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Abstract 

Mass customization and product platform design can exploit the benefits of modularity and provide 

personalized devices at competitive costs through economies of scope. However, customization-

intense platforms can have thousands of potential configurations, whose development and 

verification must be prioritized. This paper develops a Value analysis methodology that is able to 

rank alternative platform configurations according to customers’ preferences. It introduces Logit 

Value, a definition of Value based on a well-known stated choice model and explains the five steps 

of platform-based Value analysis. Since product platforms are complex technical systems, particular 

attention is given to the gathering of information, the automatic generation of platform architectures 

and the visualization of results. A case study based on Google ARA’s Spiral-2 modular smart phone 

concept demonstrates an application of the methodology and shows its potential benefits. The case 

study leverages data from a conjoint analysis and survey of 200 potential customers in Puerto Rico 

and a generated set of over 21,000 potential configurations of which less than 1% are shown to be 

non-dominated. The Value analysis identifies module types that are compatible with the modular 

product platform and appear in a high percentage of Pareto architectures. Knowledge pertaining to 

non-dominated configurations can provide insights into module development strategy and 

verification/validation activities.  

Nomenclature 

{ }h

jv  : utility of product j according to agent h 

{ }h

ib  : part-worth utility of i-th feature according to agent h 

iu  : binary variable of i-th feature 

{ }( )h

cu p  : part-worth utility for price p 
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iP  : probability of i-th choice 

{ }h

iV  : Logit Value of i-th choice  

{ }

,

h

F ib  : part-worth utility of i-th function according to agent h 

{ }

,

h

P ib  : part-worth utility due to performance level of i-th function according to agent h 

{ }

0

hV  : baseline value according to agent h 

{ }h

custV  : benefits of customizability according to agent h 

{ }h

uniqV : benefits of uniqueness according to agent h 

{ } { }

,( )h h

F i i emergU P  : benefits of i-th emergent function 

{ } { }

,( )h h

F i i mdU P  : benefits of i-th module function 

{ }h

cU (p) : price sensitivity for price p according to agent h 

,w mdc  : price of w-th module 

corec  : price of platform core 

 

1. Introduction and research motivation 

Customization in product platforms is both an opportunity and a challenge. It allows entry into 

different market niches while preserving economies of scope (Meyer and Lehnerd 1997); 

furthermore, the customization process itself can be highly enjoyable for customers, thus increasing 

the perceived Value of a product (Tu et al. 2001; Jiao et al. 2003; Franke and Piller 2004; Franke and 

Schreier 2010). However, platforms are complex systems that require a complex design process 

(Muffatto and Roveda 2000; Lindemann et al. 2009; Sinha and de Weck 2013; Colombo and Cascini 

2014; Cheng et al. 2018) and high front-end investments (Cameron and Crawley 2014); moreover, 

variety requires sophisticated logistics and a proactive engagement with the market (Wang et al. 

2007; Li 2009) and a change in the firm’s mindset and culture (Pakkanen et al. 2018). The costs 

incurred to create, sustain or use a platform might not be worth the customization benefits, as highly 

modular systems generally show lower performance levels compared to integral ones (Ulrich 1995, 

Holtta and de Weck 2007). Moreover, the development of modules must match customer’s 

preferences, so that the overall platform is attractive to the market and variety does not increase 
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complexity in vain. Finally, customers often must be guided through the choice process, e.g. by 

using bundle strategies or configurators (Derdenger and Kumar 2013; Trentin et al. 2013). 

Furthermore, the paradox of choice (Schwartz 2004; Piasecki and Hanna 2011) states that the more 

choice a customer has, the less satisfied he or she may be and choosing over an enormous set of 

options can be burdensome and tedious, or even intimidating. This can result in a counterintuitive 

situation where the producer has to deal with high costs due to customization, while the customer 

becomes increasingly dissatisfied. For example, there is evidence that standardization has more 

impact on customers’ satisfaction than customization in the Far East service industry (Kasiri et al. 

2017). These challenges are further aggravated in case of customization-intense devices like 

Google’s Project ARA (McCracken, 2014). 

Given all the above, it is clear that the design of highly customizable product platforms must be 

guided by the preferences of future customers. This paper introduces a method to rank platform 

configurations according to customers’ preferences thanks to a definition of Value that is consistent 

with stated choice models and Value engineering. This is beneficial for several reasons. First, the 

Value of a potential platform can be compared against integral products on the market, so that a 

platform strategy is assessed before making relevant investments in platform development, as 

observed in (Cameron and Crawley 2014). Then, by highlighting the most valuable combinations, 

product developers can prioritize module design and variety. Using the customer-based definition of 

Value, traditional strategies to reduce customers’ choice burden like bundles (Derdenger and Kumar 

2013) can be derived more intuitively. As shown by Topcu and Mesmer (2018), Value models are 

able to open the design space to counterintuitive designs and thus can point designers towards better 

technical solutions. Finally, testing all variants of a customizable platform is an effort-intense, time-

consuming activity that can jeopardize the success of the entire project: if too few combinations are 

tested, the risk of malfunctioning product configuration increases; if too many combinations are 
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tested, the project may become too expensive or miss the deadlines. Ranking by preferences can help 

prioritizing the test design and scheduling. 

This paper tailors standard Value analysis methodology to meet the specific needs of platform 

design, by joining in a unique method product marketing, sales strategy and product design, which 

are usually addressed separately and sequentially. As such, the Value analysis presents three 

features: it is customer-centered, in that it analyzes the Value provided to customers, it is holistic, 

since it considers different phases in the product life-cycle, and it is applied to product platforms, i.e. 

“a set of subsystems and interfaces that form a common structure from which a stream of derivative 

products can be efficiently developed and produced” (Meyer and Lehnerd 1997). Consequently, the 

central research questions are: (1) “How to measure the Value of customizable modular product 

platforms quantitatively?”, (2) “How can customer-centered Value analysis be applied to 

customizable modular product platforms to rank configurations by Value?” and (3) What are the 

benefits of measuring Value in the early design phases of modular product platforms?. In answering 

these questions, not only we provide a distinctive perspective on customizability, which can be 

exploited in platform design processes like the ones in (Jiao et al. 2003); we also follow the 

suggestion provided in (Simpson et al. 2014), to use customer-perceived Value instead of cost as an 

objective function in platform design. 

