk−2 dimWi−2j(λi)

as a vector space. In fact, more is true: first we recall [8, Thm. 5.1].
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Lemma 4.2. The Leray sheaves Rjπ!Q` on PN have structures of W ′-modules
such that

(a) for any x ∈ PN , (Rjπ!Q`)x ' Hj(B′N ′) as W ′-modules where Hj(B′N ′) is
equipped with the Springer representation of W ′ and where N ′ is the image
of N under the canonical quotient morphism from the maximal parabolic
subalgebra corresponding to x (which contains N by definition of PN ) to its
Levi factor.

(b) Hk(PN , Rjπ!Q`)⇒ Hj+k(BN ) is a spectral sequence of W ′-modules, where
the action of W ′ on Hj+k(BN ) is the restriction of the Springer representa-
tion of W .

By the first part of Lemma 4.2 we have the following result.

Lemma 4.3. There exists a natural W ′-module structure on Hk
c (Xj) such that

Hk
c (Xj) ' Hk−2 dimWi−2j(λi)

as W ′-modules. Here the action of W ′ on Hk−2 dimWi−2j(λi) is given by the Sprin-
ger representation corresponding to G′.

Now we consider the long exact sequences of the cohomology with compact
support of BN corresponding to the stratification by such Xj ’s for all i. By Lemma
4.3, these long exact sequences are defined in the category of W ′-modules. Thus
it follows that H∗(BN ) is the sum of such H∗c (Xj)’s. To be more precise, let

{Ak}16k6m be the collection of all Xj over all i such that
⋃m′
k=1Ak ⊂ BN is closed

for any m′ 6 m. Then we have a long exact sequence

· · · → Hr
c (Am′)→ Hr

( m′⋃
k=1

Ak

)
→ Hr

(m′−1⋃
k=1

Ak

)
→ · · ·

of W ′-modules. By taking an alternating sum, we see that

H∗
( m′⋃
k=1

Ak

)
= H∗

(m′−1⋃
k=1

Ak

)
+H∗c (Am′).

Using induction on m′, we have

H∗
( m′⋃
k=1

Ak

)
=

m′⊕
k=1

H∗c (Ak).

In particular when m′ = m so that
⋃m′
k=1Ak = BN we obtain the desired result.

Now the second part of Lemma 4.2 and its proof implies that the W ′-module
structure on H∗(BN ), as a sum of such H∗c (Xj), coincides with the restriction to
W ′ of the Springer representation of W on H∗c (BN ).

In sum, we have

ResWW ′ TSp(λ) =
∑
ri>1

riTSp(λi)

as characters of W ′. But this is what we want to prove. �
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In fact, we may proceed further; since Springer fibers have vanishing odd
cohomology by [2], it is also true for Xj . Thus each long exact sequence considered
above splits into short exact sequences in even degrees. Therefore, by keeping track
of degrees of each short exact sequence, we have the following theorem which
generalizes Theorem 4.1.

Theorem 4.4. For λ = (λ1, λ2, . . . , λr) and any k ∈ Z, we have

ResWW ′ H
k(λ) =

r⊕
i=1

Hk−2i+2(λλi)

as W ′-modules. (See 2.11 for the definition of λλi).

Remark 2. In fact, this formula already appeared in [7, Rem. 2.4] using a similar
argument. On the other hand, if we evaluate the character of each side at id ∈W ′,
then it gives [4, Prop. 4.5]. This method is combinatorial, counting the number of
“row-standard” tableaux of certain Young diagrams.

Example 4.5. Suppose k is an algebraic closure of a finite field. For w ∈ W ,
we define Qλ,w(q) =

∑
k∈N q

k tr(w,H2k(λ)) to be the Green function associated
with w and the nilpotent element Nλ ∈ g corresponding to λ. Then Theorem 4.4
implies that for w ∈W ′ ⊂W we have

Qλ,w(q) =

r∑
i=1

Qλλi ,w(q)qi−1

where Qλλi ,w is defined similarly to Qλ,w. For example, if G = GL4, w = (123) ∈
W ′ ⊂W , then

Q(1,1,1,1),w(q) = (q3 + q2 + q + 1)Q(1,1,1),w(q),

Q(2,1,1),w(q) = Q(1,1,1),w(q) + (q2 + q)Q(2,1),w(q),

Q(2,2),w(q) = (q + 1)Q(2,1),w(q),

Q(3,1),w(q) = Q(2,1),w(q) + qQ(3),w,

Q(4),w(q) = Q(3),w(q),

and note that we have in fact

Q(1,1,1,1),w(q) = q6 − q4 − q2 + 1, Q(2,1,1),w(q) = Q(2,2),w(q) = −q2 + 1,

Q(3,1),w(q) = Q(4),w(q) = 1, Q(1,1,1),w(q) = q3 − q2 − q + 1,

Q(2,1),w(q) = −q + 1, Q(3),w(q) = 1.

5. Type B,C and D

Now we assume that G = SO2n+1,Sp2n, or SO2n. We follow the argument in
the previous section with some modifications. Let N = Nλ ∈ g be a nilpotent
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element corresponding to λ = (1r12r2 · · · ) and P be a variety of isotropic lines in
V . Then we have a natural surjective morphism π : B → P defined by

if G = SO2n+1,Sp2n, [0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn] 7→ V1, and

if G = SO2n, [0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1] 7→ V1.

This restricts to π : BN → PN where PN is the set of isotropic lines annihilated
by N . It is easy to show that π : BN → PN is surjective.

[21] defined a stratification on PN such that π is locally trivial on each stratum,
which is revisited in [17] and [18]. We recall their results as follows. Start with a
filtration

kerN = W0 ⊃W1 ⊃W2 ⊃ · · ·

where Wi = kerN ∩ imN i. Now suppose Wi−1/Wi is nonzero. It is equivalent to
N having a Jordan block of size i.

