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Abstract 46 

The Asia Pacific Economic Cooperation (APEC) Climate Center (APCC) in-47 

house model (Seamless Coupled Prediction System: SCoPS) has been newly developed 48 

for operational seasonal forecasting. SCoPS has generated ensemble retrospective 49 

forecasts for the period 1982–2013 and real-time forecasts for the period 2014–current. 50 

In this study, the seasonal prediction skill of the SCoPS hindcast ensemble was 51 

validated compared to those of the previous operation model (APEC Climate Center 52 

Community Climate System Model version 3: APCC CCSM3). This study validated the 53 

spatial and temporal prediction skills of hindcast climatology, large-scale features, and 54 

the seasonal climate variability from both systems. A special focus was the fidelity of 55 

the systems to reproduce and forecast phenomena that are closely related to the East 56 

Asian monsoon system. Overall, both CCSM3 and SCoPS exhibit realistic 57 

representations of the basic climate, although systematic biases are found for surface 58 

temperature and precipitation. The averaged temporal anomaly correlation coefficient 59 

for sea surface temperature, 2-m temperature, and precipitation from SCoPS is higher 60 

than those from CCSM3. Notably, SCoPS well captures the northward migrated 61 

rainband related to the East Asian summer monsoon. The SCoPS simulation also shows 62 

useful skill in predicting the wintertime Arctic Oscillation. Consequently, SCoPS is 63 

more skillful than CCSM3 in predicting seasonal climate variability, including the 64 

ENSO and the Arctic Oscillation. Further, it is clear that the seasonal climate forecast 65 

with SCoPS will be useful for simulating the East Asian monsoon system.  66 

Key words: APCC in-house model, SCoPS, Seasonal prediction, East Asian monsoon 67 
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1. Introduction 68 

It has been demonstrated that a fully coupled general circulation model is the 69 

ultimate tool for subseasonal to seasonal climate prediction. Dynamical prediction 70 

systems have been continuously progressed for operational medium-range weather and 71 

seasonal prediction (e.g., Molteni et al. 1996; Kusunoki et al. 2001; Saha et al. 2006, 72 

2014; Arribas et al. 2011; Molteni et al. 2011; MacLachlan et al. 2015; Lee et al. 2014). 73 

These dynamical prediction models in operational centers are almost fully coupled 74 

climate system models that include comprehensive dynamics and physics of the 75 

atmosphere, land surface, ocean, and sea ice interactions. Many studies have 76 

demonstrated the importance of model resolution and atmospheric physics as well as the 77 

model system on various simulated climate variations. For example, Yao et al. (2016) 78 

suggested that coupled model results with higher resolution lead to improved prediction 79 

skill on produced climate variations over the western equatorial Indian Ocean. Ham et al. 80 

(2014) investigated the effects of an improved coupled system on the simulated seasonal 81 

climate over East Asia.  82 

For this reason, operational coupled seasonal forecast systems, including the 83 

Climate Forecast System from the National Centers for Environmental Prediction 84 

(NCEP CFS) (Saha et al. 2014), European Centre for Medium-Range Weather Forecasts 85 

(ECMWF), United Kingdom Meteorological Office (UKMO), and Meteo-France 86 

(MacLachlan et al. 2015), as well as many other research groups, are continuously 87 

updating their seasonal prediction systems with improved physics and increased 88 

resolution. The horizontal resolution of the ECMWF Integrated Forecast System has 89 

increased from T159 (System 3; Anderson et al. 2007) to T255 (System 4; Molteni et al. 90 

2011) (from approximately 125 km to 80 km) with model version updating. The UKMO 91 
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has also increased the atmospheric resolution of the seasonal prediction system to 92 

N216L85 (approximately 60 km) in Global Seasonal Forecasting System version 5 93 

(GloSea5) (MacLachlan et al. 2015).  94 

A number of studies mentioned the importance of initialization processes for the 95 

prediction skill in the coupled system. For example, Kug et al. (2010) have developed a 96 

new method that conducting empirical singular vectors for initial perturbation in an 97 

ensemble prediction system. Ham and Rienecker (2012) suggested an improvement in 98 

the El Niño-Southern Oscillation (ENSO) prediction using the ensemble generation 99 

method in their 20-year reforecast simulation. Koster et al. (2010) mentioned that there 100 

is room for improvement in prediction skills for precipitation and surface temperature in 101 

land surface initialization. Recently, the importance of initializations of land surface or 102 

sea ice content is noted at sub-seasonal to seasonal scales. Prodhomme et al. (2016) 103 

showed that realistic initialization of land surface plays a role of improved prediction 104 

skill. Dirkson et al. (2017) suggested that accurate initialization of sea ice thickness can 105 

improve the seasonal prediction skill for Arctic sea ice area and concentration. 106 

Since 2007, the Asia-Pacific Economic Cooperation (APEC) Climate Center 107 

(APCC) has issued global temperature and precipitation prediction information for 108 

every following 3–6 month period via the website (http://www.apcc21.org). These 109 

deterministic and probabilistic forecasts have been produced by the well-validated 110 

multi-model ensemble (MME) prediction (Min et al. 2014). Since 2012, the APCC has 111 

provided seasonal prediction data as one provider to the MME prediction system using 112 

the Community Climate System Model version 3 (CCSM3) with sea surface 113 

temperature (SST) nudging from the Global Ocean Data Assimilation System (GODAS) 114 

(APCC CCSM3; Jeong et al. 2008). Recently, the prediction skill of CCSM3 has met 115 

http://www.apcc21.org/
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the limitations of the old version of the model system with low resolution and simple 116 

initialization. To enhance the quality and application of climate forecast information, the 117 

APCC has developed an in-house prediction model with a research group from the 118 

University of Hawaii, USA. The newly developed high-resolution climate prediction 119 

model, termed the Seamless Coupled Prediction System (SCoPS), is a fully coupled 120 

ocean, atmosphere, land, and sea ice component model with coupled atmosphere-ocean 121 

initialization.  122 

Since various validations on historical reforecasts (i.e., hindcast) can provide a 123 

useful guideline for understanding its characteristic, it is very important to further 124 

improve the prediction system. In this paper, the newly developed seasonal prediction 125 

model (SCoPS) is described and evaluated alongside previous operation model (APCC 126 

