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Abstract

Recently an accurate coupling between subsurface flow and reservoir geomechanics has received
more attention in both academia and industry. This stems from the fact that incorporating a
geomechanics model into upstream flow simulation is critical for accurately predicting wellbore
instabilities and hydraulic fracturing processes. One of the recently introduced iterative coupling
algorithms to couple flow with geomechanics is the undrained split iterative coupling algorithm
[26,28]. The convergence of this scheme is established in [28] for the single rate iterative coupling
algorithm, and in [26] for the multirate iterative coupling algorithm, in which the flow takes multiple
finer time steps within one coarse mechanics time step. All previously established results study the
convergence of the scheme in homogeneous poroelastic media. In this work, following the approach
in [5], we extend these results to the case of heterogeneous poro-elastic media, in which each grid
cell is associated with its own set of flow and mechanics parameters for both the single rate and
multirate schemes. Second, following the approach in [6], we establish a priori error estimates for
the single rate case of the scheme in homogeneous poro-elastic media. To the best of our knowledge,
this is the first rigorous and complete mathematical analysis of the undrained split iterative coupling
scheme in heterogeneous poro-elastic media.
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1 Introduction

Solving a coupled flow and geomechanics problem is of high importance to the field of petroleum
engineering. This is a direct consequence of the fact that several physical processes cannot be mod-
eled correctly without incorporating a geomechanical model into the underlying physical model.
Important examples include reservoir deformation, surface subsidence, pore collapse and well-bore
stability, fault activation, and hydraulic fracturing (see e.g., [1,7,20,23,24,36] and references therein).
These processes are of great economic importance. Such a coupling can greatly enhance upstream
related operations including drilling simulation, basin modeling, hydraulic fracturing, and reservoir
simulation.

In practice, there are three different ways to solve a coupled flow and geomechanics problem. They
are known as the fully implicit method (or the simultaneously coupling approach), the explicit
method (or the loosely coupled approach), and the iterative coupling method (see e.g., [22] for a
comparison of the these three different coupling approaches). The fully implicit approach solves
the two problems by linearizing the full system simultaneously. This provides an unconditionally
stable approach. However, The algebraic system obtained from the linearization of simultaneously
coupled system is difficult to solve and often requires the use of preconditioners to decouple the two
systems [17,18]. A recent work by [13,14,35] formulated a fixed-stress preconditioning technique
to decouple the two systems in an efficient way. On the other extreme lies the explicit coupling
approach in which the two problems are decoupled, and are solved in a sequential manner without
imposing any iterative coupling iteration between the two [4,21,36]. It provides a much simpler
linear system to solve as the two equations are decoupled and we have excellent solvers to solve
mechanics and flow equations separately. The disadvantage is that it is at best conditionally stable,
and several stabilization techniques have been proposed in the literature to cure this issue (see
e.g., [21,36]). In this scheme, since the two systems are fully decoupled, the mechanics problem can
be solved at selective time steps [32]. A rigorous stability analysis of these multirate loosely coupled
schemes, in which the mechanics problem is solved at selective time steps, is provided in [4]. The
iterative coupling approach lies in between these two extremes: it decouples the two problems, but
imposes an iterative coupling iteration between the two until convergence is obtained. We shall
focus on this coupling approach in this work.

Four main flow-mechanics iterative coupling approaches exist in literature including the undrained
split, the drained split, the fixed-stress split, and the fixed-strain split iterative coupling schemes
[12,13,22-24,27,28]. In the undrained split scheme, the mechanics problem is solved first followed
by the flow. In this scheme, the fluid mass (i.e., fluid content of the medium) is assumed to be
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constant during the mechanics solve [22,25,26,28]. The drained split scheme solves the mechanics
problem first as well (followed by flow), but assumes constant fluid pressure during the mechanics
solve [22,25]. In contrast, the fixed-stress split and fixed-strain split coupling schemes start by
solving the flow problem first followed by mechanics [24,28]. In the fixed-stress split scheme, a
constant volumetric mean total stress is assumed during the flow solve, while a constant strain is
assumed in the fixed-strain split scheme [3,24,28]. In this work, we will consider the convergence
analysis of the first approach, that is, the undrained split iterative coupling approach. We note here
that for the undrained split scheme to converge, sufficient fluid compressibility should be present.
Subsequently, we make this more precise later (see Remark 4.6)

The convergence of the fixed-stress and undrained split iterative coupling schemes in homogeneous
poroelastic media has been established in [28] for the single rate case (in which the flow and me-
chanics problems share the same time step), and in [2,3,26] for the multirate scheme in which
the flow problem is solved for multiple finer time steps within one coarse mechanics time step (the
single rate and multirate schemes are illustrated in Figure 1.1). In addition, the work of [23,24]
used von-Neumann type of analysis, and energy and spectral methods to analyze the stability of
the aforementioned four iterative coupling approaches. Recently [5] performs convergence analysis
in heterogeneous poro-elastic media where convergences of the single rate and multirate fixed-stress
split iterative coupling were obtained. The extensions to the nonlinear case has been performed
in [11] and to the fractured case in [19]. Multiscale extension of the fixed stress splitting is in [16].
Space time based method has been explored in the [8,10] and the stability analysis of the discretiza-
tion scheme in [31].

In this work, our main objectives are two fold; first, we establish the convergence of the single rate
and multirate undrained split iterative coupling scheme in heterogeneous poroelastic media, follow-
ing a similar approach as in [5]. Second, we will derive a priori error estimates for the single rate
undrained split iterative coupling scheme in homogeneous poro-elastic media (see e.g., [6]). To the
best of our knowledge, this is the first rigorous convergence analysis of the single rate and multirate
undrained split iterative coupling schemes in heterogeneous poro-elastic media. In addition, a priori
error estimates for the single rate undrained split iterative coupling scheme are derived here for the
first time.