The remainder of the paper is structured as follows: Section 2 briefly reviews the literature on Value, 

customization and market-driven platform design; Section 3 introduces the customer-centered Value 

designated as Logit Value. Section 4 describes the Value analysis for customizable platforms, which 

is applied to a customizable modular smartphone based on Google ARA in Section 5. Finally, 

Section 6 provides conclusions and future research directions. 
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2. State of the art 

Value is the central measure of the Value analysis, but its definition involves several disciplines, 

from Economics to Cognitive Sciences and Engineering. This section provides a general overview of 

fundamental literature on the topic of Value and consists of three parts: Value and customers’ choice, 

Customizability and Market-driven Platform Design. 

2.1 Value and customers’ choice 

Value is one of the main concepts in economic history, dating back even to Adam Smith’s “The 

Wealth of Nations”. It is not hard, therefore, to find several definitions and perspectives on the 

concept of Value; it is much harder to find a synthesis of the various viewpoints. Given the scope of 

this paper, we will focus on the subset of the literature that explains why customers choose certain 

products and how this notion can be applied to customizable platforms.  

The basic assumption in many stated choice models (Louviere et al. 2000; Chandukala et al. 2007, 

Kim et al. 2017) is the existence of a scalar measure of consumer preferences called consumer 

utility, which can be used to rank several choice alternatives. Consumers try to maximize their utility 

given some form of monetary constraints. The geometrical locus of maximum utility given a 

constrained budget is called an “indirect utility function”. Several choice models can be found in the 

literature; depending on the goals of the model and the underlying assumptions, some are more 

appropriate than others (Ben-Akiva 1997). Determining parameters inside these models is the subject 

of Conjoint analysis (Green and Rao 1971; Ben-Akiva and Lerman 1985; Rao 2014). Conjoint 

analysis is “a set of techniques ideally suited to studying customers’ choice processes” (Rao 2014). 

A conjoint analysis presents itself as a questionnaire where respondents have to make tradeoffs 

between product features, including price. Conjoint methods can be subdivided into rating-based 

methods and choice-based methods. Both categories have strengths and weaknesses; and some 
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hybrid (Green et al. 1981), adaptive (Johnson 1987) or aggregate (Sylcott and Cagan 2014) methods 

were developed in order to overcome the limitations of traditional methods. 

Economics and marketing focus on the effects of Value on markets and customers; in particular, 

stated choice models allow capturing customer preferences in a rigorous way, but they do not 

indicate how to generate Value in a product: this is the goal of engineering design. A set of tools and 

methods called “Value analysis and engineering” has been developed for the purpose of focusing the 

Designer attention on Value generation (Miles 1961). Value analysis allows designers to understand 

what part of a technical system has low Value, while Value engineering increases the Value of a 

system by identifying solutions to technical problems. Value, in this area, is defined as benefits over 

costs: “Value is the most-cost-effective way to reliably accomplish a function that will meet the 

user’s needs, desires and expectations” (Dell’Isola 1997). As far as the Value Engineering 

methodology is concerned, it consists of several phases (Dell’Isola 1997) which are as follows: (1) 

Information gathering, (2) Alternative generation, (3) Evaluation of solutions, (4) Proposal 

development and (5) Presentation and implementation. 

Stated choice models are a rigorous mathematical tool to measure customer preferences, Value 

engineering a methodology to design products that satisfy those preferences. These two fields, 

however, have been developed assuming that products are designed by a single entity and do not 

change over time. As stated in the introduction, modular customizable products do not respect these 

assumptions. In order to cover this gap, a Value analysis for customizable modular platform must 

consider two other relevant aspects: customization and platform design.  

2.2 Customization 

Customizability can be defined as the systems’ lifecycle property that allows customers or users to 

change a product. System lifecycle properties (also called “Ilities”) are properties that belong to the 

system as a whole and manifest themselves after the system has been put to initial use (de Weck et 
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al. 2011). Customizability can be seen as a particular aspect of changeability that is manifested when 

a customer wants to change a product in order to optimally satisfy his or her specific needs 

(Colombo et al. 2016). Customizability is related to the concept of mass-customization (Pine 1993; 

Fogliatto et al. 2012): “a product development approach that allows for the creation of goods that 

minimize the trade-off between the ideal product and the available product […], while maintaining 

system costs comparable to mass-produced products” (Ferguson et al. 2014).  

Customizability and mass customization allow maximizing a customer’s Value while reducing the 

costs relative to a bespoke monolithic product with equivalent functionality. Furthermore, the 

inherent uniqueness of certain configurations can provide Value on its own (Franke and Schreier 

2008). For example, a case study about innovation toolkits showed that customers are on average 

willing to pay double the baseline price to have self-designed watches (Franke and Piller 2004). 

Nevertheless, some studies have also underlined that this Value is actually mediated by several 

factors, like process effort and enjoyment (Franke and Schreier 2010) or the level of insight into 

customers’ own preferences (Franke et al. 2009) and that excessive choice can lead to frustration due 

to complexity (Valenzuela et al. 2009), post-decisional regret (Zeelenberg et al. 1998), expectations 

disillusion (Diehl and Poynor 2010) and conflicting desires (Chatterjee and Heath 1996; Gourville 

and Soman 2005). These aspects need to be taken into consideration when evaluating the Value of a 

customizable product platform from a customer’s perspective. 

2.3 Market-driven platform design 

A product platform is “a set of sub-systems and interfaces forming a common structure from which a 

stream of products can be developed” (Meyer and Lehnerd 1997). All platforms may be subdivided 

into two parts: the core and the periphery (Gawer 2009). The core is composed of those subsystems 

that remain stable across platform variants, also called platform configurations; while the periphery 

can change from variant to variant and is usually composed of add-on modules. The core can be used 
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across several variants with no or only minor modifications; usually, the cost of adapting the core is 

lower than the cost of designing new product parts de novo.  

Addressing front-end issues in platform design is a complex activity, and several researchers have 

addressed its challenges. (Simpson et al. 2014) subdivides front-end issues into (1) product portfolio 

and product family positioning, (2) market-driven product family design, (3) product family 

modeling and (4) platform and product family configuration issues. 