[21] also defined a (non-degenerate) bilinear form ( , ) on Wi−1/Wi which is
symmetric if i is odd (resp. even) and G = SO2n+1,SO2n (resp. G = Sp2n).
Otherwise it is symplectic. If ( , ) is symmetric, then the set of isotropic lines in
P(Wi−1/Wi) forms a quadric hypersurface, which is nonsingular if dimWi−1/Wi >
3, a union of two points if dimWi−1/Wi = 2, and empty if dimWi−1/Wi = 1. If
( , ) is symplectic, then any x ∈ P(Wi−1/Wi) is isotropic.

There is a canonical affine bundle η : P(Wi−1)−P(Wi)→ P(Wi−1/Wi) with fiber
isomorphic to Wi. Now we define Y or Yj to be one of the strata of P(Wi−1/Wi)

in each case below, following the argument in [18], and let Ỹ := η−1(Y ), Ỹj :=
η−1(Yj). (See 2.11 for the definition of λh,i and λv,i.)

Case I. Suppose ( , ) is symmetric. Let Q be the set of isotropic lines with
respect to ( , ) in P(Wi−1/Wi) and C := P(Wi−1/Wi)−Q. There is a stratification

Q = Q0 ⊃ Q1 ⊃ · · · ⊃ Qm−1 ⊃ Qm+1 ⊃ · · · ⊃ Qri−1 ⊃ Qri = ∅,
C = C0 ⊃ C1 ⊃ · · · ⊃ Cri−m−1 ⊃ Cri−m = ∅

defined in [21] or [18], where m = bri/2c.
(a1) Yj = Qj−1 −Qj for j 6= m,m+ 1, or Ym = Qm−1 −Qm+1 when ri is odd.

Then the fiber of π at any point in Ỹj is isomorphic to B′Nλv,i . Also we

have

Yj ' Ari−j−1 if 1 6 j 6 m, Yj ' Ari−j if m+ 2 6 j 6 ri.

(a2) Y = Qm−1 −Qm+1 when ri is even. Then the fiber of π at any point in Ỹ
is isomorphic to B′Nλv,i . Also Y ' Ari−m−1 t Ari−m−1 = Am−1 t Am−1.

(b1) Yj = Cj−1 − Cj for j 6= m + 1. Then the fiber of π at any point in Ỹj is
isomorphic to B′N

λh,i
. Also we have Yj ' Ari−j − Ari−j−1.

(b2) Y = Cri−m−1 = Cm when ri is odd. Then the fiber of π at any point in Ỹ
is isomorphic to B′N

λh,i
. Also Y ' Am.
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Case II. Suppose ( , ) is symplectic and stratify P(Wi−1/Wi) with respect to
some symplectic basis, say

P(Wi−1/Wi) = Z0 ⊃ Z1 ⊃ · · · ⊃ Zri−1 ⊃ Zri = ∅.

Let Yj = Zj−1 −Zj be one of the strata. Then the fiber of π at any point in Ỹj is
isomorphic to B′Nλv,i . Also Yj ' Ari−j .

Let X := π−1(Ỹ ) = (η ◦ π)−1(Y ) and Xj := π−1(Ỹj) = (η ◦ π)−1(Yj). Then
we have the following lemma. (Here we do not differentiate Nλ+ and Nλ− even
when G = SO2n and λ is very even, as they make no difference in the following
statement. It is similar when λv,i is very even. λh,i cannot be very even in any
case.) Note that λh,i and λv,i correspond to some nilpotent elements in g′.

Lemma 5.1. Let za (resp. z′a) be the generators of Ãλ (resp. Ãλh,i or Ãλv,i) fol-

lowing the notations of 2.9. Then we have the following isomorphisms of Ãλ-
modules.

Case I:

(a1) Hk
c (Xj) ' Hk−2 dimWi−2 dimYj (λv,i).

(a2) Hk
c (X) ' Hk−2 dimWi−2 dimY (λv,i)⊕Hk−2 dimWi−2 dimY (λv,i).

(b1) If k is even, Hk
c (Xj) ' Hk−2 dimWi−2 dimYj (λh,i)τ .

If k is odd, Hk
c (Xj) ' Hk−2 dimWi−2 dimYj+1(λh,i)τ .

(b2) Hk
c (X) ' Hk−2 dimWi−2 dimY (λh,i).

Case II: Hk
c (Xj) ' Hk−2 dimWi−2 dimYj (λv,i).

Here τ = z′iz
′
i−2 ∈ Ãλh,i . In each case the action of za ∈ Ãλ on the right-hand

side is defined as follows.
Case I:

(a1) za acts by z′a.
(a2) za acts by z′a for a 6= i, and zi permutes two summands.
(b1) za acts by z′a mod τ unless ri is even, j = ri/2, a = i, and k is odd,

in which case zi acts by −z′i mod τ , i.e., v 7→ −z′i(v). (Note that the
action of z′i and z′i−2 on the right-hand side are the same.)

(b2) za acts by z′a for a 6= i, and zi acts by z′i−2.

Case II: za acts by z′a.

Proof. This is exactly [18, Prop. 2.4] with some correction. (See also [24, Lem.

3.3.1].) This formula has an error on the description of the action of Ãλ in Case
I.(b1); it differs by a sign from our description in some special case. This sign

comes from the fact that the action of zi on Yj induces −1 on H
2 dimYj−1
c (Yj),

which is equivalent to the reciprocal map z 7→ 1/z on A1 − {0}. �

In fact, we have a similar result of Lemma 5.1 for W ′-modules, using the
argument in the previous section (mainly based on [8, Thm. 5.1] and its proof).
Thus for any Z ⊂ PN , Hi(π−1(Z)) has a natural W ′-module structure which
comes from the Springer representations corresponding to G′. Now together with
Lemma 5.1 we have the following. (As before we do not differentiate Nλ+ and
Nλ− even when G = SO2n and λ is very even. However, we need to be careful
when λv,i is very even.)
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Proposition 5.2. There are the natural W ′-module structures on Hk
c (X) and

Hk
c (Xj), such that we have the following isomorphisms of W ′ ×Aλ-modules.
Case I:

(a1) Hk
c (Xj) ' Hk−2 dimWi−2 dimYj (λv,i).