The paper is structured as follows: Section 2 contains model equations and discretizations, followed
by a detailed description of the undrained split iterative coupling scheme in Section 3. Section 4
contains the convergence results for the single rate and multirate undrained split iterative coupling
schemes in heterogeneous poroelastic media, followed by an a priori error estimate result for the
single rate scheme (in homogeneous media) in Section 5. Finally, the conclusions are presented in
Section 6.
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Figure 1.1: A flowchart of the single rate and multirate undrained split iterative coupling schemes
(Image Courtesy of [1]).

© 2019 Springer Nature Switzerland AG



2 Model Equations & Discretizations

The domain  is assumed to be an open, connected, and bounded domain of R?, where d = 1,2
or 3. The boundary 0f2 is assumed to be Lipschitz continuous boundary. We also assume that I’
represents the part of the boundary with positive measure (with a Lipschitz continuous boundary
for d = 3). We also note that I'p UT'y = I', where I'p is the part of the boundary with Dirichlet
boundary conditions, and I'y is the part with Neumann boundary conditions. For our homoge-
neous poro-elastic media analysis, we assume a linear and isotropic medium  C R? with a slightly
compressible fluid inside the reservoir. The viscosity (us > 0) is assumed to be constant in time,
and the fluid density is a linear function of pressure. The reference density of the fluid py > 0, the
fluid compressibility cs, the pore volume ¢*, and other poro-elastic parameters including the Lamé
coefficients A > 0 and G > 0, and the Biot coefficient o are assumed to be positive. We also assume
that absolute permeability tensor, K, is symmetric, bounded, and uniformly positive definite in
space (and constant in time). The quasi-static Biot model [9,15] we will analyze in this work reads:
Find w and p satisfying the following equations for all time ¢ €]0, T'[:

Flow Equation: %((% + cppo)p +aV u) v <#—1fK(Vp — prrgV n)) =g in Q

—V- 0P (u,p) = f in Q,
Mechanics Equations: o (u,p) =o(u) —apl in Q,
o(u) =NV -u)l +2Ge(u) in Q
Boundary Conditions: u=00n0, K(Vp—p;,gVn)-n=0only, p=0onTlp,

Initial Conditions (t=0): ((% + cf<,00)p +aV - u) (0) = (ﬁ + cfgoo)po +aV -ug in Q.

We first note that the system above is linear. The flow and mechanics problems are coupled
through those terms associated with the Biot coefficient o. In addition, ps, > 0 is a constant
reference density (with respect to a reference pressure p,). Moreover, g, M, ¢q, 1, denotes the
gravitational acceleration, the Biot modulus, the initial porosity, and the distance in the direction

of gravity respectively. Furthermore, § = %, and ¢ is a mass source or sink term.
T

2.1 Mixed variational formulation

Throughout our analysis in this paper, we will use a mixed finite element formulation for flow and a
conformal Galerkin formulation for mechanics (for the spatial discretization). The backward-Euler
scheme will be used for temporal discretization. We also note that our work can be extended to
other mixed formulation approaches (for the spatial discretization, see for instance [34]). If we let
T, denote a regular family of conforming elements of €2, then using the lowest order Raviart-Thomas
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(RT) spaces, the flow and mechanics discrete spaces are as follows [1]:

Discrete Displacements: V, =A{v, € Hl(Q)d; VT € T, vpr € P, Vhjo0 = 0},
Discrete Pressures: Qn={pn € L*(Q); VT € Th, P € Po, pn =0, on I'p},
Discrete Fluxes: Z,={q, € HVQ)" VT € %), dnr € RTL q,-n=0 on Ty}

The single rate scheme assumes a uniform time step of size At = ¢, — t;_; for all k. The multirate
scheme assumes two different time steps: a fine time step for flow (At), and a coarse time step for
mechanics (¢At). Here, ¢ denotes the number of flow fine time steps that are solved within one
coarse mechanics time step. Assuming a uniform fine flow time step of size At, the total simulation
time is given by T = At N, where N denotes the total number of fine flow time steps. Discrete time
points are given by t; = iAt, 0 <7 < V.

Notation: We will assume that k& denotes the time step index in the single rate scheme. For
the multirate scheme, k£, and m represent the coarse mechanies time step, and fine flow time step
indices, respectively. If we solve ¢ flow fine time steps within one coarse mechanics time step,
then we have 1 < m < ¢q. We also note that ¢ can change across coarse mechanics time steps.
Moreover, for our analysis, we denote the difference between two consecutive coupling iterations by
gk = gntlk _¢nk - where ¢ stands for p,u,or 2, and n represents the iterative coupling iteration
index.

3 Undrained Split Iterative Coupling Algorithm

The undrained split iterative coupling scheme assumes a constant fluid mass during the mechanics
solve. In this scheme, the mechanics problem is solved first followed by the flow problem. The
continuous strong form of the splitting scheme is given below. The superscript n denotes the
coupling iteration index (between flow and mechanics):

Step (a) [Mechanics] Given p" and u" , we solve for u"™! satisfying

= VoWt pt) — LV ((Vut) T) = f = V- ((V-u?) 1)
o,por(un—&-l’pn) _ O'(’U,n—H) _ apnI
o) = NV - u"™I +2Ge(u"™)

n+1

Step (b) [Flow] Given "™, we solve for p"*! 2" satisfying

(b st =209 = a4 g
2" = LK (V' = pregVin)

We note that the parameter L in the right and left hand sides of the mechanics equation denote a
regularization term. The subsequent convergence analysis will determine its value.
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4 Convergence Analysis of the Undrained Split Scheme in
Heterogeneous Media

For our convergence analysis results, we will assume a heterogeneous and isotropic poro-elastic
medium. In addition to the assumptions mentioned above (in the Model Equations section), for
the fully discrete formulation, we recall that the domain is denoted by Q C RY, d = 1, 2, or
3, with an external boundary (denoted by 02, and n denotes its outward unit normal vector).

oy Q
Our spatial domain will be discretized into N conforming grid elements E; (2 = (J E;). Each

1=
grid element F; will be associated with an independent set of mechanics and flow parameters:
Gy, M;, N\, K Z,ozz,cfl, py; and @g;. In addition, the localized permeabilities K; include viscosities
py, (e K; f’) For each grid element E;, m; denotes its outward normal vector such that

n; = —n,;_; for every two adjacent grid elements F; and F;_; with a common boundary.

