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The mating of trees approach to Schramm-Loewner evolution (SLE) in the ran-
dom geometry of Liouville quantum gravity (LQG) has been recently developed by
Duplantier-Miller-Sheffield (2014). In this paper we consider the mating of trees ap-
proach to SLE in Euclidean geometry. Let 1 be a whole-plane space-filling SLE with
parameter « > 4, parameterized by Lebesgue measure. The main observable in the
mating of trees approach is the contour function, a two-dimensional continuous process
describing the evolution of the Minkowski content of the left and right frontier of .
We prove regularity properties of the contour function and show that (as in the LQG
case) it encodes all the information about the curve 1. We also prove that the uniform
spanning tree on Z? converges to SLEg in the natural topology associated with the
mating of trees approach.
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1 Introduction
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The Schramm-Loewner evolution (SLE) is a one-parameter family of random fractal curves
introduced by Oded Schramm as a candidate for scaling limits of interfaces in two-dimensional
statistical physics models [Sch00]. Since it was introduced, SLE has proved to be the limit
of several lattice models, see e.g. [LSW04, Smi01, SS09, CS12, CDCH" 14, KS16, LV16].
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Given a uniform spanning tree (UST) T on Z?, there is a.s. a uniquely determined span-
ning tree T’ in the dual graph, which is defined such that T and T’ never cross each other,
see Figure 1. The Peano curve ) is the interface between ¥ and ¥'. It was proved in [LSWO04]
that in a chordal setting the Peano curve A of a uniform spanning tree converges in law in
the scaling limit to an SLEg 7 in the space of curves equipped with the L® norm, viewed
modulo reparametrization of time.

Throughout this paper we define A as follows (see Figure 1). We let A be a function from
R to C with )\ = (%, ;11), and such that for all t € Z, A|j41) is a straight line segment of
length % in up, down, left or right direction. Moreover, A is the interface between ¥ and T’ so
that T is on the left side of A. For each n € Z, the point A, is contained in the line segment
between points (kn, m,) € Z* and (k},, m}) € (Z + 1)? satisfying |k, — k| = |m, —mj,| = 3.
Let (Zn, Mmy) € Z* be the first point on the path from (k,, m,) to oo in T which is also on the
path from (0,0) to oo. Let £, be the T-graph distance from (k,, m,) to (/lgn, m,), minus the
T-graph distance from (0,0) to (kn, y). We define R, similarly by considering ¥ instead
of T. We say that 3 = (£,R) encodes the trees T and T, since, as we will explain later, T
and T’ are measurable with respect to 3 up to rotation by 7 about the origin.

)\7,“’ | l r—'“m (‘Z/
T Ee=al =
==
—|I=1] =L I,

Figure 1: A spanning tree T on Z? (blue), its dual tree ¥ (red), and the Peano curve A
(green). The Peano curve traces the interface of € and T’ at unit speed, meaning that it
takes one unit of time to traverse each gray triangle. The pair of functions (£, R) encodes
the height in the pair of trees (¥,%’), such that for each n € Z, £, (resp. R,,) denotes the
height in T (resp. ') at position \,, relative to the height in the tree at position Ag. The
blue (resp. red) arrow points to the root of T (resp. ') at oc.

We can define the corresponding contour functions Z = (L, R;)ier for the continuum
scaling limit n, which is an SLEg in C from oo to co. Let 7 be parametrized by Lebesgue
measure, i.e., if £ denotes Lebesgue measure then £(n([s,t])) =t — s for any s < ¢, and let
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n(0) = 0. Given an enumeration (z,),eny of Q?, for each n € N let nk (resp. nf) be the
curve describing the left (resp. right) frontier of n stopped upon hitting 2,. By SLE duality
these curves have the law of whole-plane SLE;. The set of curves {nt : n € N} defines a
space-filling tree 7, where each curve nZLn, n € N, is a branch of 7 from the leaf 2, to the
root of T at oo. Similarly, the set of curves {nf : n € N} defines a dual space-filling tree 77,
and it is immediate from the construction that the branches of 7 and 7’ never cross each
other. As we will explain in more detail later, by properties of the natural parametrization
of SLE [LS11, LR15, LV17], the natural length measure along the branches of 7 and 77 is
the 5/4-dimensional Minkowski content of the curves nan and 7}211 . Let L, (resp. R;) denote
the height in 7 (resp. 7') at time t € R, relative to the height in 7 (resp. 77) at time 0,
when we use the Minkowski content to measure the length of the branches.

Our first result is that Z is well-defined, and is the scaling limit of 3. Consider an instance
of the UST on Z? and the associated Peano curve A. For all § € (0. 1], let n°(t) =: 6As-2,.
For t € 0°Z define L) := ¢6°/1€5-2;, where ¢ > 0 is a universal constant (which is the same
as the one appearing in Theorem 3.1), and for ¢ ¢ 6°Z define L? by linear interpolation. The
function R° is defined similarly. We view 7 and n° as elements in the set of parametrized
curves on C equipped with the topology of uniform convergence on compact sets. The
contour functions Z and Z? are elements in the space of two-dimensional continuous functions
equipped with the topology of uniform convergence on compact sets.

Theorem 1.1. For § € (0.1], consider a UST on 6Z* and an instance of a whole-plane
space-filling SLEg n in C. With the notation introduced above, Z = (L, R) is well-defined as
a continuous function, and the pair (n°, Z°) converges in law to (n, Z) as § — 0.

Remark 1.2. Theorem 1.1 implies that the UST and its dual also converge in the space
whose elements are measured, rooted real trees continuously embedded into C (see [BCK17,
Section 3] for the precise definition of this topology). Tightness of the UST in this topology
was proved in [BCK17]. The convergence result follows from the above theorem, since the
functions L° and R® are rescaled version of the UST and dual tree contour functions (up a
time change of 05(1)), and since convergence of contour functions implies convergence in the
Gromov-Hausdorff-Prokhorov topology (see e.q. [ADH13, Proposition 3.3]).

We may proceed similarly a.s-abevexto define contour functions Z = (L, R;);er for SLE,
for other values of k. Let x > 4, and let 1 be a whole-plane space-filling SLE, 1 from oo to
oc as defined in Section 2. Similarly as above, we let 1) be parametrized by Lebesgue measure
and satisfy n(0) = 0, and for any z € C let n¥ (resp. nff) denote the left (resp. right) frontier
of 7 when the curve first hits z. Given any t € R let L; (resp. R;) denote the length of n#(t)
(resp. 7}5(”) relative to the length of nf (resp. 7). Lengths are measured by considering the
natural parametrization of the curves, which is given by (1 + 2/k)-dimensional Minkowski
content.

In part (7ii) of the theorem below we let C(R, R?) denote the space of equivalence classes
of continuous processes W = (W,)cr with values in R?, such that W' and W? are equivalent
if there exists an increasing bijection s : R — R such that for all t € R, we have W2 = Wsl(t).

Theorem 1.3. Let k > 4, and let n and Z be as above.
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Figure 2: For k > 4 and an SLE, 7, the function Z = (L, R) describes the evolution of the
left and the right, respectively, boundary length of . The boundary length is measured in
(1 + 2/k)-dimensional Minkowski content. The time ¢, > 0 on the figure is a time at which
R reaches a running infimum relative to time 0. We remark that n((—o0, 0]), which is shown
in green, has a different topology than on the figure for x € (4, 8).

(i) The process Z is a.s. well-defined as an a-Hélder continuous process for any a <
1/2+1/k, and the following probability decays faster than any power of M for fived o

P| sup ——|Zt — Zs|

> M| . 1
ste0,1] |5 —t (L)

(11) For any a > 0, (Z;)ier L (aV/*HVRZ ) er. The process Z has stationary increments,
and the tail o-algebra of Z s trivial. Furthermore,

lim sup V; = oo, l%miiant =—o0, forV =L R (2)

t—too

(i1i) Assume = 8. The process Z defines an object Z' in the space C(R,R?). It holds that
7' determines Z, i.e., Z is measurable with respect to the o-algebra generated by Z'.

Theorem 1.3 will be proved in Section 4. In the proof we use the mating of trees theorem
in the Liouville quantum gravity setting (see below) to deduce the desired properties of the
contour functions in the Euclidean setting. The reason we only prove (7i7) for the case k = 8,
is that we need a lower bound for the Minkowski content of the frontier, which we only know
for k = 8, although we expect it to hold also for other x. A more substantial part of the paper
is devoted to proving the following theorem, asserting that the mating of trees in Euclidean
geometry encodes all the information of the space-filling SLE. Hence the mating of trees
provides an alternative way of encoding conformal invariant systems other than interfaces
which have SLE as their scaling limits. The proof is given in Section 5, using results from
Sections 2, 4 and 6. The proof crucially relies on the assumption that the shortest path
between two points is the straight line, a defining property of Euclidean geometry. (See
Proposition 5.6.) Another technical ingredient is a regularity estimate for space-filling SLE
(see Proposition 6.2) proved via imaginary geometry, which is of independent interest.

Theorem 1.4. Let n be a whole-plane space-filling SLE, for k > 4 in C, and define Z as
in Theorem 1.3. Then n is measurable with respect to the o-algebra generated by Z, modulo
rotations of n about the origin.
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The analogous result to this theoremyin the context of Liouville quantum gravity (LQG)7~
was proved in [DMS14], see further details after Corollary 1.5. Our proof is different in
nature as it relies on the Euclidean geometry. The discrete analogue of Theorem 1.4 for
Kk = 8 says that a spanning tree T on Z* is measurable with respect to the pair of contour
functions (£,R) of T and its dual T up to a Z-rotation. This discrete result follows from
e.g. a bijection of Mullin [Mul67] (see also [Ber07, Shel6b]) in the context of planar maps.

The result that (L°, R%) converges in law to (L, R) means that the UST on Z2 con-
verges to SLEg in a Euclidean analogue of the mating of trees topology, which was used
in [Shel6b, GMS15, GS17, GS15, KMSW15, GKMW16, GHS16b, LSW17] to prove con-
vergence of decorated random planar maps to SLE-decorated LQG. There tree-decorated
discrete models are said to converge to SLE-decorated LQG in the mating of trees sense if
the contour functions of the trees converge to a pair of correlated Brownian motions encoding
a pair of continuum random trees. (See more discussion below Corollary 1.5.)

The natural parametrization of SLE, is a parametrization which is conjectured (or proved,
for & = 2) to capture the natural parametrization of the associated discrete models, i.e., one
unit of time corresponds to traversing one edge/vertex/face of the discrete model. It is
therefore natural to conjecture that Z for other values of & is the scaling limit of the contour
functions of other discrete tree-decorated models having SLE,; as a scaling limit. We remark
that such convergence results would follow by proceeding as in Section 3, once analogues of
Theorem 3.1, Proposition 3.2 and Lemma 3.4 (by other authors) were established. Certain
discrete models which are conjectured to converge to SLE, with x > 8, for example the
6-vertex model [KMSW17] and the 20-vertex model [LSW17] are naturally decorated with
multiple pairs of trees, and one may then hope to establish joint convergence of these trees
by proving joint convergence of the corresponding pairs of contour functions, similarly to the
results established in [GHS16b] for random planar maps.

