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Abstract

Recently an accurate coupling between subsurface flow and reservoir geomechanics has received
more attention in both academia and industry. This stems from the fact that incorporating a
geomechanics model into upstream flow simulation is critical for accurately predicting wellbore
instabilities and hydraulic fracturing processes. One of the recently introduced iterative coupling
algorithms to couple flow with geomechanics is the undrained split iterative coupling algorithm
[26, 28]. The convergence of this scheme is established in [28] for the single rate iterative coupling
algorithm, and in [26] for the multirate iterative coupling algorithm, in which the flow takes multiple
finer time steps within one coarse mechanics time step. All previously established results study the
convergence of the scheme in homogeneous poroelastic media. In this work, following the approach
in [5], we extend these results to the case of heterogeneous poro-elastic media, in which each grid
cell is associated with its own set of flow and mechanics parameters for both the single rate and
multirate schemes. Second, following the approach in [6], we establish a priori error estimates for
the single rate case of the scheme in homogeneous poro-elastic media. To the best of our knowledge,
this is the first rigorous and complete mathematical analysis of the undrained split iterative coupling
scheme in heterogeneous poro-elastic media.
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1 Introduction

Solving a coupled flow and geomechanics problem is of high importance to the field of petroleum
engineering. This is a direct consequence of the fact that several physical processes cannot be mod-
eled correctly without incorporating a geomechanical model into the underlying physical model.
Important examples include reservoir deformation, surface subsidence, pore collapse and well-bore
stability, fault activation, and hydraulic fracturing (see e.g., [1,7,20,23,24,36] and references therein).
These processes are of great economic importance. Such a coupling can greatly enhance upstream
related operations including drilling simulation, basin modeling, hydraulic fracturing, and reservoir
simulation.

In practice, there are three different ways to solve a coupled flow and geomechanics problem. They
are known as the fully implicit method (or the simultaneously coupling approach), the explicit
method (or the loosely coupled approach), and the iterative coupling method (see e.g., [22] for a
comparison of the these three different coupling approaches). The fully implicit approach solves
the two problems by linearizing the full system simultaneously. This provides an unconditionally
stable approach. However, The algebraic system obtained from the linearization of simultaneously
coupled system is difficult to solve and often requires the use of preconditioners to decouple the two
systems [17, 18]. A recent work by [13, 14, 35] formulated a fixed-stress preconditioning technique
to decouple the two systems in an efficient way. On the other extreme lies the explicit coupling
approach in which the two problems are decoupled, and are solved in a sequential manner without
imposing any iterative coupling iteration between the two [4, 21, 36]. It provides a much simpler
linear system to solve as the two equations are decoupled and we have excellent solvers to solve
mechanics and flow equations separately. The disadvantage is that it is at best conditionally stable,
and several stabilization techniques have been proposed in the literature to cure this issue (see
e.g., [21,36]). In this scheme, since the two systems are fully decoupled, the mechanics problem can
be solved at selective time steps [32]. A rigorous stability analysis of these multirate loosely coupled
schemes, in which the mechanics problem is solved at selective time steps, is provided in [4]. The
iterative coupling approach lies in between these two extremes: it decouples the two problems, but
imposes an iterative coupling iteration between the two until convergence is obtained. We shall
focus on this coupling approach in this work.

Four main flow-mechanics iterative coupling approaches exist in literature including the undrained
split, the drained split, the fixed-stress split, and the fixed-strain split iterative coupling schemes
[12, 13, 22–24, 27, 28]. In the undrained split scheme, the mechanics problem is solved first followed
by the flow. In this scheme, the fluid mass (i.e., fluid content of the medium) is assumed to be
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constant during the mechanics solve [22, 25, 26, 28]. The drained split scheme solves the mechanics
problem first as well (followed by flow), but assumes constant fluid pressure during the mechanics
solve [22, 25]. In contrast, the fixed-stress split and fixed-strain split coupling schemes start by
solving the flow problem first followed by mechanics [24, 28]. In the fixed-stress split scheme, a
constant volumetric mean total stress is assumed during the flow solve, while a constant strain is
assumed in the fixed-strain split scheme [3, 24, 28]. In this work, we will consider the convergence
analysis of the first approach, that is, the undrained split iterative coupling approach. We note here
that for the undrained split scheme to converge, sufficient fluid compressibility should be present.
Subsequently, we make this more precise later (see Remark 4.6)

The convergence of the fixed-stress and undrained split iterative coupling schemes in homogeneous
poroelastic media has been established in [28] for the single rate case (in which the flow and me-
chanics problems share the same time step), and in [2, 3, 26] for the multirate scheme in which
the flow problem is solved for multiple finer time steps within one coarse mechanics time step (the
single rate and multirate schemes are illustrated in Figure 1.1). In addition, the work of [23, 24]
used von-Neumann type of analysis, and energy and spectral methods to analyze the stability of
the aforementioned four iterative coupling approaches. Recently [5] performs convergence analysis
in heterogeneous poro-elastic media where convergences of the single rate and multirate fixed-stress
split iterative coupling were obtained. The extensions to the nonlinear case has been performed
in [11] and to the fractured case in [19]. Multiscale extension of the fixed stress splitting is in [16].
Space time based method has been explored in the [8,10] and the stability analysis of the discretiza-
tion scheme in [31].

In this work, our main objectives are two fold; first, we establish the convergence of the single rate
and multirate undrained split iterative coupling scheme in heterogeneous poroelastic media, follow-
ing a similar approach as in [5]. Second, we will derive a priori error estimates for the single rate
undrained split iterative coupling scheme in homogeneous poro-elastic media (see e.g., [6]). To the
best of our knowledge, this is the first rigorous convergence analysis of the single rate and multirate
undrained split iterative coupling schemes in heterogeneous poro-elastic media. In addition, a priori
error estimates for the single rate undrained split iterative coupling scheme are derived here for the
first time.

The paper is structured as follows: Section 2 contains model equations and discretizations, followed
by a detailed description of the undrained split iterative coupling scheme in Section 3. Section 4
contains the convergence results for the single rate and multirate undrained split iterative coupling
schemes in heterogeneous poroelastic media, followed by an a priori error estimate result for the
single rate scheme (in homogeneous media) in Section 5. Finally, the conclusions are presented in
Section 6.
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Figure 1.1: A flowchart of the single rate and multirate undrained split iterative coupling schemes
(Image Courtesy of [1]).
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2 Model Equations & Discretizations

The domain Ω is assumed to be an open, connected, and bounded domain of IRd, where d = 1, 2
or 3. The boundary ∂Ω is assumed to be Lipschitz continuous boundary. We also assume that Γ
represents the part of the boundary with positive measure (with a Lipschitz continuous boundary
for d = 3). We also note that ΓD ∪ ΓN = Γ, where ΓD is the part of the boundary with Dirichlet
boundary conditions, and ΓN is the part with Neumann boundary conditions. For our homoge-
neous poro-elastic media analysis, we assume a linear and isotropic medium Ω ⊂ R

d with a slightly
compressible fluid inside the reservoir. The viscosity (µf > 0) is assumed to be constant in time,
and the fluid density is a linear function of pressure. The reference density of the fluid ρf > 0, the
fluid compressibility cf , the pore volume ϕ∗, and other poro-elastic parameters including the Lamé
coefficients λ > 0 and G > 0, and the Biot coefficient α are assumed to be positive. We also assume
that absolute permeability tensor, K, is symmetric, bounded, and uniformly positive definite in
space (and constant in time). The quasi-static Biot model [9,15] we will analyze in this work reads:
Find u and p satisfying the following equations for all time t ∈]0, T [:

Flow Equation: ∂
∂t

(

(

1
M

+ cfϕ0

)

p+ α∇ · u
)

−∇ ·
(

1
µf
K
(

∇ p− ρf,rg∇ η
)

)

= q̃ in Ω

−∇·σpor(u, p) = f in Ω,

Mechanics Equations: σpor(u, p) = σ(u)− α p I in Ω,

σ(u) = λ(∇ · u)I + 2Gε(u) in Ω

Boundary Conditions: u = 0 on ∂Ω, K(∇ p− ρf,rg∇ η) · n = 0 on ΓN , p = 0 on ΓD,

Initial Conditions (t=0):
(

(

1
M

+ cfϕ0

)

p+ α∇ · u
)

(0) =
(

1
M

+ cfϕ0

)

p0 + α∇ · u0 in Ω.

