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Abstract In this paper, we study the critical behavior of percolation on a configuration
model with degree distribution satisfying an infinite second-moment condition, which in-
cludes power-law degrees with exponent τ ∈ (2,3). It is well known that, in this regime,
many canonical random graph models, such as the configuration model, are robust in the
sense that the giant component is not destroyed when the percolation probability stays
bounded away from zero. Thus, the critical behavior is observed when the percolation prob-
ability tends to zero with the network size, despite of the fact that the average degree remains
bounded.

In this paper, we initiate the study of critical random graphs in the infinite second-
moment regime by identifying the critical window for the configuration model. We prove
scaling limits for component sizes and surplus edges, and show that the maximum diame-
ter the critical components is of order logn, which contrasts with the previous universality
classes arising in the literature. This introduces a third and novel universality class for the
critical behavior of percolation on random networks, that is not covered by the multiplica-
tive coalescent framework due to Aldous and Limic [5]. We also prove concentration of
the component sizes outside the critical window, and that a unique, complex giant compo-
nent emerges after the critical window. This completes the picture for the percolation phase
transition on the configuration model.
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1 Introduction

Bond percolation, or simply percolation, refers to the random graph obtained by indepen-
dently keeping each edge of a graph with some fixed probability p (and deleting with proba-
bility 1− p). Percolation is a classical and important model in statistical physics and network
science, as it serves as a canonical model for assessing robustness of a network when the
edges of the underlying network are randomly damaged, and also as a basic model of vacci-
nation for the prevention of an epidemic on networks. A detailed account of many of these
applications can be found in [7, 50]. From a theoretical perspective, percolation is one of the
most elementary models that exhibits a phase transition, i.e., there exist values pc = pc(n)
such that for p > pc(1 + ε) and ε > 0, the proportion of vertices in the largest connected
component is bounded away from zero with high probability, whereas for p < pc(1−ε) this
proportion becomes negligible. The critical behavior is observed when p ≈ pc, and fascinat-
ing behavior starts to emerge for the percolation process around this critical value.

It turns out that there is a window of values of p where the component functionals show
intermediate and unique behavior. For example, rescaled component functionals converge to
non-degenerate scaling limits, in contrast to the fact that they always concentrate for other
values of p. Also, the large components in this window are structurally intermediate in the
sense that neither there is a giant component with a growing number of cycles, nor do the
components look like trees. This regime is called the critical window of the percolation
phase-transition. Starting with the pioneering work of Aldous [4], deriving scaling limits for
critical component functionals has been the ground for an enormous literature with several
interesting scaling-limit results over the past decades [5, 6, 11, 12, 27, 28, 44, 48, 49, 53].
We refer the reader to [26, Chapter 1] and references therein for an elaborate discussion of
the nature of this transition, and a literature overview.

In the literature, two fundamentally different types of behavior have been proved for the
scaling limits and the critical exponents associated to the critical window and component
sizes depending on whether the asymptotic degree distribution satisfies a finite third-moment
condition [11, 28] or an infinite third - but a finite second-moment condition [12, 27]. How-
ever, the study of critical behavior in the infinite second-moment setting was an open ques-
tion.

When the degree distribution is asymptotically a power-law with exponent τ ∈ (2,3),
then the finite second-moment condition fails. These networks are popularly known as
scale-free networks [7] in the literature. Many real-world networks are observed to be scale-
free [2, 30, 36, 50]. One of the well-known features of scale-free networks is that they are ro-
bust under random edge-deletion, i.e., for any sequence (pn)n≥1 satisfying liminfn→∞ pn >
0, the graph obtained by performing percolation with probability pn is supercritical. This
feature has been studied experimentally in [3], using heuristic arguments in [23, 24, 25, 29]
(see also [19, 20, 34] in the context of optimal paths in the strong disorder regime), and math-
ematically in [17]. Thus, in order to observe the percolation critical behavior, one needs to
have pn → 0 with the network size, despite of the fact that the average degree of the network
remains bounded.