CCSM3) with a basic validation of the prediction system to reproduce the seasonal 127 

climate variability. We also present analysis of the performance of SCoPS for the East 128 

Asian monsoon system. The paper is divided into the following sections: a brief 129 

description of the APCC CCSM3 and SCoPS framework for hindcast experiments is 130 

provided in section 2; section 3 examines hindcast climatology and prediction skills, 131 

which are closely related to the East Asian climate; and section 4 summarizes the results 132 

and provides major conclusions. 133 

 134 

2. Model description 135 

a. APCC CCSM3  136 

CCSM3 has been designed to produce simulations with reasonable fidelity over a 137 

wide range of resolutions and with a variety of atmospheric dynamical frameworks. It is 138 

a community model system for climate simulation, which includes the Community 139 
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Atmosphere Model version 3 (CAM3; Collins et al. 2004, 2006), the Community Land 140 

Surface Model version 3 (CLM3; Oleson et al. 2004; Dickinson et al. 2006), and the 141 

Community Sea Ice Model version 5 (CSIM5; Briegleb et al. 2004). The ocean 142 

component is based on the Parallel Ocean Program (POP) version 1.4.3 (Smith and 143 

Gent 2002). Based on generally realistic initial conditions, SST-nudging, an empirical 144 

method for data assimilation, is used for initialization in APCC. Further information on 145 

the APCC CCSM3 is given in Collins et al. (2006), Jeong et al. (2008), and Kim et el. 146 

(2017). 147 

 148 

b. SCoPS 149 

The International Pacific Research Center (IPRC) and University of Hawaii (UH) 150 

modeling group have developed a new coupled atmosphere-ocean model (POEM) 151 

which is based on the POP v2.0 model for the oceanic component, the Ocean-152 

Atmosphere-Sea Ice-Soil (OASIS v3.0) coupler, and the ECMWF-Hamburg 153 

Atmospheric Model (ECHAM v4.6) as the atmospheric component (Xiang et al. 2012). 154 

Based on the POEM system, SCoPS has been newly developed as a fully coupled 155 

climate model for seamless prediction of weather and climate (APCC project report 156 

2015). SCoPS consists of the ECHAM version 5.3 (Roeckner et al. 2003, Hagemann et 157 

al. 2006) and the Sea Ice Model version 4.1 (Hunk and Lipscomb 2010). The ocean 158 

component is based on the Parallel Ocean Program (POP) version 1.4.3 (Smith and 159 

Gent 2002). Compared with the POEM model (Xiang et al. 2012) as well as the 160 

previous operational model, APCC CCSM3, SCoPS has some distinct improvements: a 161 

newly developed coupled atmosphere-ocean initialization, implanting a sea ice model, 162 

updated model physics and coupler versions, and an increase in the atmosphere and 163 
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ocean model resolutions.  164 

Triangular truncation of the atmosphere component occurs at wavenumber 159 165 

(480 zonal grid and 240 meridional grids in post-processing). A hybrid coordinate 166 

system is used in the vertical direction with top to 10 hPa: a sigma system at the lowest 167 

model level gradually transforms into a pressure system in the lower stratosphere. The 168 

surface temperature is used as a boundary condition to determine the vertical profile 169 

within the five-layer soil model assuming vanishing heat fluxes at the bottom (10-m 170 

depth). The ocean component configuration is 320 (zonal) × 384 (meridional) grid 171 

points (meridionally about 0.3° in the near equatorial region) and 40 vertical levels. A 172 

solar absorption component based on specified monthly mean surface chlorophyll 173 

concentrations (Ohlmann 2003) is imbedded. The CICE v4.1 model details can be found 174 

in the study by Hunk and Lipscomb (2010). These model components are coupled by an 175 

OASIS3-MCT coupler interface (Larson et al. 2005). Atmosphere, ocean, and ice 176 

models exchange 36 variables including SST, surface fluxes, and ice components daily. 177 

High quality climate forecasting relies on and requires improvement of climate 178 

models and use of advanced data assimilation methods that make full use of observation 179 

data. A synthesized atmosphere-ocean initialization scheme has been newly developed 180 

in this system, combining atmospheric 3-dimensional nudging and ocean 3-dimensional 181 

initialization using Ensemble Adjustment Kalman Filter methods (EAKF, Zhang et al. 182 

2007; Anderson 2001). To generate perturbed initial conditions for the ensemble 183 

hindcasts and forecasts, three major steps are taken: 1) generation of model-compatible 184 

data set from analysis datasets; 2) nudging the model-compatible 3-D reanalysis data 185 

into the model; and 3) generation of perturbed ensemble initial conditions.  186 

 187 
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c. Hindcast simulation 188 

Both systems have reproduced reforecast simulations for evaluating and calibrating 189 

the model simulation. APCC CCSM3 seasonal reforecasts have 10 ensemble members 190 

using the time-lagged method for a 1-month lead 6-month forecast. For a first-guess 191 

data of January 1, 1982, the atmosphere model is integrated for the period from 1971 to 192 

1981 (11 years) using GODAS SST (Behringer et al. 1998). Using reproducing fluxes in 193 

an atmospheric simulation, the POP ocean model is executed for the same period. For 194 

the period 1982 to 2013, the initial condition for January 1, 1982 is nudged on day 1, 6, 195 

11, 16, 21, and the last 5 days of every month using the GODAS vertical ocean 196 

temperature. Further details on the APCC CCSM3 reforecast are given in Jeong et al. 197 