We first note that the system above is linear. The flow and mechanics problems are coupled
through those terms associated with the Biot coefficient α. In addition, ρf,r > 0 is a constant
reference density (with respect to a reference pressure pr). Moreover, g, M , ϕ0, η, denotes the
gravitational acceleration, the Biot modulus, the initial porosity, and the distance in the direction
of gravity respectively. Furthermore, q̃ = q

ρf,r
, and q is a mass source or sink term.

2.1 Mixed variational formulation

Throughout our analysis in this paper, we will use a mixed finite element formulation for flow and a
conformal Galerkin formulation for mechanics (for the spatial discretization). The backward-Euler
scheme will be used for temporal discretization. We also note that our work can be extended to
other mixed formulation approaches (for the spatial discretization, see for instance [34]). If we let
Th denote a regular family of conforming elements of Ω, then using the lowest order Raviart-Thomas
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(RT) spaces, the flow and mechanics discrete spaces are as follows [1]:

Discrete Displacements: V h = {vh ∈ H1(Ω)
d
; ∀T ∈ Th,vh|T ∈ P1

d,vh|∂Ω = 0},

Discrete Pressures: Qh = {ph ∈ L2(Ω) ; ∀T ∈ Th, ph|T ∈ P0, ph = 0, on ΓD},

Discrete Fluxes: Zh = {qh ∈ H(∇·; Ω)d ; ∀T ∈ Th, qh|T ∈ RT d
0, qh · n = 0 on ΓN}.

The single rate scheme assumes a uniform time step of size ∆t = tk − tk−1 for all k. The multirate
scheme assumes two different time steps: a fine time step for flow (∆t), and a coarse time step for
mechanics (q∆t). Here, q denotes the number of flow fine time steps that are solved within one
coarse mechanics time step. Assuming a uniform fine flow time step of size ∆t, the total simulation
time is given by T = ∆t N, where N denotes the total number of fine flow time steps. Discrete time
points are given by ti = i∆t, 0 6 i 6 N .
Notation: We will assume that k denotes the time step index in the single rate scheme. For
the multirate scheme, k, and m represent the coarse mechanics time step, and fine flow time step
indices, respectively. If we solve q flow fine time steps within one coarse mechanics time step,
then we have 1 ≤ m ≤ q. We also note that q can change across coarse mechanics time steps.
Moreover, for our analysis, we denote the difference between two consecutive coupling iterations by
δξn,k = ξn+1,k − ξn,k, where ξ stands for p,u, or z, and n represents the iterative coupling iteration
index.

3 Undrained Split Iterative Coupling Algorithm

The undrained split iterative coupling scheme assumes a constant fluid mass during the mechanics
solve. In this scheme, the mechanics problem is solved first followed by the flow problem. The
continuous strong form of the splitting scheme is given below. The superscript n denotes the
coupling iteration index (between flow and mechanics):
Step (a) [Mechanics] Given pn and un , we solve for un+1 satisfying

−∇·σpor(un+1, pn)− L∇·
(

(

∇·un+1
)

I
)

= f − L∇·
(

(

∇·un
)

I
)

σpor(un+1, pn) = σ(un+1)− α pn I

σ(un+1) = λ(∇ · un+1)I + 2Gε(un+1)

Step (b) [Flow] Given un+1, we solve for pn+1, zn+1 satisfying

(

1
M

+ cfϕ0

)

∂
∂t
pn+1 −∇ · zn+1 = −α∇ · ∂

∂t
un+1 + q̃

zn+1 = 1
µf
K
(

∇ pn+1 − ρf,rg∇ η
)

We note that the parameter L in the right and left hand sides of the mechanics equation denote a
regularization term. The subsequent convergence analysis will determine its value.
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4 Convergence Analysis of the Undrained Split Scheme in

Heterogeneous Media

For our convergence analysis results, we will assume a heterogeneous and isotropic poro-elastic
medium. In addition to the assumptions mentioned above (in the Model Equations section), for
the fully discrete formulation, we recall that the domain is denoted by Ω ⊂ R

d, d = 1, 2, or
3, with an external boundary (denoted by ∂Ω, and n denotes its outward unit normal vector).

Our spatial domain will be discretized into NΩ conforming grid elements Ei (Ω =
NΩ
⋃

i=1

Ei). Each

grid element Ei will be associated with an independent set of mechanics and flow parameters:
Gi,Mi, λi,Ki, αi, cf i, µf i and ϕ0i. In addition, the localized permeabilities Ki include viscosities
µf i (i.e. Ki =

Ki

µf i

). For each grid element Ei, ni denotes its outward normal vector such that

ni = −ni−1 for every two adjacent grid elements Ei and Ei−1 with a common boundary.

4.1 Localized Fully Discrete Weak Formulation for the Single Rate
Case:

Following the same approach as outlined in [5] for cancelling the boundary terms, the localized fully
discrete weak formulation for the single undrained split iterative coupling scheme is as follows:
Step (a): Given p

n,k
h and un,k from the previous coupling iteration, find u

n+1,k
h ∈ V h such that,

∀vh ∈ V h , 2

NΩ
∑

i=1

(

Giε(uh
n+1,k), ε(vh)

)

L2(Ei)
+

NΩ
∑

i=1

(

(λi + Li)∇ · un+1,k
h ,∇ · vh

)

L2(Ei)
=

NΩ
∑

i=1

(

αip
n,k
h ,∇ · vh

)

L2(Ei)
+

NΩ
∑

i=1

(

Li∇ · un,k
h ,∇ · vh

)

L2(Ei)
+

NΩ
∑

i=1

(

f ,vh

)

L2(Ei)

(4.1)

Step (b): Given u
n+1,k
h , find p

n+1,k
h ∈ Qh, z

n+1,k
h ∈ Zh such that:

∀θh ∈ Qh ,

NΩ
∑

i=1

(

( 1

Mi

+ cf iϕ0i

)

(p
n+1,k
h − pk−1

h

∆t

)

, θh

)

L2(Ei)
+

NΩ
∑

i=1

(

∇ · zn+1,k
h , θh

)

L2(Ei)

= −

NΩ
∑

i=1

(

αi∇ ·
(u

n+1,k
h − uk−1

h

∆t

)

, θh

)

L2(Ei)
+

NΩ
∑

i=1

(

q̃, θh
)

L2(Ei)
(4.2)

∀qh ∈ Zh ,

NΩ
∑

i=1

(

K−1
i z

n+1,k
h , qh

)

L2(Ei)
=

NΩ
∑

i=1

(pn+1,k
h ,∇ · qh)L2(Ei) +

NΩ
∑

i=1

(

∇(ρf,rgη), qh)L2(Ei) (4.3)
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4.1.1 Proof of Contraction for the Localized Single Rate Case:

We first define the quantity to be contracted on locally for each grid cell as: m̃n,k|Ei
= Li

γi
∇ ·un,k +

αi

γi
pn,k, for each Ei ∈ Ω, 1 ≤ i ≤ NΩ, iterative coupling iteration n ≥ 1, and time step tk. We note

here that γi and Li are free adjustable parameters and will be determined such that the scheme
achieves contraction locally on each m̃|Ei

. We recall that δξn,k := ξn,k−ξn−1,k denotes the difference
between two consecutive coupling iterations, where ξn,k can stand for pn,kh ,u

n,k
h , or zn,k

h .