In this paper, we initiate the study of critical behavior in the scale-free regime. As a
canonical random graph model on which percolation acts, we take the multigraph gener-
ated by the configuration model. When the degree distribution satisfies a power-law with
exponent τ ∈ (2,3), it was heuristically argued in [24, 29] that the critical value is pc ∼
n−(3−τ)/(τ−1), so that the critical window is given by the collection of values pc = pc(λ ) =
λn−(3−τ)/(τ−1), where λ > 0 indicates the location inside the critical window. We establish
that the scaling exponents from [24, 29] are indeed true, and discuss asymptotics of compo-
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nent functionals inside the critical window. We also show that pc = pc(λ ) = λn−(3−τ)/(τ−1)

with λ > 0 gives the right critical window, by showing that a giant component emerges at
the end of the critical window (λ → ∞), while components have a trivial star-like structure
before the critical window (λ → 0). The main contributions of this paper can be summarized
as follows:

Critical window. At criticality, we obtain scaling limits for the largest component sizes and
surplus edges in a strong topology. The result displays a completely new universality class of
scaling limits of critical components. The scaling limits here are different from the general
multiplicative coalescent framework in [5]. In particular, the limiting exploration process
has bounded variation, so that the general tools from [5] cannot be applied. We also study
the diameter of these components and show that the maximum diameter is of order logn.

Near-critical behavior. For pn = λnn−(3−τ)/(τ−1) with λn → 0, the graph is subcritical and
we show that the largest components sizes, rescaled by nα pn, concentrate. On the other hand,
when λn → ∞, the largest component size, rescaled by np1/(3−τ)

n , concentrates, and this is the
unique giant component in the sense that the size of the second largest component is much
smaller than np1/(3−τ)

n . The nature of the emergence of this giant component for pn ≫ pc
is markedly different compared to the universality classes in the τ ∈ (3,4) and the τ > 4
regimes, where the giant emerges when the percolation probability satisfies (pn − pc(λ1)) ≫
(pc(λ2)− pc(λ1)), for some strictly positive pc and −∞ < λ1 < λ2 < ∞ [38].

Methods. Technically, analyzing percolation on random graphs like the configuration model
is challenging, because in order to make Aldous’s exploration process approach [4] work,
one is required to keep track of many functionals of the unexplored part of the graph [48],
resulting in a high-dimensional exploration process. This difficulty was circumvented in [27,
28] by using Janson’s algorithm [39]. Unfortunately, Janson’s algorithm does not work here
due to the fact that the algorithm creates n−o(n) degree-one vertices. Instead, we sandwich
the percolated graph in between two configuration models, which yield the same scaling
limits for the component sizes. Also, in order to deduce scaling limits of the component sizes
from that of the exploration process, we prove several properties of the limiting exploration
process, which are interesting from an independent perspective.

Remark 1 (Single-edge constraint) In a parallel work [10], Bhamidi and the first two au-
thors consider critical percolation on simple random graphs, i.e., random graphs having no
multiple-edges, namely generalized random graphs. It turns out that the critical window
there is pc ∼ n−(3−τ)/2 ≫ n−(3−τ)/(τ−1). This is a distinctive feature in the infinite second-
moment case that never surfaced in the other two universality classes of critical random
graphs.

Organization of the paper. In Section 2, we state our results precisely. In Section 2.1, we
give the precise definitions of the model and the scaling limits. Section 2.2 is devoted to
comments about the heuristics, and some important special cases. In Section 3, we study
excursions of the limiting exploration process. Section 4 contains the proofs of the results at
criticality, and in Section 5, we analyze the near-critical regimes.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature.

4 Dhara, van der Hofstad, & van Leeuwaarden

2 Main results

2.1 The configuration model

2.1.1 Model description

The configuration model generates random multigraphs with any given degree sequence.
Consider n vertices labeled by [n] := {1,2, ...,n} and a non-increasing sequence of degrees
ddd = dddn = (di)i∈[n] such that ℓn = ∑i∈[n] di is even. The configuration model on n vertices
having degree sequence ddd is constructed as follows [8, 16]:

Equip vertex j with d j stubs, or half-edges. Two half-edges create an edge once they
are paired. Therefore, initially we have ℓn = ∑i∈[n] di half-edges. Pick any half-edge and
pair it with a uniformly chosen half-edge from the remaining unpaired half-edges and
remove both these half-edges from the set of unpaired half-edges. Keep repeating the
above procedure until all half-edges are paired.

Let CMn(ddd) denote the graph constructed by the above procedure. Note that CMn(ddd) may
contain self-loops and multiple edges. In fact, the probability that CMn(ddd) is a simple graph
tends to zero in our setting with an infinite second-moment condition on the degree distri-
bution [36, Proposition 7.12]. Before stating the main results about the configuration model,
we set up some necessary notation.