Since the goal of the paper is a methodology that joins customer preferences and product design, this 

literature review focuses on market-driven platform design, which is interested in measuring 

customers’ needs and translating them into technical requirements. (Ferguson et al. 2011) highlights 

the potential of conjoint analysis in mass customization and underlines strengths and weaknesses of 

stated choice models for engineering design. In particular, the authors conclude that “Determining a 

sufficient level of granularity for assessing consumer preferences is a critical issue”. (Kazemzadeh et 

al. 2009) takes advantage of conjoint analysis in order to improve the requirements specification for 

product families. Stated preferences highlight the most appreciated features of a product, which are 

translated into requirements thanks to the House of quality matrix. The use of House of quality 

matrices and indices not only applies to the initial design of a product, but is also relevant for its re-

design (Jung and Simpson 2016). 

Conjoint analysis has also been employed to determine the “best” product family portfolio. In 

(Kumar et al. 2009), for example, an advanced market segmentation grid is derived from a nested 

logit model; the grid is then combined with the product’s features and estimated cost, which are 

given as an input to a commonality optimization algorithm. A general inquiry on commonality 

optimization from conjoint analyses can be found in (Turner et al. 2011), where bottom-up and top-

down methods are compared. The article mentions that top-down methods lead to well-informed 
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decisions, at the price of more complex analysis. We will employ stated choice models to guide 

strategic design decisions about modular product platform design. 

3. Theoretical framework 

In order to integrate conjoint analysis with Value analysis for the design of customizable modular 

platforms, a common mathematical language must be found. This section (1) proposes a definition of 

Value that unifies utility models and the definition of engineering Value and (2) instantiates it for 

customizable modular platforms. 

Conjoint analysis is a well-developed methodology to infer customers’ preferences through 

questionnaires. In order to quantify these preferences, a mathematical utility model must be 

employed, which is usually (but not necessarily) based on the linear combination of part-worth 

utilities bi and product features ui (Ben-Akiva and Lerman 1985; Rao 2014): 

{ } { }

1

N
h h

j i i

i

v b u


            (1) 

Where { }h

jv  is the utility of product j according to customer h, bi are numeric coefficients representing 

the customer’s preference, and ui are binary variables indicating if the i-th feature among the possible 

N features is present in the j-th product. It must be noted that price sensitivity is included inside the bi 

coefficients. However, several studies – for example (Han et al. 2001) – concluded that price 

sensitivity is not linear and presents thresholds. A more generalized model of utility therefore is: 

1
{ } { } { }

1

( )
N

h h h

j i i c ww
i

v b u u c




            (2) 

where u
{h}

c is the non-linear contribution to utility v
{h}

j as a function of the sum of the costs of the w 

components cw. Independently from its form, utility can be employed to compute the probability that 

consumer h chooses a certain product among a set of similar products k: 
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{ }

{ }

exp( )
     i =  a, b, c, ... ;   k =  a, b, c, ...

exp( )

h

i
i h

kk

v
P

v



      (3) 

where Pi is the probability of choosing the product i, v
{h}

i is the utility given by the customer h to the 

product i. Equation 3 expresses the probability of choice according to the logit model, a statistical 

choice model that derives from a logistic distribution (Chandukala et al. 2007). 

On the other hand, Value in Value engineering is defined as benefits divided by costs. Benefits are 

generalized useful functions provided by the product and costs are a generalized measure of resource 

consumption in order to provide the benefits. As this work is based on a customer-centered view of 

Value, the costs are the transaction price paid by customers. 

Utility and Value seem to be two different mathematical formulations of the same measure. In fact, it 

is possible to bridge the gap between the two by applying an exponential transformation in Eq. 2 and 

considering price sensitivity instead of actual costs in Eq. 3. This results in: 

  (4) 

where the numerator is the positive utility given by the product’s features (the benefits’ utility) and 

the denominator is the negative utility given by price (the price utility). We will call this definition of 

Value, the Logit Value. 

Eq. 4 is the key to convert the results obtained in a conjoint analysis into a mathematical formulation 

of Value. This formulation of Value presents two main advantages: first, it gives a solid theoretical 

background in Value analysis, since Value is not derived from designers’ subjective formulations but 

from a structured analysis of stakeholder preferences; furthermore; this formulation gives a statistical 

meaning to Value. In fact, the logit model in Eq. 3 can now be written as: 
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{ }

{ }
     i =  a, b, c, ... ; k =  a, b, c, ...

h

i
i h

kk

V
P

V



      (5) 

In other words, the probability of choosing a product from a set is given by the ratio between its 

Value and the sum of the values of all the products present in the consideration set. 

This definition of Value can be applied to any product; however, given the scope of this paper, we 

will focus on the most prominent factors affecting the Value of a modular platform. Based on the 

literature on the topic, we propose five evaluation parameters: 

 The benefits of primary and secondary functions provided by single modules. Purely modular 

systems present a one-to-one mapping between modules and main functions, but modular 

platforms usually show a combination of integral and modular aspects (Ulrich 1995; Ulrich 

and Eppinger 2011); 

 The benefits of primary and secondary emergent functions, i.e. emergent functions cannot be 

attributed to a single module (Corning 2002; Crawley et al. 2015); 

 Other intangible factors like branding or prestige (Lassar et al. 1995; Vigneron and Johnson 

1999), which define the “baseline” Value of the product; 

 The intrinsic benefits of customizability (Bharadwaj et al. 2009; Franke et al. 2009); 

 The benefits of product differentiation and uniqueness (Franke and Schreier 2008; Ruvio et 

al. 2008; Cheema and Kaikati 2010; Liang and He 2012). 

The Logit Value of products derived from customizable modular platforms can therefore be defined 

as 

   (6) 
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where Vmd is the Value provided by the primary and secondary functions of the modules, Vemer refers 

to the Value-added by emergent properties, V0 is the Value of intangible factors (such as brand), 

Vcust reflects the benefits of customizability and Vuniq represents the contribution of uniqueness. The 

function Uc
{h}

 maps the price sensitivity of customer h to the total price of the product, given by the 

sum of the prices cw. 

Vmd and Vemerg can be further decomposed in a product between the sensitivity of the customer U to a 

feature Pi, while the price utility in the denominator now takes into account the price for individual 

modules cw,md and the price of the platform core ccore.  

4 Value analysis methodology for customizable product platforms 

Section 3 introduced a definition of Value that summarizes the likelihood of choice for a product. 

This definition alone can be useful to reason about platform design and improvements, but a method 

is needed to exploit its full potential. This section will apply the Value engineering approach to 

customizable product platform development, taking advantage of the formulation introduced in the 

previous sections. 