Remark 4.1 A physical interpretation of the localized regularization term Li can be given as fol-
lows: the standard undrained split scheme assumes the fluid content of the medium to be fixed
during the mechanics solve. The fluid content of the medium is a function of both pore pressure
and mechanical displacement. In our work, the regularization term Li is a quantity that scales
both the pore pressure and mechanical displacement such that the scheme contracts on a mod-
ified (or scaled) expression of the increment in fluid content of the medium (given by m̃n,k =

m0 +
(

Li

2

)(1/2)

∇ · un,k +
(

α2
i

2Li

)(1/2)

pn,k, where m0 is the initial fluid content of the medium, or

initial porosity). The value of Li will be optimized in the sense that the contraction coefficient is
the sharpest (or smallest) accross all grid elements Ei.

• Step (1): Elasticity equation
Considering (4.1) for the difference between two consecutive coupling iterations and testing
with vh = δu

n+1,k+1
h , we get:

NΩ
∑

i=1

2Gi

∥

∥ε(δun+1,k+1
h )

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

(λi + Li)
∥

∥∇ · δun+1,k+1
h

∥

∥

2

L2(Ei)

=

NΩ
∑

i=1

(

αiδp
n,k+1
h + Li∇ · δun,k+1

h ,∇ · δun+1,k+1
h

)

L2(Ei)

=

NΩ
∑

i=1

(

γiδm̃
n,k+1,∇ · δun+1,k+1

h

)

L2(Ei)

≤

NΩ
∑

i=1

εi

2

∥

∥∇ · δun+1,k+1
∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

1

2εi
γ2
i

∥

∥δm̃n,k+1
∥

∥

2

L2(Ei)

by Young’s inequality. For each εi = λi + Li, we obtain,

NΩ
∑

i=1

4Gi

∥

∥ε(δun+1,k+1
h )

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

(λi + Li)
∥

∥∇ · δun+1,k+1
h

∥

∥

2

L2(Ei)
≤

NΩ
∑

i=1

γ2
i

λi + Li

∥

∥δm̃n,k+1
∥

∥

2

L2(Ei)
.

(4.4)
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• Step (2): Flow equations
Considering (4.2) for the difference between two consecutive coupling iterations, testing with
θh = δp

n+1,k+1
h , and multiplying by ∆t, we get: (recall βi =

1
Mi

+ cf iϕ0i)

NΩ
∑

i=1

βi

∥

∥

∥
δp

n+1,k+1
h

∥

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

∆t
(

∇ · δzn+1,k+1
h , δp

n+1,k+1
h )L2(Ei)

= −

NΩ
∑

i=1

αi

(

∇ · δun+1,k+1
h , δp

n+1,k+1
h

)

L2(Ei)
. (4.5)

Now, in a similar manner, considering (4.3) for the difference between two consecutive coupling
iterations, and testing with qh = δz

n+1,k+1
h , we get

NΩ
∑

i=1

∥

∥Ki
−1/2δz

n+1,k+1
h

∥

∥

2

L2(Ei)
=

NΩ
∑

i=1

(

δp
n+1,k+1
h ,∇ · δzn+1,k+1

h

)

L2(Ei)
. (4.6)

Substituting (4.6) into (4.5), we have

NΩ
∑

i=1

βi

∥

∥

∥
δp

n+1,k+1
h

∥

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

∆t
∥

∥Ki
−1/2δz

n+1,k+1
h

∥

∥

2

L2(Ei)

+

NΩ
∑

i=1

αi

(

∇ · δun+1,k+1
h , δp

n+1,k+1
h

)

L2(Ei)
= 0. (4.7)

• Step (3): Combining Mechanics and Flow
Adding (4.7) to (4.4), we obtain

NΩ
∑

i=1

4Gi

∥

∥ε(δun+1,k+1
h )

∥

∥

2

L2(Ei)

+

NΩ
∑

i=1

{

βi

∥

∥

∥
δp

n+1,k+1
h

∥

∥

∥

2

L2(Ei)
+ αi

(

∇ · δun+1,k+1
h , δp

n+1,k+1
h

)

L2(Ei)
+ (λi + Li)

∥

∥∇ · δun+1,k+1
h

∥

∥

2

L2(Ei)

}

+

NΩ
∑

i=1

∆t
∥

∥

∥
Ki

−1/2δz
n+1,k+1
h

∥

∥

∥

2

L2(Ei)
≤

NΩ
∑

i=1

γ2
i

λi + Li

∥

∥δm̃n,k+1
∥

∥

2

L2(Ei)
.

(4.8)
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• Step (4): Identifying the parameters
Below, the procedure for determining the two adjustable parameters (γ and L) is illustrated.
These parameters should be chosen such that the terms on the left hand side of (4.8) remain
positive and the scheme contracts on m̃. Expanding the L2 norm of m̃ for each Ei, we have:

∥

∥δm̃n+1,k+1
∥

∥

2

L2(Ei)
=

L2
i

γ2
i

∥

∥∇ · δun+1,k+1
∥

∥

2

L2(Ei)
+

α2
i

γ2
i

∥

∥δpn+1,k+1
∥

∥

2

L2(Ei)

+
2αiLi

γ2
i

(

δpn+1,k+1,∇ · δun+1,k+1
)

L2(Ei)
.

Matching coefficients by comparing with the terms in the curly brackets in (4.8) provides us
with the following conditions:

L2
i

γ2
i

≤ (λi + Li),
α2
i

γ2
i

≤ βi,
2αiLi

γ2
i

= αi.

The third equality gives, Li =
γ2
i

2
. The first inequality translate to λi+

Li

2
≥ 0 which is trivially

satisfied. The second inequality sets a lower bound on the value of the regularization term as:

Li ≥
α2
i

2βi
. The upper bound on Li comes from the contraction coefficient condition 2Li

λi+Li
< 1

as Li < λi. Thus, for the scheme to be contractive, we need
α2
i

2βi
≤ Li < λi. Therefore, we

have the following theorem:

Theorem 4.2 [Localized Single Rate Banach Contraction Estimate] For βi =
1
Mi

+ cf iϕ0i,
αi

2

2βi
≤

Li < λi, m̃n,k =
(

Li

2

)(1/2)

∇ · un,k +
(

α2
i

2Li

)(1/2)

pn,k, for each Ei ∈ Ω, 1 ≤ i ≤ NΩ, the localized

undrained split iterative coupling scheme is a contraction given by

NΩ
∑

i=1

4Gi

∥

∥ε(δun+1,k
h )

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

(

βi −
αi

2

2Li

)∥

∥

∥
δp

n+1,k
h

∥

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

(

λi +
Li

2

)∥

∥

∥
∇ · δun+1,k

h

∥

∥

∥

2

L2(Ei)

+∆t

NΩ
∑

i=1

∥

∥

∥
Ki

−1/2δz
n+1,k
h

∥

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

∥

∥

∥
δm̃n+1,k+1

∥

∥

∥

2

L2(Ei)
≤ max

1≤i≤NΩ

( 2Li

λi + Li

)

NΩ
∑

i=1

∥

∥

∥
δm̃n,k+1

∥

∥

∥

2

L2(Ei)
.

(4.9)

Remark 4.3 For Li < λi,
2Li

λi+Li
< 1 for all grid elements Ei ∈ Ω, 1 ≤ i ≤ NΩ ensuring the

contraction of the scheme.
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4.2 Localized Fully Discrete Weak Formulation for the Multirate Case:

Following the same approach as in the single rate case (and outlined in [5]), the localized fully
discrete weak formulation for the multirate undrained split iterative coupling scheme is as follows:
Step (a): Given p

n,k+q
h and u

n,k+q
h from the last iterative coupling iteration, find u

n+1,k+q
h ∈ V h such

that

∀vh ∈ V h , 2

NΩ
∑

i=1

(

Giε(u
n+1,k+q
h ), ε(vh)

)

L2(Ei)
+

NΩ
∑

i=1

(

(λi + Li)∇ · un+1,k+q
h ,∇ · vh

)

L2(Ei)

=

NΩ
∑

i=1

(

αip
n,k+q
h ,∇ · vh

)

L2(Ei)
+

NΩ
∑

i=1

(

Li∇ · un,k+q
h ,∇ · vh

)

L2(Ei)
+

NΩ
∑

i=1

(

fh,vh

)

L2(Ei)
.