Since L and R are continuous functions satisfying (2), the functions L and R are the
contour functions of a pair of infinite-volume real trees [LG05]. Inspired by [DMS14], we
deduce from Theorem 1.4 that we may “glue” together the two trees to obtain a topological
sphere decorated with a space-filling path, which can then be embedded canonically into the
complex plane. See Section 5 for a proof of the following corollary, and see Figure 3 for an
illustration.

Corollary 1.5. For v > 4 and Z with the same marginal law as in Theorem 1.4, we obtain
a topological sphere with a space-filling path when gluing together the associated pair of trees
as explained in Figure 3. This path-decorated sphere has a canonical embedding into the
complex plane, where the law of the curve is that of a space-filling SLE,..

Finallyawe will describe an analogue of Theorem 1.4 and its corollary in the context of
LQG [DMS14]. In this setting Z has the law of a two-dimensional correlated Brownian
motion. The curve n still has the law of a space-filling SLE,, x > 4, but it lives on top
of a v-LQG surface (v = 4/y/k) which determines the parametrization of 7 and induces a
measure on the frontier of 7.

Recall that for any v € (0,2) and a domain D C C, y-Liouville quantum gravity [DS11,
RV14] is a random surface which may be written heuristically as e?" dz, where h is an instance
of a Gaussian free field (GFF) [She07] or a related form of distribution in D and dz denotes
Lebesgue measure in D. The term ¢ does not make literal sense since h is a distribution
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Figure 3: The figure illustrates how we obtain a topological sphere decorated with a space-
filling path from a pair of functions L, R satisfying (2). Each function L, R encodes an infinite
tree (shown in blue and red, respectively, on the right figure), and the idea of the construction
is to glue together these two trees. Letting ¢ : R — (0, 1) be a strictly increasing bijective
map we let (Lj)ic(0,1) and (R)iec(0,1) be (0, 1)-valued processes defined by L := ¢(Lg-1(;)) and
R} == ¢(Ry-111)). For some constant C' > 0 we draw R’ and C' — L' in a rectangle as on the
left figure, where C' is chosen sufficiently large such that the two curves don’t intersect. We
define an equivalence relation on the rectangle by identifying (i) all points on the boundary
of the rectangle, (ii) all points that lie on the same line segment below R’ (resp. above L'),
and (iii) all points that lie on the same vertical line between R’ and C' — L'. We will argue
(inspired by arguments in [DMS14]) that the set of equivalence classes just defined gives a
topological sphere. The sphere is decorated with the space-filling path which maps t; € R
to the equivalence class of the point (¢(to), R};(,,). This figure first appeared in [GHS16b].

and not a function, but as explained in the above references it has been made sense of as a
random area measure in D. The GFF also induces a random length measure along certain
curves in D.

For any x > 4 and v := 4//k the authors of [DMS14] considered a pair of Brown-
ian motions Z = (L, R)ier with correlation — cos(4m/k) satisfying (Lo, Ry) = (0,0) (see
[GHMS16] for the correlation when x > 8). By “gluing” together the corresponding infinite
volume continuum random trees [Ald91a, Ald91b, Ald93] as in Figure 3, they obtained a
topological sphere with a space-filling path and an area measure, called a peanosphere. They
then proved an analogue of Corollary 1.5 above, namely that the peanosphere has a canoni-
cal embedding into C, where the space-filling path has the law of an SLE, 7, and the area
measure has the law corresponding to an independent instance of the v-LQG surface known
as the y-quantum cone [DMS14, Section 4.2].

Alternatively, their result can be stated as in the following theorem. Consider a space-
filling SLE, n which lives on an independent v-quantum cone with area measure p. Parametrize
n by 7-LQG area measure, i.e., u(n([s,t])) =t — s for any s < t, and let n(0) = 0. The
7-LQG surface defines a length measure along the frontier of n((—oc,t]) at any fixed time
t € R. Let L, (resp. R,) denote the length of the left (resp. right) frontier of n((—oc,t])
relative to the length at time 0. Set Z = (L, R). The following is [DMS14, Theorem 1.13].

6
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Theorem 1.6 ([DMS14]). In the setting above, (n, h) is measurable with respect to the o-
algebra generated by Z.

In Section 2 we review imaginary geometry and the construction of space-filling SLE, and
we prove some basic lemmas which are needed in the remainder of the paper. Theorem 1.1
and Theorem 1.3 are proved in Section 3 and Section 4, respectively. In Section 5 we prove
Theorem 1.4 and Corollary 1.5, modulo two technical results which are proved in Section 6.

1.1 Notation

We write a < b (resp. a > b) if there is a constant C' independent of the parameters of
interest such that a < Cb (resp. a > Cb). We write a < bif a < b and a = b. We say that
f(n) has superpolynomial decay if f(n) < n~P for any p as n — oc.

For any z € C and r > 0 we let B,(2) := {w € C : |z —w| < r} be the Euclidean ball of
radius r centered at z. We let D = B;(0) be the unit disk centered at the origin.

For any D C C we let m(D) denote the d-dimensional Minkowski content of D, where
the dimension d is implicitly understood to be given by d = 1 + 2/k when we work with
SLE, or SLEs/,. for & > 4. Throughout the paper we will use £ (rather than x) when we
consider SLE parameters smaller than 4, and we will let 7 denote an associated SLE,. We
let £(D) denote the Lebesgue measure of D, and we let diam(D) denote the diameter of D.

We abuse notation in the following way throughout the paper for an arbitrary random
variable X. When we say “measurable with respect to X” we mean “measurable with respect
to the o-algebra generated by X7.

Acknowledgements

N.H. was supported by a fellowship from the Norwegian Research Council. X.S. was partly
supported by NSF grant DMS-1209044 and by Simons Society of Fellows. Part of this
work was carried out during the Random Geometry semester at the Isaac Newton Institute,
Cambridge University, and the authors would like to thank the institute and the organizers
of the program for their hospitality. The authors would also like to thank Martin Barlow,
Stephane Benoist, Ewain Gwynne, Greg Lawler, Jean-Francois Le Gall, Scott Sheffield,
Wendelin Werner, David Wilson, and Dapeng Zhan for helpful discussions. They also thank
the anonymous referee for his/her careful reading and for numerous helpful comments.

2 Imaginary geometry and space-filling SLE

In this section we give a brief review of imaginary geometry [MS16b, MS16¢, MS16d, MS17],
the construction of space-filling SLE, and prove a few basic lemmas which will be needed
later. Throughout this section and in the rest of the paper, we set x > 4 and define
16 2 K /K
£=— € (0,4). VE T N o TVE (3)

X:——-—- R

" VB2 EC TR T

Let D C C be a domain and h be an instance of the Gaussian free field [She07, MS16b] in
D. We view h as a field modulo a global additive multiple of 27y, see [MS16b, MS17]. For

i
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any given z € D and angle # € [0, 27), imaginary geometry provides a way to define the flow
line n? for h of angle 6 started at z. The flow line may be interpreted as a solution to the
following formal ODE with initial condition 1%(0) = =z

Loy = élnetonse) o
dt

This ODE does not make literal sense, since h is a distribution and not a function, but
has been made sense of in [MS17] (see also the earlier works [Dub09, MS16b] for the case
2z € dD). Given an instance of h, imaginary geometry defines a collection of coupled flow
lines n?, simultaneously for any z € Q% and 6 a rational multiple of 7. If § = 7/2 (resp.
6 = —7m/2) we say that the flow line is west-going (resp. east-going), and we denote it by n-
(resp. nfY).

For two domains D and 5, a conformal transformation ) : D e D, and a field h (resp.
) in D (resp. D), we say that the pairs (D, h) and (lND,E) are equivalent iff

(D, h) = (YD), hot) — xarg ). (4)

If n? is a flow line for the field h in D, then the image 7% of n? under ¢! is a flow line for h
in D.

In the case when D = C, the marginal law of n? for any 6 € [0,27), is that of a whole-
plane SLE, (2 — k) from z to oo [MS17, Theorem 1.1]. If n is a curve in D, we say that a
field h has flow line boundary data if the boundary data on the left (resp. right) side of n are
given by —\’ (resp. \’), plus x times the winding of the curve in counterclockwise direction.
See [MS16b, Figure 1.9] and [MS17, Figure 1.9]. For any stopping time 7 for the flow line n’
in C, the conditional law of h given n?([0, 7]) is that of a GFF in C\ n?([0, 7]) with flow line
boundary data. If D # C is a domain with harmonically non-trivial boundary and z € D,
then the marginal law of 7% depends on the boundary data of h. For any stopping time 7
for n?, the conditional law of h given 1?([0,7]) is that of a GFF in D\ n%([0,7]) with flow
line boundary data on 1%([0, 7]) and the same boundary data as before on 9D.

2.1 Imaginary geometry lemmas

The following lemma will allow us to compare flow lines generated from two instances of
a GFF with different boundary values. We will only give a sketch of the proof, since the
proof proceeds similarly as [MS16a, Lemma 5.4] (see also [MS16b, Remark 3.5] for a related
result).

Lemma 2.1. Let hy and hy be two Dirichlet GFF on C\ D modulo a global additive multiple
of 2mx, such that' sup, ,cop |hi(z) —hi(y)| < M fori=1,2 and some M > 0. Let U C C\D
be a domain bounded away from D and co. Then there exists a constant C' > 0 only depending
on M and U, such that

p(E) < Cug(E)'V?,

where py and o are the probability measures associated with hy and ho, respectively, and E
is an arbitrary event in the o-algebra of hy|y (equivalently, ha|y ).

'The maximal and minimal values of the field at 9D are not well-defined, since the field is defined modulo
2wy, but differences such that h;(z) — h;(y) for x,y € 9D are well-defined.

8
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Proof. 1t is sufficient to prove the lemma under the assumption that h; is a Dirichlet GFF
satisfying sup,.gp |hi(2)] < M for ¢ = 1,2, since the field h; in the statement of the lemma
is a Dirichlet GFF, viewed modulo a global additive multiple of 27y. Let g be the harmonic
function in C\ D which is constant at oo, and has Dirichlet boundary values (h; — hy)|sp on

JD. Then h,; < hy + g. Let (-,-)v denote the Dirichlet inner product, which is defined by
(f1, fo)v = (2m)~! fo1 -V fo for smooth functions f; and f;. It is explained in [MS16a,
Lemma 5.4] that the Radon-Nikodym derivative of h;|; with respect to hs|y is given by

exp((halu, glv)v — llglullz/2)-

For any event E as in the statement of the lemma, the Cauchy-Schwarz inequality implies
that

11(E) < Elexp(2(halv, glv)v — lglul3)]Y? - ua(E)Y2.