(2008).  198 

SCoPS has generated ensemble retrospective forecasts for the period 1982–2013 199 

and real-time forecasts for the period 2014–current. Reforecast simulations commenced 200 

at fixed calendar dates — the 1
st
 and 5

th
 of each month — with 5 ensemble members 201 

perturbed following Gaussian distribution and integrated up to 7 months for a 1-month 202 

lead 6-month forecast. The ensemble initial conditions for January 1, 1982 are from the 203 

results from a 100-year free run SCoPS simulation. The initial data is assimilated every 204 

day from January 2, 1982 to December 31, 2013 using NCEP CFS reanalysis data (Saha 205 

et al. 2010) and World Ocean Database subsurface profile data including mechanical 206 

bathythermograph data (MBT), expendable bathythermograph data (XBT), profiling 207 

float data (PFL), ocean station data (OSD), conductivity-temperature-depth data (CTD), 208 

drifting buoy data (DRB), and Moored buoy data (MRB) (Boyer et al. 2013). In this 209 

system, the observed temperature (T) and salinity (S) are not only used to correct 210 

themselves but also to correct each other since the conservation of the T-S balance has 211 
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been shown to be an important factor in successful data assimilation (Zhang et al. 2007). 212 

Vertically, only the profile data above 400 m is used since the deeper ocean is not 213 

expected to affect the seasonal forecast skill. Spatially, the observational data from the 214 

band between 50° S–50° N is used. Meanwhile, in real-time seasonal forecasting for the 215 

period 2014–current, the real-time combined ocean vertical profile dataset for 216 

temperature and salinity from the international Argo project is used for ocean 217 

initialization.  218 

 219 

d. Evaluation 220 

It is very well known that tropical large-scale circulations, such as Hadley, Walker, 221 

and monsoon are the most important driving source of general circulation at low 222 

latitudes, and their interannual variations largely impact climate characteristics in 223 

various regions. Tanaka et al. (2004) attempted to divide the divergent field in the upper 224 

troposphere into represented circulations such as Hadley, Walker, or global monsoon 225 

using the 200-hPa level seasonal velocity potential. They mentioned that the 200-hPa 226 

velocity potential very well represents overall characteristics such as intensity and 227 

variation in tropical circulations because they are each driven by different dynamical 228 

causes. Tanaka et al. (2004) defined the Hadley circulation as the axisymmetric part of 229 

the circulation, which represents the zonal mean field of the velocity potential. The 230 

monsoon circulation is defined as part of the seasonal variation of the deviation field. 231 

For this reason, the seasonal-mean is subtracted from the deviation field to define the 232 

monsoon circulation. More detailed definitions and analysis from field observations can 233 

be found in Tanaka et al. (2004). In this study, global monsoon circulation information 234 

using upper-level velocity potential from reanalysis and predicted results were evaluated 235 
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following the methodology of Tanaka et al. (2004).  236 

For other validations, SST data was obtained from the monthly National Oceanic 237 

and Atmospheric Administration (NOAA) Optimum Interpolation (OI) SST V2 238 

(Reynolds et al. 2002). The air temperature at 2 m (T2m), mean sea level pressure (SLP), 239 

wind vector, and geopotential height data were obtained from the NCEP reanalysis 2 240 

(RA2) and ERA-Interim reanalysis products (Kanamitsu et al. 2002; Dee et al. 2011) 241 

from 1982. The Global Precipitation Climatology Project (GPCP) version 2.1 combined 242 

precipitation dataset (Adler et al. 2003) and Asian Precipitation — Highly–Resolved 243 

Observational Data Integration Towards Evaluation of the Water Resources 244 

(APHRODITE) datasets (Yatagai et al. 2012) were used. 245 

 246 

3. Results 247 

a. Systematic biases 248 

Figure 1 shows the spatial distribution of 1-month lead 3-month mean forecast 249 

biases of surface temperature, obtained from CCSM3 and SCoPS for the seasons of 250 

June-July-August (JJA) and December-January-February (DJF). CCSM3 and SCoPS 251 

represent the observed temperature patterns generally well in both seasons. However, 252 

the CCSM3 simulation shows slight warm or cold biases over the Eurasia region and 253 

significant warm biases over South America. In the SCoPS simulation, systematic 254 

biases in surface temperature prediction are significant, especially warm biases over 255 

North and South America and cold biases over the Eurasian region. Pattern correlation 256 

coefficients from both models are quite high, around 0.9 for both seasons. These biases 257 

pattern of 1-month lead-time forecast is almost same to those of 4-month lead-time 258 

forecast, although systematic biases get stronger as the lead time increases (not shown).  259 
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Figure 2 shows the spatial distribution of precipitation biases of model prediction in 260 

JJA and DJF. The GPCP observations show the peaks of the mean precipitation pattern 261 

over the intertropical convergence zone (ITCZ) on the Pacific as well as the western 262 

Pacific, South China Sea, and equatorial Indian Ocean (not shown here). The CCSM3 263 

and SCoPS hindcast climatology generally well captures the observed wet regions, 264 

although there are different notable biases in the two models. In JJA, the predicted 265 

precipitation in CCSM3 tends to be overestimated over the equatorial central Pacific 266 

and parts of the Indian Ocean. Dry biases are also found in the Atlantic ITCZ, western 267 

Pacific, parts of the Indian Ocean, and the northeastern Pacific. Conversely, the SCoPS 268 

simulation generally tends to overestimate precipitation over the central Pacific ITCZ, 269 

the Atlantic ITCZ, and maritime continental regions. Some dry biases are also found in 270 

the central equatorial Pacific. In DJF, the CCSM3 hindcast shows wet biases over the 271 

eastern Pacific, northern central Pacific, and western Indian Ocean, and dry biases are 272 

exhibited over the eastern Indian Ocean. Conversely, the SCoPS simulation shows 273 

overestimated rainfall over the central Pacific ITCZ in the winter Northern Hemisphere. 274 

Pattern correlation coefficients from SCoPS are higher than those from CCSM3 275 

throughout both seasons.  276 

To examine seasonal prediction skill, the anomaly temporal correlation coefficient 277 

(TCC) of the sea surface temperature and precipitation between reanalysis data and 1-278 

month lead hindcast anomalies are calculated for JJA and DJF (Figs. 3 and 4). The TCC 279 

for the sea surface temperature anomaly for each hindcast simulation compared to 280 