4.1 Localized Fully Discrete Weak Formulation for the Single Rate
Case:
Following the same approach as outlined in [5] for cancelling the boundary terms, the localized fully

discrete weak formulation for the single undrained split iterative coupling scheme is as follows:
Step (a): Given p; ¥ and u™* from the previous coupling iteration, find 'u/"Jrl * €V, such that,

Nq

Nao
Vo € Vi, 2 (Gie(un™™), e(0n) oy + D (N + L)V -y ™5V ) ) =

i=1 i=1

Nq Nq Nq
Tl,k n7kj
Z (aipy”, V- ’Uh)L2(Ei) T Z (LiV -y, V- vh)L2(Ei) T Z (f vh)LQ(Ei)
i i=1 i=1
(4.1)
Step (b): Given u} ", * find ot ke Qn, 2t ke Z,, such that:
Ng 1 pn—H & p
- ) h — h n+1,k
V0 € Qn, ; ((Mi + Cfi%)( At >79h)L2(E + g (V227 00) o,
- Ay 7,0 4.2
-~ Z (o7 (=) ) ey * Z (@:00) 20 42)
NQ NQ

Van € Z, Y (K2 a0) oy = D00V @) +Z (prrgm)s @n)iom)  (43)

i=1 =1
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4.1.1 Proof of Contraction for the Localized Single Rate Case:

L V u™F 4
% p™*, for each E; € Q,1 < i < N, iterative coupling iteration n > 1, and time step tk We note
here that v; and L; are free adjustable parameters and will be determined such that the scheme
achieves contraction locally on each m|g,. We recall that 5¢™F := ¢k — =1Lk denotes the difference

between two consecutive coupling iterations, where £™* can stand for p,™", u;™", or z,"".

We first define the quantity to be contracted on locally for each grid cell as: m

Remark 4.1 A physical interpretation of the localized regularization term L; can be given as fol-
lows: the standard undrained split scheme assumes the fluid content of the medium to be fixed
during the mechanics solve. The fluid content of the medium is a function of both pore pressure
and mechanical displacement. In our work, the reqularization term L; is a quantity that scales
both the pore pressure and mechanical displacement such that the scheme contracts on a mod-

ified (or scaled) expression of the increment in fluid content of the medium (given by m™* =

(1/2) (1/2)
mo + (%) V-urt 4 (2_L1 p™*  where myg is the initial fluid content of the medium, or

initial porosity). The value of L; will be optimized in the sense that the contraction coefficient is
the sharpest (or smallest) accross all grid elements Ej.

e Step (1): Elasticity equation

Considering (4.1) for the difference between two consecutive coupling iterations and testing
with v, = dul ™" we get:

Nq Ngq
ZQGZ'”E@'“'ZH’Hl)||i2(Ei) _,_Z(/\ + Li)||V - 6uZﬂkHHL2

7 n,k:-i-l’ V.5 n+1,k+1>
<7 " h L2(B)

< 5“V.§un+1,k+1HiQ( +Z % H6~nk+1HL2

I
'IM@ iMziMz 1

by Young’s inequality. For each ¢; = \; + L;, we obtain,

Nq

Nq 2
ansau”*”“ [ S AT LAl A e iy
i=1 7 7

=1

(4.4)
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e Step (2): Flow equations

Considering (4.2) for the difference between two consecutive coupling iterations, testing with
), = (SpZ“’k“, and multiplying by At, we get: (recall 8; = ML + ¢f,004)

Nao
> B
=1

n+1,k+1
opy,

Na
2
n+1,k+1 n+1,k+1
L2(E;) + ZZI At(v ) 5zh 75ph )L2(Ez‘)

Nq

== > ai(V - dup gy ) (4.5)
=1

L2(E;)

Now, in a similar manner, considering (4.3) for the difference between two consecutive coupling
iterations, and testing with g, = (5ZZ+1’k+1, we get

N, N,
ZQ: }}Ki—1/25z2+1,k+1H;(Ei) _ Zﬂ (5pz+1,k+17v i 5ZZ+1,H1>L2(E_)‘ (4.6)
i=1 i=1 '
Substituting (4.6) into (4.5), we have
A nt1 k41| < —1/2 5 _n+1k+1|2
izl@ A ;Atnm 0z M e
Na
+ 2 ai(V N aaany 5p2+1’k+1>L2(Ei) ~0. (4.7)

e Step (3): Combining Mechanics and Flow
Adding (4.7) to (4.4), we obtain

][

Nq
Z 4GiH€(5U2H’k+1
i=1

Nq
=1

2

n+1,k+1
opy, ‘

o) toy <V ) 5uz+1,k+1’5p2+17k+1> (Ot Li)HV ] (5u2+1,k+1H2LQ(Ei)}

L2(E;)
2 g

No
+2 AtHKi_l/Q(SzZH’M gy — =N+ L
i i—1 % [

i=1

[ Hi2(E¢) :

(4.8)
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e Step (4): Identifying the parameters
Below, the procedure for determining the two adjustable parameters (v and L) is illustrated.
These parameters should be chosen such that the terms on the left hand side of (4.8) remain
positive and the scheme contracts on m. Expanding the L? norm of 7 for each Ej;, we have:

i T o o
Hém +Lk+1HiQ(E¢) _ = HV . ou H’kHHi?(Ei) +— Hép +1,k+1Hiz(Ei)

Matching coefficients by comparing with the terms in the curly brackets in (4.8) provides us
with the following conditions:

2 o? 20, L;
— < (N + Ly), — < B, =
; V2 ok

The third equality gives, L; = g The first inequality translate to \;+ % > 0 which is trivially
satisﬁed The second inequality sets a lower bound on the value of the regularization term as:
<1

L; > 5%. The upper bound on L; comes from the contraction Coefﬁ(:1ent condition 5 + L