To conclude the proof, it is sufficient to show that the expected value on the right side
is bounded by some constant only depending on U and M. It is sufficient to show that
llglvlly < C for some constant C' satisfying these properties, since (hy|y, glir)v is a normal
random variable with variance [|g|i/||y and expectation bounded in terms of U and M. The
result ||g|¢||¢ < C follows by standard regularity estimates for harmonic functions (see e.g.
[Eval0, Chapter2, Theorem 7]), which say that |Vg| < C” for some C” only depending on U
and M. O

The following basic lemma will be used later to deduce triviality of certain o-algebras
associated with whole-plane space-filling SLE. We remark that alternative arguments to
prove similar results for other variants of the GFF can be found in e.g. [MS16b, Section 3.1]
and [DMS14, Lemma 8.2].

Lemma 2.2. Let h be a whole-plane GFF modulo 2mx. For each § > 0 let Fs (resp., Gr)
be the o-algebra generated by the restriction of h to Bs(0) (resp., C\ Bgr(0)). Then Ns=oFs
and Nr-oGr are trivial.

Proof. Let h be a whole-plane GFF such that the average of h about 9D is equal to zero,
and let U be an independent uniform random variable in [0, 27rx]. Then & is equal in law to
h+U modulo 2mx. The field h is invariant in law under the map z — 2~ !, which implies that
the same property holds for h. In order to conclude the proof it the lemma, it is therefore
sufficient to show that Nz=oGp is trivial. Write h = h° +h', where h° is a radially symmetric
function modulo 27y, and A" is a distribution which has mean zero on any circle around the
origin. Tail triviality of h° follows by using that (h°(e™))icr 4 (Bt +U +21XZ)ier, where B
is a standard two-sided Brownian motion. For n € N let «,, be independent standard normal
random variables, and let (f,),cy be an orthonormal basis for the Dirichlet inner product
for the set of smooth compactly supported functions in C with mean zero. A whole-plane
GFF h modulo a global additive constant can be written in the form ", f,, which implies
that if §R is the o-algebra generated by the restriction of hto C \ Bgr(0), then ﬂR>0§R is
trivial. Writing h=h°+ ht as above, it follows that the tail of ' is trivial. Since h' 2 ht,
the tail of h' is also trivial. O
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2.2 Space-filling SLE,

For k > 4, whole-plane space-filling SLE,. is a space-filling curve in C which starts and
ends at oo. It is closely related to regular SLE, by the following informal descriptions. For
k > 8 the law of a whole-plane space-filling SLE, can be obtained by considering a regular
chordal or radial SLE, in any domain D, fixing some point z € D independent of the SLE,
and “zooming in” near z. For k € (4,8) we may define a chordal or radial space-filling
SLE,. by considering a regular chordal or radial SLE,, and filling in the created bubbles
by independent space-filling loops. As above, we obtain whole-plane space-filling SLE, by
considering the local behavior of the chordal or radial space-filling curve near some fixed
point.

Whole-plane space-filling SLE, for all k > 4 was first constructed by using imaginary
geometry with parameters as in (3), see [MS17] and [DMS14, Footnote 9]. For any fixed
21,29 € C, the two flow lines nle and nzLZ will eventually merge, and before this happens
the curves will a.s. never cross each other. Therefore the set of flow lines n* for all z € Q?
form a tree in C which is rooted at infinity, such that two branches in the tree never cross
each other. The whole-plane space-filling SLE, is defined to be the curve which traces this
tree. More precisely, first define a total ordering on all points of Q? by saying that z; comes
before z, if nle merges into nsz on the left side. A separate argument (see [MS17, Section
4.3]) shows that there is a well-defined continuous space-filling curve in C which visits the
points of Q% according to this order, and we define 7 to be this curve.

Lemma 2.3. A whole-plane space-filling SLE, n parametrized by Lebesque measure has
stationary increments.

Proof. We want to show that for any fixed t € R we have n < n(-+t) — n(t). The proof
will proceed similarly as [DMS14, Lemma 9.3], where an analogous result for quantum
parametrization of n was shown. For any z € C, let 7, := inf{t € R : n(t) = z} be
the first time at which 7 hits z. For any fixed R > 0, let zy be sampled uniformly at random
from Lebesgue measure on Br(0), independently of 7. By translation invariance in law of

the GFF, and by independence of 2, and 7, we have n(- + 7,,) — 2o 2 1, which implies that

(7}7 77( + t) - n(t)) g (TI( e Tzo) - 20, TI( + Tz + t) - 77(7-20 + t)) (5)

When R — oo, the total variation distance between the laws of zy and n(7,, + t), hence
7., and 7, + t, converges to 0. Therefore the total variation distance between the laws of
N4 Ts) — 20 and (- + 7., +t) — n(7., +1) converges to 0. Since the laws of the two elements
on the right side of (5) are arbitrarily close in total variation distance as R — oo, we see that
the two elements on the left side of (5) are equal in law. This implies the desired stationarity
result. O

3 Convergence of discrete contour function for x = 8

In this section we prove Theorem 1.1. The main inputs to the proof are Theorem 3.1,
a chordal version of Proposition 3.2, and Lemma 3.4, which are results proved by other

authors in [LV17], [LSW04], and [BCK17], respectively.

10
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First we define a metric p on the space of paths in C. Fori = 1,2 let I, C R be an
interval, and let 4* : I; = C be a continuous function, i.e., 4* is a curve in C. Then the
distance p(v',79?) between 4! and ~? is given by

p(vH, %) = ianmin {2_"'; sup  |a(t) —t|+ sup  |Y(t) - ”/Q(Q(t))l} . (6)
k=0

telN[—2k 2k tel;N[—2k 2k

where the infimum is over all increasing homeomorphisms « : I} — . The following result
is proved in [LV17].

Theorem 3.1 (Lawler-Viklund’17). There is a universal constant ¢ > 0 such that for all
e > 0 and simply connected domains D containing the origin with analytic boundary, there
exists a & € (0, 1] satisfying the following. For each § € (0, o] consider a simple random walk
on 072 started at 0 and run until hitting OD, and let Q‘j be the loop-erasure of the random
walk. We view Qd as a continuous curve parametrized such that each edge is traversed in
time ¢0°/4. Let 1) be a radial SLEy in D towards 0, started from a point on 9D sampled from
harmonic measure, and let n be parametrized by 5/4-dimensional Minkowski content. This
parametrization of n is well-defined, and there is a coupling of Qd and n, such that

Plp(n,n°) > €] < e

In the remainder of the section we let 7 and n° for 6 € (0,1] be as in the statement of
Theorem 1.1, i.e., n is a whole-plane space-filling SLEg parametrized by Lebesgue measure,
and 7° is the Peano curve of a uniform spanning tree on 6Z2. A chordal version of the
following proposition was proved in [LSWO04].

Proposition 3.2. For any ¢ > 0 we can find a 69 > 0 such that for any § < oy there is a
coupling of n° and n satisfying Plp(n,n°) > €] < e.

We will first argue joint convergence of the uniform spanning tree and its dual in the
topology introduced by Schramm in [Sch00]. For any compact topological space X let H(X)
be the set of compact subsets of X equipped with the Hausdorff topology. Letting C denote
the Riemann sphere, define the topological space OS by OS = H(C xC x?—l((C)) A spanning
tree on 07?2 for some § € (0, 1] can be represented by an element 7° in OS by saying that
(a,b,K) € T? iff K is a simple path from a € §Z? to b € §Z? in the spanning tree. We
let 7% denote represent the dual tree, and we denote the continuum analogues by 7 and T
respectively.

Lemma 3.3. The pair (T, T?) converge jointly to (T.T) in OS x OS

Proof. Tightness of 7? is immediate since OS is compact. For a UST on 6Z? and any
finite collection of points zy,...,z, € C, let 7;‘5 for z = (z1,...,2;) be the element in
OS corresponding to the branches in the tree connecting zi, ..., 2z, (or the nearest lattice
approximations of these points) to each other and to oco. We define 7,2 similarly if z =
(z1,22,...) is countably infinite. An instance of a whole-plane space-filling SLEg 1 in C

11
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gives elements 7 and 7, in OS by letting the branch or branches from each z € C to oo, be
the left frontier of n((—oc,t]) for each time t satisfying n(t) = z. For each fixed z there is
a.s. only one such branch, and this branch is given by the flow line n% defined in Section 2.
For any R > 1, let T, 7;R, TR TR be defined similarly, but for a chordal SLEg in Bg(0)
from —Ri to Ri (in the continuum case) or a UST on Br(0) N (6Z?) with half wired and half
free boundary conditions (in the discrete case). By [LSW04] we know that T,% converges
to 7,7 in OS.

By [Mas09, Corollary 4.5] the total variation distance between the laws of 7% and T
for fixed z; € C goes to zero as R — oo, uniformly in §. By Wilson’s algorithm [Wil96], we
get further that the total variation distance between the laws of T,%° and T? for any finite
tuple z goes to zero as R — oo, again uniformly in 4. The total variation distance between
the laws of T, and T, goes to zero as R — oo, since this property holds for the Gaussian free
fields from which the chordal and whole-plane, respectively, SLEg’s were generated [MS17,
Proposition 2.11]. We conclude that T2 converges in law to 7, in OS for any finite tuple z.
By symmetry the same result holds for the dual, i.e., 7"S converges in law to T

Let (77, 7') be some subsequential scaling limit of the pair (79,7°%) in OS x OS. We

want to show that (77,7") L (T.T). Let z be some enumeration of the rationals. By the

convergence result for finite skeletons we see that 7, L 7, and 5 £ 7,. By [Sch00, Theorem
10.7] the trunk of 7" and the trunk of 7" are disjoint. This gives that T, (resp. 7,/) uniquely

determines 7' (resp. "), since the trunk of the trees are dense. Therefore (77, rf’) = (72, 7-)
and (T’,7~;’) & (T, ’7;), which implies further that (77, '7") B (T, 7~—) U

Proof of Proposition 3.2. Consider a coupling such that (7°,7°) converges to (7,7 a.s
in OS x OS. By the construction of space-filling SLE from imaginary geometry, the pair
(7, T) uniquely determines a space-filling curve 7) with the law of a whole-plane space-filling
SLE,. For any € > 0 consider the flow lines n* and nf for » € ¢Z2 The complement of
these flow lines is a collection of open domains which we call continuum pockets, such that
each pocket is enclosed by flow lines nf  nff 0 nf for 2, 2z, € €Z? Since the double points
of SLEg have zero Lebesgue measure, for each fixed z € C and any €; > O there is a.s. a
random &; > 0, such that for all w € Bs,(2), the flow line nt merges into n* before leavmg
B, (w). This implies that for any 2y, z; € €Z?, the Hausdorff distance between nL 9 and nzi

restricted to any compact set, converges a.s. to zero, and, since (77, 7'5) — (T, T) a.s., the
point at which nle*‘; and nsz merge, converges a.s. to the point at which nle and 7752 merge.
It follows that a continuum pocket enclosed by flow lines . nff . nk nf for 2,2, € €Z?, is
a.s. the limit for the Hausdorft distance of a discrete pocket enclosed by the corresponding
discrete flow lines. The Peano curves 7’ and 7 visit the pockets in an order corresponding
to tracing the interface of the primal tree and the dual tree, and the order in which the
pockets are visited, converges a.s. as & — 0, if we only consider the pockets restricted to
some compact set. Therefore, for any fixed 7" > 0 and with p, being the maximal diameter
of the continuum pockets visited by 1 during [T, T], we have |n(t) — n°(t)| < 10p, a.s. for
all sufficiently small 6 and all ¢ € [T, T]. Since lim,_,op. = 0, we see upon decreasing e that
lims_o p(1,7°) = 0. O

We recall the following result from [BCK17]. For any § € (0, 1] and a set of edges A of

12
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the square grid 0Z?, we define m®(A) := |A|¢6°/*, with ¢ as in Theorem 3.1 and |A| denoting
the number of elements in A. For 6 € (0,1], a UST on §Z?, and =z € C, let nX° be the path
in the UST from the nearest lattice approximation of z to oo.