NCEP RA2 data are shown in Fig. 3. Generally, the greatest prediction skill for sea 281 

surface temperature is in the tropics, especially in regions related to the ENSO, with the 282 

northern Pacific and equatorial Atlantic also showing high skill in both models. The 283 
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SCoPS JJA prediction with 1-month lead shows higher prediction skill over the western 284 

Pacific, equatorial Pacific, and Indian Ocean than CCSM3. For DJF prediction, SCoPS 285 

shows higher skill in the northern Pacific and Indian Ocean than CCSM3. Although the 286 

TCC of temperature indicates the greatest skill over the tropical Pacific, it is quite low 287 

in most of the other areas. An impressive feature of SCoPS is that it maintains a higher 288 

TCC skill over the western northern Pacific and Indian Ocean than CCSM3 for both 289 

seasons.  290 

Figure 4 shows the TCC of precipitation for JJA and DJF prediction with a 1-month 291 

lead. The prediction skill for precipitation is greater over the tropics than the extra-292 

tropics and greater over ocean than land as known from other studies (Kim et al. 2012; 293 

Peng et al. 2011). These patterns from the seasonal prediction skill of CCSM3 and 294 

SCoPS are not much different from those of other seasonal prediction systems (e.g., 295 

Wang et al. 2009; Kim et al. 2012; Lee et al. 2014). In both season predictions, it is 296 

clear that the skill of SCoPS is higher than that of CCSM3 over the Indian Ocean and 297 

northern western Pacific, although some regions have lower skill.  298 

Figure 5 shows the seasonal prediction skill as the averaged temporal correlation 299 

coefficient of the sea surface temperature, 2-m temperature, and precipitation anomalies. 300 

TCC is calculated for 1- to 4-month lead 3-month hindcasts (JJA, DJF) globally and for 301 

the East Asian region. The SST prediction skill is higher than the 2-m temperature and 302 

precipitation for JJA and DJF. The results indicate that the prediction skill generally 303 

decreases to the forecast lead time. Also, the prediction skill from SCoPS for all 304 

variables is significantly higher than CCSM3 for the 1-month lead for both seasons and 305 

both regions, although some variables show lower skill for a long lead time. In 306 

particular, the SST prediction skill from SCoPS is about 0.5 for the East Asian region.  307 
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Climate variability as well as climatology is also important factor to assess the 308 

seasonal prediction skill. Many studies have analyzed the signal to noise (SN) ratio to 309 

assess the predictability of seasonal prediction system with lead-time (Peng et al. 2011; 310 

Peng et al. 2014). Due to the APCC seasonal forecast system is for 3-month or longer 311 

target season, SN ratio for a fixed target season of JJA from CCSM3 and SCoPS with 1 312 

and 4 month lead-time are shown in figures 6 and 7. Here, ‘signal’ indicates standard 313 

deviations of the ensemble mean, and ‘noise’ indicates standard deviations of ensemble 314 

members about ensemble mean. In other words, the SN ratio is computed as the ratio of 315 

variance of ensemble means, and variance of individual forecasts from the ensemble 316 

mean forecast. Larger (small) SN ratio indicates higher (lower) predictability.  317 

Shown in Fig. 6 is the SN ratio for SST, precipitation, and 200 hPa geopotential 318 

heights from CCSM3 and SCoPS with 1 month lead-time. For SST, SN ratio from both 319 

systems shows highest in the eastern equatorial tropical Pacific related to the ENSO. 320 

CCSM3 show high SN ratio in high latitude region in southern hemisphere, while 321 

SCoPS show that in northern Pacific, Greanland, as well as Atlantics. For SN ratio for 322 

precipitation prediction with 1-month lead forecast is largest in the tropics and decreases 323 

in the extratropical latitudes for both systems. For 200 hPa geopotential height, the high 324 

SN ratio is also concentration in Tropics for both models, but SCoPS show higher SN 325 

ratio in broaden region than CCSM3. Also, the reason of low SN ratio in extrtropics is 326 

large standard deviation of individual forecasts from the ensemble mean forecast (i.e., 327 

noise) (not shown). This finding about ‘noise’ in extratropics is consistent with Peng et 328 

al. (2011).  329 

SN ratio for atmospheric variables from CCSM3 and SCoPS with 4 month lead-330 

time is shown in figure 7. Compared to the results with 1 month lead-time in Fig. 6, SN 331 
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ratio for all variables shows decrease to the lead-time. For structure of SN ratio for SST, 332 

precipitation from CCSM3 and SCoPS are not much differ each other. However, for SN 333 

ratio of 200 hPa geopotential height, SCoPS is still higher than CCSM3 in tropics. 334 

These results indicate that large-scale circulation related to the height from SCoPS is 335 

more reliable than that from CCSM3 with long lead-time, although both systems have 336 

quite big uncertainty in precipitation. Also, SST forecasts from both systems quite well 337 

stay high signal with 4-month lead-time, it is due to the SST characteristic with slowing 338 

vary.  339 

It is well known that the ENSO is the main driver of interannual variability in the 340 

tropics. A good representation of it and its teleconnections are very important for good 341 

climate prediction skill. Figure 8 shows the results of a comparison between the lead 342 

time dependence of the SST TCC and RMSE in the Niño 3.4 and Niño 3 regions, with 343 

the OISST observational dataset for hindcasts initialized in May and November. Overall, 344 

the skill of the Niño indices is generally good, although the skill tends to decrease with 345 

lead time. Both SCoPS and CCSM3 exhibit higher skill for the November-initialized 346 

hindcast than the May-initialized hindcast. SCoPS shows slightly higher skill than 347 

CCSM3 until the 5-month lead time over the Niño 3.4 and Niño 3 regions for the 348 

hindcast initialized in November. However, the skill of SCoPS May-initialized hindcast 349 

is not much more different than CCSM3 for both indices. However, the RMSE of the 350 