(a2) If G 6= SO2n or λv,i is not very even, then

Hk
c (X) ' Hk−2 dimWi−2 dimY (λv,i)⊕Hk−2 dimWi−2 dimY (λv,i).

If G = SO2n and λv,i is very even, then

Hk
c (X) ' Hk−2 dimWi−2 dimY (λv,i+)⊕Hk−2 dimWi−2 dimY (λv,i−).

(b1) If k is even, Hk
c (Xj) ' Hk−2 dimWi−2 dimYj (λh,i)τ .

If k is odd, Hk
c (Xj) ' Hk−2 dimWi−2 dimYj+1(λh,i)τ .

(b2) Hk
c (X) ' Hk−2 dimWi−2 dimY (λh,i).

Case II: Hk
c (Xj) ' Hk−2 dimWi−2 dimYj (λv,i).

Here τ = z′iz
′
i−2 ∈ Ãλh,i . The action of Aλ is the restriction of that of Ãλ

described in Lemma 5.1.

Proof. It can be proved similarly to Lemma 5.1, using Lemma 4.2. Also this is
similar to [17, Prop. 2.8] or [18, Lem. 3.4], which only deal with cohomology on the
top degree; it can be easily generalized to any degree. Note that the actions of W ′

and Aλ commute since the actions of W ′ and Aλh,i or Aλv,i on the cohomology of
Springer fibers corresponding to G′ commute by [20, 6.1]. (Note that τ ∈ Aλh,i ,
thus Hk(λh,i)τ are still W ′-modules. Also in Case I.(a2), if λv,i is very even, then
Aλ = {∗}. Thus the statement is still clear in this case.) �

Now we consider the long exact sequences of the cohomology with compact
support of BN corresponding to the stratification by X and Xj . By Proposition
5.2, these long exact sequences are defined in the category of W ′ × AN -modules.
Thus it follows that H∗(BN ) is isomorphic to the sum of such H∗c (X) and H∗c (Xj)
as a W ′×AN -module. Furthermore, the second part of Lemma 4.2 implies that the
W ′-module structure on H∗(BN ), as a sum of such H∗c (X) and H∗c (Xj), coincides
with the restriction to W ′ of the W -module structure defined by Springer’s theory
on H∗(BN ). (This part is completely analogous to the argument for type A in
Section 4.) In sum, we have the following theorem.

Theorem 5.3. Let N = Nλ ∈ g where λ = (1r12r2 · · · ). Define sgni to be the

character of W ′ × Aλ such that on Aλ it is the restriction of the character of Ãλ

defined by
sgni(zi) = −1, sgni(zj) = 1 for i 6= j,

and on W ′ it is trivial. Also let τi := z′iz
′
i−2 ∈ Aλh,i and TSp(λh,i)τi be the

character of H∗(λh,i)τi . Then we have the following equalities of characters of
W ′ ×Aλ. Here we define

TSp(λh,i)(−, zα) := TSp(λh,i)(−, z′α) for α 6= i,

TSp(λv,i)(−, zα) := TSp(λv,i)(−, z′α) for α 6= i,

TSp(λh,i)(−, zi) := TSp(λh,i)(−, z′i−2),

TSp(λv,i)(−, zi) := TSp(λv,i)(−, z′i).
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(a) Let G = SO2n+1. Then,

ResW×AλW ′×AλTSp(λ)

=
∑

i>2, i odd,
ri odd

(
TSp(λh,i) + (ri − 1)TSp(λv,i)

)
+

∑
i>2, i odd,
ri even

(
(1− sgni)TSp(λh,i)τi + (ri − 1 + sgni)TSp(λv,i)

)
+
∑
i even

riTSp(λv,i).

(b) Let G = Sp2n. Then,

ResW×AλW ′×Aλ TSp(λ)

=
∑
i even,
ri odd

(
TSp(λh,i) + (ri − 1)TSp(λv,i)

)
+

∑
i even,
ri even

(
(1− sgni)TSp(λh,i)τi + (ri − 1 + sgni)TSp(λv,i)

)
+
∑
i odd

riTSp(λv,i).

(c) Let G = SO2n and λ is not very even. Then there is at most one e ∈ Z>0

such that λv,e is very even. If such e exists, then e is odd, re = 2, and
Aλ = {∗}. In this case we have

ResW×AλW ′×Aλ TSp(λ) =
∑
i even

riTSp(λv,i) + TSp(λv,e+) + TSp(λv,e−).

If such e does not exist, then we have

ResW×AλW ′×Aλ TSp(λ)

=
∑

i>2, i odd,
ri odd

(
TSp(λh,i) + (ri − 1)TSp(λv,i)

)
+

∑
i>2, i odd,
ri even

(
(1− sgni)TSp(λh,i)τi + (ri − 1 + sgni)TSp(λv,i)

)
+
∑
i even

riTSp(λv,i).

If λ is very even, then Aλ = {∗} and we have

ResW×AλW ′×Aλ TSp(λ+) = ResW×AλW ′×Aλ TSp(λ−) =
∑
i even

riTSp(λv,i).