< L; < \;. Therefore, we

as L; < )\ Thus, for the scheme to be contractive, we need s
have the following theorem:

251

Theorem 4.2 [Localized Single Rate Banach Contraction Estimate] For [3; = ML + ¢r,004 g‘—z; <

‘ ok _ (L (1/2) > &3 2 (1/2) ok . ) )
Ly < Aiy m™ = (5 V.-u™" + , for each E; € Q.1 < 1 < Ng, the localized

undrained split iterative coupling scheme s a contraction given by

§4Gi“€(5uz+lk“L2 +Z(6’ 2L>H n+1k‘L2 +Z<)‘+ )Hv 5un+1k

N
+AtZHK*1/25Z”+1’CH 2L, ) : ~n,k+1‘2

om )
L2(E;)

(4.9)

L2(E;)

<
L2(E;) 1%‘121)\{/9 </\i + L;

Rt k+1‘

L2(E;)

1=

Remark 4.3 For L; < \;, )\12TLLZ < 1 for all grid elements E; € Q,1 < i < Nq ensuring the

contraction of the scheme.
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4.2 Localized Fully Discrete Weak Formulation for the Multirate Case:

Following the same approach as in the single rate case (and outlined in [5]), the localized fully
discrete weak formulation for the multirate undrained split iterative coupling scheme is as follows:

Step (a): Given pp* and u}"* ™ from the last iterative coupling iteration, find w] ™" € V, such
that
No No
n 1,k n+1,k
Vv, € Vi, 2 Z (Gye(uy™HMH), e('vh))LQ(Ei) + Z (N + L)V -y v vh)LQ(Ei)
i=1 ]
Nq
= > (™ V ) +Z (LiV - w0,V vy, +Z Fivn) pag
i=1 i=1

(4.10)

Step (b): For 1 < m < ¢, given w; """ find pi*'"** € Q),, and 27""™* € Z), such that,

Na
1 1 7 ,m T m— n s,
VO, € Qn, Z <(— + ¢1,004) (ph+1 * —pph 1+k> ; 9h> 2 + Z V.2t +k ) 2B =

At 4 M;
i=1 i=1
1 No (07 k No
_ = _Zv.( nk+q "k>,9> (~,9) ,
At;(q & TH L2(Ei)+; W) e,
(4.11)
th 6 Zh,
Ngq Nq No

—1_n+1lm+k = n+1,m+k .
> (K ,qh>L2(Ei) =3 (v qh>L2(E_ +> (pf,rgvmqh) sy (412

i=1 i=1 D —
4.2.1 Proof of Contraction for the Localized Multirate Case:
We define the localized quantity of contraction in this case as:

L

= DLyt g Qg k) o ) < < g,
Yiq Vi

m(r]LJrl,ker

i

where 7, is an adjustable parameter to be determined such that the scheme contracts on 7|, for
each grid FE;.

e Step (1): Elasticity equation
Considering (4.10) for the difference between two consecutive coupling iterations, and testing

© 2019 Springer Nature Switzerland AG



n+1,k+q

with v, = du,, , we get:
Nq Nq
Z2Gills(5UZ“"“+q HL2 +Z (X + Li)||V - Sul k+qHL2

1=1
Ng
Z (aibpp™ 9 + LV - Sup™ 0 v - Gup )
1
No q

L.
( Z (OZZ (5pn ,m+k 5pz,mfl+k> + jv . 6uz,k+q> ’ V- 5’U,Z+1’k+q)

=1 m=1

L2(E;)

i

Il
(]

L2(E;)

Nq . Nq i 5
<> 3 W&W+%z+z—%ZW”mM@-
=1

by noting that Z (5]9” mrk _ sp e Hk) = opy k+4 and using Young’s inequality. For each

E;, choose ¢; = )\i —I— L, to obtain:

Ngq Nq q
Z4Gi||€(5uz+l7k+q HL2 +Z )\ —|-L Hv Su n+1 k+qHL2 Z i H5~nk+mHL2 5
=1

=1 =1 m:l
(4.13)

l\.')

e Step (2): Flow equations
Considering (4.11) for the difference between two consecutive coupling iterations, testing with
0, = 5pz+1’m+k S 5p2+1’m_1+k, and multiplying by At, we get: (recall 8; = M% + ¢y, 0, for

each E;)
Ngq 2 Nq
Zﬁi 5p2+1,m+k _ 6p2+1,m—1+/€‘ . n ZAt(V ' (5ZZ+1’m+k7 5pz+1,m+k - 5pZ+1’m‘1+'“)L2<Ei> _
i=1 ¢ i=1
O{/L n T m mn m—
_ Z (V FulTIR gpnttmtk g e, 1+k)L2(E.)' (4.14)
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Now, consider (4.12) for two consecutive local flow finer time steps, t = t,,1x, and t = t,, 114,
and test with g, = (5ZZ+17m+k

to obtain
Nq
Z (Ki_l <5ZZ+1,m+k: _ 5z2+17m—1+k>75zz+17m+k> 2
im1 L2(E;)
Nq
_ Z <5pz+l,m+k B 6p2+1,m71+k, v. 5ZZ+1,m+k) . (4.15)
i=1 L2(Ei)
Substituting (4.15) into (4.14), we have
Nq 9
: 5 n+lm+k 5 n+1,m—1+k‘
ZZ:; b Ph Ph L2(E;)
Nq
-1 n+lm+k n+1m—1+k n+1,m+k
+ ; At (K (5zh 52! ),(5zh )Lz(m -
Q s
_ Yily. 5un+1,k+q,5 ntlmtk _ s n+1,m71+k> ‘
izl q < ! b P L2(E;)
By Young’s inequality, with further simplifications,
Nq 2 No Y
: 5 n+lm+k 5 n+1,m71+k‘ + _z<v . 5un+1,k+q 5 n+lm+k 5 n+1,m71+k>
; ot Py, Py, 12(5:) ; p h , 0Dy, Py, L2(5)
N
Eﬂ: At (HK~*1/25z"+1’m+k) 2 _ HK51/25zn+1,m—1+k’ 2
P 2 ’ X L2(E;) ’ h L2(E;)