As reminded in Section 2, a traditional Value engineering analysis consists of five main phases: 

information gathering, alternatives generation, alternatives analysis, proposal development and 

presentation/implementation of the proposal. The novel methodology presented here (Fig. 1) differs 

from a standard plan in three aspects. First, the method can be employed for several goals, from 

prioritizing module development to providing suggestions to customers; for this reason, an initial 

Goal definition phase is required. Secondly, product platforms are complex technical systems that 

require significant effort during the design (Sinha and de Weck 2013, Colombo and Cascini 2014). 

Thus, alternatives generation and evaluation must be supported by (1) computation concept 

generation methods (M. Mohan et al. 2011), which do not constraint excessively the design space 

because of the combinatorial complicatedness of the design variants (Colombo and Cascini 2014), 
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and (2) appropriate visualization techniques, which reduce the cognitive load in the analysis of large 

datasets (Ware 2008). Finally, the Value considered here is customer-centered, thus it ranks platform 

configurations from a customer Value perspective. Furthermore, the results of the analysis can also 

be utilized to set a pricing strategy for modules or to steer customers to the most preferred 

combinations.  

All these activities are iterative in nature. For every new analysis, hypotheses and goals must be laid 

out clearly and tested. For this reason, the methodology procedure can be associated with scenario 

analysis (Armstrong 2001). 

  

Figure 1: Scheme of the Value analysis methodology for customization-intense platforms  

4.1 Goal definition 

Value analysis allows several studies, depending on the life-cycle stage of the system; thus, the first 

step in the methodology is the choice of one or more goals. 

Value analysis can provide fundamental insights before the beginning of the platform’s development. 

Modularity is a key architectural feature for mass customization, but it tends to reduce performance 
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because it prevents system-wide optimization of resource consumption (Ulrich 1995). If the 

drawbacks of modularity are not balanced by the benefits of customizability, a monolithic product 

may be preferred. This could be true for ultra-high performance markets or markets with uniform 

customers’ preferences. 

After a platform architecture has been fixed, designers must evaluate what platform configurations 

will be offered in the market. As mentioned previously, an optimal number of configurations must be 

chosen in order to limit the effects of the paradox of choice and to avoid excessive customizability 

costs. Value rankings may serve this purpose and the preferable configurations may emerge in this 

way. However, price should also be taken into consideration, as customers’ willingness-to-buy 

usually shows a price threshold (Han et al. 2001). Customers may decide not to buy very valuable 

configurations because the expense required is too high. 

Another outcome of the analysis is the definition of modules’ technical requirements and modules’ 

development prioritization. In this case, the focus is on module functions and performance levels. 

Development, manufacturing and logistics costs are another important issue, as they can influence 

the final price of the configuration. Moreover, if certain modules show synergistic effects (Corning 

2002), they can form bundles. Customer-based Value analyses, if based on price and not on 

manufacturing costs, can be useful in determining the pricing strategy of the platform. Depending on 

their price, certain modules can be more or less valuable to the customer; marketing may prefer to 

increase the price of modules with high benefits, or to decrease the price of non-optimal 

combinations. Moreover, firms may decide to add a large premium for customizability if the benefits 

of customizability warrant this; otherwise, they may reduce profit margins or even subsidize 

modules. Strategic issues related to platforms and markets can be found in (Gawer 2009). 

Finally, if the product platform has already been designed and available modules are set, the 

information provided by the value analysis can be the basis for a configuration tool for customers. 
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Previous research has shown that customizability benefits arise only if customers can actually enjoy 

the choice process (Franke and Schreier 2010) and do not feel frustrated (Valenzuela et al. 2009). If 

individuals’ preferences can be inferred, analysis of results can reduce the total configurations 

considered to the most valuable, thus increasing customers’ satisfaction and reducing potential 

frustration. It could even be imagined that the model is integrated into recommender systems (Ricci 

et al. 2011) that suggest to the customer/user the most beneficial module substitution based on the 

device actual use or inferred preferences. 

4.2 Information gathering 

Information gathering, for example in the form of a market survey, collects the data required for the 

computation of Value as described in Section 3. Information gathering focuses on three main areas 

of investigation: the technical system, the market and the costs. 

As far as the technical system is concerned, the system must be defined and a functional analysis 

must be performed. During system definition, designers detail the list of all the potential modules, 

either already developed or yet to be developed. Functional analysis is necessary in order to specify 

the functions offered by the system and the relative performance levels. Every function should have 

one or more technical parameters associated with it. This is needed as a proxy for performance 

evaluation by customers. The detail of the analysis must be a trade-off between completeness and 

complexity, as functions will be the input to a subsequent customers’ preference investigation. A 

primary function must be associated with every module, but secondary functions can also be 

included. Furthermore, system-level functions must be inferred from the combination of the 

modules. As mentioned earlier, emergent properties are usually the ones associated with the highest 

benefits. 

A market survey provides two important classes of information: customers’ preferences and the 

Value of competitors. Customers’ preferences are needed to compute the Value of components, as 
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highlighted in Eq. 6 and need to be computed through conjoint analysis. While preferences about 

modules, performance levels, emergent properties and the brand are quite easy to obtain, inferring 

the benefits of customizability and the Value of uniqueness or price sensitivity can be more 

challenging. Usually, a cluster analysis (Louviere et al. 2000; Hastie et al. 2009) is performed on the 

results, so that averaged customer profiles can be mined from the dataset. Technical and functional 

analysis can also be performed on the competitors, so that competing product values can be 

quantified. This step is required to inform the decision about whether or not a modular platform 

concept can be successful against integral products (or other modular products) in the same market. 

The last part of the information gathering phase is the platform cost modeling. There exists a wide 

range of literature on cost modeling that can guide designers and managers through this task 

(Weustink et al. 2000; Tu et al. 2007). 

4.3 Alternatives generation and Alternatives evaluation 

Once the set of potential individual modules and their descriptions are known, a list of feasible 

module combinations must be generated.  This can be done manually or automatically. In the manual 

case, designers’ explicit and tacit knowledge is employed. If a configuration database of previous 

designs exists, it can be used as a starting point for generating feasible combinations. 