SST from SCoPS for the Niño 3.4 region in the run initialized in May is worse than that 351 

from CCSM3 (Fig. 8c), due to the fact that there are cold biases in the tropical Pacific in 352 

the SCoPS prediction.  353 

 354 

b. East Asian summer climate variability 355 
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First, the velocity potential and divergent wind at 200 hPa averaged for JJA are 356 

plotted to examine the summer monsoon variability (Figs. 9a, b, c). In the observed 357 

velocity potential distributions (Fig. 9a), a positive peak with a value of nearly 20 (× 10
6
 358 

m
2
 s
1

) is located northwest of the Philippines in JJA. The minimum is seen over the 359 

southern Atlantic Ocean, with a value of 10 (× 10
6
 m

2
 s
1

). Hereafter, the velocity 360 

potential “units” of measurement are assumed to be 10
6
 m

2
 s
1

 for simplicity. A strong 361 

divergent wind related to the Hadley circulation is shown from the northern to southern 362 

Hemisphere. The combined Hadley, Walker, and monsoon circulation shows a strong 363 

convection located in the Philippines. Both 1-month lead hindcast simulations generally 364 

represent the 200-hPa velocity potential pattern well, and the positive and negative 365 

peaks are also captured. However, the SCoPS simulation tends to overestimate its 366 

intensity, while the CCSM3 run shows a weak intensity over the peak regions in 367 

summer (Figs. 9b, c).  368 

To extract the monsoon variability, following Tanaka et al. (2004) deviation from 369 

the zonal and annual mean of velocity potential is calculated (Figs. 9d, e, f). In JJA, the 370 

observations show a dominant positive (negative) peak located over East Asia (Pacific 371 

and Atlantic oceans). This is a feature of the Northern Hemisphere summer, which 372 

includes an upper air divergence over East Asia and an upper air convergence over the 373 

Pacific and Atlantic oceans related to the East Asian summer monsoon. A convection 374 

center located near the Philippines in the mean velocity potential field (Fig. 9a) can be 375 

explained by a superposition between one over land associated with the monsoon 376 

circulation (Fig. 9d) and another near the equator associated with the Walker circulation 377 

(not shown). CCSM3 underestimates the upper air divergence over East Asia and splits 378 

the peak into two over the eastern Pacific, while SCoPS results are closer to the 379 
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observations than those from the CCSM3 hindcast (Fig. 9f). Based on the results, we 380 

conclude that the overestimated mean velocity potential in the SCoPS simulation (Fig. 381 

9c) is due to the enhanced Hadley circulation (not shown), and the underestimated mean 382 

velocity potential in CCSM3 (Fig. 9b) is due to the weak simulated monsoon circulation 383 

(Fig. 9e). Also, it is sure that large-scale circulation features from SCoPS can expect to 384 

more realistic variability related to the monsoon than that from CCSM3.  385 

Figure 10 shows the climatological mean precipitation and the 850-hPa zonal wind 386 

over the East Asian region during summer (June–August) in observations (GPCP and 387 

APHRODITE for precipitation; ERA-Interim reanalysis for zonal wind) and hindcasts 388 

from CCSM3 and SCoPS. Note that horizontal resolution of GPCP is 2.5° × 2.5°, while 389 

that of APHRODITE is 0.25° × 0.25° with land-only data. In the climatology for JJA, 390 

two major areas of strong precipitation are observed. One is the main precipitation band 391 

related to the ITCZ over the tropics, and the other one is the extending rainband from 392 

southern China to Japan, which is related to the East Asian summer monsoon (EASM) 393 

(Figs. 10a, b). Local monsoon precipitation maxima are in the oceanic convergence 394 

regions over the northeastern Arabian Sea and the Bay of Bengal, and west of the 395 

Philippines.  396 

CCSM3 reproduces the features well; however, precipitation over the northwestern 397 

Pacific is underestimated, and precipitation over the Indian Ocean and western 398 

equatorial Pacific tends to be overestimated (Fig. 10c). Related to this, the low-level 399 

monsoon flow pattern is shifted to the precipitation region. The precipitation from 400 

SCoPS shows a slight overestimation. Narrow and strong bands of precipitation are 401 

indicated over the western areas of India, Indochina, and the Philippines in the high-402 

resolution APHRODITE data. This extremely localized pattern is known to be due to 403 
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convection generated by narrow mountain areas (Xie et al. 2006; Lee et al. 2013; Ham 404 

et al. 2016). The observed pattern is very well represented in the SCoPS hindcast, due to 405 

its higher horizontal resolution as compared to CCSM3. Moreover, the SCoPS 406 

simulation represents the area over China, Korea, and Japan remarkably well, where the 407 

seasonal prediction captures the zonally elongated rainband associated with the 408 

Changma front (Fig. 10d). 409 

Figure 11 shows latitude-time cross sections for the summer precipitation cycle and 410 

850-hPa zonal winds on two longitudes (70–80 °E and 120–130 °E), which are related 411 

to the Indian and East Asian monsoon. Because precipitation from CCSM3 and SCoPS 412 

is usually focused on the 1-month lead 3-month prediction skill in operational seasonal 413 

forecasts, four hindcast datasets from runs initialized in February, May, August, and 414 

November were merged to validate the represented annual cycle of precipitation and 415 

winds. Both hindcasts generally represent the seasonal propagation of precipitation in 416 

the Indian (70–80 °E) and East Asian monsoon regions (120–130 °E), compared to the 417 

GPCP and reanalysis data. For example, the northward rainband related to the Indian 418 

monsoon (April to July) is generally well represented. However, the CCSM3 simulation 419 

exhibits a weaker peak in the northward propagated rainband as well as strong 420 

precipitation over the subtropics and tropics, compared to observations. In the SCoPS 421 

simulation, the peak of the northward precipitation band and the low-level wind are 422 

captured, although slightly overestimated. However, note that the GPCP observation 423 

does not represent orographic heavy rainfall well due to its low resolution. For the East 424 