Lemma 3.4 (Proposition 2.8, [BCK17]). There exist universal constants ci,cs,c3, Ao > 0
such that the following is true for any 6 € (0,1]. Gwenr > 6§ and X\ > N, let R = reciA?.
Let A(r, A) be the event that for all x,y € Br(0) N (6Z?) such that diam(nZ°Anl-®) <r, we
have md(n£*6A7];"5) < M4 where A denotes symmetric difference. For every r > 6 and
A > X we have P[A(r, \)¢] < c3 exp{—cyA/2}.

;Next we prove tightness of the rescaled version Z° of 3. Recall the definition of Z% =
(L°, R°) above the statement of Theorem 1.1.

Proposition 3.5. The contour functions Z° for 6 € (0,1] are tight for the topology of
uniform convergence on compact sets.

Proof. By scale invariance, it is sufficient to show that Zd|[0,1] is tight, and by symmetry in
L° and R’ it is sufficient to prove that L° is tight. For any 6 > 0, let w® : [0,1] — [0, o0)
be the minimal increasing modulus of continuity of L6|[011], i.e., it is the minimal increasing
function such that for any t, s € [0, 1] we have

L — Lo < w(|t — s|).
t S

By [Pro56, Lemma 2.1] and since L{ = 0 for all § € (0, 1), tightness of L[ follows if we
can prove that for any € > 0 there exists a p > 0 such that P[w’(p) > ¢] <  for all § € (0, 1].
Since L° is Lipschitz continuous with constant ¢ '6~°/% it is sufficient to show that this
holds for small ¢, i.e., it is sufficient to show that for all € > 0 there exists p, dy > 0 such that
Plw’(p) > ¢] < & for all § € (0,8y]. Choose A > 0 sufficiently large and r > 0 sufficiently
small such that, in the notation of Lemma 3.4 and for all sufficiently small § € (0, 1], we
have Ar®/* < ¢, Pldiam(n([0,1])) > R/2] < ¢/4 and P[A(r, \)] < €¢/3. By Proposition 3.2,
there exists a dy > 0 such that for § < &, we have P[diam(n°([0,1])) > R] < €/3. Since 7 is
continuous a.s., we may choose p > 0 sufficiently small such that

P sup diamn([s, t]) > r/2| < €/4.
5,t€[0,1],0<t—s<2p
Applying Proposition 3.2 again and decreasing d, > 0 if necessary, the following holds for
any 0 < &g
P sup diam 7’ ([s, t]) > r| < €/3.
s,te(0,1],0<t—s<p

Combining the above results, we have shown that with probability at least 1—¢, the following
event occurs

{diam(n°([0,1])) < R} N A(r,\) N sup diam 7’ ([s,t]) <7 . (7)
s,t€[0,1],0<t—s<p
On the event (7), for all s,t € [0,1] such that 0 < t — s < p, we have diam(n°([s,t])) < r,
which implies by occurrence of A(r, \) that mé(ns(’f)Aryrf(‘g)) < M%< €. Therefore w’(p) < e,
and the lemma follows. O
13
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Proposition 3.6. The pair (n°, Z°) converges weakly to (n, Z).

Proof. By Propositions 3.2 and 3. 5, the pair (n°, Z%) converges subsequentlally in law to
some limiting random variable (1, Z), where n has the law of an SLEs, and Z = (L, R) is

continuous. Considering a coupling for different § where this subsequential convergence holds
a.s., we need to prove that Z = 7 a. s where Z is as in the statement of the proposition. For
any z € Clet 7(z) := inf{t € R : n(t) = z} be the first time at which n hits z. We observed
in the proof of Proposition 3.2 that 77 converges jointly with the finite skeletons 7,° and 7;‘5.
By Theorem 3.1 and since the natural parametrization of ° (resp. n) is determined by the

unparametrized curve, we have joint convergence in law of 7° and the branches of 7, and ’7;‘5
viewed as parametrized curves. This implies that for any fixed z € C, (n°, Lﬁ( Z)) converges

in distribution to (7, L;(,)). Since L is a.s. continuous and {7(2) : z € Q?%} is dense in R,

we see that L = L a.s. We have R = R a.s. by a similar argument, which completes the
proof. O

4 Existence and properties of the contour functions

In this section we will prove Theorem 1.3, which says that the contour functions Z = (L, R)
for all kK > 4 are well-defined and satisfy certain basic properties.

We will prove that Z is well-defined as a continuous function by using the Kolmogorov-
Chentsov theorem, and we therefore need a moment bound for the increments of Z. We will
obtain a moment bound by drawing the space-filling SLE, 1 on top of a 4/,/k-LQG surface,
and using that the Minkowski content of the SLE frontier is given by the expected quantum
length of the frontier, up to multiplication by a function depending on local properties of
the field.

Let k € (0,4), v = /& and D C C, and let h be some GFF-like field on D. Recall
from the introduction that Liouville quantum gravity (LQG) with parameter ~ is a random
surface associated with h. In particular, the field A induces a random area measure j;, on
D which may be written heuristically in the form e’ dz, where dz is Lebesgue measure
[DS11, RV14].

The field h associated with a 7-LQG surface also induces a length measure along certain
curves, e.g. along dD or SLE, curves in D. For an SLE, or SLE,(p) curve 5 in D there are
two natural ways to define such a 7-LQG length measure. The first approach is to define
a measure v, on 7 by considering the quantum boundary length measure as defined in e.g.
[DS11, Shel6a]. We consider a conformal map ) : U — H, where U is some domain on one
“side” of 7, such that 1 straightens 7. Consider the v-LQG boundary measure on R which
we get when applying the coordinate change formula for quantum surfaces to h and ). Let
vy, be the pullback under v of this quantum measure on R. Note that we may view v, as a
measure on C supported on 7.

The second approach is to define a v-LQG measure o), with (roughly speaking) the
Minkowski content of 1 as base measure. Recalling that m denotes (1 + £/8)-dimensional
Minkowski content and considering some arbitrary strictly monotone parametrization n:

14
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Ry — C of n satistying n(0) = 0, we first define the measure m, on C by

m,(U) = li_I}ém(U Nn([e, 00))). (8)
Remark 4.1. We define the measure m,, as a limit, rather than considering m(UNn([0, o0))),
since it 1s not known that the Minkowski content of n, which is a whole plane SLE.(2— k), is
well-defined near the origin. This assertion holds for whole plane SLE, (see [LV17, Lemma
3.1] and [MZ17]), which means for k = 2 we can remove the cutoff in (8).

For 2 € D and € > 0 such that B.(z) C D, we let h.(z) denote the average of h around
the circle B, (z), see [DS11]. The measure oy, is defined by the following limit for any open
set U

e—0

on(U) = lim/ eThe(2)/2¢7*/8 dm,,(2). (9)
U

When h is a centered Gaussian field, the convergence holds in L' for any bounded Borel set
U [Berl7, Theorem 1.1]. See [Berl7] and [Benl7] for further details about oy,.

Lemma 4.2. Let h be a whole-plane GFF such that the average of the field over the unit
circle is zero. Let ) be an independent whole-plane SLE, (2 — k), and let o), and vy, be as
above. Then there exists a deterministic constant ¢ > 0 so that o), = cvy, a.s.

Furthermore, for any a > 0 there is a C' > 0 such that if py, 1s the v-LQG area measure
associated with h and U C D, then we have m,(U) < CE[o4(U)1,, m)<a | 1]-

Proof. We first prove the following claim (10). Let v = \/k and h be a free boundary GFF
plus (v — %) log |z|~" in H, with some arbitrary choice of additive constant, and let 7 be an
independent SLE, in H from 0 to oco. Define mj, v; and o3 similarly as in (8) and (9). Then
there is a constant ¢ > 0 such that

o5 = cvg a.s. (10)

In fact (10) is proved in [Benl7, Proposition 3.3] if his replaced by a so-called (v — %)—

quantum wedge. By the definition of quantum wedge and its relation to h (see e.g. [DMS14,
Section 4.2]), (10) holds for h. Indeed, the quantum wedge is defined up to a scaling of the
complex plane and the free GFF is defined up to an additive constant. For any R > 0, it is
possible to choose the scaling for the quantum wedge and the additive constant for the free
GFF so that h agree with the (v — %)—quantum wedge on Bg(0).

Both the measures v, and o), are defined locally, in the sense that for an arbitrary
monotone parametrization of n and any interval I C R, the measure of n(/) depends only
on n(I) and on h restricted to some neighborhood of n(7). Bounded away from 0D, 0 and

oo, the field A is absolutely continuous with respect to translations of the field E, and 7
is locally absolutely continuous with respect to the curve 7, in the sense that any interval
I € R, bounded away from 0 and oo can be written as a finite union of (random) intervals
I;, such that n|;, is absolutely continuous with respect to a segment of 7. This implies that
0n = cvp, a.s., where ¢ is as in (10). This proves the first assertion. a
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Now we prove the second assertion. By (9), for any U C D,

]E[Jh(U)]‘Mh(D)<a | 77] = lir%[E [/ ghe(2)/2¢7"/8 dm"](z)lllh(]ﬂ))<a In| .
= €E—> U ok —

By independence of h and 7, in order to conclude the proof, it is therefore sufficient to prove
the existence of constants ¢y, €y > 0, such that for any z € U and € € (0, €),

E [evhe(z)/2€72/81“h(]@)<a] > cy. (11)

For any z € C let h* := h(- + 2) — hy(z), and observe that h* L h. For any field k and
for fixed cy,c3 > 0 let E(h) be the event that uz(Bio(0)) < ¢z, and that e ™) € [c;! 3]
for all w € Byp(0). Choose ¢, c3 such that cocs < a and P[E(h)] > 0, and observe that
appropriate constants exist since pp(Bi9(0)) < oo a.s., and h;(w) is a.s. continuous in w
[DS11, Proposition 3.1]. For any z,w € D and € > 1, since h = (h*)“"* implies that
he(z) = B (w) — B (=2 + w),

2
2he,

_ 2 —w
E 618_62 —2hi Y (—24w) '638_6%h‘z u(w)l

(2) —
lﬂh(D)Sa — ]:E () e_’yhf_w(_z-'-w)llhz—w(Bl(—z+w))§a:|

2
B —2Ihy(—z4w) L Lh(w)
=K |e 2 -es ez le—vh1<—z+w>uh(31(—z+w))§a

2
>E cgle%e%"f(wlﬂm} . (12)

Let g1, be the 7/2-LQG area measure associated with h. Since the regularized measures

2
. A =~
e s ez W) dyw converge to 1, in L1
h )

€E—00

o : 2 2p (w)
Elfn(D)1gp) = lim [ E [e5e2"™1gy) | dw.
D

Since g (D) > 0 a.s., there are €y, ¢4 > 0 such that for any € € (0,¢) we can find a w € D
2

such that E[els“e%hﬁ(w)lE(h)} > ¢4. For such € and w we get by insertion into (12) that
2

E[e%e%he(z)luh(m)ga} > ¢34, s0 (11) holds with ¢; = c3tey. O
In the next few paragraphs we let k > 4, and we let ) be a whole-plane space-filling SLE,.

from oo to co. We will prove existence of the boundary length process Z at a fixed time,

and prove a moment bound for Z. By symmetry in L and R, it is sufficient to consider L.