Since the number of module combinations grows exponentially with the number of modules, 

automated tools for the generation of feasible combinations are necessary if we wish to examine a 

significant fraction of the tradespace. Some examples of such tools can be found in (Selva 2012; 

Zeidner 2010). In this paper, an enumeration tool (developed using Matlab™) was used to generate 

all possible feasible module combinations (Shougarian 2016).  The search tool uses backtracking 

search subject to compositional constraints to generate the set of feasible configurations. The 

presence or absence of modules and connections between modules are encoded as vectors of binary 

decision variables ui (see Eq. 6). The vectors of binary decision variables are instantiated with design 
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decisions until all combinations have been enumerated.  Constraints are checked every time a design 

decision is made, meaning that rule violation is checked at every step. In this way, large parts of the 

binary decision tree are eliminated or “pruned” during search which makes the approach tractable for 

relatively small problems, O(40) design decisions, with a sparse set of feasible configurations 

(Shougarian 2016).  

Once feasible combinations have been generated, their Value can be computed according to Eq. 7. 

While the Value associated with the modules’ main function and emergent properties is relatively 

easy to compute, the Value of intangible aspects, such as the Value of customizability and the Value 

of uniqueness is more challenging, as it requires market insights and close designer-user interaction. 

To a first approximation, these three aspects can be ignored; however, they can have significant 

impact on the customers’ selection process (Franke and Schreier 2008; Piasecki and Hanna 2011). 

4.4 Alternatives visualization and Proposal development  

In order to advance a proposal for a new or revised modular product platform and its associated 

modules, designers must understand which are the most valuable configurations and why. 

Visualization can be a powerful tool to understand complex systems and design them; several 

examples can be found in literature, like for example in (Ware 2008). Pareto fronts, in particular, 

allow comparing the “best” configurations according to several dimensions of evaluation, thus 

enabling a practical discussion around design trade-offs (Chiandussi et al. 2012, Baylis et al. 2018) 

The Proposal development phase consists of a decision-making process aided by analysis results. 

Depending on the goals defined in Step 1, it can address different aspects of the platform 

development, like the platform architecture, the modules offered to customers or the pricing strategy. 

This step can benefit from the involvement of different units in a firm. Iterations between the first 

four steps may be required either to increase the robustness of the proposal, or to enlarge the scope of 

the analysis. 
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4.5 Results presentation and implementation 

Once the proposal has been formalized, it needs to be presented to relevant stakeholders and 

implemented (Freeman and McVea 2001; Garvare and Johansson 2010). Typically, this will involve 

a review and approval by the firm’s executive board. 

The Value analysis can bring positive effects only if it is implemented correctly. As the project 

development proceeds, information becomes less uncertain (McManus and Hastings 2006; de Weck 

et al. 2007; Wynn et al. 2011); at the same time, market preferences change and the competition 

landscape evolves; therefore, updating the analysis is fundamental, especially if the final objective is 

to support the customers’ choice process. 

5 Case study: Google ARA (modular smartphones) 

The methodology proposed in Section 4 will now be applied to a real case study; a customization-

intense modular smartphone based on the Spiral-2 concept proposed by Google’s Project ARA. This 

modular product radically changes the architecture of smartphones and follows a technological and 

strategic trend already observed in personal computers (den Hartigh et al. 2015). 

The purpose of this case study is to evaluate the applicability and helpfulness of the methodology by 

employing it in a real case study. This will be achieved by demonstrating (1) how customer-centered 

Value analysis can be employed in the context of Google ARA, (2) how unexpected Google ARA 

configurations are highlighted thanks to this analysis and therefore (3) the benefits of using the 

methodology proposed. This section can therefore be framed as an Application Evaluation, 

according to the Design Research Methodology (Blessing and Chakrabarti 2009). A case study of 

conjoint analysis on smartphones was already proposed in (Okudan et al. 2013), which however 

focused on off-the-shelf integral smartphones. 

The case study presented here is a customization-intense electronic device based on the modular 

mobile device concept proposed by Google’s Project ARA. The details of this case are based on the 
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Spiral-2 configuration which has provisions for 10 modules attached to an endoskeleton, see Figure 

2. The ARA platform consists of an endoskeleton that serves as a central core which modules 

connect to.  The endoskeleton manages information and energy flows between modules using the 

MIPI M-PHY and UniPro compatible protocols. MIPI is “is a global, collaborative organization 

comprised of companies that span the mobile ecosystem and are committed to defining and 

promoting interface specifications for mobile devices” (http://mipi.org/). The M-PHY specification 

and UniPro technology were specifically developed for mobile devices and enable efficient high 

bandwidth information transfer. 

The results of this case study can inform platform developers about module requirements and help 

prioritize module development. Whether or not this is done by a captive supply chain or as part of an 

open two-sided market is outside the scope of this analysis. 

5.1 Goal definition 

This case study was carried out during the initial concept development phase of project Google 

ARA, when detailed information did not exist and the level of granularity of the system was quite 

coarse. The product development team had defined the platform architecture (Spiral-2 

configuration), but needed to understand what the most valuable module combinations were, so that 

it could prioritize module development. The analysis therefore highlights the most valuable 

configurations according to potential clusters of customers. The results also provide insights into the 

design and behaviour of other customizable smartphones and can be further generalized to 

customizable modular platforms. 

5.2 Information gathering 

The objective of the second step of the methodology (see Fig. 2) is to collect information about the 

technical system, the market and product costs. 
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Figure 2: Configuration and layout of the Google ARA platform (spiral-2, left rear, front right) 

 

It is assumed that the system is composed of a set of physical and virtual elements that connect 

modules together as well as the modules themselves. Different sizes of the device can be imagined. 

For reference, we assume a Spiral 2 configuration that has ten slots of varying sizes, as shown in 

Figure 2. These slots (1x1” yellow, 2x1” orange, 2x2” blue and 3x5” green) can be filled by 

customers with modules such as sensors, batteries, processing units and screens, amongst others. 

After an examination of components in existing integral smartphones, a list of 21 potential module 

types was generated (Table 1). Each module type is characterized by its primary function, 

performance attributes and a normalized price. 

Each module has a well-defined primary function and performance attribute. The list of available 

module types can be expanded, but a trade-off between completeness and complexity was found. 

Some modules, like the most advanced battery or the highest-capacity memory modules, cannot 

currently be found on the market, and are here utilized as potential research and development targets. 