(4.10)

Step (b): For 1 ≤ m ≤ q, given u
n+1,k+q
h , find p

n+1,m+k
h ∈ Qh, and z

n+1,m+k
h ∈ Zh such that,

∀θh ∈ Qh ,
1

∆t

NΩ
∑

i=1

(

( 1

Mi

+ cf iϕ0i

)

(

p
n+1,m+k
h − p

n+1,m−1+k
h

)

, θh

)

L2(Ei)
+

NΩ
∑

i=1

(

∇ · zn+1,m+k
h , θh)L2(Ei) =

−
1

∆t

NΩ
∑

i=1

(αi

q
∇ ·
(

u
n,k+q
h − u

n,k
h

)

, θh

)

L2(Ei)
+

NΩ
∑

i=1

(

q̃h, θh

)

L2(Ei)
,

(4.11)

∀qh ∈ Zh ,

NΩ
∑

i=1

(

Ki
−1z

n+1,m+k
h , qh

)

L2(Ei)
=

NΩ
∑

i=1

(

p
n+1,m+k
h ,∇ · qh

)

L2(Ei)
+

NΩ
∑

i=1

(

ρf,rg∇ η, qh

)

L2(Ei)
, (4.12)

4.2.1 Proof of Contraction for the Localized Multirate Case:

We define the localized quantity of contraction in this case as:

m̃n+1,k+m
q |Ei

=
Li

γiq
∇ · un+1,k+q +

αi

γi
(pn+1,k+m − pn+1,k+m−1), for 1 ≤ m ≤ q,

where γi is an adjustable parameter to be determined such that the scheme contracts on m̃q|Ei
for

each grid Ei.

• Step (1): Elasticity equation
Considering (4.10) for the difference between two consecutive coupling iterations, and testing
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with vh = δu
n+1,k+q
h , we get:

NΩ
∑

i=1

2Gi

∥

∥ε(δun+1,k+q
h )

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

(λi + Li)
∥

∥∇ · δun+1,k+q
h

∥

∥

2

L2(Ei)

=

NΩ
∑

i=1

(

αiδp
n,k+q
h + Li∇ · δun,k+q

h ,∇ · δun+1,k+q
h

)

L2(Ei)

=

NΩ
∑

i=1

(

q
∑

m=1

(

αi

(

δp
n,m+k
h − δp

n,m−1+k
h

)

+
Li

q
∇ · δun,k+q

h

)

,∇ · δun+1,k+q
h

)

L2(Ei)

≤

NΩ
∑

i=1

εi

2

∥

∥∇ · δun+1,k+q
∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

1

2εi
γ2
i

q
∑

m=1

∥

∥δm̃n,k+m
q

∥

∥

2

L2(Ei)
.

by noting that

q
∑

m=1

(

δp
n,m+k
h − δp

n,m−1+k
h

)

= δp
n,k+q
h and using Young’s inequality. For each

Ei, choose εi = λi + Li to obtain:

NΩ
∑

i=1

4Gi

∥

∥ε(δun+1,k+q
h )

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

(λi + Li)
∥

∥∇ · δun+1,k+q
h

∥

∥

2

L2(Ei)
≤

NΩ
∑

i=1

γ2
i

λi + Li

q
∑

m=1

∥

∥δm̃n,k+m
q

∥

∥

2

L2(Ei)
.

(4.13)

• Step (2): Flow equations
Considering (4.11) for the difference between two consecutive coupling iterations, testing with
θh = δp

n+1,m+k
h − δp

n+1,m−1+k
h , and multiplying by ∆t, we get: (recall βi =

1
Mi

+ cf iϕ0i for
each Ei)

NΩ
∑

i=1

βi

∥

∥

∥
δp

n+1,m+k
h − δp

n+1,m−1+k
h

∥

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

∆t
(

∇ · δzn+1,m+k
h , δp

n+1,m+k
h − δp

n+1,m−1+k
h )L2(Ei) =

−

NΩ
∑

i=1

αi

q

(

∇ · δun+1,k+q
h , δp

n+1,m+k
h − δp

n+1,m−1+k
h

)

L2(Ei)
. (4.14)
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Now, consider (4.12) for two consecutive local flow finer time steps, t = tm+k, and t = tm−1+k,
and test with qh = δz

n+1,m+k
h to obtain

NΩ
∑

i=1

(

Ki
−1
(

δz
n+1,m+k
h − δz

n+1,m−1+k
h

)

,δz
n+1,m+k
h

)

L2(Ei)

=

NΩ
∑

i=1

(

δp
n+1,m+k
h − δp

n+1,m−1+k
h ,∇ · δzn+1,m+k

h

)

L2(Ei)
. (4.15)

Substituting (4.15) into (4.14), we have

NΩ
∑

i=1

βi

∥

∥

∥
δp

n+1,m+k
h − δp

n+1,m−1+k
h

∥

∥

∥

2

L2(Ei)

+

NΩ
∑

i=1

∆t
(

Ki
−1
(

δz
n+1,m+k
h − δz

n+1,m−1+k
h

)

, δz
n+1,m+k
h

)

L2(Ei)
=

−

NΩ
∑

i=1

αi

q

(

∇ · δun+1,k+q
h , δp

n+1,m+k
h − δp

n+1,m−1+k
h

)

L2(Ei)
.

By Young’s inequality, with further simplifications,

NΩ
∑

i=1

βi

∥

∥

∥
δp

n+1,m+k
h − δp

n+1,m−1+k
h

∥

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

αi

q

(

∇ · δun+1,k+q
h , δp

n+1,m+k
h − δp

n+1,m−1+k
h

)

L2(Ei)

NΩ
∑

i=1

∆t

2

(∥

∥

∥
Ki

−1/2δz
n+1,m+k
h

∥

∥

∥

2

L2(Ei)
−
∥

∥

∥
Ki

−1/2δz
n+1,m−1+k
h

∥

∥

∥

2

L2(Ei)

+
∥

∥

∥
Ki

−1/2(δzn+1,m+k
h − δz

n+1,m−1+k
h

)
∥

∥

∥

2

L2(Ei)

)

= 0.

Summing for q local flow time steps and after some simplifications (telescopic cancellations
together with the fact that δzn+1,k

h = 0), we get

NΩ
∑

i=1

q
∑

m=1

(

βi

∥

∥

∥
δp

n+1,m+k
h − δp

n+1,m−1+k
h

∥

∥

∥

2

L2(Ei)
+

αi

q

(

∇ · δun+1,k+q
h , δp

n+1,m+k
h − δp

n+1,m−1+k
h

)

L2(Ei)

)

NΩ
∑

i=1

∆t

2

∥

∥

∥
Ki

−1/2δz
n+1,k+q
h

∥

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

∆t

2

q
∑

m=1

∥

∥

∥
Ki

−1/2
(

δz
n+1,m+k
h − δz

n+1,m−1+k
h

)
∥

∥

∥

2

L2(Ei)
= 0.