Now Theorem 3.1 is a corollary of Theorem 5.3 if we evaluate equations above
at (id, id) ∈W ′ ×Aλ.
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Example 5.4. Let G = Sp12 and λ = (6, 4, 2) ` 12. Then we have

EC(λ) = EC(6, 4) + EC(6, 2, 2) + EC(4, 4, 2)

= EC(6, 2) + 2EC(6, 1, 1) + 2EC(4, 4) + EC(4, 2, 2) + 2EC(3, 3, 2)

= 5EC(6) + EC(4, 2) + 4EC(4, 1, 1) + 6EC(3, 3) + 5EC(2, 2, 2)

= 14EC(4) + 18EC(2, 2) + 14EC(2, 1, 1)

= 42EC(2) + 50EC(1, 1) = 142.

6. Betti numbers in some special cases

In some special situation, we have not only the restriction of total Springer
representations, i.e., the alternating sum H∗(BN ) of cohomology, but also that
of each degree of the cohomology. If G = GLn, it is already given in Theorem
4.4. Thus from now on we assume G = SO2n+1,Sp2n, or SO2n and find analogous
formulas.

We assume each of the following cases. Let λ = (1r12r2 · · · ) and ξ > 1 be the
smallest integer such that rξ 6= 0.

(a) G = SO2n+1 or SO2n.
(a1) ξ is even and ri ∈ {0, 1} for any odd i.
(a2) ξ > 1 is odd, ri ∈ {0, 1} for odd i different from ξ, and rξ ∈ {1, 2, 3}.
(a3) ξ = 1, r1 = 1, and λ1 (see 2.11) satisfies either (a1) or (a2).
(a4) ξ = 1, r1 > 1, and ri ∈ {0, 1} for odd i different from 1.

(b) G = Sp2n.
(b1) ξ is odd and ri ∈ {0, 1} for any even i.
(b2) ξ is even, ri ∈ {0, 1} for even i different from ξ, and rξ ∈ {1, 2, 3}.

Recall that in the proof of Theorem 5.3 we used the long exact sequences of
W ′ × AN -modules to show that H∗(BN ) is the sum of alternating sums of the
cohomology of each stratum in BN . In each case above, one can easily check that
such a long exact sequence splits into short exact sequences using the fact that
Springer fibers have vanishing odd cohomology [2]. (In general it is no longer true
since Xj in Section 5 does not necessarily have such vanishing properties.) Thus
in this case we have the following theorem.

Theorem 6.1. Suppose G = SO2n+1,Sp2n, or SO2n. Let λ = (1r12r2 · · · ) be a
partition and N = Nλ ∈ g. We define di :=

∑
j>i rj. Also recall the definition

of sgni and τi ∈ Aλh,i in Theorem 5.3. Here we abuse notations to denote by
Hk(λ), Hk(λh,i), Hk(λv,i) the character corresponding to each representation and
define the character values of elements in Aλ on Hk(λh,i), Hk(λv,i) as follows:

Hk(λh,i)(−, zα) := Hk(λh,i)(−, z′α) for α 6= i,

Hk(λv,i)(−, zα) := Hk(λv,i)(−, z′α) for α 6= i,

Hk(λh,i)(−, zi) := Hk(λh,i)(−, z′i−2),

Hk(λv,i)(−, zi) := Hk(λv,i)(−, z′i).

Then we have equalities of characters of W ′ ×Aλ as follows.
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(a) Assume G = SO2n+1 or SO2n.

(a1) If ξ is even and ri ∈ {0, 1} for any odd i, then

ResW×AλW ′×AλH
k(λ)

=
∑

i>1 odd,
ri=1

Hk−2di(λh,i) +
∑
i even

ri−1∑
j=0

Hk−2di−2j(λv,i).

(a2) Suppose ξ is odd, ξ>1, ri∈{0, 1} for odd i different from ξ, and rξ ∈
{1, 2, 3}. If rξ=1, then the formula in (a1) is still valid. If rξ=2, then

ResW×AλW ′×AλH
k(λ)

=
∑

i>ξ odd,
ri=1

Hk−2di(λh,i) +
∑
i even

ri−1∑
j=0

Hk−2di−2j(λv,i)

+Hk−2dξ−2(λh,ξ)τξ − sgnξH
k−2dξ(λh,ξ)τξ

+ (1 + sgnξ)H
k−2dξ(λv,ξ).

If rξ = 3, then

ResW×AλW ′×AλH
k(λ)

=
∑

i>ξ odd,
ri=1

Hk−2di(λh,i) +
∑
i even

ri−1∑
j=0

Hk−2di−2j(λv,i)

+Hk−2dξ−4(λh,ξ)τξ −Hk−2dξ−2(λh,ξ)τξ +Hk−2dξ−2(λh,ξ)

+Hk−2dξ(λv,ξ) +Hk−2dξ−2(λv,ξ).

(a3) Suppose ξ = 1, r1 = 1, and λ1 satisfies (a1) (resp. (a2)). Then the
formula in (a1) (resp. (a2)) is still valid if we replace ξ by the smallest
integer ξ′ such that rξ′ 6= 0 and ξ′ > 1.

(a4) Suppose ξ=1, r1>1, and ri∈{0, 1} for odd i different from 1. If r1 is
odd, then

ResW×AλW ′×AλH
k(λ)

=
∑

i>1 odd,
ri=1

Hk−2di(λh,i) +
∑
i even

ri−1∑
j=0

Hk−2di−2j(λv,i)

+

r1−2∑
j=0

Hk−2d1−2j(λv,1).



D. KIM

If r1 is even, then

ResW×AλW ′×AλH
k(λ)

=
∑

i>1 odd,
ri=1

Hk−2di(λh,i) +
∑
i even

ri−1∑
j=0

Hk−2di−2j(λv,i)

+

r1−2∑
j=0

Hk−2d1−2j(λv,1) + sgn1H
k−2d1−r1+2(λv,1).