2
) —0.
L2(E;)

Summing for ¢ local flow time steps and after some simplifications (telescopic cancellations
together with the fact that 5zZ+1”C = 0), we get

HAC

_ 1 k 1,m—1+k
+HK 12(ggnttmth _ g ntlm=1t )‘

2 .
n+1lm+k n+1,m—1+k % . n+1,k+q n+lm+k n+1lm—1+k

i=1 m=1 h P ‘LZ(Ei) - q (V oup 0P OPh )L2(Ei)>
Ngq Nq q

At 2 At 2

2 g2yt 2t HKi—l/2 ((5Z"+1’m+k _ 5Zn+1,m—1+k> ‘ —0
; 2 H h L2(E;) * ; 2 mzl h h L2(E;)

(4.16)
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e Step (3): Combining Mechanics and Flow
Adding (4.16) to (4.13), we obtain

Ng
Z4Gi}|€(5uz+l7k+q)ui2( +ZZ {51 5pn+1 ;m+k (Spn—i-lm 1+k e
i—1 i=1 m=1 Z
q (V S 4 5 nt, m+k 5pz+1,m—1+k>L2(Ei) n i +Lz‘||V : 5u2+1’k+quQ(Ei)}

NQ 9

2
HK —1/25 n+1 kg

+ % & i HK,—I/Q (5zn+1,m+k » 6zn+1,m—1+k> ‘
i- B 2 e " " L2(E;)

Z T+ L Z I8 gy (4.17)

e Step (4): Identifying the parameters
For each E;, we should choose the parameters 7;, and L; such that the terms on the left hand
side of (4.17) remain positive, and the scheme achieves contraction on m,|g,. Clearly,

~ n+1,k+m||2 L2 n+1,k+q||2 2 n+1,k+m n+1,k+m—1y]|2
Hémq 7 HLQ(E) T 22 o [V 0w HL2(Ei) + 3 42 3 ||(pr R — )HL2(E1-)
KL frriem rien g gapeiarn)

Matching coefficients by comparing with the coefficients of the terms in the curly brackets in

(4.17), we obtain qg’? < ’\'J;L' < B, and 2‘“(11 = . The last equality gives 72 = 2L;.
Substituting in the first 1nequahty, we obtain the condition 2¢(\; + L;) > L;, which is trivially

satisfied for q > 1,\; >0, and L; > 0. The second inequality gives a lower bound on the value

of L;as L; > ﬂ Moreover, For the scheme to be contractive, we require that < 1. This
gives the following upper bound on L; as L; < \;. Therefore, we have the followmg combined
2

condition 2% < L; < \; for each grid element F;. Our main result summarizes the above

contraction result.

Theorem 4.4 [Localized Multirate Banach Contraction Estimate] For p; = M% + ¢f,00: g—; <

(1/2) o2\ (1/2)

Li < Ai, mphm = QLTZ'Q Va4 (2 (proktm — puktm=1y for 1 < m < q, and for each

E; € Q,1 < i < Ng, the localized multirate undrained split iterative coupling scheme, in which the
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flow fine time step is At, and the coarse mechanics time step is qAt (i.e., q flow fine time steps are
solved within one coarse mechanics time step), is a contraction given by

:VZiélGiHs((SuZH,Hq)H;( X ZZ <5z )H5 Ltk _ s L= 1k
- . .
" Z <Ai * ( 2q ) )

L2(E;)

Nq
Atz %HK 71/25zn+1 k+q
=1

L2(E;) L2(E;)
q
LAY HK_1/2 (62 n+1m+k s n+1m 1+k ‘
q
~n+1 m+k‘ S max ( > §~nm+k‘ ) (418)
L2(E;) ~ 1<i<Ng \\; + L L2(E;)
m=1 i=1 =1 i=1
2L;
Remark 4.5 As in the single rate case, for L; < \;, N1l <1 for all grid elements E; € Q,1 <

1 < Nq, thus the scheme always contracts. Moreover, For ¢ = 1, we retrieve the single rate result.

Remark 4.6 For both the single rate and multirate cases, the condition on L; translates to the
following condition:

Oéi2 1
o7 < (M +cg,00;) for each E;. (4.19)

Therefore, in heterogenous poroelastic media, sufficient fluid compressibility is needed for the undrained

split scheme to be convergent. This is not the case for the fized-stress split scheme, which implies
that the fized-stress scheme is more robust. Moreover, By comparing the rates of convergence (i.e.
the contraction coefficient values) of the undrained split scheme versus the fized stress split scheme
(as derived in the work of [5]), we can see that fized stress coefficient is sharper (i.e., smaller).
This is confirmed by the work of [27, 33] in which the numerical efficiency of these two schemes
were compared against the Mandel problem. In this work, the fizved stress split scheme converged in
fewer coupling iterations compared to the undrained split scheme (the number of iterative coupling
iterations dropped down to 2 after 10 time steps for the fixed stress split scheme, whereas it took the
undrained split scheme more than 5 iterative coupling iterations to converge for the first 1100 time

steps).

5 A Priori Error Estimates for the Single Rate Undrained
Split Iterative Coupling Scheme

In this section, we derive an a priori error estimate for the single rate undrained split coupling
scheme in homogeneous poro-elastic media. The derivation of a priori error estimates in hetero-
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geneous media is more involved and will be considered in a future work. We will use the same
notation as the one used before, except that we will be de-associating viscosity p from permeability
K (as this is no longer needed for this kind of analysis).