2.1.2 Notions of convergence and the limiting objects

To describe the main results of this paper, we need some definitions and notations. We use
the Bachmann–Landau asymptotic notation O(·), o(·), Θ(·) for large-n asymptotics of real
numbers. For (an)n≥1,(bn)n≥1 ⊂ (0,∞), we write an ≪ bn, an ∼ bn and an ≫ bn as a short-
hand for limn→∞ an/bn = 0,1,∞, respectively. We often use C as a generic notation for a
positive constant whose value can be different in different lines. We also use the standard
notation of P−→, and d−→ to denote convergence in probability and in distribution, respectively.
The topology needed for the convergence in distribution will always be specified unless it
is clear from the context. We say that a sequence of events (En)n≥1 occurs with high prob-
ability (whp) with respect to the probability measures (Pn)n≥1 when Pn

(
En

)
→ 1. Define

fn = O
P

(gn) when (| fn|/|gn|)n≥1 is tight; fn = o
P

(gn) when fn/gn
P−→ 0; fn = Θ

P

(gn) if
both fn = O

P

(gn) and gn = O
P

( fn). Denote

ℓp
↓ :=

{
x = (xi)∞

i=1 ⊂ [0,∞) : xi+1 ≤ xi ∀i, and
∞

∑
i=1

xp
i < ∞

}

with the p-norm metric d(x,y) =
(

∑∞
i=1 |xi −yi|p

)1/p. Let ℓ2
↓ ×N∞ denote the product topol-

ogy of ℓ2
↓ andN∞ withN∞ denoting the sequences onN endowed with the product topology.

Define also

U↓ :=
{

((xi,yi))∞
i=1 ∈ ℓ2

↓ ×N∞ :
∞

∑
i=1

xiyi < ∞ and yi = 0 whenever xi = 0 ∀i
}

,

endowed with the metric

dU((x1,y1),(x2,y2)) :=
( ∞

∑
i=1

(x1i − x2i)2
)1/2

+
∞

∑
i=1

∣∣x1iy1i − x2iy2i
∣∣. (2.1)
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Further, let U0
↓ ⊂ U↓ be given by

U0
↓ :=

{
((xi,yi))∞

i=1 ∈ U↓ : if xk = xm,k ≤ m, then yk ≥ ym
}
.

Let (U0
↓ )k denote the k-fold product space of U0

↓ .
Throughout, we write D[0,∞) to denote the space of càdlàg functions [0,∞) 7→R equipped

with the Skorohod J1-topology. Also, let D+[0,∞) ⊂ D[0,∞) be the collection of functions
with positive jumps only, and C[0,∞) ⊂ D[0,∞) be the collection of continuous functions.
For any fixed T > 0, D[0,T ],D+[0,T ],C[0,T ] are defined similarly for functions [0,T ] 7→R.
For any function f ∈ D[0,∞), define

¯
f (t) = infs≤t f (s). Note that

¯
f is non-increasing. More-

over,

¯
f ∈ C[0,∞), whenever f ∈ D+[0,∞). (2.2)

Indeed, if
¯
f is discontinuous at some point t, then

¯
f (t−) >

¯
f (t), but that would mean that f

has a negative jump of size
¯
f (t−)−

¯
f (t) at t. Thus (2.1.2) holds. Next, for any f ∈ D+[0,∞),

define the zero set of f by Z f = {t ≥ 0 : f (t)−
¯
f (t) = 0}, and let cl(Z f ) denote the closure

of Z f . An interval (l,r) is called an excursion above the past minimum of f , or simply
excursion of f (see [9, Section IV.2]) if

f (t)−
¯
f (t) > 0, ∀t ∈ (l,r), where l ∈ cl(Z f ) and r ∈ cl(Z f )∪{∞}. (2.3)

For f ∈ D+[0,T ], we consider (l,r) ⊂ [0,T ], and define an excursion similarly as in (2.1.2).
We often use boldface notation X for the stochastic process (X(s))s≥0, unless stated

otherwise. Consider a decreasing sequence θθθ = (θ1,θ2, . . .) ∈ ℓ2
↓ \ ℓ1

↓ . Denote by Ii(s) :=
1{ξi≤s} where ξi ∼ Exp(θi/µ) independently, and Exp(r) denotes the exponential distribu-
tion with rate r. Consider the process