Recalling that L describes the evolution of the length of the left frontier of 1, we see that
for any fixed ¢t € R and some arbitrary parametrization of an’(t) and nk, a.s.

Ly = tim (m (ki ((e,50)) \ 1) = m(nf ((,50)) \ k) ). (13)

e—0

Remark 4.1 explains why we define L as a limit, rather than considering the Minkowski
content of the full frontier.
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Lemma 4.3. The random variable L, defined by (13) is well-defined a.s., and E[sup,co ) L'] <
oo for all N € N.

Proof. Existence of right side of (13) before we take the limit ¢ — 0 follows by existence of
the Minkowski content of chordal SLE s/, and local absolute continuity.

A y-quantum cone is a particular kind of 7-LQG surface, which may be constructed by
sampling a point from the v-LQG area measure of some v-LQG surface, and zooming in near
the sampled point. See [DMS14, Section 4] for the formal definition and basic properties of
a y-quantum cone. Let h be the field associated with a y-quantum cone on C, embedded
such that the average of h about dD is equal to zero. Let Z = (L, R;)icr describe the
evolution of the quantum boundary length of 7, corresponding to a time parameterization
of n by quantum area. By Theorem 1.6 from [DMS14], Z has the law of a two-dimensional
correlated Brownian motion. We may couple h with a whole-plane GFF h with unit circle
average 0, such that hlp = (h — vlog| - |)|p-

For ro > 7 > 0 let A(ry,m2) :=={2€ C : r; < |z| < ry}. Define T} := inf{t > 0 : n(t) =
3/4} and T, := inf{t > T} : n(t) € B1/4(3/4)}. Let 7. = inf{t : |n(t)| = r} for r > 0. We

now show that

tE[O,Tl/;;] tE[Tl,TQ]

P { sup |L¢ > M

=P [ sup |L; — Lp,| > M| decays super-polynomially. (14)

Note that we have equality of the two probabilities in (14) by invariance of whole-plane SLE,
under recentering at a deterministic point, which follows from the analogous property of the
whole-plane Gaussian free field modulo 27y. For fixed t € R let 0j.; denote the measure oy,
defined by (9) with m,. - as base measure. By Lemma 4.3, there is a C' > 0 such that for

any U C A(1/2,1) and t € R (both chosen in a way measurable with respect to n),
mye (U) < CE[ono(U) Ly, a02n<r [0l myr (U) < CElon(U) 1y, a0 /2.0)<1 [ 1),
so with t(t) := sign(t) - up (7]([0 At,0V t])) and for any t € R,
|Ly — L1,| < CE [lzt(t) - Zt(Tl)‘luh(A(l/‘z,l))<1 | 7]] ,
and further

sup |Ly — Lp|<C sup E [‘Lt(t) — Lys) |1 aq/2.1))<1 \ 77]

tE[Tl,TQ] S,tE[Tl,TQ] ( )
15
<CE| sup |Lyy — Lys)|Lp,a0/2.1))<1 ’ 77} :
S,tE[Tl,TQ]
17
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By an application of Chebyshev’s inequality it follows that

tE[Tl ,T2] S,tG[Tl ,TQ]

N
c\V - &
P [ sup |Ly — Lp| > M} < (ﬁ) E|E [ sup | Lys) — Ly | L, a1/2,1))<1 } U}

< MNE sup |Ls — Ly
t € [0, un (n([0, T2]))],
s €[t t+1]
<MV P sup L — Li| > a| a"'da
R, t € [0, ua(n([0, T2)))],
s €[t t+1]

< MN P [uh(n([O,Tg])) 5 aKl] aVTL 4P sup |Zt - Zs| > al| a¥ 'da,
Ry t € [0,ak1],
s€Eftt+1]

(16)

where the implicit constant depends on N and 7. We consider each term in the integrand
on the right side separately. For any Ky > 0,

P [un(n((0, T2])) > a”] < P[0, Ta)) & Bow: (0)] + Plun(B,x. (0)) > a’1].

By Proposition 6.2 first term on the right side is < a=(V*19 for sufficiently large K,. By
conformal invariance of the GFF and since there exists p > 0 such that E[u,(D)?] < oo (see
the argument of [DKRV16, Lemma A.1] for a proof), the second term on the right side is
=< a~WH19 if we choose K, sufficiently large after fixing K». By a union bound and the
Markov property of Brownian motion,

P { sup |Zt—ZS| >a] jaKllP’[ sup lzt—zs| >al,

te[0,aX1],s€[t,t+1] te[0,1],s€(t,t+1]

which is < a=(V+10) by tail estimates for Brownian motion. Inserting these estimates into
(16), we get

<M, (17)
tG[T1 ,Tz]

IP’{ sup |L—Lp| > M

where the implicit constant depends on N and . Equation (17) combined with translation
invariance of n concludes (14).
By a union bound,

te[0,1] t€[0,7,,0.01]

P [sup |L¢| > ]W} < P [diamn([0, 1]) > M + P { sup  |L¢| > M} : (18)

By [GHM15, Lemma 3.6], the first term on the right side decays faster than any power of M.
By (14), along with scale invariance of space-filling SLE, the second term on the right side
decays faster than any power of M. It follows that E[sup,cg LM <ocforal NeN. O

18
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Theorem 1.3, (i) and (1i). By scale invariance and translation invariance of SLE and of the
Minkowski content, and by Lemma 4.3, we have E[|L, — L|V] < |t — s|N1/2F1/%) for any
N € N and t, s € R, where the implicit constant depends on x and N. We get the exponent
1/241/k by scale invariance of SLE, and since d-dimensional Minkowski content is multiplied
by %2 under the map z +— r/2z for some r > 0. The same result holds for R instead of L.
A quantitative version of the Kolmogorov-Chentsov theorem (see e.g. [MS16a, Proposition
2.3]) now implies that there is a function Z satisfying (i) and the scaling result of (ii), such
that for any given t € R, L; is given by (13) a.s., and that the same result holds with R
instead of L. The stationary and tail triviality results of (ii) follow from Lemmas 2.2 and
2.3. The result (2) follows from scale invariance and tail triviality. O

The lower bound for the Minkowski content of a whole-plane SLE, in the following lemma
will be used in the proof of Theorem 1.3 (iii). A similar super-polynomial lower bound for
whole plane SLE, (2 — k) with other £ < 4, which we expect to hold, would imply that
Theorem 1.3 (iii) also holds for x # 8.

Lemma 4.4. Let n be a whole-plane SLE, from 0 to oo in C with some arbitrary strictly
monotone parametrization, and define 7 := inf{t >0 : n(t) € D}. There is a constant ¢ > 0
such that for all M > 0, and with w, defined by (8),

P[m,(n([0,7])) > M] < 2exp(—cM). (19)
For any o« < 4/5 there are constants C, ¢’ > 0 such that for all M > 0,
P[m,(n([0,7])) < MY < Cexp(—c M*®). (20)

Proof. We will only give a proof of (20), since (19) is proved in the exact same way. For
6 € (0,1] let 5’ be a LERW on 6Z? from 0 to co. Fix v < 4/5, and define 7 := inf{t > 0
n°(t) & Bi/2(0)}. By [BM10] there are constants C,¢’ > 0 such that for all 6 € (0, 1],

P [m’ (25([0,75])) <2M7'] < %Cexp(—c’]\[“),

where m? is as defined above the statement of Lemma 3.4. By Proposition 3.2, given any
M > 2, there is a d,; > 0, such that for any o < d,s there is a coupling of Q" and 7 satisfying

- 1 1 P
P I:p(_’_]oaﬁ) > m} <& —Q'CGXI)(—C M )

To conclude the proof of (20), it is therefore sufficient to show that

{my(n([0.7])) < M~'} € {m’(z°((0,7"])) < 2M '} U {P(ﬂdvﬂ) - 101W}

We will prove this result by contradiction, and we assume the event on the left side occurs, but
neither of the two events on the right side occurs. Choose a homeomorphism a:Ry - Ry

uieh that; theightfide of (6] differs from. g (71 ) ) by less than W We Obtam a contradiction

by observing that |a(t) — t| (resp. [n° (#) = Q( a(t))]) is larger than m for t = a~l(r) if

a (1) > 2M~" (resp. o (1) < 2M71). 0
19
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Proof of Theorem 1.3 (iii). Any Z' € C(R,R?) represents an equivalence class of processes.
Let Z = (Z)tem be an arbitrary representative for this equivalence class. Then there exists
an increasing bijection s : R — R such that Z, = Zs for all t € R. We want to show that
s € 0(2), i.e., the function s is measurable with respect to Z. Since {teR: Z, =0} ={0},
we know that s71(0) € 0(Z). We may therefore assume, upon recentering Z, that Z, = 0,
and we will make this assumption in the remainder of the proof. Since s is continuous, to show
that s € o(Z) it is sufficient to show that for any t € R, we have L(7([t A0,t Vv 0])) € o(Z),
where 7)(t) := n(s(t)) is the reparameterized SLE curve and £ is Lebesgue measure. By
symmetry in law of the curve under time-reversal, it is sufficient to consider the case when
t>0.

Let U be a uniform random variable with value in [0, 1] which is independent of 7. For

any M > 1 define stopping times T, (M) for n € NU {0} as follows

To(M) = inf{t >0 : ML, € {U - 1,U}},

To(M) = inf{t > T,_1(M) : M|L,— Lz _ ,p| > 1}.
We define T, = T,,(1) for all n € N U {0}. We will argue that to conclude the proof of the
proposition, it is sufficient to show that

L7([0.T,)))/n = C in probability as n — oo (21)

for some deterministic constant C'. Assume Tn satisfies (21), and choose a sequence (€ )ren
converging slowly to zero, such that if p(n) = sup,., P[|L(7([0, T /k - C| > €r] then
lim,, ;o p(n) = 0. Consider an increasing sequence (ny)ren such that Y72 p(ny) < co. For
each k € N let M, € N be the smallest (random) natural number such that fnk(]wk) < t.
Let 7y = sup{n € N : T,(My) < t}. By scale invariance of SLE, we have

P(IL(F([0, Tr, (Mi)])7ig ' M = C| > & < p(7g),

and the same property holds with ny replaced by n; + 1. It follows by the Borel-Cantelli
lemma that ﬁkC’Mk_B/S converges a.s. to L(1([0,t])) as k — oo. In particular, L(7([0,])) €
o(Z). We conclude that the proposition follows once we have proved (21).