In deriving our a priori error estimates for the undrained split scheme, we will follow a similar
approach as outlined in the work of [6]. For a particular time step ¢ = t;, and a specific iterative
coupling iteration n > 0, we seek an estimate of the form Hfzk —&(tg) H, where £ denotes py, zp, or
up. The triangle inequality gives us

H&?k — &) < H&}Z’“ — &l + ||&k — &)

where &7 is the solution obtained by the fully coupled scheme (we assume that the iterative coupling
scheme will converge to the solution of the simultaneously coupled scheme, also known as the fully
implicit or simultaneously coupled scheme). The work of [29,30] derived a priori error estimates for
the simultaneously coupled scheme; therefore, it remains to derive an error estimate for Hf’,’;k —&F H
Estimating this term is done in two steps:

e Step (1): Deriving a Banach contraction result on Hfzk — {,’fH
e Step (2): Deriving stability estimates for the simultaneously coupled scheme Hé,’i . 5}’?’1 H

Step 1: Banach Contraction Estimate on Hfzk — f,’j”
We first define the error terms as follows:

n__ ,nk k n _ . mnk k n __ _nk k

The weak formulation of the fully-coupled scheme is given as follows:
Find p} € Qn, 25 € Z;, and u} € V, such that,

Yoy, € Vi, 2G (e(uy), s(vh))L2(Q) +A(V-u;, V- vh)LQ(Q) —a(p, V- 'vh)LQ(Q) = (£}, vh)L2(Q),

(5.1)

Vo, € Q i(i+cg@)((pk—p’f—1)e> +i(v-zke>
h h s At M f¥0 h h y Yh LQ(Q) qu hyVh LQ(Q)
«

- v-( ko ’H),e) (9) . (52

At( Un = Un h L2(Q)Jr M) 2 (5:2)

o (500 = (1 )1+ G 0), ;

Vq, € Zy, 20 ) o = PV o) o T PrgV I an) (5.3)

In addition, the weak formulation of the iteratively coupled scheme reads

© 2019 Springer Nature Switzerland AG
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Step (a): Given pZ’k and u™* from the previous coupling iteration, find uZH’k € V, such that

Vv, € Vy, 2G(€(’Uzhn+1’k>, 6('Uh))L2(Q) + ()‘ + L) (V ’ IU’Z+Lk7 V- Uh)Lz(Q) =
Oé(pZ’k, vV - Uh)L2(Q) —+ L(V . 'LLka? V- ’Uh)LQ(Q) + (f, Uh)LQ(Q) (54)

Step (b): Given u} """ find p™""* € Qy, 2/t € Z), such that:

VO, € Q. (— 4o )(]9—7’:“7’6_]’21 0 ) +i(vz"+““ o)
h h s M F%0 At s Uh £2(9) 1) h s Uh L2(Q)
n+1,k k—1
u —Uu
- v.(h—h),e) PAY, 5.5
0‘( At h LQ(Q)"‘ (q h)L Q) (5.5)
Ya, € Zn, (K'207 0 a0) 1) = 007V - @)zt (Viopegn). gz (5:6)

By taking the difference of the weak formulations for the iterative coupling scheme (equations (5.4),
(5.5), and (5.6)), and the fully-coupled scheme (equations (5.1), (5.2), and (5.3)), the terms at time
step t*~1 get cancelled as we assumed that the iteratively coupled scheme at the previous time
step (t = t*~1) will converge to the solution obtained by fully coupled scheme (i.e., the iteration is
carried out to full convergence such that the error with respect to the solution obtained by the fully
coupled scheme is equal to zero). Under this assumption, the weak formulation (mixed formulation
for flow, CG for mechanics) in terms of the error terms defined above can be written as:

1,1 1 1
R [ SR TLR A N G
h € Qn At<M+CfSDO) 5 k L2(Q)+,uf Ve h ) At av-e, h L2(Q)

(5.7)

Va, € Zn <K‘1 nt, ) . ( oy ) , 5.8

an € 4y € 5dn @) eV -qy @) (5.8)

V'Uh € Vh ) 2G(€(BZ+1), e(vh)>L2(Q) + ()‘ + L) (V ) GZ-Ha V- vh)L2(Q)

=« eZ,V-’Uh)LQ(Q) +L(V-e$+1,V~vh)L2(Q).

(5.9)

We also define the quantity of contraction as

L
=S4 2V e
7Py

The parameters L and v are adjustable parameters, which will be determined by the proof of
contraction. Now, we follow a similar argument as in the work of [26] to derive a Banach contraction
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result as follows. First, consider the elasticity equation (5.9) and test with v, = ™! to get:
2G|e(ey ™) [ ooy + A+ DV - e[ 2 ) = (aep + LV - €}, V - € ) 12
= (e, Ve iz

€ n Y
IV e + 5o lemlagm

IN

by Young’s inequality. For e = X\ 4+ L, we get:

€z + 1V - e ey (5.10)

)\+LH ()\—i—L?H mHL2
Next, consider the flow equation (5.7), and test with 6, = e;”rl to get (recall that § = ﬁ + crpo):

At

n 2 n n n n
BHepHHLQ(Q) + M_f(v ettt ep+1)L2(Q) = —a(V et €p+1)L2(Q). (5.11)
In a similar way, testing (5.8) with g, = e yields:
—-1/2 n+1||2 _ [+l o ntl
B2 gy = (7 e )m). (5.12)
Combining (5.11) with (5.12) gives:
n+1||2 At —1/2 _n+1]|2 n+l _n+l
Bl g+ o L2 g+ 0V ¥ )y = (5.13)

Multiplying the mechanics equation (5.10) by a free parameter (¢*> > 0) and adding it to the flow
equation (5.13) yield:

et N + {1 ey + 07 e i+ 92
L€ 2At .
HK 1/2, +1HL2 m“em”m(g (5.14)
Now, recalling that e = 3‘ eptt 4 & V- en ™! we have:
HemﬂHp(Q) = 12 ” pHHL?(Q) 7(61,“,V cen e HV € H”m(g) (5.15)

Matching the coefficients on the right hand side of (5. 152 with the coefficients in the curly brackets

on the left hand side of (5.14), we determine L =y = %, and =2
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With the above coefficients, we have the following Banach contraction estimate on e} :