(b) Assume G = Sp2n.
(b1) If ξ is odd and ri ∈ {0, 1} for any even i, then

ResW×AλW ′×AλH
k(λ)

=
∑
i even,
ri=1

Hk−2di(λh,i) +
∑
i odd

ri−1∑
j=0

Hk−2di−2j(λv,i).

(b2) Suppose ξ is even, ri ∈ {0, 1} for even i different from ξ, and rξ ∈
{1, 2, 3}. If rξ=1, then the formula in (b1) is still valid. If rξ=2, then

ResW×AλW ′×AλH
k(λ)

=
∑

i>ξ even,
ri=1

Hk−2di(λh,i) +
∑
i odd

ri−1∑
j=0

Hk−2di−2j(λv,i)

+Hk−2dξ−2(λh,ξ)τξ − sgnξH
k−2dξ(λh,ξ)τξ

+ (1 + sgnξ)H
k−2dξ(λv,ξ).

If rξ = 3, then

ResW×AλW ′×AλH
k(λ)

=
∑

i>ξ even,
ri=1

Hk−2di(λh,i) +
∑
i odd

ri−1∑
j=0

Hk−2di−2j(λv,i)

+Hk−2dξ−4(λh,ξ)τξ −Hk−2dξ−2(λh,ξ)τξ

+Hk−2dξ−2(λh,ξ) +Hk−2dξ(λv,ξ) +Hk−2dξ−2(λv,ξ).

In Section 8 we use these formulas to calculate the Betti numbers of Springer
fibers corresponding to two-row partitions.

7. Short proof of the main theorem

In fact, the proof is simpler if we only want to prove Theorem 3.1. First we recall
the following induction statement of Springer representations from [13, Thm. 1.3].
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Proposition 7.1. Let L be a Levi subgroup of a parabolic subgroup of G with its
Lie algebra l. Let WL be the Weyl group of L with a natural embedding WL ↪→W .
Let BL be the variety of Borel subgroups of L. Then for N ∈ l ⊂ g we have

H∗(BN ) ' IndWWL
H∗((BL)N )

as WL-modules.

Suppose G = GLn. As every nilpotent element in g is a regular element in a
Levi subalgebra of some parabolic subalgebra of g, for λ = (1r12r2 · · · ) it is easy
to show that

EC(λ) =
n!

(1!)r1(2!)r2 · · ·
.

Thus Theorem 3.1 follows from easy induction on n.
Now if G = SO2n+1,Sp2n, or SO2n, using Proposition 7.1 it suffices to show

the statement when the given nilpotent element is distinguished. In this case we
follow the argument in Section 5, which is a bit simpler than considering all the
cases.

Remark 3. Note that the vanishing of odd cohomology of Springer fibers [2] implies
the positivity of Euler characteristics of Springer fibers. Meanwhile, we do not need
this fact in the proof of Theorem 4.1 and 5.3. Thus it gives another proof that the
Euler characteristic of any Springer fiber is positive without using [2] (at least
when G is of classical type).

8. Closed formula for the Betti numbers in two-row cases

Let N = Nλ ∈ g be a nilpotent element corresponding to λ, which consists
of two rows (or if G = SO2n+1, we assume that it consists of two rows and an
additional row of length 1). Here we use Theorem 4.4 and Theorem 6.1 to give
closed formulas for the multiplicities of irreducible representations of Aλ in each
Hk(λ). As a result, we also have formulas for Betti numbers of Springer fibers of
such type. There are many results about the geometry of such Springer fibers,
e.g., [6], [9], [5], [23], [15], [3], [25], [26], etc.

Proposition 8.1. Let G = GLn and λ = (i, j) ` n such that i > j > 0. Then

h2k(λ) =

(
i+ j

k

)
−
(
i+ j

k − 1

)
for 0 6 k 6 j and 0 otherwise.

Remark 4. This is also calculated in [4, Example 4.5].

Proof. We use induction on the rank n = i + j. It is trivial when n = 1. Now
suppose n > 2 and that the statement is true up to rank n − 1. If λ = (i, j) ` n
with i > j, then by Theorem 4.4 we have

h2k(λ) = h2k(i− 1, j) + h2k−2(i, j − 1),
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thus h2k(λ) = 0 unless 0 6 k 6 j. If k is in this range then

h2k(λ) =

(
i+ j − 1

k

)
−
(
i+ j − 1

k − 2

)
=

(
i+ j

k

)
−
(
i+ j

k − 1

)
.

Likewise, if λ = (i, i) then

h2k(λ) = h2k(i, i− 1) + h2k−2(i, i− 1) =

(
2i

k

)
−
(

2i

k − 1

)

if 0 6 k 6 i. (Note that this is true even when k = i as
(
2i−1
i−1
)
−
(
2i−1
i−2
)

=
(
2i
i

)
−(

2i
i−1
)
.) �

Let G = SO2n+1 and λ = (i, j, 1) ` 2n + 1 where i > j > 1. Then Aλ is
isomorphic to

Z/2× Z/2 if i > j > 1,

Z/2 if i odd and either i = j > 1 or i > j = 1, and

trivial otherwise.

If i > j > 1, then we let zizj (resp. zjz1) be the generator of the first (resp. second)
factor of Z/2. Then we set

hk(λ)+,+ :=
〈
Hk(λ), Id× Id

〉
Aλ
, hk(λ)+,− :=

〈
Hk(λ), Id× sgn

〉
Aλ
,

hk(λ)−,+ :=
〈
Hk(λ), sgn×Id

〉
Aλ
, hk(λ)−,− :=

〈
Hk(λ), sgn× sgn

〉
Aλ
,

to be the multiplicity of Id× Id, Id× sgn, sgn×Id, sgn× sgn, respectively, in Hk(λ)
as an Aλ-representation. If i = j > 1 is odd, then we write

hk(λ)+,+ :=
〈
Hk(λ), Id

〉
Aλ
, hk(λ)+,− :=

〈
Hk(λ), sgn

〉
Aλ

to be the multiplicity of Id, sgn, respectively, in Hk(λ), and set hk(λ)−,+ =
hk(λ)−,− = 0. If i is odd and j = 1, then we let

Hk(λ)+,+ :=
〈
Hk(λ), Id

〉
Aλ
, hk(λ)−,+ :=

〈
Hk(λ), sgn

〉
Aλ

be the multiplicity of Id, sgn, respectively, in Hk(λ), and set hk(λ)+,− = hk(λ)−,−
= 0. If Aλ is trivial, we set hk(λ)+,+ =hk(λ) and hk(λ)+,−=hk(λ)−,+ =hk(λ)−,−
= 0. (The reason for using these weird notations will be apparent immediately.)
Then we have the following.