Define the following stopping times 7}, for Z

To=inf{t>0: |L,-U|¢[0,1]}, T,=inf{t>T, 1 :|L— Ly, ,|>1}. (22)

Observe that T, = s(T},), which implies that lim,_,« L(7([0,T,]))/n — C a.s. if and only if
lim,, ,o 7,/n — C' a.s., so in order to complete the proof of the proposition it is sufficient to
prove the latter result. By the Birkhoff ergodic theorem this will follow if we can establish
the following two results, where S,, := T,, — T,,_; for any n € N: (i) (S, )nen is stationary
and ergodic, and (ii) E[S]] < oo.

First we will establish (i). The measure on R having unit point masses at T, for n € Z
(with T, for n < 0 defined such that the formula (22) for 7,, holds also for n < 0) has
a translation invariant law since 7 has stationary increments (Lemma 2.3). This implies
stationarity of (S, )nen. Ergodicity of (S, ),en follows from Lemma 2.2 and transience of 7.
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Finally, we will prove (ii). It is sufficient to show that P[Ty > 2M] decays super-
polynomially in M. By a union bound,

P[T; >2M] <P [ sup |L| < 1} + P { sup |L;— Lyl <1
te[o,M] te[M,2M]

The two terms on the right side are equal, so we will only bound the first term. For each z € C
let nE be the left frontier of n upon hitting 2, equipped with the natural parametrization.
Defining Ay, := Z? N [M, M]? for any M > 0 and 7, := inf{t > 0 : nL(t) € Bpoo(2)}, a

union bound gives

P l sup |L| < 1} < P[Byoor(z) € n([0, M]), Vz € An] + Z [ <1].

te0,M] iy

The first term on the right side decays super-polynomially in M by [GHM15, Lemma 3.6].
The second term on the right side is decays super-polynomially in M by Lemma 4.4. It
follows that P[Ty > 2M] decays super-polynomially in M, so (ii) holds. O

5 The SLE is measurable with respect to the pair of
contour functions

In this section we will prove Theorem 1.4 and Corollary 1.5. For & > 4 let 1 be a whole-plane
space-filling SLE, on C parametrized by Lebesgue measure such that 7(0) = 0. Recall the
definition of the pair of contour functions Z = (L, R) in the introduction. Conditioned on Z,
independently sample two SLE curves 7 and 1 according to the conditional distribution of 7
given Z. Notice that this conditional distribution is well-defined by [Durl0, Theorem 5.1.9],
since 7 is a random variable with values in the space of continuous curves equipped with the
topology of uniform convergence on compact sets, which is a standard Borel space. Define
¢ C — Cby o(n(t) = n(t) for all t € R; we will prove below that ¢ is well-defined. In
order to complete the proof of Theorem 1.4 it is sufficient to prove the following proposition.

Proposition 5.1. Almost surely ¢ is a rotation about the origin.

Lemma 5.2. For any k > 4 there is an N € N such that the following holds a.s. The set of
t1,ts € R such that n(ty) = n(ts) is exactly the set of t;,ty € R for which there exists n < N

and sy, ..., s, € R, such that sy =t,, s, = ta, and for any i € {1,...,n — 1} we have either
RomBuy= ol Reoor Lu=le= o Lo ()

Proof. Let i be the measure in C associated with a 4/y/k-quantum cone independent of 7,
and let Z = (Lt, R,)teR describe the evolution of the quantum length of the left and right,
respectively, frontier of 7, when we parametrize n by quantum area. By Theorem 1.6 proved
in [DMS14], Z has the law of a two-dimensional correlated Brownian motion. Since p assigns
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a positive measure to each open set and has no point masses, there is a continuous strictly
increasing bijective function o : R — R satisfying «(0) = 0 and u(n([t A0,V 0])) = |a(t)]
for all t € R. By the peanosphere construction of [DMS14] (see the text right after Corollary
1.5), and since for any x > 4 there is an N € N such that no points of a space-filling SLE,
has multiplicity larger than N (see e.g. [GHM15, Theorem 6.3]), we know that the lemma
holds if we parametrize 1 by quantum area and consider 7 instead of Z. In other words,
defining 7(t) = n(a~'(t)), the set of t,t, € R such that 7(¢;) = 7(t2), is exactly the set of
t1,t2 € R for which there exists n < N and sy,...,s, € R, such that s; = t;, s,, = t9, and
for any 7z € {1,...,n— 1} one of the conditions (23) is satisfied. By this result and symmetry
in L and R, in order to conclude the proof of the lemma, it is sufficient to show that a.s.,

{(tl,tg) € RQ . Lt1 = Lt2 = inf Lt}

t1<t<ts
= {(tl,tg) e R?: La(tl) = La(tz) = inf Lt} .

Let ¢ € Q. Almost surely, for any t; < ¢ such that n(¢;) is not contained in the left
frontier of n at time ¢, we have L;; > inficy, g L. Therefore, a.s., for any ¢; < ¢ such that
Ly, = inficpy, g Ly, the left frontier of n at time ¢, is contained in the left frontier of n at time
q. It follows that a.s. for any (t1,t2) contained in the set on the left side of (24), the left
frontier of n at time ¢, is contained in the left frontier of 7 at any rational time in [tl, ty]. This
implies that L 1) = infaq)<t<aits) Lt Since the time-reversal of (R, L) and (R, L) describe
the evolution of the boundary lengths for the time-reversal of 7, it follows that a.s. for any
(t1,tz) contained in the set on the left side of (24), we also have Ly,) = infaq,)<t<a(ts) Lt-
This proves that the set on the left side of (24) is a.s. contained in the set on the right side
of (24). Proving that the set on the right side of (24) is a.s. contained in the set on the left
side of (24) is done by an identical argument, and we can conclude that (24) holds. |

Lemma 5.3. The function ¢ : C — C defined above is a.s. well-defined, and ¢ is a.s. an
area-preserving homeomorphism.

Proof. By Lemma 5.2, a.s.,

{(t1,t2) € R® = n(ty) = n(ta)} = {(t1, t2) € R* : (1) = 7(t2)}.

This implies that ¢ is well-defined and bijective.

Next we will argue that ¢ is a.s. continuous. By symmetry in n and 7, and since ¢ is
bijective, this will imply that ¢ is a homeomorphism a.s. It is sufficient to argue that a.s., for
any z € C, any sequence (z,)nen converging to z, and any € > 0, we have |¢(2,) — ¢(z)] < €
for all sufficiently large n. Let k € N and ¢;,...,¢ € R be such that n(t) = 2z iff t = ¢; for
some j € {1,...,k}. For each j € {1,...,k} let I; be an open interval containing ¢; such
that 7(f;) C B (czﬁ(‘f)) For each n € N, let s, € R be such that n(s,) = 2z,. To conclude
the proof, it is sufficient to argue that s, € U;I; for all sufficiently large n. We will prove
this by contradiction, and assume there is a strictly increasing sequence (nj)ren such that
sp, & U;I; for all kK € N. The sequence (sy,)nen is bounded, so we can find s € R such that
(Sn, Jken converges subsequentially to s. By continuity of n we have n(s) = limy_oc (5, ) =
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limy, o 2n = 2, s0 s = t; for some j. This is a contradiction to the assumption s,, & U;1;,
and we conclude that ¢ is continuous.

To prove that ¢ is a.s. measure-preserving it is sufficient to prove that for any disk
B C C we have L(B) = L(¢(B)) a.s., where £ denotes Lebesgue measure. Let (J;)ren be a
countable collection of disjoint intervals such that B = Ugenn(Ji). Since 7 is parametrized
by Lebesgue measure, £(B) = >, |Ji|. where we use | - | to denote the length of an
interval. Since 1 = ¢ o7, we know that ¢(B) = Uken?(Ji), so since 7 is parametrized by
Lebesgue measure, we have L(¢(B)) = Y, .y |Jk|. It follows that L(B) = L(¢(B)), so ¢ is
a.s. measure-preserving. O

For fixed a,b € C, define

Ar = Ai(a,b) :=|¢(a +b) — ¢(a)l,
Ay = As(a,b) := |p(a + 2b) — ¢(a + b)),
Az = As(a,b) := |p(a + 2b) — ¢(a).

Lemma 5.4. For any fized a.b € C we have A, B Ay and As ! 2A,.

Proof. We first remark that the first result A, 4 Ay is not an immediate consequence of
invariance under recentering of whole-plane space-filling SLE, which holds by invariance
under recentering of the whole-plane GFF from which the curve is generated. In order to
show that A, 2 Ay, we need to show that the joint law of 7 and 7 is invariant under
recentering the curves at the time when 7 hits b.

Let X = (Z,n,n) be the triple consisting of the boundary length process Z, in addition
to the two conditionally independent curves 7 and 7. For any ¢t € R, let X (#) be equal to X,
except that the processes are recentered at time ¢, i.e.,

X(t) = (Zyt = Zen(- +1) = n(t). 0(- + 1) —1(t)).
Fix M > 0, and let ¢ be a uniform random variable in [—M, M| independent of X. For any
z € C, let 7(z) = inf{t € R : n(t) = z} be the time at which 7 hits z. By independence of
o and X, and since X < X(t) for any fixed t € R by Lemma 2.3, we have X g X (o), so

(X, X((b))) £ (X(0), X (r(n(0) +b))). (25)

When M — oo, the law of X(7(n(c) + b)) converges to the law of X (o) = X(7(n(c))) in
total variation distance, since sampling a time ¢ uniformly from [—M, M] is equivalent to
sampling a point z uniformly from n([—M, M]) in the sense that 2 ES n(o). Since the total
variation distance between the laws of the two elements on the right side of (25) converges
to zero when M — oo, we see that the two elements on the left side of (25) are equal in law.
This implies that A, L A,.

Next we will prove that As £ 2A;. Since X 4 X (7(a)) by the arguments of the preceding
paragraph, we may assume a = 0 in the remainder of the proof. Define ' = 2n(-/4),
7 = 27(-/4), and Z; = 2'*¥*Z ;. Define ¢ : C — C such that ¢(n/(t)) = 7/(t) for all
t € R. Since (Z',7',7) 4 (Z.1.7). we see that ¢ is well-defined and ¢ £ . Then define
Al = |(2b) — $(0)]. Since (1, 77) < (n,m) and A5 = 2A;, we have Aj 4 Al = 2A,, and the
second identity follows. U
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The following proposition will be proved in Section 6.
Proposition 5.5. For fized a,b € C, we have E(A;) < oc.
Combining the above results we can show that ¢ is linear.