< >|| et H2 25At -1/2,, ntl +5_2 ot 2 o1 2 < (L)Q er ’
/\+ L L2(Q) L2(Q) 042 p L2(Q) m L2(Q) - )\+L m
(5.16)
WithL:”y:%,ﬂ:%—FCngO.
We easily derive for a coupling iteration n > 0:
2 L \2) |« 2
n < (= _ — 0 V .50
Cm L2(Q) — </\+L> Leer “u L2(Q)
< LBV 20 2|v-e.  +o2ape v e
—ﬁ<)\+—L> (O‘ || o) T uf| oy T (& 'e“)”“’)>
1 L \2(n) 2 1 2 € 2
<) Al AL B 54
- L2<)\+L A% LZ’(Q)jL “ull 2@ )jL "o LQ(Q)+ 2 ez

for e > 0. Let ¢ = 1 to obtain,

ol < 1( L )Q(H) (& + aL)||e) + (L* + L)HV ol
=(—— a”+ al)lle a e
Mz T L2\\N+ L L2(Q) “UNr2)
N T NI TR
(A+L)2 1Pl (A4 L)? “ll2 ()

Therefore, we can write:

+1 2
n
€p

n 2 — n 2
RS RERT PEE

L \@n (@®+al)|| o2 (L*+ al)
() e (Lol o (Lt ol)
A+ L (A+L)2 IIPlle2@e (A4 L)?

‘ . 0

2
: 5.17
! m)> (5.17)

where C; = [HL + 2 52 + ggﬁ}

. k k — k _
Noting that: € =t = ok el = 20 2k = 2P 2k and @ = u)t —uf = ub T b,
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we finally have:

2

2
n+1,k n+l,k 2 - ntlk
‘ ph+ - Pi‘ 12(9) + Hs(uh - ulfz)”LQ(Q) + HK 1/2<zh+ - zﬁ) L2(Q)
L \(@2n) 2 2
< ~ ko, k=1 NHV k. k=1
= (A n L> (meh Ph oy TRV T g
(5.18)
B o2 ~ _ Ci(a?4al) - Cy(L%+al)
for L = W, mh = %7 and M2 = 1()\+L)O£

Step 2: Stability estimate on || — &'
Following the same approach as in [6], we derive the stability estimate for the simultaneously cou-
pled scheme. We first recall the form of the fully coupled scheme as:

Find pf € Qu, 25 € Z},, and u} € V, such that,

V0, € Oy, é ((% + cfwo) (pﬁ — pf;l) 7 9h> i + ,uif(v e ‘9h>L2(Q)

«

= v.(zlk_uk 1),0) +<~,0) ; 5.19

ft( h h h £2(Q) dh,Vhn L2(Q) ( )

Z 7<K_1 k7 ) — < k’ ° ) ( T bl > Pl 5-20
Vay € 4y Zh>4dn 12(9) PheV -y 2 )+ PrrgNV 1, qy 12(9) ( )

Yoy, € Vi, 2G (e(uy), s(vh))LQ(Q) + AV -up, V- vh)LQ(Q) —a(p, V- vh)LQ(Q) = (f}, vh)LQ(Q).

(5.21)
Step (a), Flow Equations: Testing (5.19) with 6, = pf — pf~', we obtain:
2 At
ko k-1 ko ko k-1
. B (g 2ok~ k)
ﬁth Pr || gy uf< ZnPh =P ) g
_ R R T S . | O N |
—a(V (wy, —wy ), Py — Py )LQ(Q)+At<Qhaph Ph )LQ(Q)- (5.22)

Now, taking the difference of two consecutive time steps ¢ = t; and ¢t = t;_; of (5.20), and testing
with g, = 2}, we derive:

(K -2 2h) = (h—phVe2h) | (5.23)

2@Q) 12(Q)
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Combining (5.22) with (5.23) (Recall the identity a(a — b) = 1(a® — b* + (a — b)?)), we obtain:

2 2
ko k-1 ~1/2 1/2 125k _ g1
e I L P L )
BHPh Ph ‘LQ( )+ 2is (H “h 2 28 L2(9) ) L2()
= _‘)‘(V ' (uﬁ 'u,ﬁ 1)aph - Ph_ >L2(Q) + <€7h7pﬁ - p2_1>L2(Q)-
(5.24)

Step (b), Elasticity Equation: Considering (5.21) for the difference of two consecutive time

steps, t =t and t = t;_1, and testing with v;, = uf; 'u,Z L we obtain

26 usf — ) y [V 1)(2

L2(Q)

k k—1 k k—1
- (k- b Ttk — )
@ Oé(Ph by, ( h h ) L2@)

k k=1 ok _ o k-1
= — — 2
(.fh hooUp — Uy )L2(Q) (5.25)

L2

Step (c), Combining Flow with Elasticity:
Combining (5.24) with (5.25) yields

C R IRl (L e A=A
+2GH€( R 1)HL2 )+>\HV-( wt — b || o
=m@wmﬁﬂm-wﬁ—fumw%%®
2 2
= 2€1HQhH N\ ‘ph _1)L2(Q) 262Hfh ‘L2(Q) ‘uh_ui_l‘p(g)
o iaEral 627’;22(’5”8@5—%1>H‘iz(m.

By Poincaré, Korn, and Young inequalities, and for ¢;,and €5 > 0. Recall that Poincaré’s inequality
in H}(Q) reads: there exists a constant Pq depending only on € such that

Yv € HS(Q) , ||U||L2(Q) < PQ|U|H1(Q) (526)

In addition, Korn’s first inequality in H{(2)? reads: there exists a constant C, depending only on
Q) such that
Vv € H&(Q)d, |U‘H1(Q) < CnHE('U)HLQ(Q)- (527)

Choosing €, = Aﬁt’ and ey = P%—%Q, and summing for 1 < k < N (recall that N denotes the total
QYK
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number of time steps), we derive