(4.16)
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• Step (3): Combining Mechanics and Flow
Adding (4.16) to (4.13), we obtain

NΩ
∑

i=1

4Gi

∥

∥ε(δun+1,k+q
h )

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

q
∑

m=1

{

βi

∥

∥

∥
δp

n+1,m+k
h − δp

n+1,m−1+k
h

∥

∥

∥

2

L2(Ei)

+
αi

q

(

∇ · δun+1,k+q
h , δp

n+1,m+k
h − δp

n+1,m−1+k
h

)

L2(Ei)
+

λi + Li

q

∥

∥∇ · δun+1,k+q
h

∥

∥

2

L2(Ei)

}

+

NΩ
∑

i=1

∆t

2

∥

∥

∥
Ki

−1/2δz
n+1,k+q
h

∥

∥

∥

2

L2(Ei)
+

NΩ
∑

i=1

∆t

2

q
∑

m=1

∥

∥

∥
Ki

−1/2
(

δz
n+1,m+k
h − δz

n+1,m−1+k
h

)∥

∥

∥

2

L2(Ei)

≤

NΩ
∑

i=1

γ2
i

λi + Li

q
∑

m=1

∥

∥δm̃n,k+m
q

∥

∥

2

L2(Ei)
. (4.17)

• Step (4): Identifying the parameters
For each Ei, we should choose the parameters γi, and Li such that the terms on the left hand
side of (4.17) remain positive, and the scheme achieves contraction on m̃q|Ei

. Clearly,

∥

∥δm̃n+1,k+m
q

∥

∥

2

L2(Ei)
=

L2
i

q2γ2
i

∥

∥∇ · δun+1,k+q
∥

∥

2

L2(Ei)
+

α2
i

γ2
i

∥

∥(pn+1,k+m − pn+1,k+m−1)
∥

∥

2

L2(Ei)

+
2αiLi

γ2
i q

(

(pn+1,k+m − pn+1,k+m−1),∇ · δun+1,k+q
)

L2(Ei)
.

Matching coefficients by comparing with the coefficients of the terms in the curly brackets in

(4.17), we obtain
L2
i

q2γ2
i

≤ λi+Li

q
,

α2
i

γ2
i

≤ βi, and
2αiLi

γ2
i q

= αi

q
. The last equality gives γ2

i = 2Li.

Substituting in the first inequality, we obtain the condition 2q(λi+Li) ≥ Li, which is trivially
satisfied for q ≥ 1, λi ≥ 0, and Li ≥ 0. The second inequality gives a lower bound on the value

of Li as Li ≥
α2
i

2βi
. Moreover, For the scheme to be contractive, we require that

γ2
i

λi+Li
< 1. This

gives the following upper bound on Li as Li < λi. Therefore, we have the following combined

condition
α2
i

2βi
≤ Li < λi for each grid element Ei. Our main result summarizes the above

contraction result.

Theorem 4.4 [Localized Multirate Banach Contraction Estimate] For βi = 1
Mi

+ cf iϕ0i,
αi

2

2βi
≤

Li < λi, m̃
n,k+m
q =

(

Li

2q2

)(1/2)

∇ ·un,k+q +
(

α2
i

2Li

)(1/2)

(pn,k+m − pn,k+m−1) for 1 ≤ m ≤ q, and for each

Ei ∈ Ω, 1 ≤ i ≤ NΩ, the localized multirate undrained split iterative coupling scheme, in which the
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flow fine time step is ∆t, and the coarse mechanics time step is q∆t (i.e., q flow fine time steps are
solved within one coarse mechanics time step), is a contraction given by

NΩ
∑

i=1

4Gi

∥

∥ε(δun+1,k+q
h )

∥

∥

2

L2(Ei)
+

q
∑

m=1

NΩ
∑

i=1

(

βi −
αi

2

2Li

)∥

∥

∥
δp

n+1,m+k
h − δp

n+1,m−1+k
h

∥

∥

∥

2

L2(Ei)

+

NΩ
∑

i=1

(

λi +
(2q − 1

2q

)

Li

)∥

∥

∥
∇ · δun+1,k+q

h

∥

∥

∥

2

L2(Ei)
+∆t

NΩ
∑

i=1

1

2

∥

∥

∥
Ki

−1/2δz
n+1,k+q
h

∥

∥

∥

2

L2(Ei)

+∆t

q
∑

m=1

NΩ
∑

i=1

1

2

∥

∥

∥
Ki

−1/2(δzn+1,m+k
h − δz

n+1,m−1+k
h )

∥

∥

∥

2

L2(Ei)

+

q
∑

m=1

NΩ
∑

i=1

∥

∥

∥
δm̃n+1,m+k

∥

∥

∥

2

L2(Ei)
≤ max

1≤i≤NΩ

( 2Li

λi + Li

)

q
∑

m=1

NΩ
∑

i=1

∥

∥

∥
δm̃n,m+k

∥

∥

∥

2

L2(Ei)
. (4.18)

Remark 4.5 As in the single rate case, for Li < λi,
2Li

λi + Li

< 1 for all grid elements Ei ∈ Ω, 1 ≤

i ≤ NΩ, thus the scheme always contracts. Moreover, For q = 1, we retrieve the single rate result.

Remark 4.6 For both the single rate and multirate cases, the condition on Li translates to the
following condition:

αi
2

2λi

< (
1

Mi

+ cf iϕ0i) for each Ei. (4.19)

Therefore, in heterogenous poroelastic media, sufficient fluid compressibility is needed for the undrained
split scheme to be convergent. This is not the case for the fixed-stress split scheme, which implies
that the fixed-stress scheme is more robust. Moreover, By comparing the rates of convergence (i.e.
the contraction coefficient values) of the undrained split scheme versus the fixed stress split scheme
(as derived in the work of [5]), we can see that fixed stress coefficient is sharper (i.e., smaller).
This is confirmed by the work of [27, 33] in which the numerical efficiency of these two schemes
were compared against the Mandel problem. In this work, the fixed stress split scheme converged in
fewer coupling iterations compared to the undrained split scheme (the number of iterative coupling
iterations dropped down to 2 after 10 time steps for the fixed stress split scheme, whereas it took the
undrained split scheme more than 5 iterative coupling iterations to converge for the first 1100 time
steps).

5 A Priori Error Estimates for the Single Rate Undrained

Split Iterative Coupling Scheme

In this section, we derive an a priori error estimate for the single rate undrained split coupling
scheme in homogeneous poro-elastic media. The derivation of a priori error estimates in hetero-
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geneous media is more involved and will be considered in a future work. We will use the same
notation as the one used before, except that we will be de-associating viscosity µ from permeability
K (as this is no longer needed for this kind of analysis).

In deriving our a priori error estimates for the undrained split scheme, we will follow a similar
approach as outlined in the work of [6]. For a particular time step t = tk, and a specific iterative
coupling iteration n ≥ 0, we seek an estimate of the form

∥

∥ξ
n,k
h − ξ(tk)

∥

∥, where ξ denotes ph, zh, or
uh. The triangle inequality gives us

∥

∥ξ
n,k
h − ξ(tk)

∥

∥ ≤
∥

∥ξ
n,k
h − ξkh

∥

∥+
∥

∥ξkh − ξ(tk)
∥

∥

where ξkh is the solution obtained by the fully coupled scheme (we assume that the iterative coupling
scheme will converge to the solution of the simultaneously coupled scheme, also known as the fully
implicit or simultaneously coupled scheme). The work of [29,30] derived a priori error estimates for
the simultaneously coupled scheme; therefore, it remains to derive an error estimate for

∥

∥ξ
n,k
h − ξkh

∥

∥.
Estimating this term is done in two steps:

• Step (1): Deriving a Banach contraction result on
∥

∥ξ
n,k
h − ξkh

∥

∥.

• Step (2): Deriving stability estimates for the simultaneously coupled scheme
∥

∥ξkh − ξk−1
h

∥

∥

Step 1: Banach Contraction Estimate on
∥

∥ξ
n,k
h − ξkh

∥

∥

We first define the error terms as follows:

enp = p
n,k
h − pkh, enu = u

n,k
h − uk

h, enz = z
n,k
h − zk

h.