Proposition 5.6. The map ¢ : C — C is a.s. linear, and the matrix describing the linear
transformation has determinant +1.

Proof. Let a,b € C. Since E(A;(a,b)) < oo and Ajz(a,b) k4 2A,(a,b) 4 2A5(a, b), we
have E[A;(a, b)] + E[A2(a,b)] = E[A3(a,b)]. Since we know by the triangle inequality that
Aq(a,b) + As(a,b) > As(a,b), we see that A,(a,b) + As(a,b) = As(a,b) a.s. This means that
¢p(a), p(a+b), p(a+ 2b) are a.s. collinear. Therefore, a.s. for any ¢,q € Q and m, k € Z, the
following three points are collinear

O(q+qi), S(q+qi+m2Y), o(q+ qi +m25H). (26)

Furthermore, the second point of (26) is a.s. between the first point and the third point of
(26).

For ¢ € R define ¢, :== {z € C : Re(z) = ¢} and Zq = {2z € C : Im(z) = ¢q}. By
continuity of ¢, and since the three points (26) are collinear, for any fixed ¢ the set ¢(¢,) is
a.s. contained in a line. By Lemma 5.3, ¢({;) is homeomorphic to ¢,, so ¢(¢,) is a.s. either
a line segment, a half-line, or a line. Furthermore, by continuity of ¢ we know that this
property holds a.s. simultaneously for all lines ¢, since a.s., any three collinear points are
mapped to three collinear points. By symmetry in 1 and 7, we know that ¢! also maps
any line to a line segment, a half-line, or a line. Using that ¢ is bijective, this implies that
¢ (and ¢~') maps any line to a line.

For any given k € Z consider the grid made by the lines ¢,,5+ and Zka for m € Z. Since
¢ is a homeomorphism a.s., any connected domain D bounded by four of the grid lines £,
and /,,,«, is mapped bijectively onto the domain bounded by the image of these lines under ¢.
Since ¢ is bijective, we see that the lines ¢(¢,,,+) for different m cannot intersect, so they are
parallel, and the same property holds for the lines Zka. We conclude that a.s. for any fixed
k € Z, ¢ is an affine map restricted to the grid made by ¢, and ¢,,5x for m € Z, so since
»(0) =0, ¢ is continuous, and k& was arbitrary, the map ¢ must be linear. The determinant
of the matrix describing the linear map must be +1 since the map is measure-preserving. [0

The following lemma is the main ingredient used to deduce Proposition 5.1 from Propo-
sition 5.6. See Figure 4 for an illustration. Using that both 1 and 7 have the marginal law
of an SLE,, we will use the lemma to deduce that the linear map ¢ preserves angles. It will
be proved in Section 6.

Lemma 5.7. Let k < 4, let h be a whole-plane GFF modulo 2wy with x given by (3), and
for each z € C let nk (resp. n®) be the west-going (resp. east-going) flow line of h started at

z with some arbitrary monotone parametrization. For § € (0,7), r > 0, and k € N define
zp 1= 27 Fret?,

ty :=inf{t >0 : Imnk (1) <0}, t:=inf{t >0 : Imnf (t) < 0},

1 n
i 1= ni(ti)’ bk = ni(th)’ Ty = 1{ak+bk20}’ Zn = E Zxk.
k=0
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For 6 < m/2 (resp. 8§ = w/2, 0 > w/2) there is a constant py € (0,1) satisfying ps > 0.5
(resp. pg = 0.5, pg < 0.5), such that a.s.- lim, o Z, = py.

We conclude the proof of Proposition 5.1 by showing that unless ¢ is of the desired form,
7 and 7 cannot both satisfy the property of Lemma 5.7.

Proof of Proposition 5.1. We will argue that the image of a pair of orthogonal lines is a.s.
mapped to a pair of orthogonal lines under ¢. This is sufficient to complete the proof, since
it implies by Proposition 5.6 that ¢ is a composition of a rotation and possibly a reflection,
and we see that ¢ has to be a rotation (not composed with a reflection), since the boundary
length process Z is invariant under a rotation of 7, while the two coordinates are swapped
upon a reflection.

For any 6, € [0,27), 0 € (0,7) and r > 0, let Z%%" denote the random variable Z,
defined in Lemma 5.7 for the curve (e %n(t)),cr. Define

A= {(80,6,7) € [0.2m) x (0.7) x Ry : lim Z0" < 1/2},

27
Ay = {(00,0,7) €[0,27) x (0,7) x R, : lim Z%%" > 1/2}. (27)

By Fubini’s theorem, Lemma 5.7, and rotational invariance of whole-plane space-filling SLE,
we have L(ALABy) =0 as. for By :=[0,27) x (0,7/2) xRy and B_ :=[0,27) x (7/2,7) x
Ry, where £ denotes Lebesgue measure and A denotes symmetric difference. Recall that
n=¢on, and let A; be defined exactly as A, but with 7 instead of n, i.e., we first define
70007 exactly as Z%97 with 7 instead of 1, and then we define Ay by (27) with Z%¢r
instead of Z%:%". By definition of ¢, and since for any a,b € C for which a, b, 0 are collinear,
we have |a| > |b] iff |¢(a)| > |¢(b)|, we have

Ay ={(05.0.7) € [0,27) x (0,7) x Ry : 3(fp,0,r) € Ay such that

50 = arg (b(eieo)’ Fei(go+§) _ ¢(T€i(00+0))}.
Since 77 has the marginal law of an SLE,., we see from Lemma 5.7 that

In the remainder of the proof we assume that the matrix describing the linear transformation
¢ has determinant 1 (equivalently, the curve (¢(e'))gejo o) goes counterclockwise about the
origin); the opposite case can be treated similarly. Let 6, be sampled uniformly at random
from [0, 27). Letting

A% = {(6,7) € (0,7) x Ry : (f0,0,7) € Az},
By =(0,7/2) xRy,  BY*=(n/2,7) xRy,

it follows from L(ALAB.) = 0 that a.s., .C(A(iOABl/Q) = 0. Let 6} € [0,27) be the angle
between the positive r-axis and the image of s = {re!® : r > 0} under ¢ in counterclockwise
direction, and let # be the angle between the images of s = {re/® : r > 0} and ' =
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{reil@o+m/2) . p > 0} under ¢ in counterclockwise direction. We have #* € (0,7) by our
assumption that the determinant of the matrix describing ¢ is equal to 1. Defining

A% = {(6,r) € (0,7) x Ry : (63,0,7) € ALY,
BY =(0,6) x Ry, B” = (¢*,7) x Ry,

it follows from £(A%ABT?) = 0 that L(ATABY) = 0 a.s. On the other hand, it follows
from (28) that £(A°ABT/?) = 0. This implies that B/ = BY as., so §* = 7/2 a.s. and

the two orthogonal lines s and s’ are mapped to orthogonal lines under ¢. O
A A Ay
S + —
pE ;
il T‘\S{ZH
s ¢ / ¢
—_—
By nk
, N
ao bo

Figure 4: Illustration of the proof of Proposition 5.1. The region A, (resp. A_) in light
blue (resp. yellow) on the left figure corresponds to the points (6y, 8, r) with 6y = 0 for which
lithiys s 55 Z2SVF 3o % (resp. lim, o, Z%0" < %) The right figure shows gi, which are a.s.
identical to ¢(AL) by the definition of ¢. Since ¢ o n has the marginal law of an SLE, each
of the domains A, is a rotation (possibly composed with a reflection) of the first quadrant
a.s. Since a reflection would interchange the two coordinates of Z, we conclude that ¢ is a
rotation a.s.

Proof of Corollary 1.5. 1t is sufficient to prove that we get a topological sphere when we
glue together the pair of trees in Figure 3; once we have proved this it is immediate that
the sphere is equipped with a space-filling path (mapping each t, € R to the equivalence
class of (¢(to), Ry,)), and Theorem 1.4 implies that the embedding of the path-decorated
sphere into C is canonical. It follows by Lemma 5.2 that we get a topological sphere under
the equivalence relation on Figure 3, since the existence of appropriate times sq,..., s is
exactly the condition which says whether two times t; and ¢, are in the same equivalence
class for the considered equivalence relation, and since the lemma implies that the quotient
topology on the set of equivalence classes is the same as the standard topology on C. O

6 Proof of Proposition 5.5 and Lemma 5.7

The proofs of Proposition 5.5 and Lemma 5.7 are based on regularity estimates for space-
filling SLE,;, which we will prove in Lemma 6.1 and Proposition 6.2. Throughout the section
let k > 4, let x be given by (3) with & = 16/, let h be a whole-plane GFF modulo a global
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additive multiple of 27y, and for each z € C let nL (resp. n¥) be the west-going (resp. east-
going) flow line of h started from z. Let n be the whole-plane space-filling SLE,. generated
by h, parametrized by Lebesgue measure and satisfying n(0) = 0.

The lemma we state next will be applied in the proof of both Proposition 6.2 and
Lemma 5.7. Define stopping times o* for 7 as follows

ot =sup{t > 0:7([0,t])) D}, o =inf{t <0:n(t0]) C D} (29)
Let p* :=n(c*). Let p® (resp. p¥) be the point at which the two flow lines nfi (resp. 7751)
merge. Then define the g-algebra G by G := (D, p), where p € C* and D C C are defined
by

p:=(tp . p%p"), D:=n(o,0")).

See the left part of Figure 5 for an illustration of the objects defined above and of the
statement of the following lemma.

Lemma 6.1. In the setting described above, for R > 1 let Er be the event that there exists
2t 27 € Bg(0) such that =" (resp. z= ) is contained in the upper (resp. lower) half-plane,
and such that the following hold

) nzL+ and nzL_ (resp. 'r]f+ and nf,) merge before they exit Br(0),
o nkand nt (resp. n® and n® ) hit R_ (resp. Ry ) before they exit Br(0), and
e the bounded region enclosed by the four flow lines nzﬂ,nf_,ng,nf_ contains D.

Then there exist p > 0 and Ry > 0, such that for R > Ry we have P[ER|G] > p.

Proof. Since the event Ex is monotone in R, it is sufficient to prove that there exist R > 0
and p > 0 such that P[Er|G] > p. Let F: C\ D — C\ D be the unique conformal map
such that lim, ,. F(2)/z > 0. The logarithmic capacity of D, which is denoted by cap(D),
is defined to be cap(D) := loglim, ,, F'(2)/z; see e.g. [Law05, Chapter 3]. By [Law05,
Propositions 3.29-3.30] there is a universal constant ¢ > 0 such that |F(z) — e~ P(P)z| < ¢
for all z € C\ D, where cap(D) is the logarithmic capacity of D and e=<*?) ¢ [1,4]. Let
R =100(1 + ¢), and observe that

F(D) C Bo.1r(0), Bosr(0) C F(Br(0)) (30)
F(R\ D) C{z€C : |Im(2)] <0.1R}.