Proposition 8.2. Let G = SO2n+1 and λ = (i, j, 1) ` 2n+ 1 such that i > j > 1,
and i, j are odd unless i = j. Then hα(λ) = 0 unless 0 6 α 6 j + 2 and α even.
From now on we assume α = 2k satisfies this condition.
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(a) If i > j > 1, then we have

h2k(λ)+,+ =

(
(i+ j)/2

k

)
, h2k(λ)+,− =

(
(i+ j)/2

k − 2

)
, h2k(λ)−,− = 0.

Also, h2k(λ)−,+ = 0 unless 2k = j + 1, in which case

hj+1(λ)−,+ =
i− j

i+ j + 2

(
(i+ j + 2)/2

(j + 1)/2

)
.

(b) If i = j is odd and i > 1, then

h2k(λ)+,+ =

(
i

k

)
, h2k(λ)+,− =

(
i

k − 2

)
.

(c) If i > 1 is odd and j = 1, then

h2k(λ)+,+ =

(
(i+ 1)/2

k

)
.

Also h2k(λ)−,+ = 0 unless 2k = 2, in which case h2(λ)−,+ = (i− 1)/2.
(d) If i = j > 1 is even, then h2k(λ) =

(
i
k

)
.

(e) h0((1, 1, 1)) = h2((1, 1, 1)) = 1.

Thus, we always have h2k(λ)−,− = 0 and

h2k(λ)+,+ =

(
(i+ j)/2

k

)
, h2k(λ)+,− =

(
(i+ j)/2

k − 2

)
,

h2k(λ)−,+ = δ2k,j+1
i− j

i+ j + 2

(
(i+ j + 2)/2

(j + 1)/2

)
if they are not a priori zero.

Proof. From Theorem 6.1 we have the following relations.

(a) If i > j > 1, then

h2k(λ)∗ = h2k(i− 2, j, 1)∗ + h2k−2(i, j − 2, 1)∗

where ∗ can be any of (+,+), (+,−), (−,+), (−,−).
(b) If i = j is odd and i > 1, then

h2k(λ)+,+ = h2k(i− 1, i− 1, 1)+,+ + h2k−2(i, i− 2, 1)+,+ − h2k(i, i− 2, 1)+,−,

h2k(λ)+,− = h2k(i− 1, i− 1, 1)+,+ + h2k−2(i, i− 2, 1)+,− − h2k(i, i− 2, 1)+,+.

(c) If i > 1 is odd and j = 1, then

h2k(λ)∗ = h2k(i− 2, 1, 1)∗ + δk,1,

where ∗ is either (+,+) or (−,+).
(d) If i = j is even, then

h2k(λ) = h2k−2(i− 1, i− 1, 1)+,+ + h2k(i− 1, i− 1, 1)+,+.

(e) If i = j = 1, then h0((1, 1, 1)) = h2((1, 1, 1)) = 1.

Now the result follows from induction on the rank n. �
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If G = Sp2n, it is known that the AN -action on Hk(BN ) factors through the
quotient by the image of ±I ∈ Sp2n, where the image of −I is

∏
i z
ri
i ∈ AN . We

denote such a quotient by AN . If N = Nλ for λ = (i, j) ` n, then Aλ ' Z/2
if i, j > 0 are both even, and otherwise Aλ is trivial. If Aλ ' Z/2, then we let
hk(λ)Id, h

k(λ)sgn be the multiplicities of Id, sgn, respectively, in Hk(λ) as a Aλ-
module. Thus in particular hk(λ) = hk(λ)Id + hk(λ)sgn. If Aλ is trivial, we set
hk(λ)Id := hk(λ) and hk(λ)sgn := 0.

Proposition 8.3. Let G = Sp2n and λ = (i, j) ` 2n such that i > j > 0, and i, j
are even unless i = j. Then we have h2k(λ)id = 0 unless 0 6 2k 6 j + 1, in which
case

if 0 6 2k 6 j, h2k(λ)Id =

(
b(i+ 1)/2c+ b(j + 1)/2c

k

)
,

if 2k = j + 1, h2k(λ)Id =
1

2

(
b(i+ 1)/2c+ b(j + 1)/2c

k

)
.

If i, j are both even, then h2ksgn(λ) = 0 unless 0 6 2k 6 j, in which case

h2k(λ)sgn =

(
(i+ j)/2

k − 1

)
.

Proof. From Theorem 6.1 we have the following relations.

(a) If i > j, then

h2k(λ)Id = h2k(i− 2, j)Id + h2k−2(i, j − 2)Id,

h2k(λ)sgn = h2k(i− 2, j)sgn + h2k−2(i, j − 2)sgn.

(b) If i = j is even, then

h2k(λ)Id = h2k−2(i, i− 2)Id − h2k(i, i− 2)sgn + h2k(i− 1, j − 1),

h2k(λ)sgn = h2k−2(i, i− 2)sgn − h2k(i, i− 2)Id + h2k(i− 1, j − 1),

(c) If i = j is odd, then

h2k(λ) = h2k−2(i− 1, i− 1)Id + h2k−2(i− 1, i− 1)sgn

+ h2k(i− 1, i− 1)Id + h2k(i− 1, i− 1)sgn.