Sλ
∞(t) =

λ µ
‖θθθ‖2

2

∞

∑
i=1

θiIi(t)− t, (2.4)

for some λ ,µ > 0. Note that, for all t > 0, E[Sλ
∞(t)] < ∞ since ∑i θ 2

i < ∞, and consequently
Sλ

∞(t) < ∞, almost surely. Also, for any u < t,

E

[
|Sλ

∞(t)−Sλ
∞(u)|

]
≤ λ µ

‖θθθ‖2
2

∞

∑
i=1

θie−θiu(1− e−θi(t−u))+ |t −u| ≤ (λ µ +1)|t −u|,

so that Sλ
∞ has bounded variation almost surely. However, since ∑i θi = ∞, the process expe-

riences infinitely many jumps in any bounded interval of time. Define the reflected version
of Sλ

∞(t) by
refl(Sλ

∞(t)) = Sλ
∞(t)− min

0≤u≤t
Sλ

∞(u).

We will show that, for any λ > 0, the excursion lengths of the process Sλ
∞ = (Sλ

∞(t))t≥0 can
be ordered almost surely as an element of ℓ2

↓ . We denote this ordered vector of excursion
lengths by (γi(λ ))i≥1. For v, t > 0, define Mt(v) := ∑ j:vθ j≤1, tθ j≤1 θ 3

j . We will assume that
for any t > 0,

∫ ∞

0
e−tv2Mt (v)dv < ∞. (2.5)

The technical condition in (2.1.2) on top of θθθ ∈ ℓ2
↓ \ ℓ1

↓ will be used to ensure that the distri-
bution of Sλ

∞(t) is non-atomic for all t > 0 (see Lemma 4 below), which in turn implies that
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we have strict ordering between excursion lengths, i.e., γi+1(λ ) < γi(λ ) for all i ≥ 1 almost
surely. The condition (2.1.2) is relatively weak, and is, for example, satisfied for θ j = j−α

for α ∈ (1/2,1). To see this, note that v2Mt(v) is of the same order as v−1+1/α . However,
this also shows that (2.1.2) is not satisfied for the extreme case α = 1, i.e., θ j = j−1.

Also, define the counting process Nλ = (Nλ (t))t≥0 to be the Poisson process that has
intensity (λ µ2)−1‖θθθ‖2

2 × refl(Sλ
∞(t)) at time t, conditionally on (Sλ

∞(u))u≤t . Formally, Nλ is
characterized as the counting process for which

Nλ (t)− ‖θθθ‖2
2

λ µ2

t∫

0

refl(Sλ
∞(u))du (2.6)

is a martingale. We use the notation Ni(λ ) to denote the number of marks of Nλ in the i-th
largest excursion of Sλ

∞. Define

Z(λ ) := ((γi(λ ),Ni(λ )))i≥1, ordered as an element of U0
↓ . (2.7)

2.1.3 Results for the critical window

Fix τ ∈ (2,3). Throughout this paper, we denote

α = 1/(τ −1), ρ = (τ −2)/(τ −1), η = (3− τ)/(τ −1).

Also, let Dn be the degree of a vertex chosen uniformly at random from [n]. We start by
stating our assumptions on the degree sequences:

Assumption 1 For each n ≥ 1, let ddd = dddn = (d1, . . . ,dn) be a degree sequence satisfying
d1 ≥ d2 ≥ . . . ≥ dn. We assume the following about (dddn)n≥1 as n → ∞:

(i) (High-degree vertices) For any i ≥ 1, n−α di → θi, where θθθ := (θi)i≥1 ∈ ℓ2
↓ \ℓ1

↓ is such
that (2.1.2) holds.

(ii) (Moment assumptions) (Dn)n≥1 is uniformly integrable, limn→∞
1
n ∑i∈[n] di = µ for

some µ > 0, and

lim
K→∞

limsup
n→∞

n−2α
n

∑
i=K+1

d2
i = 0. (2.8)

In Section 2.2, we discuss the generality of Assumption 1 and show that power-law degrees
satisfy these assumptions. For CMn(ddd), the criticality parameter νn is defined as

νn =
∑i∈[n] di(di −1)

∑i∈[n] di
.