Asian monsoon region, a split rainband is shown during June to August, with one arm 425 

over South China Sea, related to the ITCZ, and another over the subtropics, which is 426 

related to the Changma front. Both models exhibit the rain peak over the ITCZ well; 427 
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however, CCSM3 shows exaggerated precipitation over the equatorial rainband, even in 428 

winter. In the SCoPS annual cycle, the two peak rain seasons are represented quite well, 429 

but slightly overestimated. Remarkably, the northward migrated rainband related to the 430 

Changma during May to August is also captured by SCoPS. 431 

In Fig. 12, the capability of CCSM3 and SCoPS in simulating the spatial pattern 432 

and interannual variability of the Asian summer monsoon is examined using the 433 

monsoon index developed by Lee et al. (2014). The EASM index is defined as the zonal 434 

wind anomaly at 850 hPa, averaged over the region between 5–10° N and 130–150° E 435 

minus the average over 25–30° N and 110–130° E. The JJA-mean monsoon indices 436 

from the ensemble reforecasts initialized in May were used. The correlation coefficient 437 

of the EASM index between the reanalysis and the SCoPS prediction (0.743) is higher 438 

than the CCSM3 prediction (0.519). Based on the results, SCoPS shows a credible 439 

representation of monsoon circulation for this region, with useful levels of skill for the 440 

East Asian summer monsoon prediction.  441 

 442 

c. East Asian winter climate variability 443 

The East Asian winter monsoon (EAWM) is the dominant climate feature over East 444 

Asia during the boreal winter. It leads to significant impacts on the weather and climate 445 

over the East Asian regions (Chen et al. 2005; Zhou et al. 2007; Li and Yang 2010; 446 

Jiang et al. 2013). The EAWM consists of subsystems such as the Siberian high, 447 

Aleutian low, East Asian trough, low-level northerly wind, and high-level East Asian jet 448 

stream. It is well known that a strong EAWM is characterized by a strong Siberian high, 449 

intensified East Asian jet stream, a deepened East Asian trough, strong northerly wind 450 

over East Asia, and frequent cold surges (Ding and Sikka 2006; Park et al. 2011; Jiang 451 
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et al. 2013). Many climate forecast models show reasonable skill in the East Asian 452 

summer monsoon prediction. However, the EAWM prediction skill on climate forecast 453 

systems is still not fully known, although a few studies have examined the predictability 454 

of the EAWM in various climate prediction models (Kim et al. 2012; Jiang et al. 2013). 455 

In this study, the climatological characteristics and interannual variation of the EAWM 456 

were compared with observations and reanalysis data to confirm the seasonal prediction 457 

skills. Also, the prediction skill for the Arctic Oscillation (AO), which is known to be a 458 

dominant feature of winter climate variability in East Asia, was evaluated for the 459 

CCSM3 and SCoPS hindcasts initialized in November.  460 

The northern hemisphere winter (DJF) variation in velocity potential for the 461 

climatological mean with 200-hPa divergent winds is shown in Fig. 13. In the observed 462 

distributions, the positive peak shows its full weakness as a value of 12 units and it is 463 

located to the equatorial western Pacific (Fig. 13a). The location of the negative peak is 464 

near western Africa. The center related to the Australian monsoon is located to the north 465 

of Australia. Both hindcast simulations represent the positive and negative peaks of 466 

velocity potential at 200 hPa well (Figs. 13b, c). The SCoPS simulation plots resemble 467 

observations more than the CCSM3 simulation because the divergent wind from 468 

CCSM3 is stronger than that from SCoPS. Also, the pattern correlation of upper-level 469 

velocity potential fields from SCoPS (0.85) is higher than that from CCSM3 (0.57).  470 

Following Tanaka et al. (2004), the deviation from the zonal and annual mean of 471 

the velocity potential is calculated for the northern hemisphere winter monsoon 472 

circulation (Figs. 13d, e, f). In the observations, there are negative peaks over East Asia 473 

and positive peaks over the Pacific. A reversal in the pattern between summer and 474 

winter explains the monsoon circulation quite well (See also Figs. 9). The SCoPS 475 
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simulation captures the observed peaks related to the East Asian winter monsoon feature, 476 

while the CCSM simulation shows a divided peak over the Australia region. Also, the 477 

SCoPS simulation is closer to the observations in terms of intensity than the CCSM3 478 

hindcast. The pattern correlation of monsoon circulation fields from SCoPS (0.88) is 479 

also significantly higher than that from CCSM3 (0.28).  480 

In the lower troposphere, the characteristics of the EAWM are the contrast between 481 

the Siberian high and the Aleutian low. These systems lead to strong northwesterlies 482 

over the eastern marginal regions of the Siberian high (Fig. 14a). This monsoon system 483 

is also related to the East Asian trough along the Korea and Japan regions in the middle 484 

troposphere and the maximization of the jet stream over southeastern Japan in the upper 485 

troposphere (Fig. 14d). The CCSM3 and SCoPS hindcasts represent the climatological 486 

features related to the EAWM well (Figs. 14b, c, e, f). However, the CCSM3 hindcast 487 

shows a stronger Siberian high and Aleutian low, stronger cyclonic circulation in the 488 

trough region, and stronger jet stream than observations. The SCoPS hindcast shows 489 

some biases, including a weak Siberian high and Aleutian low; however, the maximum 490 

jet stream in the upper troposphere and the trough in the middle troposphere are better 491 

captured than in CCSM3. In addition, the hindcasts have biases in simulating the 492 

divergent maritime continental winds compared to observations, with easterlies from 493 

CCSM3 and westerlies from SCoPS. The 500-hPa geopotential height in the CCSM3 494 

simulation is higher than observed except for northeastern China, resulting in a weaker 495 

than observed East Asian trough. On the other hand, the SCoPS hindcast shows a lower 496 

geopotential height than observed except along Korea and Japan, resulting in a weaker 497 

than observed trough. SCoPS generally predicts a weaker zonal wind along the westerly 498 

jet stream than observed. 499 
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To confirm the prediction skill of the models for interannual variation, the 500 

dynamical EAWM index is shown in Fig. 15. This index was proposed by Li and Yang 501 