Now the result follows from easy induction on n. �

If G = SO2n, it is known that the AN -action on Hk(BN ) factors through the
quotient by the image of ±I ∈ SO2n, where the image of −I is

∏
i z
ri
i ∈ AN . We

denote such a quotient by AN . If N = Nλ for λ = (i, j) ` n, then Aλ is trivial.

Proposition 8.4. Let G = SO2n and λ = (i, j) ` 2n such that i > j > 0, and i, j
are odd unless i = j. Then we have h2k(λ) = 0 unless 0 6 2k 6 j, in which case

if 0 6 2k 6 j − 1, h2k(λ) =

(
(i+ j)/2

k

)
,

if 2k = j, h2k(λ) =
1

2

(
(i+ j)/2

k

)
.
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Proof. From Theorem 6.1 we have the following relations.

(a) If i > j, then

h2k(λ) = h2k(i− 2, j) + h2k−2(i, j − 2).

(b) If i = j is odd, then

h2k(λ) = h2k−2(i, j − 2)− h2k(i, j − 2) + 2h2k(i− 1, j − 1).

(c) If i = j is even, then

h2k(λ) = h2k−2(i− 1, j − 1) + h2k(i− 1, j − 1).

Now the result follows from easy induction on n. �

Remark 5. When G = Sp2n or SO2n, the cohomology rings of Springer fibers cor-
responding to two-row partitions are described in [3, Thm. B] and [26, Thm. A].
Thus their Betti numbers can also be deduced from their descriptions.

A. Combinatorial proof of Theorem 4.1

Proof of Theorem 4.1. We refer to [22, Chap. 7.18]. We let Si be the symmetric
group of i elements. Define CFi to be the Q-vector space spanned by irreducible
characters of Si and let CF :=

⊕
i∈N CFi. We introduce a ring structure on CF

so that for f ∈ CFi and g ∈ CFj , we define f ◦ g := Ind
Si+j
Si×Sj f × g and extend it

to CF by linearity. Also on each CFi we have a well-defined inner product 〈 , 〉,
which we extend to CF be decreeing that 〈f, g〉 = 0 for f ∈ CFi, g ∈ CFj with
i 6= j.

Then we have a well-defined ring isomorphism

ch : CF → Λ

where Λ is the ring of symmetric polynomials of x1, x2, · · · with coefficients in
Q. It is uniquely defined by the condition that it sends IndSnSλ IdSλ to hλ, the
homogeneous symmetric polynomial corresponding to λ. Here Sλ := Sr11 × S

r2
2 ×

· · · ⊂ Sn if λ = (1r12r2 · · · ) ` n. Also ch respects inner products on both rings,
where the inner product on Λ is defined by 〈hλ,mµ〉 = δλ,µ and extended by
linearity. Here mµ is the monomial symmetric polynomial corresponding to µ.

In order to prove the statement, it suffices to show that for any class function
f of Sn−1 〈

TSp(λ), IndSnSn−1
f
〉

=

〈⊕
ri>1

riTSp(λi), f

〉
.

Note that TSp(λ) = IndSnSλ IdSλ by Proposition 7.1. If we apply ch, then it is
equivalent to

〈hλ, ch(f)h1〉 =

〈∑
ri>1

rihλi , ch(f)

〉
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As monomial symmetric functions mµ for µ ` n−1 are a basis of CFn−1, it suffices
to check that the above formula is true when ch(f) = mµ for any µ ` n − 1. By
the definition of inner product on Λ we have

〈∑
ri>1 rihλi ,mµ

〉
= ri if µ = λi for

some i ∈ N and 0 otherwise. On the other hand, for µ = (1r
′
12r
′
2 · · · ) it is easy to

show that

mµh1 =
∑
r′i>1

(r′i+1 + 1)m
(1r
′
12r
′
2 ···ir

′
i
−1(i+1)

r′
i+1

+1··· )
+ (r′1 + 1)m

(1r
′
1+12r

′
2 ··· ),

thus 〈hλ,mµh1〉 = ri if µ = λi for some i ∈ N and 0 otherwise. It suffices for the
proof. �

B. Exceptional types

In this section we assume that G is a reductive group of exceptional type, i.e., of
type E6,E7,E8,F4, or G2, over k such that chark is good. Then the corresponding
Green functions are completely known. The following tables give the multiplicities
of each irreducible character of AN in H∗(BN ) for any nilpotent N ∈ g if G is
of exceptional type, using the data of Green functions. Here we use the tables of
Green functions given in [10]. Each column in the tables represents the following.

(a) N : the type of a nilpotent element N ∈ g. We use the Bala-Carter notation
here.

(b) AN : the component group of the stabilizer of N in G. A dot (.) means
that AN is trivial. Otherwise AN is either S2,S3,S4, or S5, where Sn is the
symmetric group permuting n elements.

(c) φ: an irreducible character of AN , i.e., φ ∈ ÂN . If AN is trivial, then φ is
the identity, and we put a dot (.) in this case. Otherwise if AN = Sn, then
we put the partition λ ` n which parametrizes φ. For example, n means
the identity character and 11 · · · 1 means the sign character.