. N N
e H k1|2 (HK 1/2 NH H IRV S SN )
Prn—P + K P
2 ; h L2(Q) 2,uf £2(Q) ; (2 h ) .
N , N 2 /
G H E o k-1 A Hv koo k-l HK_I ) 0‘
+ ; e(uy —uy ') pay | Z (up —up ™) @) 2Mf 2| 2o
M 7?002
26f Z HQh‘ L2( Q) Z Hfh 2 Q)~ (5.28)
This leads to
<
Z th L2 ) -
At2
S u
MfﬁH Zh 52 L2(9) + QGB Z fh- o Q), ( )
al 2
AV k. k-1 <
;H =2 )|
At P 2 &
K12, o‘ H ‘ rabi H ‘ . 20
2/Lf)\“ Zh QCf)\Z qh L2(9) 4G)\ Z fh @) ( )

Combining (5.29) with (5.30), we reach at:

N ) N ,
K 1 ko ok—1
— V. (uf —
; th 12(Q) g2 ; H (wn — ™) 12(Q)

N
2
< sl )+At2ﬁ4ZH% o
k=1
+ 15 Z H.fh

. _ _ pae2
where 73 = tOQ, Ny = %302, s = —55~Ca, and Cy = (% + %)

(5.31)

L2)

Combining Step 1 & Step 2: Combining (5.18) with (5.31) , for a generic constant C' > 0 (which

"}
(\}
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will be revealed later), we can write:

|

2

pirHLE piH;( T {[e(ul - HL2 n HK71/2<zz+1,k _ z';;)‘
L o\ (.
< <)\—|——L> (7]1
2
- < A+ L > (Zth L2(Q)>
2

L
< () (@ mmai L, + 00 S o] g+ 22t -
_</\—|—L> 03( L(Q)+ Z i +Z Fu= 1o
Therefore, we have:

|

2
k

Pn — pﬁ’l

+
L2(@) 2

N
‘7. k. k=1
L2 Q)+;“ (up —uy, )

2
B@)

PRtk piHLz( + e (k) HL2 +HK71/2<zZ+1,k_Z;€L>‘

<o) (e

L2(Q)

1/2
o)

(5.32)

"‘ZHfh

) N
+ At? H%
&

To deal with: Hs nhlk _ ) We use Poincare’s and Korn’s first inequalities as follows:

h HLQ(Q

HE( n+1k n+1k

—upllmo)

1
—up)lr20) > P
In addition, to deal with: HK‘l/Q(zZH’k — zz)‘ L)’ we assume the permeability tensor K to be

uniformly bounded and uniformly elliptic. This means that there exits positive constants \,,;,, and
Amaz, such that

n 1 n
Aminl[€]P < €K ()€ < Amaall€l® = 1K 22" = 2) |12 2 NE 25 = 2hll2()

max

Therefore, we have (for a positive constant C):

n+1,k

k n+1k k
Py, _ph’

1,k

|

L2(Q) HHl(Q)

N
L n 2 2
- A H o OH Af? HN H H ‘
_C<L—|—)\> ( t|| K z) L2(Q)+ tg:l an L) +§ —

B@

1/2
: 5.33
) B

[}
w
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Therefore, we conclude that for every coupling iteration n > 0,

‘PTM k)Hzoo(m ‘ " “(t’“)H ity ‘ - HML?)
)pzﬂk _th@o " I Hun+1 ko uhHeoo(Hl) + ’ zZJFlk _ leHzoo(L?)

*||Ph _p(tk>Hz0°(L2) * Hu’,ﬁ B u(tk)Hzoo H) * th X z(tk)Hé‘”(LQ)
<o LN (ad] x1r2z0 S la :
<o(sp) (3l 5 o, + RS )

+ pz _p(tk)HZOO 1 + Huh — u(t Hzoo X.oc + Hzﬁ — z(ty) 2(12)

Now, by the work of [29,30], we have:

2 2 2

< C(h* 2+ h?2) + O(AP?)

[t = pw0)] o+ ok = )

+ Hzi—z(tk)

o (L2 o (H1) 2(L2)

for a positive constant C' > 0 and mesh size h. r, and 7o are the degree of the polynomials used in
the mixed space (Qp, Zy). For RT, mixed space, 1 = 0, and 5 = 1.

Therefore, we are ready now to present the a priori error estimate for the single rate undrained split
iterative coupling scheme as follows:

Theorem 5.1 Assuming RTy spaces (the lowest order Raviart-Thomas spaces) for flow discretiza-
tion, and piecewise continuous linear approximations for mechanics together with sufficient regular-
ity in the true solution, and for a particular time step ti, and iterative coupling iteration n > 1,
and a regqularization parameter L = Treren) the following a priori error estimate (to the leading

order in time) for the single rate undrained split iterative coupling scheme holds:

=080+ o 0]+ 0]
p k S L2 uh u< k) goo(Hl) zh Z( k) Zoo(L2)
<C( ) sl e sestifal,, s st n o)
WL / Pl 2o k=1 [|9n L2() k=1 (|J L2()
1/2
(o + 0(ar))

where

2
Cy =31+ PaCy + A2, ) (max(iy, 7o)  max(is, s, ) )
C12 = C2<T) Ka Ma Cf, %o, Ok’upz?p’l;t’ zz7 ug,t)'
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6 Conclusions

This paper considered a rigorous convergence analysis of the undrained split iterative coupling
scheme for coupling flow with geomechanics. In the undrained split iterative coupling scheme,
the flow and mechanics problems are solved sequentially assuming a constant fluid mass during
the mechanics solve. An iterative coupling iteration is imposed between the two problems until
convergence is obtained. Our main contributions in this work are two-fold. First, we established the
localized Banach contraction results for both the single rate and multirate undrained split coupling
schemes in heterogeneous poro-elastic media, following a similar approach as in [5]. Second, we
rigorously derived a priori error estimates for the single rate scheme in homogeneous poro-elastic
media following a similar approach as in [6]. To the best of our knowledge, this is the first time
localized Banach contraction results have been obtained for the single rate and multirate undrained
split scheme, and a priori error estimates have been derived for the single rate scheme. In future
work, we will consider deriving a priori error estimates for fractured poro-elastic media and for
multirate iterative coupling schemes.
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