(2010) to measure the interannual variability of the EAWM and is defined as the 502 

domain-averaged 200-hPa zonal wind shear. Compared to previous indices, this EAWM 503 

index accounts for several factors influencing the monsoon (e.g., the Arctic Oscillation 504 

and ENSO) and better elucidates the physical processes associated with the EAWM (Li 505 

and Yang 2010; Wang and Chen 2010; Wang et al. 2010). SCoPS realistically represent 506 

the observed variation in most years, with a correlation coefficient of 0.459. However, 507 

CCSM3 shows poorer prediction skill than SCoPS, with a correlation coefficient of 508 

0.245.  509 

The Arctic Oscillation (AO) is important climate variability with EAWM in East 510 

Asia, especially during boreal winter. Its intensity and variability play a significant role 511 

to surface temperature, precipitation, and large-scale circulation for extratropical region 512 

in northern hemisphere. However, the prediction skill of the AO variation on a seasonal 513 

timescale is still poor in dynamical forecast systems (Johansson 2007; Kim et al. 2012; 514 

MacLachlan et al. 2015). In this study, the represented AO in CCSM3 and SCoPS were 515 

compared with the NCEP reanalysis data. Following the definition of AO by Thompson 516 

and Wallace (1998), the AO index was calculated as the principal component (PC) of 517 

the first empirical orthogonal function (EOF) mode for monthly mean SLP anomalies 518 

during boreal winter (DJF).  519 

Figure 16 shows the results of comparison of the PC time series from RA2, CCSM3, 520 

and SCoPS, for hindcast simulations with November initialization. Results from the all 521 

ensemble prediction are indicated in red (SCoPS) and blue (CCSM3) shading areas. To 522 

compare the prediction skill, the ensemble-averaged AO indices from both models and 523 
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reanalysis were plotted by solid lines. Both PC time series capture the interannual 524 

variation shown in reanalysis data. The anomaly correlation coefficient between the 525 

observed and predicted AO index is 0.58 for SCoPS but only 0.23 for CCSM3. 526 

Especially, the SCoPS simulation captured the variation in strong positive/negative 527 

phase of AO for the recent period of 2009–2012.  528 

Figure 17 shows the SLP patterns regressed onto the leading PC from reanalysis 529 

data and both hindcasts. It was used for individual EOF analysis from each model 530 

ensemble member and a composite map of those regression patterns was plotted. The 531 

pattern from RA2 has a dipole structure over the Arctic, northeastern Pacific, and 532 

Atlantic Ocean (Fig. 17a). CCSM3 represents the negative regression pattern over 533 

Arctic well. However, the positive patterns over Pacific and Atlantic Ocean were totally 534 

not captured. Although SCoPS shows a significant weak AO negative pattern over the 535 

Arctic and the center of the positive regression anomaly over the Atlantic Ocean is 536 

parted, the positive center remains over the northeastern Pacific as in the observation. 537 

The reasonable prediction skill of the AO in SCoPS gives an expectation of good 538 

reliability for extratropical winter surface temperature predictions over East Asia.  539 

 540 

4. Summary and conclusion 541 

In this paper, a new APCC in-house model, namely SCoPS, is introduced. SCoPS is 542 

a state-of-the-art seasonal prediction system based on a fully-coupled climate model, 543 

coupling atmosphere, ocean, and sea ice with integrated atmosphere-ocean initialization 544 

processes. The SCoPS initialized data for 10-member ensembles are assimilated by 545 

NCEP CFS data and several subsurface profile data. The ensemble hindcast runs are 546 

conducted with SCoPS for 32-year runs (1982–2013).  547 
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This study evaluated the systematic biases of hindcast climatology, large-scale 548 

features, and the basic performance of seasonal forecasting for major climate variability 549 

from CCSM3 and SCoPS. A special focus was placed on the fidelity of the systems to 550 

reproduce and forecast phenomena that are closely related to the East Asian monsoon 551 

system. In particular, to validate the large-scale circulation related to the East Asian 552 

monsoon system, the global divergent field in the upper troposphere was used following 553 

Tanaka et al. (2004).  554 

Overall both CCSM3 and SCoPS exhibit realistic representations of the basic 555 

climate state, although systematic biases were found for sea surface temperature, 2-m 556 

temperature, and precipitation. To examine the seasonal prediction skill, the temporal 557 

correlation coefficients of sea surface temperature and precipitation between 558 

observation and the anomalies of each model were also validated for summer and winter. 559 

Generally, the sea surface temperature has its greatest prediction skill in the tropics, 560 

especially in the ENSO region. Both models also exhibit high skill over the northern 561 

Pacific and equatorial Atlantic. SCoPS shows high prediction skill over almost all 562 

regions compared to CCSM3. The averaged temporal anomaly correlation coefficient 563 

for sea surface temperature, 2-m temperature, and precipitation from SCoPS is also 564 

higher than those from CCSM3. However, the RMSE for SST from SCoPS with 1-565 

month lead for DJF in the Niño 3 and Niño 3.4 regions is worse than that from CCSM3. 566 

This is because there are cold biases over the tropical Pacific in SCoPS.  567 

Notably, SCoPS captures the northward migrated rainband related to the East Asian 568 

summer monsoon system. Further, SCoPS shows a higher correlation coefficient 569 

between the observed and predicted monsoon indices than CCSM3 for both summer 570 

and winter seasons. The SCoPS simulation shows useful skill in predicting the Arctic 571 
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Oscillation. Consequently, SCoPS is more skillful than CCSM3 in predicting the 572 

seasonal climate variability, including the ENSO, East Asian summer and winter 573 

monsoon, and the Arctic Oscillation.  574 

Based on these results, the SCoPS seasonal forecast results are provided to the 575 

APCC multi-model ensemble (MME) system as a new APCC operational model, which 576 

is changed from CCSM3 since November 2017. Validation of real-time forecast skill is 577 

an ongoing work-in-progress. Other climate variabilities including ENSO, Indian Niño, 578 