The weak formulation of the fully-coupled scheme is given as follows:

Find pkh ∈ Qh, z
k
h ∈ Zh, and uk

h ∈ V h such that,

∀vh ∈ Vh , 2G
(

ε(uk
h), ε(vh)

)

L2(Ω)
+ λ
(

∇ · uk
h,∇ · vh

)

L2(Ω)
− α

(

pkh,∇ · vh

)

L2(Ω)
=
(

f k
h,vh

)

L2(Ω)
,

(5.1)

∀θh ∈ Qh ,
1

∆t

( 1

M
+ cfϕ0

)

((

pkh − pk−1
h

)

, θh

)

L2(Ω)
+

1

µf

(

∇ · zk
h, θh

)

L2(Ω)

= −
α

∆t

(

∇ ·
(

uk
h − uk−1

h

)

, θh

)

L2(Ω)
+
(

q̃h, θh

)

L2(Ω)
, (5.2)

∀qh ∈ Zh ,
(

K−1zk
h, qh

)

L2(Ω)
=
(

pkh,∇ · qh

)

L2(Ω)
+
(

ρf,rg∇ η, qh

)

L2(Ω)
. (5.3)

In addition, the weak formulation of the iteratively coupled scheme reads
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Step (a): Given p
n,k
h and un,k from the previous coupling iteration, find u

n+1,k
h ∈ V h such that

∀vh ∈ V h , 2G
(

ε(uh
n+1,k), ε(vh)

)

L2(Ω)
+ (λ+ L)

(

∇ · un+1,k
h ,∇ · vh

)

L2(Ω)
=

α
(

p
n,k
h ,∇ · vh

)

L2(Ω)
+ L

(

∇ · un,k
h ,∇ · vh

)

L2(Ω)
+
(

f ,vh

)

L2(Ω)
(5.4)

Step (b): Given u
n+1,k
h , find p

n+1,k
h ∈ Qh, z

n+1,k
h ∈ Zh such that:

∀θh ∈ Qh ,
( 1

M
+ cfϕ0

)

(p
n+1,k
h − pk−1

h

∆t
, θh

)

L2(Ω)
+

1

µf

(

∇ · zn+1,k
h , θh

)

L2(Ω)

= −α
(

∇ ·
(u

n+1,k
h − uk−1

h

∆t

)

, θh

)

L2(Ω)
+
(

q̃, θh
)

L2(Ω)
(5.5)

∀qh ∈ Zh ,
(

K−1z
n+1,k
h , qh

)

L2(Ω)
= (pn+1,k

h ,∇ · qh)L2(Ω) +
(

∇(ρf,rgη), qh)L2(Ω) (5.6)

By taking the difference of the weak formulations for the iterative coupling scheme (equations (5.4),
(5.5), and (5.6)), and the fully-coupled scheme (equations (5.1), (5.2), and (5.3)), the terms at time
step tk−1 get cancelled as we assumed that the iteratively coupled scheme at the previous time
step (t = tk−1) will converge to the solution obtained by fully coupled scheme (i.e., the iteration is
carried out to full convergence such that the error with respect to the solution obtained by the fully
coupled scheme is equal to zero). Under this assumption, the weak formulation (mixed formulation
for flow, CG for mechanics) in terms of the error terms defined above can be written as:

∀θh ∈ Qh ,
1

∆t

( 1

M
+ cfϕ0

)

(

en+1
p , θh

)

L2(Ω)
+

1

µf

(

∇ · en+1
z , θh

)

L2(Ω)
=

1

∆t

(

− α∇ · en+1
u , θh

)

L2(Ω)
,

(5.7)

∀qh ∈ Zh ,
(

K−1en+1
z , qh

)

L2(Ω)
=
(

en+1
p ,∇ · qh

)

L2(Ω)
, (5.8)

∀vh ∈ Vh , 2G
(

ε(en+1
u ), ε(vh)

)

L2(Ω)
+ (λ+ L)

(

∇ · en+1
u ,∇ · vh

)

L2(Ω)

= α
(

enp ,∇ · vh

)

L2(Ω)
+ L

(

∇ · en+1
u ,∇ · vh

)

L2(Ω)
.

(5.9)

We also define the quantity of contraction as

enm =
α

γ
enp +

L

γ
∇ · enu

The parameters L and γ are adjustable parameters, which will be determined by the proof of
contraction. Now, we follow a similar argument as in the work of [26] to derive a Banach contraction
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result as follows. First, consider the elasticity equation (5.9) and test with vh = en+1
u , to get:

2G
∥

∥ε(en+1
u )

∥

∥

2

L2(Ω)
+ (λ+ L)

∥

∥∇ · en+1
u

∥

∥

2

L2(Ω)
= (αenp + L∇ · enu,∇ · en+1

u )L2(Ω)

= (enm,∇ · en+1
u )L2(Ω)

≤
ǫ

2

∥

∥∇ · en+1
u

∥

∥

2

L2(Ω)
+

γ2

2ǫ

∥

∥enm
∥

∥

2

L2(Ω)

by Young’s inequality. For ǫ = λ+ L, we get:

4G

λ+ L

∥

∥ε(en+1
u )

∥

∥

2

L2(Ω)
+
∥

∥∇ · en+1
u

∥

∥

2

L2(Ω)
≤

γ2

(λ+ L)2
∥

∥enm
∥

∥

2

L2(Ω)
. (5.10)

Next, consider the flow equation (5.7), and test with θh = en+1
p to get (recall that β = 1

M
+ cfϕ0):

β
∥

∥en+1
p

∥

∥

2

L2(Ω)
+

∆t

µf

(∇ · en+1
z , en+1

p )L2(Ω) = −α(∇ · en+1
u , en+1

p )L2(Ω). (5.11)

In a similar way, testing (5.8) with qh = en+1
z yields:

∥

∥K−1/2en+1
z

∥

∥

2

L2(Ω)
=
(

en+1
p ,∇ · en+1

z

)

L2(Ω)
. (5.12)

Combining (5.11) with (5.12) gives:

β
∥

∥en+1
p

∥

∥

2

L2(Ω)
+

∆t

µf

∥

∥K−1/2en+1
z

∥

∥

2

L2(Ω)
+ α(∇ · en+1

u , en+1
p )L2(Ω) = 0. (5.13)

Multiplying the mechanics equation (5.10) by a free parameter (c2 > 0) and adding it to the flow
equation (5.13) yield:

4G

λ+ L

∥

∥ε(en+1
u )

∥

∥

2

L2(Ω)
+
{

c2β
∥

∥en+1
p

∥

∥

2

L2(Ω)
+ αc2(∇ · en+1

u , en+1
p )L2(Ω) +

∥

∥∇ · en+1
u

∥

∥

2

L2(Ω)

}

+
c2∆t

µf

∥

∥K−1/2en+1
z

∥

∥

2

L2(Ω)
≤

γ2

(λ+ L)2
∥

∥enm
∥

∥

2

L2(Ω)
. (5.14)

Now, recalling that en+1
m = α

γ
en+1
p + L

γ
∇ · en+1

u , we have:

∥

∥en+1
m

∥

∥

2

L2(Ω)
=

α2

γ2

∥

∥en+1
p

∥

∥

2

L2(Ω)
+

2αL

γ2
(en+1

p ,∇ · en+1
u )L2(Ω) +

L2

γ2

∥

∥∇ · en+1
u

∥

∥

2

L2(Ω)
. (5.15)

Matching the coefficients on the right hand side of (5.15) with the coefficients in the curly brackets
on the left hand side of (5.14), we determine L = γ = α2

β
, and c2 = 2

L
.
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With the above coefficients, we have the following Banach contraction estimate on enm:

( 4G

λ+ L

)

∥

∥ε(en+1
u )

∥

∥

2

L2(Ω)
+

2β∆t

α2µf

∥

∥

∥
K−1/2en+1

z

∥

∥

∥

2

L2(Ω)
+

β2

α2

∥

∥

∥
en+1
p

∥

∥

∥

2

L2(Ω)
+
∥

∥

∥
en+1
m

∥

∥

∥

2

L2(Ω)
≤
( L

λ+ L

)2∥
∥

∥
enm

∥

∥

∥

2

L2(Ω)
.