While Table 1 presents the modules’ primary functions, the system is characterized by at least two 

emerging or system-level performance attributes: battery life and responsiveness. Battery life is the 
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maximum time a device can be used from a full state of charge to a state of full discharge. It is a 

function of the battery storage capacity, the number and type of modules installed in the device, the 

battery management software and the usage profile. Responsiveness is the time lag between an input 

and a corresponding output. It depends on the processing unit, the available memory, the set of 

modules in the device, the software manager and the usage of the device. These two features cannot 

be associated with a single module, even though battery capacity and processing unit clock 

speed/number of cores have a large impact on these two emergent properties, respectively. Both 

emergent properties are relevant for the user experience and therefore for the Value of the device, but 

while computational power is not considered a critical constraint in modern smartphones, battery life 

is. For this reason, in the remainder of this paper, we will integrate battery life only as part of the 

analysis, assuming that computational power is always enough to ensure proper responsiveness in 

the devices.  

 

 Table 1: List of module types for customizable modular devices 

Type Primary function Performance level Normalized price 

to customer 

Endoskeleton Supporting and connecting the modules --- 0..83 

Processing unit Processing data --- 0.16 

Screen (advanced) Displaying information 

Receiving inputs 

High resolution 1.00 

Screen (basic) Displaying information 

Receiving inputs 

Mid resolution 0.80 

Audio (advanced) Generating sounds Hi-fi quality 0.11 

Audio (basic) Generating sounds Standard quality 0.08 

Antenna (advanced) Communicating data Optimal reception 

everywhere 
0.23 

Antenna (basic) Communicating data Good reception 0.17 

Camera (advanced) Taking pictures / video Professional quality 0.19 

Camera (basic) Taking pictures / video Amateur quality 0.15 
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Interface (advanced) Connecting to other devices 

Connecting to electric plugs 

Fast data transfer 0.05 

Interface (basic) Connecting to other devices 

Connecting to electric plugs 

Slow data transfer 0.04 

Environmental sensor Monitoring environmental conditions --- 0.13 

Medical sensor Capturing health data --- 0.13 

Security sensor Preventing unauthorized access --- 0.13 

Memory (advanced) Storing data 256 GB 0.13 

Memory (intermediate) Storing data 64 GB 0.37 

Memory (basic) Storing data 16 GB 0.30 

Battery (basic) Storing and providing energy 250 mAh 0.23 

Battery (intermediate) Storing and providing energy 500 mAh 0.04 

Battery (advanced) Storing and providing energy 750 mAh 0.06 

 

Customers’ part-worth utilities were investigated through a self-explicated conjoint analysis (Rao 

2014). The questionnaire was administrated to N=200 people in Puerto Rico, the original Google 

ARA launch market, through in-person interviews. The sampling was based on gender and age: 49% 

of the respondents were male, and 51% were female; 36% of the respondents were younger than age 

30, 33% were aged 30 to 45 and 31% were between 45 to 64 years old. The questionnaire consisted 

of 35 questions and took approximately 15 minutes to complete.  

In line with previous works on the topic (Chan et al 2012, Ma and Kim 2016), the respondents have 

been clustered into five groups through the application of Ward’s linkage algorithm (Everitt et al. 

2001) on customers’ part-worth utilities and age.  

Details about the five cluster’s characteristics are given in Table 2. The analysis of the market survey 

suggested the existence of five distinct clusters of potential users, each with different preferences for 

functional utility and price sensitivity. The preferences of each of these five groups are subsequently 

used to evaluate module combinations associated with the customizable platform in Fig. 2. 



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag London Ltd., part of Springer Nature.

   

 

 24 
C2 General 

Table 2: clusters of customers from conjoint analysis (Puerto Rico, 2015, N=200) 

Cluster name Distinctive feature(s) Percentage of 

customers 

Cluster 1: Basic-functionality Main interest in feature phone functionalities 17% 

Cluster 2: Price-sensitive Extremely sensitive to price 8% 

Cluster 3: Performance-premium High preference for high-performance modules 7% 

Cluster 4: Balanced No distinctive features, balanced preference 34.5% 

Cluster 5: Enthusiast High utility for most modules, low price sensitivity 33.5% 

 

The estimated costs of the components were derived from freely available cost breakdowns in 

integral phones (AppleInsider Staff 2015; Fairphone 2015; Keizer 2015). The cost of components is 

normalized in order to preserve confidentiality and eliminate the effect of inflation. The module cost 

considered here is the one-time payment price from independent retailers and not the subsidized 

device price available from wireless providers. 

Finally, as far as the other components of Value are concerned, it is assumed that all the platform 

configurations have the same intangible Value, the same customizability Value and the same 

uniqueness Value; for this reason, they are not taken into consideration in this analysis (see Eq. 7). 

5.3 Alternatives generation and Alternatives evaluation 

The feasibility of module combinations and their emergent properties was evaluated using two 

numerical approaches. As explained in Section 4, the set of feasible mobile device configurations 

was generated using architecture enumeration subject to feasibility rules. The system-level property 

evaluated was the battery life, which depends on both the battery capacity, the classes of modules 

inside the architecture and the usage profile. The battery life (number of hours the mobile device 

could function without charging) was estimated for a typical usage-profile, as defined in (Informate 

2015). 

For the purposes of this work, it was assumed that the platform itself (endoskeleton) contained a 

1000 mAh battery. A total of 41 compositional rules placing bounds on the number of connections, 

the number of modules and constraining total area occupied by modules were used to generate 
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feasible architectures (module bundles), see Figure 3. The total number of architectures generated 

was 21,168.  

 

 

Figure 3: Module type definitions, module sizes (in 1”x1” squares) and customizable platform (left to right). 

Basic modules are green, intermediate yellow, and advanced modules in red. 

The Value of the architectures was computed using Equation 6. At the level of abstraction of the case 

study, the Value of uniqueness was not measured, therefore it is simply set to unity. Moreover, since 

only platform architectures will be compared, the baseline Value V0 and the Value of customizability 

are the same for all the samples and can be normalized (V0= Vcust=1). Equation 6 then simplifies to: 
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 (7) 

As Table 2 showed, five average user types emerged from the conjoint analysis data. Therefore, the 

Value defined in Equation 7 must be computed five times for all the feasible 21,168 platform 

architectures. 
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5.4 Alternatives visualization and Proposal Development 

The Value computed in the previous step of the methodology must be visualized in a comprehensive, 

but understandable, illustration. First, Figure 4 shows the statistical distributions of Value for each of 

the five clusters of potential customers (top to bottom).  