Atlantic Niño, Pacific-North America pattern will be evaluated. Moreover, an 579 

operational subseasonal forecast system is on the drawing board.  580 
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 776 

 777 

 778 

 779 

Fig. 1. Spatial distribution of climatological summer (left) and winter (right) 780 

of the surface temperature biases (model minus observation) for (a), (c) 781 

CCSM3 and (b), (d) SCoPS. Top-right value indicates the pattern correlation 782 

coefficient between observation and each prediction. 783 
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 786 

 787 

 788 

Fig. 2. Same as Fig. 1, but for precipitation.   789 
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 790 

 791 

Fig. 3. Prediction skill of the sea surface temperature between observation 792 

and (a) CCSM3 for JJA and (b) SCoPS hindcast with 1-month lead 3-month 793 

mean hindcast for JJA. (c) The difference between (a) and (b). Prediction 794 

skill of the sea surface temperature between observation and (d) CCSM3 for 795 

DJF and (e) SCoPS hindcast with 1-month lead 3-month mean hindcast for 796 

DJF. (f) The difference between (d) and (e). Black thick lines in (a) to (e) 797 

indicates the area statistically significant at the 95% level.  798 
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 800 

 801 

Fig. 4. Same as Fig. 3, but for precipitation.  802 

  803 
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 804 

 805 

 806 

Fig. 5. Averaged TCC (a) for global SST, (b) East Asia SST, (c) global 2-m 807 

temperature, (d) East Asia 2-m temperature, (e) global precipitation, and (f) 808 

East Asia precipitation from CCSM3 (blue) and SCoPS (black) with 3-809 

month mean hindcast for JJA and DJF. 810 

 811 
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 813 

 814 

 815 

Fig. 6. Signal-to-Noise (SN) ratio for (a), (d) SSTs, (b), (d) rainfall, and (c), 816 

(f) 200 hPa geopotential heights from CCSM3 and SCoPS for 1-month lead 817 

time. The SN ratio is computed as the ratio of standard deviation of 818 

ensemble means, and standard deviation of individual forecasts from the 819 

ensemble mean forecast. Larger (small) SN ratio is indicative of higher 820 

(lower) predictability.  821 
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 824 

 825 

Fig. 7. Same as Fig. 6, but for 4-month lead time.  826 
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 828 

   829 

 830 

   831 

 832 

Fig. 8. (a) Temporal correlation coefficient of Niño 3.4 indices, (b) root mean 833 

square error of Niño 3.4 indices, (c) temporal correlation coefficient of Niño 3 834 

indices, and (d) root mean square error of Niño 3 indices from CCSM3 (blue), 835 

SCoPS with May-initialized hindcast (black dashed lines), and SCoPS with 836 

November-initialized (black solid lines) hindcast.  837 
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 840 

   841 

 842 

Fig. 9. Seasonal mean velocity potential and divergent wind at 200 hPa for 843 

the (a) reanalysis data, (b) CCSM3, and (c) SCoPS hindcast period (1982–844 

2013) with 1-month lead time for JJA. The monsoon circulations, which are 845 

defined by the seasonal variation of the velocity potential are plotted with 846 

divergent wind for the (d) reanalysis data, (e) CCSM3, and (f) SCoPS 847 

hindcast. The units are 10
6
 m

2
 s
1

. 848 

 849 
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 851 

 852 

Fig. 10. Climatological mean precipitation (shaded) and zonal wind at 850 853 

hPa (contour) from (a) GPCP and ERA-interim, (b) APHRODITE 854 

precipitation, (c) CCSM3, and (d) SCoPS during June to August, averaged 855 

over 32 years (1982–2013). Initial month for both hindcasts is May (1-856 

month lead time).  857 
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 859 

       860 

 861 

Fig. 11. Latitude-time cross section of climatological mean precipitation and 862 

850-hPa zonal wind from (a) GPCP and ERA-interim over the Indian region 863 

(70–80 E°), (b) CCSM3 over the Indian region, (c) SCoPS over the Indian 864 

region, (d) GPCP and ERA-interim over the East Asian region (120–130 E°), 865 

(e) CCSM3 over the East Asian region, and (f) SCoPS over the East Asian 866 

region.  867 
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 871 

 872 

Fig. 12. The summer (JJA) EASM (East Asian Summer Monsoon) indices 873 

with correlation coefficients from reanalysis data, CCSM3, and SCoPS 874 

hindcasts. EASM is defined as the zonal wind anomaly at 850 hPa, averaged 875 

over the region of 5–10 °N and 130–150 °E minus that over 25–30 °N and 876 

110–130 °E by Lee et al. (2014). 877 
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   880 

 881 

Fig. 13. Same as Fig. 9, but for hindcast with starting November.  882 
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 885 

   886 

 887 

Fig. 14. Climatological mean sea level pressure (left; shaded), wind vector 888 

at 850 hPa (left; contour), geopotential height (right; shaded), and zonal 889 

wind at 200 hPa (right; contour) from reanalysis data (top), CCSM3 890 

(middle), and SCoPS (bottom) during December to February, averaged over 891 

32 years (1982–2013). Initial month for both hindcasts is November (1-892 

month lead time). 893 
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 896 

 897 

 898 

 899 

Fig. 15. Normalized EAWM indices from reanalysis (black), CCSM3 (olive), 900 

SCoPS (coral). EAWM is defined as the index from Li and Yang (2010). 901 
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 905 

 906 

 907 

Fig. 16. Ensemble-averaged AO index from reanalysis (black), CCSM3 908 

(blue), and SCoPS (red). Filled areas indicate the results from all ensemble 909 

simulation for CCSM3 (blue) and SCoPS (red). Percentages in left bottom 910 

string indicate explained variance (averaged explained variance from each 911 

ensemble member) from the pattern.  912 
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     915 

 916 

 917 

Fig. 17. DJF mean sea level pressure anomaly regressed onto the leading PC 918 

for 1982–2013 from (a) reanalysis data, (b) CCSM3, and (c) SCoPS 919 

simulations with 1-month lead time. 920 
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