(5.16)

with L = γ = α2

β
, β = 1

M
+ cfϕ0.

We easily derive for a coupling iteration n > 0:

∥

∥

∥
enm

∥

∥

∥

2

L2(Ω)
≤
( L

λ+ L

)2(n)∥
∥

∥

α

L
e0p +∇ · e0u

∥

∥

∥

2

L2(Ω)

≤
1

L2

( L

λ+ L

)2(n)(

α2
∥

∥

∥
e0p

∥

∥

∥

2

L2(Ω)
+ L2

∥

∥

∥
∇ · e0u

∥

∥

∥

2

L2(Ω)
+ 2αL(e0p,∇ · e0u)L2(Ω)

)

≤
1

L2

( L

λ+ L

)2(n)(

α2
∥

∥

∥
e0p

∥

∥

∥

2

L2(Ω)
+ L2

∥

∥

∥
∇ · e0u

∥

∥

∥

2

L2(Ω)
+ 2αL

( 1

2ǫ

∥

∥

∥
e0p

∥

∥

∥

2

L2(Ω)
+

ǫ

2

∥

∥

∥
∇ · e0u

∥

∥

∥

2

L2(Ω)

))

.

for ǫ > 0. Let ǫ = 1 to obtain,

∥

∥

∥
enm

∥

∥

∥

2

L2(Ω)
≤

1

L2

( L

λ+ L

)2(n)
(

(α2 + αL)
∥

∥

∥
e0p

∥

∥

∥

2

L2(Ω)
+ (L2 + αL)

∥

∥

∥
∇ · e0u

∥

∥

∥

2

L2(Ω)

)

≤
( L

λ+ L

)2(n−1)
(

(α2 + αL)

(λ+ L)2

∥

∥

∥
e0p

∥

∥

∥

2

L2(Ω)
+

(L2 + αL)

(λ+ L)2

∥

∥

∥
∇ · e0u

∥

∥

∥

2

L2(Ω)

)

Therefore, we can write:

∥

∥

∥
en+1
p

∥

∥

∥

2

L2(Ω)
+
∥

∥ε(en+1
u )

∥

∥

2

L2(Ω)
+
∥

∥

∥
K−1/2en+1

z

∥

∥

∥

2

L2(Ω)
≤

( L

λ+ L

)(2n)

C1

(

(α2 + αL)

(λ+ L)2

∥

∥

∥
e0p

∥

∥

∥

2

L2(Ω)
+

(L2 + αL)

(λ+ L)2

∥

∥

∥
∇ · e0u

∥

∥

∥

2

L2(Ω)

)

. (5.17)

where C1 =

[

λ+L
4G

+ α2

β2 +
α2µf

2β∆t

]

.

Noting that: e0p = p
0,k
h −pkh = pk−1

h −pkh, e
0
z = z

0,k
h −zk

h = zk−1
h −zk

h, and e0u = u
0,k
h −uk

h = uk−1
h −uk

h,
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we finally have:

∥

∥

∥
p
n+1,k
h − pkh

∥

∥

∥

2

L2(Ω)
+
∥

∥ε(un+1,k
h − uk

h)
∥

∥

2

L2(Ω)
+
∥

∥

∥
K−1/2(zn+1,k

h − zk
h)
∥

∥

∥

2

L2(Ω)

≤
( L

λ+ L

)(2n)
(

η̃1

∥

∥

∥
pkh − pk−1

h

∥

∥

∥

2

L2(Ω)
+ η̃2

∥

∥

∥
∇ · uk

h − uk−1
h

∥

∥

∥

2

L2(Ω)

)

(5.18)

for L = α2

( 1

M
+cfϕ0)

, η̃1 =
C1(α2+αL)

(λ+L)2
, and η̃2 =

C1(L2+αL)
(λ+L)2

.

Step 2: Stability estimate on
∥

∥ξkh − ξk−1
h

∥

∥

Following the same approach as in [6], we derive the stability estimate for the simultaneously cou-
pled scheme. We first recall the form of the fully coupled scheme as:

Find pkh ∈ Qh, z
k
h ∈ Zh, and uk

h ∈ V h such that,

∀θh ∈ Qh ,
1

∆t

(

( 1

M
+ cfϕ0

)

(

pkh − pk−1
h

)

, θh

)

L2(Ω)
+

1

µf

(

∇ · zk
h, θh

)

L2(Ω)

= −
α

∆t

(

∇ ·
(

uk
h − uk−1

h

)

, θh

)

L2(Ω)
+
(

q̃h, θh

)

L2(Ω)
, (5.19)

∀qh ∈ Zh ,
(

K−1zk
h, qh

)

L2(Ω)
=
(

pkh,∇ · qh

)

L2(Ω)
+
(

ρf,rg∇ η, qh

)

L2(Ω)
, (5.20)

∀vh ∈ Vh , 2G
(

ε(uk
h), ε(vh)

)

L2(Ω)
+ λ
(

∇ · uk
h,∇ · vh

)

L2(Ω)
− α

(

pkh,∇ · vh

)

L2(Ω)
=
(

f k
h,vh

)

L2(Ω)
.

(5.21)

Step (a), Flow Equations: Testing (5.19) with θh = pkh − pk−1
h , we obtain:

β
∥

∥

∥
pkh − pk−1

h

∥

∥

∥

2

L2(Ω)
+

∆t

µf

(

∇ · zk
h, p

k
h − pk−1

h

)

L2(Ω)

= α
(

∇ · (uk
h − uk−1

h ), pkh − pk−1
h

)

L2(Ω)
+∆t

(

q̃h, p
k
h − pk−1

h

)

L2(Ω)
. (5.22)

Now, taking the difference of two consecutive time steps t = tk and t = tk−1 of (5.20), and testing
with qh = zk

h, we derive:

(

K−1(zk
h − zk−1

h ), zk
h

)

L2(Ω)
=
(

pkh − pk−1
h ,∇ · zk

h

)

L2(Ω)
. (5.23)
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Combining (5.22) with (5.23) (Recall the identity a(a− b) = 1
2
(a2 − b2 + (a− b)2)), we obtain:

β
∥

∥

∥
pkh − pk−1

h

∥

∥

∥

2

L2(Ω)
+

∆t

2µf

(∥

∥

∥
K−1/2zk

h

∥

∥

∥

2

L2(Ω)
−
∥

∥

∥
K−1/2zk−1

h

∥

∥

∥

2

L2(Ω)
+
∥

∥

∥
K−1/2(zk

h − zk−1
h )

∥

∥

∥

2

L2(Ω)

)

= −α
(

∇ · (uk
h − uk−1

h ), pkh − pk−1
h

)

L2(Ω)
+
(

q̃h, p
k
h − pk−1

h

)

L2(Ω)
.