We will argue that D is a local set for the GFF h, as defined in [SS13, Section 3.3] (see
also [MS16b, Section 3.2]). Given any z € C and 6 € [0,27) the flow line 1’ of h started
at z with angle 6 is a local set for h by [MS17, Theorem 1.1] and [SS13, Lemma 3.9, 4.].
Let H(C) be the Hilbert space closure for the Dirichlet inner product of the space C'°(C)
of real-valued smooth compactly supported functions on C. For any open set U C C, let
Hgupp(U) be the subset of H(C) consisting of functions which are supported in U, and let
Hparm(U) C H(C) be the orthogonal complement of Hgy,,(U) for the Dirichlet inner product.
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Figure 5: The left figure illustrates the event Eg in the statement of Lemma 6.1, and
the right figure illustrates the proof of the lemma. We show that Ep has a uniformly
positive probability of occuring conditioned on the set D (shown in light blue) and p =
(p*,p~,p®,p"). We do this by applying Lemma 2.1, which says that the realization of the
Gaussian free field on C\ D on the right figure does not depend too strongly on D and p in
domains bounded away from D and oo.

Since D is measurable with respect to a countable collection of flow lines for A, the event
that U N D = ) is measurable with respect to the projection of h onto Hyam(U), so D is
local by [SS13, Lemma 3.9, 1.].

We will now describe the boundary conditions of h|c\p. By [MS17], for any fixed z € C
and 6 € [0, 27) and with x and A" as in (3), the boundary conditions modulo 27y on the left
(resp. right) side of ¢ are given by —\ — 6x (resp. N — ), plus x times the winding of the
curve, where the winding is defined relative to a path going straight upwards (equivalently,
straight northwards, or in the direction of the positive imaginary axis). We say that the
flow line has flow line boundary conditions —\" — 0y (resp. A — 6x) on its left (resp. right)
side. See [MS17, Theorem 1.1 and Figure 1.9]. The flow line boundary conditions of h|c\p
are therefore given by —\ — Zx (resp. X' — Zx, =X + Zx, +X + Zx) on the segment p~p”
(resp. pTpL, ptpft, p~pf) of OD. Since D is local, the characterization of local sets in [SS13,
Lemma 3.9] implies that the conditional law of h|c\p given G is that of a zero boundary
GFF plus the harmonic extension of the values of he\p from 0D to C\ D.

Define the distribution h on C \ D by hi=hoF-!— x arg(F~1)". For any 2z € C and
6 € [0,27), the curve F on? is a flow line for h of angle 6 started at F'(z), see [MS16b,
Section 1.3]. Define p* := F(p®) for @ € {+, —, e, w}. Observe that h has the same flow line
boundary values as h, i.e., the flow line boundary conditions are given by —\" — Zx on the
segment p-— p~ of OD, etc.

Let Er be the event that we can find Z*, 2~ € Bygr(0)\ Bo.1r(0) satisfying Im(z+) > 0.1R
and Im(z7) < —0.1R such that

e the flow lines nf, and nZ (resp. nf and nf) for h merge before they exit Boog(0),

e the flow lines n (resp. nZ) hit R_ F0.1R (resp. Ry F0.1R) before they exit Bygg(0),
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and

e the bounded region enclosed by the four flow lines 7)5,175,775,7]5; for h contains

Bo.1r(0).

Observe that ﬁ]am is bounded, and that ER is measurable with respect to E|Bo_9R(0)\ Bo1r(0)-
Since the event E r occurs with positive probability for any fixed choice of boundary data for
h on dD, and since the boundary data of h are bounded, it follows by Lemma 2.1 that there
is a p > 0 such that [P’[ER |G] > p. By (30) and our choice of R, we have EpC Er, since we
can define z* = F~1(2%) on the event that Ep occurs. It follows that P[ERr|G] > p. O

Proposition 6.2. Let 7 be a whole-plane space-filling SLE,. for k > 4, parametrized by
Lebesgue measure and satisfying n(0) = 0. Then there exist a & > 0 such that for all M > 0,

PD & n([-M, M])] = M~¢, (31)
where the implicit constant may depend on k.

Proof. Let Epr be the event of Lemma 6.1, and fix R > 0 sufficiently large such that
P[ER|G] > p for some p > 0. For k € N let Ef be the event that Ex holds for the
Gaussian free field h o g, — xarg(g,) = h o gr, where gi(z) := R*'z. In other words,
EY, is defined exactly as Eg, except that Bg(0) is replaced by Bpi(0) and D is replaced
by Bprk-1(0). Let Gy be the o-algebra which is defined exactly as G, but for the Gaus-
sian free field i o g;. By conformal invariance of h and Lemma 6.1, P[E% | G,] > p for all
k € N, so P[Ni<k<i(E%)] < (1 — p)X. Observe that if M = 7R*! for some K € N then
{D ¢ n([-M, M])} C Mi<k<r(ER)", so

PD ¢ n([-M, M) < (1 -p)", M=naR*
This implies the existence of an appropriate &. Il

Proof of Proposition 5.5. We will show that P[|¢(a + b) — ¢(a)| > k] decays faster than any
negative power of k, which is sufficient to complete the proof of the proposition. When
proving this, we will consider an infinite graph G defined as follows. Each vertex of G is
identified with an interval of the form [m, m+1] for m € Z. There is an edge between vertices
corresponding to intervals [my, m;+1] and [mo, mo+1] iff n([my, mi+1])On([my, mi+1]) # 0.
We remark that G is defined similarly as the structure graphs considered in [GHS16a], where
the graphs were used to define a discrete metric on a Liouville quantum gravity surface. We
note that 7 and 7 give the same graph G, since G is measurable with respect to Z by Lemma
5.2.

We fix K > 0, and want to show that P[|¢(a + b) — ¢(a)| > k] < k=K for all k >
10'(1+b'), where the implicit constant may depend on K, but not on k. Let d € N be the
number of vertices [m,m + 1] of G for which n([m,m + 1]) N [a,a + b] # 0, where [a, a + b]
denotes the line segment connecting a and a + b. For any K’ > 0, a union bound gives

P(lg(a +b)=¢(a)| > k) < P(la.a+b] ¢ n([-k"" k"))
+P(la,a+b) C n([—k"" KKT); d > k:l/"‘) (32)
+P([a,a+b] C n([—k"" k¥)); d < k72 |(a + b) — p(a)] > k).
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Choose K’ sufficiently large such that the first term on the right side of (32) is < k=% such
a value of K’ exists by Proposition 6.2. If d > k'/2, there are > k'/2 cells of area 1 which
intersect [a, a + b], hence at least one of the cells has diameter larger than k1/10: otherwise
all the > k'/2 cells would be contained in the ball By, (a), thus contradicting the fact
that the area of Byi/104,(a) is smaller than k2. By a union bound, translation invariance
in law of 7, and [GHM15, Lemma 3.6],

kK 1
P(la,a+b] € n([—k"" k¥ d > k72) < Y P(diam(y([j.j +1])) > k')

< 2kM'P(diam(n([0, 1])) > k%) < k7K.

If the event in the third term on the right side of (32) occurs, there is an m € {—k%', —kK' +
1,..., k%" —1} such that diam(7([m, m+1])) > |¢(a+b)—¢(a)|/d > k'/2. Applying [GHM15,
Lemma 3.6] again, we get

P(la,a +b] C n([—k% kX)) d < KY% |p(a + b) — ¢(a)] > k)
< 2k%'P(diam(7([0, 1])) > k'/?) < k7K.

Combining the above bounds, we see from (32) that P[|¢(a + b) — ¢(a)| > k] < k=K which
concludes the proof of Proposition 5.5. O

Proof of Lemma 5.7. By scale invariance of SLE, it is sufficient to prove the lemma for r = 1,
and we will make this assumption throughout the proof. Define py := P(x; = 1). We will
argue that py satisfies the inequality in the statement of the lemma. By symmetry, we
have pr/» = 0.5, and we assume for the remainder of the paragraph that 6§ # 7/2. By
invariance under recentering of the whole plane GFF from which the flow lines 772 and nle
are generated, the law of aj + by is symmetric about Re(z1). It holds with positive probability
that ay +bx € (Re(z1) A0, Re(21) V0). Since 6 < 7/2 (resp. 6 > 7/2) implies that Re(z;) > 0
(resp. Re(z1) < 0) it follows that ps satisfies the inequalities in the statement of the lemma.
First we will prove that we can find a ¢ > 0 such that

P(Ef) < exp(—ck),  Ep:= {nf([0,¢f]) c D; nk([0,tf]) C D}. (33)

For k € N let E’k be the event defined exactly as the event Ep in Lemma 6.1, but for the
GFF h o g, instead of h, where g,,(z) := 27™z. In other words, Ej is defined exactly as
the event Fr, except that we consider the disk D (resp. By-«(0)) instead of Br(0) (resp. D).
Let p > 0 and N € N be such that Lemma 6.1 holds with R = 2. For any m € N let
D,, C By-~(0) and p,, € C be defined as D and p, respectively, in the proof of Proposition
6.2, but for the Gaussian free field h o g,, instead of h. By applying Lemma 6.1 iteratively,
such that we in step m € {0,...,k — 1} of the iteration condition on Dy —pm) and pxx—m),
we have P[E,CVk] < (1 —p)*. See the proof of Proposition 6.2 for a similar argument.

Since ]P’[E’f\,k] < (1 - p)* and Ex C Egyy for any k € N, in order to complete the
proof of (33) it is sufficient to show that Ek C FEj for any £k € N. If Ek occurs and
2t € HN (D \ By-«(0)) is as in the definition of Ex, then the flow line n% (resp. n% ) stays
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inside D\ By-x () until it hits R_ (resp. R, ). The flow lines nsz and nfk do not cross the flow
lines %, and nf . so they stay inside the closure of the domain enclosed by s 5 ni and R
until they hit R. This implies that Ej occurs, and hence completes the proof of (33).

Next we will argue that we can find a decreasing sequence (s )reny converging to 0 such
that

P(E{) < exp(—ck/2), Ey, = {nf([0,f]) € By (0); n ([0, tE]) € By, (0)}. (34)

By scale invariance of SLE, the probability of Ek is a function of the ratio |z;|/s for fixed 6.
Defining s, = 271F/2] we see by (33) that ]P’(E’,f) = P(Efy/97) < exp(—ck/2), so (34) holds.
By the Borel-Cantelli lemma, the event E} occurs for all sufficiently large k. By the first
characterization of local sets in [SS13, Lemma 3.9] and since flow lines of the GFF are local
sets, x;p1lp, is measurable with respect to h By, (0) for all & € Z. The sequence (xj)ren is
stationary. So by Birkhoff’s Ergodic Theorem, lim,, ., Z, exists a.s. and has expectation py.
By the Borel-Cantelli lemma, lim,,_,~ Z,, = lim,,_,~ 7—‘} > or_ 2klg, as. Since mkeNU(h’Bsk(O))
is trivial by Lemma 2.2, we see that this limit is equal to a deterministic constant a.s., so
lim,, o Z, = py a.s. O
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