 

Figure 4: Relative Value distribution for five clusters of potential modular device customers 

 

Cluster 1 (Basic-functionality), Cluster 3 (Performance-premium) and Cluster 4 (Balanced) exhibit 

similar distributions, even though the mean and the maximum Values are different. Cluster 2 (Price-

sensitive) composed of respondents that are particularly price-sensitive, has a very asymmetrical 

distribution, with rapid decay of the right tail. This suggests that even the most advanced module 

bundles may not be of high Value to this group. Enthusiasts (Cluster 5), on the other hand, have a 

distribution with the widest spread, the highest mean and the largest preferences for Value. For all 

clusters, there are a finite number of architectures that dominate the others, which is an indication 

that with the assumed module pricing strategy the customizability of the device is not fully exploited. 

Table 3 summarizes the main features of the best platform architectures according to the Value 

model. 
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Table 3: Modules inside the most valuable architectures for each cluster (0 – module not present in the 
architecture; X – module present in the architecture) 

MODULE C LASS  CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 CLUSTER 5 

Architecture code 12706 18178 18178 18106 17404 

Benefits 5.3727 2.9117 4.2729 6.8074 14.1353 

Price sensitivity 0.9396 1.5221 0.9207 1.3659 1.4971 

Screen (basic) X X X X X 

Screen (advanced) 0 0 0 0 0 

Audio (basic) X X X X X 

Audio (advanced) 0 0 0 0 0 

Environmental sensor 0 0 0 0 X 

Medical sensor 0 0 0 X X 

Security sensor X X X 0 X 

Antenna (basic) X X X 0 0 

Antenna (advanced) 0 0 0 X X 

Gaming interface 0 0 0 0 0 

Interface (basic) 0 0 0 0 0 

Interface (advanced) X X X X X 

Camera (basic) 0 0 0 0 0 

Camera (advanced) 0 0 0 0 0 

Memory (16 GB) X X X X X 

Memory (64 GB) 0 0 0 0 0 

Memory (256 GB) 0 0 0 0 0 

Battery (250 mAh) 0 0 0 0 0 

Battery (500 mAh) 0 X X X X 

Battery (750 mAh) X 0 0 0 0 

Processing unit X X X X X 

 

The five smartphone architectures have similar features; for example, all of them have a basic screen, 

basic audio modules and high-performance interfaces; at the same time, the five clusters choose 

different battery configurations and diverse sensors. The similarity of the most valuable architectures 

is not easy to explain. On the one hand, it may underline how customers are bound to choose module 

combinations that resemble the smartphones already on the market because of psychological inertia; 

on the other, it indicates that a customizable smartphone can radically change the market only with 

an adequate offer of innovative modules or a well-design pricing strategy. Further investigations 

about the influence of uniqueness and the user interaction with these devices will further clarify this 

aspect; still, it is important to highlight that, even if the five configurations are similar, the Logit 

Value attributed by each cluster is very different, meaning that some clusters consider customizable 
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smartphone more appealing than others. Note also that Table 3 represents only a single architecture 

that maximizes Value for each type of user. While Value alone can be a very useful indication of the 

optimality of individual architectures; the trade-off between benefits and price can be further 

explored using trade-spaces. We now consider the full set of architectures on Pareto-frontiers in the 

benefits-price utility tradespace for each user cluster. Figure 5 compares the logarithm of the benefits 

(the numerator of Eq. 6) with the logarithm of price sensitivity (the denominator of Eq. 6): two 

architectures are chosen with the same probability if the difference between the two is the same. In 

Figure 5, the utopia point is in the upper-right corner. The Figure shows only the non-dominated 

architectures, which are a small percentage (less than 0,5%) of all the total feasible configurations.  

 

 

Figure 5: Tradespace utility analysis for smartphone architectures evaluated according to all cluster’s part-

worth utilities, showing only Pareto-front (non-dominated) architectures. 

 

Even though the platform architectures are the same, they are evaluated differently by each of the 

five clusters of users. Cluster 5 is the one with the highest evaluations and the mildest price 

sensitivity function, since the price Value decreases very slowly with an increase in actual price. 
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Conversely, Cluster 2 is the most difficult to satisfy, due to a very steep price sensitivity function, 

which decreases the platform Value quickly. Clusters 1, 3 and 4 have similar Pareto frontiers, even 

though the architectures contained within them may vary. Once the Pareto-front architectures have 

been found for each cluster, it is possible to analyse what are the most prevalent modules used inside 

them. Figure 6 shows the ratio of modules to Pareto-front architectures for each Cluster.  A ratio of 1 

indicates that all architectures on the Pareto-front contain the module in question. A ratio greater 

than one is possible if on average more than one of the modules is present in each Pareto-front 

architecture. 

The most popular modules are the entry-level audio module, the low-resolution screen, the high-

speed interface, the security sensor, and the 750 mAh battery. The modules selected are only 

partially correlated with their respective part-worth utilities, because the choice process is mediated 

by the feasibility of platform configurations and the utility of emergent properties. For example, 

advanced displays are not very popular across the five clusters, but every platform architecture needs 

one screen to function. Hi-fi audio modules are in theory more valuable than traditional audio 

modules, but they consume more energy to work; the combination of power usage and the high price 

makes them rather unpopular in this case study. In other words, Figure 6 indicates that just 

considering the customers’ interest in certain module types in isolation can lead to biased decisions. 

This highlights the utility of the more integrated Value analysis methodology presented in this paper. 

Let us now analyse Figure 5 more closely. When we considered only the highest value configuration 

for each cluster of users, it seemed that “optimal” architectures were quite similar (Table 3).  Figure 

5 considers the set of Pareto-optimal architectures for each cluster.  Notice that there are significant 

differences between the frequencies of the same module for different users. A good example is the 

medical sensor, which comes up very often for some groups, but is rarely present for others. Figure 6 

indicates that the medical sensor should be an independent module and that audio and interfaces 

could be integrated into the platform.  It is very important to note however that uncertainty in the 



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag London Ltd., part of Springer Nature.

   

 

 30 
C2 General 

price and preferences of users could significantly impact this result. However, once the model is set 

up, it is possible to update the analysis along the product cycle, whenever more precise data become 

available. 

 

Figure 6:  Fraction of Pareto-front architectures containing certain module types for each cluster of 

respondents.  A number greater than one indicates that more than one module exists in each Pareto-front 

architecture of that type on average. 