(5.24)

Step (b), Elasticity Equation: Considering (5.21) for the difference of two consecutive time
steps, t = tk and t = tk−1, and testing with vh = uk

h − uk−1
h , we obtain

2G
∥

∥

∥
ε(uk

h − uk−1
h )

∥

∥

∥

2

L2(Ω)
+ λ
∥

∥

∥
∇ · (uk

h − uk−1
h )

∥

∥

∥

2

L2(Ω)
− α

(

pkh − pk−1
h ,∇ · (uk

h − uk−1
h )

)

L2(Ω)

=
(

fk
h − f k−1

h ,uk
h − uk−1

h

)

L2(Ω)
(5.25)

Step (c), Combining Flow with Elasticity:
Combining (5.24) with (5.25) yields

β
∥

∥

∥
pkh − pk−1

h

∥

∥

∥

2

L2(Ω)
+

∆t

2µf

(∥

∥

∥
K−1/2zk

h

∥

∥

∥

2

L2(Ω)
−
∥

∥

∥
K−1/2zk−1

h

∥

∥

∥

2

L2(Ω)
+
∥

∥

∥
K−1/2(zk

h − zk−1
h )

∥

∥

∥

2

L2(Ω)

)

+ 2G
∥

∥

∥
ε(uk

h − uk−1
h )

∥

∥

∥

2

L2(Ω)
+ λ
∥

∥

∥
∇ · (uk

h − uk−1
h )

∥

∥

∥

2

L2(Ω)

= ∆t
(

q̃h, p
k
h − pk−1

h

)

L2(Ω)
+
(

fk
h − fk−1

h ,uk
h − uk−1

h

)

L2(Ω)

≤
1

2ǫ1

∥

∥

∥
q̃h

∥

∥

∥

2

+
ǫ1

2

∥

∥

∥
pkh − pk−1

h

∥

∥

∥

2

L2(Ω)
+

1

2ǫ2

∥

∥

∥
fk

h − fk−1
h

∥

∥

∥

2

L2(Ω)
+

ǫ2

2

∥

∥

∥
uk

h − uk−1
h

∥

∥

∥

2

L2(Ω)

≤
1

2ǫ2

∥

∥

∥
fk

h − fk−1
h

∥

∥

∥

2

L2(Ω)
+

ǫ2P
2
ΩC

2
κ

2
‖ε(uk

h − uk−1
h )‖2L2(Ω).

By Poincaré, Korn, and Young inequalities, and for ǫ1, and ǫ2 > 0. Recall that Poincaré’s inequality
in H1

0 (Ω) reads: there exists a constant PΩ depending only on Ω such that

∀v ∈ H1
0 (Ω) , ‖v‖L2(Ω) ≤ PΩ|v|H1(Ω). (5.26)

In addition, Korn’s first inequality in H1
0 (Ω)

d reads: there exists a constant Cκ depending only on
Ω such that

∀v ∈ H1
0 (Ω)

d , |v|H1(Ω) ≤ Cκ‖ε(v)‖L2(Ω). (5.27)

Choosing ǫ1 = β
∆t
, and ǫ2 = 2G

P2

Ω
C2

κ
, and summing for 1 ≤ k ≤ N (recall that N denotes the total
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number of time steps), we derive

c̃f

2

N
∑

k=1

∥

∥

∥
pkh − pk−1

h

∥

∥

∥

2

L2(Ω)
+

∆t

2µf

(∥

∥

∥
K−1/2zN

h

∥

∥

∥

2

L2(Ω)
+

N
∑

k=1

∥

∥

∥
K−1/2(zk

h − zk−1
h )

∥

∥

∥

2

L2(Ω)

)

+G

N
∑

k=1

∥

∥

∥
ε(uk

h − uk−1
h )

∥

∥

∥

2

L2(Ω)
+ λ

N
∑

k=1

∥

∥

∥
∇ · (uk

h − uk−1
h )

∥

∥

∥

2

L2(Ω)
≤

∆t

2µf

∥

∥

∥
K−1/2z0

h

∥

∥

∥

2

L2(Ω)

+
∆t2

2c̃f

N
∑

k=1

∥

∥

∥
q̃h

∥

∥

∥

2

L2(Ω)
+

P2
ΩC

2
κ

4G

N
∑

k=1

∥

∥

∥
fk

h − f k−1
h

∥

∥

∥

2

L2(Ω)
. (5.28)

This leads to

N
∑

k=1

∥

∥

∥
pkh − pk−1

h

∥

∥

∥

2

L2(Ω)
≤

∆t

µfβ

∥

∥

∥
K−1/2z0

h

∥

∥

∥

2

L2(Ω)
+

∆t2

β2

N
∑

k=1

∥

∥

∥
q̃h

∥

∥

∥

2

L2(Ω)
+

P2
ΩC

2
κ

2Gβ

N
∑

k=1

∥

∥

∥
f k

h − fk−1
h

∥

∥

∥

2

L2(Ω)
, (5.29)

N
∑

k=1

∥

∥

∥
∇ · (uk

h − uk−1
h )

∥

∥

∥

2

L2(Ω)
≤

∆t

2µfλ

∥

∥

∥
K−1/2z0

h

∥

∥

∥

2

L2(Ω)
+

∆t2

2c̃fλ

N
∑

k=1

∥

∥

∥
q̃h

∥

∥

∥

2

L2(Ω)
+

P2
ΩC

2
κ

4Gλ

N
∑

k=1

∥

∥

∥
fk

h − fk−1
h

∥

∥

∥

2

L2(Ω)
. (5.30)

Combining (5.29) with (5.30), we reach at:

N
∑

k=1

∥

∥

∥
pkh − pk−1

h

∥

∥

∥

2

L2(Ω)
+

N
∑

k=1

∥

∥

∥
∇ · (uk

h − uk−1
h )

∥

∥

∥

2

L2(Ω)
≤ ∆tη̃3

∥

∥

∥
K−1/2z0

h

∥

∥

∥

2

L2(Ω)
+∆t2η̃4

N
∑

k=1

∥

∥

∥
q̃h

∥

∥

∥

2

L2(Ω)

+ η̃5

N
∑

k=1

∥

∥

∥
fk

h − fk−1
h

∥

∥

∥

2

L2(Ω)
, (5.31)

where η̃3 =
1
µf
C2, η̃4 =

1
β
C2, η̃5 =

P2

Ω
C2

κ

2G
C2, and C2 =

(

1
β
+ 1

2λ

)

.

Combining Step 1 & Step 2: Combining (5.18) with (5.31) , for a generic constant C > 0 (which
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will be revealed later), we can write:

∥

∥

∥
p
n+1,k
h − pkh

∥

∥

∥

2

L2(Ω)
+
∥

∥ε(un+1,k
h − uk

h)
∥

∥

2

L2(Ω)
+
∥

∥

∥
K−1/2(zn+1,k

h − zk
h)
∥

∥

∥

2

L2(Ω)

≤
( L

λ+ L

)2n
(

η̃1

∥

∥

∥
pkh − pk−1

h

∥

∥
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Therefore, we have:
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(5.32)

To deal with:
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, we use Poincare’s and Korn’s first inequalities as follows:
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Therefore, we have (for a positive constant C):
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Therefore, we conclude that for every coupling iteration n ≥ 0,
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Now, by the work of [29, 30], we have:
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for a positive constant C > 0 and mesh size h. r1 and r2 are the degree of the polynomials used in
the mixed space (Qh,Zh). For RT0 mixed space, r1 = 0, and r2 = 1.
Therefore, we are ready now to present the a priori error estimate for the single rate undrained split
iterative coupling scheme as follows:

Theorem 5.1 Assuming RT0 spaces (the lowest order Raviart-Thomas spaces) for flow discretiza-
tion, and piecewise continuous linear approximations for mechanics together with sufficient regular-
ity in the true solution, and for a particular time step tk, and iterative coupling iteration n ≥ 1,
and a regularization parameter L = α2

( 1

M
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, the following a priori error estimate (to the leading

order in time) for the single rate undrained split iterative coupling scheme holds:
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6 Conclusions

This paper considered a rigorous convergence analysis of the undrained split iterative coupling
scheme for coupling flow with geomechanics. In the undrained split iterative coupling scheme,
the flow and mechanics problems are solved sequentially assuming a constant fluid mass during
the mechanics solve. An iterative coupling iteration is imposed between the two problems until
convergence is obtained. Our main contributions in this work are two-fold. First, we established the
localized Banach contraction results for both the single rate and multirate undrained split coupling
schemes in heterogeneous poro-elastic media, following a similar approach as in [5]. Second, we
rigorously derived a priori error estimates for the single rate scheme in homogeneous poro-elastic
media following a similar approach as in [6]. To the best of our knowledge, this is the first time
localized Banach contraction results have been obtained for the single rate and multirate undrained
split scheme, and a priori error estimates have been derived for the single rate scheme. In future
work, we will consider deriving a priori error estimates for fractured poro-elastic media and for
multirate iterative coupling schemes.
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