(d) mult: the multiplicity of φ in H∗(BN ), i.e., 〈H∗(BN ), φ〉.
Note that in each case the Euler characteristic of BN is given by

χ(BN ) =
∑
φ∈ÂN

(dimφ) 〈H∗(BN ), φ〉AN

where the sum is over all the irreducible representations of AN .
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Table 1. Type E6

N AN φ mult

E6 . . 1
E6(a1) . . 7
D5 . . 27

A5 + A1 S2
2 57
11 21

A5 . . 72
D5(a1) . . 162
A4 + A1 . . 216

D4 . . 270
A4 . . 432

D4(a1) S3
3 575
21 370
111 35

A3 + A1 . . 1080
2A2 + A1 . . 720

A3 . . 2160
A2 + 2A1 . . 2160

2A2 . . 1440
A2 + A1 . . 4320

A2 S2
2 5940
11 2700

3A1 . . 6480
2A1 . . 12960
A1 . . 25920
A0 . . 51840
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Table 3. Type E7

N AN φ mult

E7 . . 1
E7(a1) . . 8
E7(a2) . . 35

D6 + A1 S2
2 91
11 28

E6 . . 56

E6(a1) S2
2 232
11 160

D6 . . 126

D6(a1) + A1 S2
2 456
11 15

A6 . . 576
D6(a1) . . 882
D5 + A1 . . 756

D6(a2) + A1 S3
3 1442
21 826
111 56

D5 . . 1512

(A5 + A1)′ S2
2 3192
11 1176

D6(a2) . . 2772
(A5 + A1)′′ . . 2016

A′5 . . 4032
D5(a1) + A1 . . 4536

D5(a1) S2
2 6426
11 2646

A4 + A2 . . 4032

A4 + A1 S2
2 7308
11 4788

A′′5 . . 4032

D4 + A1 . . 7560

A4 S2
2 14616
11 9576

A3 + A2 + A1 . . 10080

A3 + A2 S2
2 19530
11 630

D4 . . 15120

D4(a1) + A1 S2
2 26460
11 11340

A3 + 2A1 . . 30240

D4(a1) S3
3 32200
21 20720
111 1960

(A3 + A1)′ . . 60480
2A2 + A1 . . 40320

(A3 + A1)′′ . . 60480
A3 . . 120960
2A2 . . 80640

A2 + 3A1 . . 60480
A2 + 2A1 . . 120960

A2 + A1 S2
2 166320
11 75600

4A1 . . 181440

A2 S2
2 332640
11 151200

3A′1 . . 362880
3A′′1 . . 362880
2A1 . . 725760
A1 . . 1451520
A0 . . 2903040
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Table 5. Type E8

N AN φ mult

E8 . . 1
E8(a1) . . 9
E8(a2) . . 44

E7 + A1 S2
2 156
11 36

E7 . . 240

D8 S2
2 366
11 231

E7(a1) + A1 S2
2 1010
11 50

E7(a1) . . 1920

D8(a1) S2
2 1710
11 495

D7 . . 2160

E7(a2) + A1 S3
3 4284
21 2128
111 84

A8 S3
3 5589
21 4263
111 594

E7(a2) . . 8400
E6 + A1 . . 6720

D7(a1) S2
2 15780
11 1500

D8(a3) S3
3 14205
21 175
111 1650

D6 + A1 S2
2 21840
11 6720

E6(a1) + A1 S2
2 27840
11 19200

A7 . . 17280
E6 . . 13440

D7(a2) S2
2 38880
11 23760

D6 . . 30240

E6(a1) S2
2 55680
11 38400

D5 + A2 S2
2 58500
11 1980

D6(a1) + A1 S2
2 109440
11 3600

A6 + A1 . . 69120

A6 . . 138240

D6(a1) S2
2 151200
11 60480

2A4 S5

5 135240
41 99246
32 52206
311 12516
221 7686
2111 126
11111 0

D5 + A1 . . 181440

A5 + A2 S3
3 346080
21 198240
111 13440

D6(a2) S2
2 408240
11 257040

A5 + 2A1 S2
2 383040
11 141120

(A5 + A1)′ . . 483840
D5(a1) + A2 . . 362880

D5 . . 362880
A4 + A3 . . 241920

(A5 + A1)′′ S2
2 766080
11 282240

D4 + A2 S2
2 574560
11 30240

A5 . . 967680
D5(a1) + A1 . . 1088640
A4 + A2 + A1 . . 483840
A4 + A2 . . 967680

A4 + 2A1 S2
2 1103760
11 347760

D5(a1) S2
2 1542240
11 635040

A4 + A1 S2
2 1753920
11 1149120

2A3 . . 1209600
D4 + A1 . . 1814400

D4(a1) + A2 S2
2 2116800
11 907200

A3 + A2 + A1 . . 2419200

A4 S2
2 3507840
11 2298240
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A3 + A2 S2
2 4687200
11 151200

D4(a1) + A1 S3
3 3864000
21 2486400
111 235200

A3 + 2A1 . . 7257600

D4 . . 3628800

2A2 + 2A1 . . 4838400

D4(a1) S3
3 7728000
21 4972800
111 470400

A3 + A1 . . 14515200

2A2 + A1 . . 9676800

2A2 S2
2 13305600
11 6048000

A2 + 3A1 . . 14515200
A3 . . 29030400

A2 + 2A1 . . 29030400

A2 + A1 S2
2 39916800
11 18144000

4A1 . . 43545600

A2 S2
2 79833600
11 36288000

3A1 . . 87091200
2A1 . . 174182400

A1 . . 348364800

A0 . . 696729600

Table 7. Type F4

N AN φ mult

F4 . . 1

F4(a1) S2
2 5
11 2

F4(a2) S2
2 14
11 2

B3 . . 24
C3 . . 24

F4(a3) S4

4 42
31 19
22 10
211 1
1111 0

C3(a1) S2
2 96
11 24

B2 S2
2 96
11 48

Ã2 + A1 . . 96

A2 + Ã1 . . 96

Ã2 . . 192

A2 S2
2 168
11 24

A1 + Ã1 . . 288

Ã1 S2
2 432
11 144

A1 . . 576
A0 . . 1152
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Table 9. Type G2

N AN φ mult

G2 . . 1

G2(a1) S3
3 3
21 1
111 0

Ã1 . . 6
A1 . . 6
A0 . . 12
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