5.5 Results presentation and implementation 

The results of the analysis were presented to the Google ARA development team and positive 

comments were received. In particular, the stakeholders were interested in preferentially supporting 
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the most valuable modules and focusing the testing activity on the Pareto architectures identified in 

Figure 5. The Value analysis demonstrated here supports the development of the customizable 

modular platform in a number of ways: Table 3 provides the most valuable device architectures for 

each cluster, while Figure 5 shows the best trade-off between price and benefits for each cluster. This 

allows a strategic comparison among clusters. Finally, the frequency of module types contained in 

Pareto-front architectures (Figure 6) indicates which module types will likely be in higher demand. 

Presented with this information, the stakeholders in the ecosystem were interested in preferentially 

supporting the most valuable modules and focusing the testing activity on the Pareto architectures 

identified in Figure 5. The platform development team can prioritize the module development 

planning and the platform verification and validation process by focusing their testing on the most 

valuable modular platform combinations. Furthermore, the marketing team can utilize this 

information to plan the go-to-market strategy and the modules bundling. 

The results of the analysis were presented to the Google ARA development team for subsequent 

planning and implementation.  

6 Conclusions and future developments 

This paper proposes a methodology to compare modular product platform variants by tailoring the 

well-known Value Engineering approach to product platform design. In order to rank the large 

number of platform architectures that can be configured from available modules, a novel definition 

of Value is presented, called Logit Value. Logit Value (see Equation 6) ranks products according to 

the part-worth utilities inferred from conjoint analysis questionnaires. Its numerator combines the 

benefits that a certain platform can bring to the customer in terms of functional Value and other 

intangible benefits such as customizability and uniqueness, while the denominator contains the price 

sensitivity function computed for a particular platform-derived variant. After detailing the five steps 

of the Platform Value analysis, this paper applies them to prioritize the most valuable modules in a 
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customizable modular smartphone, based on the Google ARA spiral-2 configuration. A self-

explicative conjoint analysis was carried out, and the answers from 200 respondents were clustered 

into five main groups; technical data about modules and modules prices were derived from publicly 

available data and expert knowledge. The feasibility of different module combinations was assessed 

thanks to an automated architecture synthesis algorithm, and a numerical model that allowed 

simulation of battery life. The most valuable modular platform architectures were then extracted 

from the analysis and examined. 

The proposed methodology improves the traditional Value engineering approach in several ways. 

First, it is based on a definition of Value that is able to rank different alternatives in a consistent way, 

thus reducing the subjectivity in the evaluation process. Furthermore, this methodology is able to 

deal with the complexities that arise in platform design, because it addresses a large variety of 

possible platform-derived module combinations and focuses the attention on the most valuable 

module bundles and module types. In particular, the use of design automation tools to generate 

feasible architectures and the representation of alternatives through tradespaces permits to manage 

complexity more easily. Finally, it provides a holistic view of Value, which takes into consideration 

several technical and psychological factors. As noted in the case study, the selection likelihood of 

module types depends not only on their specific Value, but also on other modules, the platform and 

feasibility constraints. These aspects are present in several works in different fields, but they have 

never be considered together for the design of evolving modular systems completely managed by 

end-users.  

As shown in the case study, using the methodology is highly beneficial during the early development 

phases of customizable platforms. Applying this methodology, it was possible to highlight: (1) how 

appealing is customizability of features/modules for different customer segments, (2) what are the 

combinations of modules with the highest benefits-to-price ratio and (3) how attractive are modules 

categories. These notions can affect the decisions taken both at operational level (e.g. which modules 
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have to be prioritized, which configurations have to be tested more carefully) and at strategic 

marketing level (e.g. what are the most suitable module bundles to target a certain segment, what is 

the most appropriate pricing strategy). It is important to underline that this information could not be 

obtained through analyses measuring the value of single modules, as the value of a configuration 

(and the modules inside it) emerges holistically from the interactions between all modules.  

This work opens up further developments and research directions. In order to compare customizable 

products against standard monolithic ones, the benefits of uniqueness (i.e. the utility of having 

modules that few other people have) and customization (i.e. the utility of being able to personalize 

the device) should be assessed; however, the utility of these features is difficult to quantify through a 

conjoint analysis: in-depth descriptive studies are needed to characterize these aspects and compare 

them with other part-worth utilities. If scope of the analysis is expanded to consider truly novel 

modules, it is important to take into account that, according to (Kano et al. 1984), there are features 

which are taken for granted, features that are linearly correlated to quality and features that generate 

excitement; integrating this model inside the Value analysis may allow more consistent comparisons 

among platform architectures. Further developments can be achieved by removing some assumptions 

on the customer preferences. For example, (Ma and Kim 2016) proposes a product family design 

methodology where market segments are not rigid and customer preferences are not static, while 

(Ghosh et al. 2016) proposed a framework to measure both manifest and latent customer preferences. 

Section 4.1 suggests how to make use of Logit Value in more advanced product life-cycle phases, 

like the product launch (which configurations have to be advertised more?) or product selection (how 

to avoid the choice paradox and make module selection an enjoyable activity?) usage and upgrade 

(which new modules increase Value the most, starting from a given configuration?). The usefulness 

of the methodology during different life-cycle phases could be evaluated by further applying it on 

popular customizable platforms, like for example smartphone operating systems, fashion order-to-

make clothes, modular smartwatches or (re-)configurable furniture. Given the increasing popularity 
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of product configurators on e-commerce websites, an interesting testing methodology could leverage 

A/B testing over real buyers, by comparing the attachment rate and the user satisfaction in traditional 

recommendation systems and Value analysis-empowered ones. These activities can be framed inside 

the Descriptive Study II phase of DRM, and can be supported by the suggestions from (Blessing and 

Chakrabarti 2009). 

The methodology highlights some weaknesses in the case study that could be addressed by future 

research. For example, the limited number of Pareto-front architectures suggests that the current 

pricing strategy does not encourage customization; moreover, some modules are not present in the 

optimal architectures at all. These findings may inspire a method to increase platform architecture 

differentiation by changing both module technical features and pricing in a concurrent fashion.  

The shape of the Pareto-frontiers and the architectures inside them can be influenced by available 

module types, system-level functions and module pricing. In the Google ARA case study, how these 

factors can influence the Value of the Pareto set has not been investigated. Future research will 

include a pricing optimization algorithm to maximize the number of architectures inside the Pareto-

frontiers or a core topological optimization to find the best combinations of modules in the 

combinatorial space of customizable platform-derived products. Finally, it will be important to 

compare the performance of the modular platform under different market and supply chain 

strategies, ranging from a completely open two-sided market to a more traditional supply chain 

where modules are only provided by captive suppliers. 
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