Molloy and Reed [46], and Janson and Luczak [41] showed that, under some regularity
conditions, CMn(ddd) has a unique giant component (a component of size Θ(n)) with high
probability precisely when νn → ν > 1. Under Assumption 1, νn → ∞, as n → ∞ since
∑i∈[n] d2

i ≥ d2
1 = Θ(n2α ) ≫ n, and CMn(ddd) always contains a giant component (see the

remark below [37, Theorem 4.5] and consider π = 1).
We study percolation, which refers to deleting each edge of a graph independently with

probability 1− p. In case of percolation on random graphs, the deletion of edges is also inde-
pendent from the underlying graph. The percolation probability is allowed to depend on the
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network size, i.e., p = pn. Let CMn(ddd, pn) denote the graph obtained from percolation with
probability pn on the graphs CMn(ddd). Fountoulakis [32] showed that CMn(ddd, pn) is dis-
tributed as CMn(dddp), where dddp is the degree sequence of the percolated graph. Note that the
degrees in dddp could be correlated, so later Janson [39] gave an explicit construction which
is simpler to analyze. This construction was used to identify the percolation phase transition
in [39] and to study the critical window in [27, 28]. An interested reader is also referred to
[28, Algorithm 4] where a construction of the whole percolation process (CMn(ddd, p))p∈[0,1]
is provided.

Now, under Assumption 1, if liminfn→∞ pn > 0, then CMn(ddd, pn) retains a giant com-
ponent with high probability, i.e., CMn(ddd, pn) is always supercritical; see the remark below
[37, Theorem 4.5]. Thus, in order to see the critical behavior, one must take pn → 0, as
n → ∞. For pn → 0, the graph always contains n − o

P

(n) degree-zero or isolated vertices,
which makes Janson’s construction inconvenient to work with.

For a sequence of finite graphs, the critical behavior is where we see intermediate be-
havior in the sense that it inherits some features from the subcritical (such as the absence
of the giant component) and the supercritical regimes (the largest component is not a tree).
The collection of such values of p is called the critical window. However, due to our lack of
knowledge about the subcritical phase and the structural propeties therein, it is not a priori
evident here how to define the critical window. One way to define the subcritical regime
and the critical window would be to say that inside the critical window, the rescaled vec-
tor of ordered component sizes converge to some non-degenerate random vector, whereas
the component sizes concentrate in the subcritical regime. This property has been observed
quite universally for the percolation critical window. In this paper, we take this as our defi-
nition of the critical window. It is worthwhile to mention that there is a substantial literature
on how to define the critical value. See [18, 35, 37, 43, 47] for different definitions of the
critical probability and related discussions.

We will show that the critical window for percolation on CMn(ddd) is given by

pc = pc(λ ) :=
λ
νn

(1+o(1)), λ ∈ (0,∞). (2.9)

Notice that, under Assumption 1, pc ∼ n−2α+1 ∼ n−η , where η = (3− τ)/(τ −1) > 0. The
case where p ≪ pc will be called the barely subcritical regime and the case pc ≪ p ≪ 1
will be called the barely supercritical regime. We will show that a unique giant component
emerges in the barely supercritical regime. We first state the results about the component
sizes and the complexity in the critical window, and then discuss the barely sub-/supercritical
regimes.

We will always write C(i)(p) to denote the i-th largest component in the percolated graph.
The random graph on which percolation acts will always be clear from the context. A vertex
is called isolated if it has degree zero in the graph CMn(ddd, pc(λ )). We define the compo-
nent size corresponding to an isolated vertex to be zero (see Remark 2 below). For any
component C ⊂ CMn(ddd, pc(λ )), let SP(C ) denote the number of surplus edges given by
#{edges in C }−|C |+1. Finally, let

Zn(λ ) :=
(
n−ρ |C(i)(pc(λ ))|,SP(C(i)(pc(λ )))

)
i≥1, ordered as an element of U0

↓ .

The following theorem gives the asymptotics for the critical component sizes and the surplus
edges of CMn(ddd, pc(λ )):
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Theorem 1 (Critical component sizes and surplus edges) Under Assumption 1, as n →
∞,

Zn(λ ) d−→ Z(λ )

with respect to the U0
↓ topology, where Z(λ ) is defined in (2.1.2).

Remark 2 (Ignoring isolated components) Note that 2ρ < 1 for τ ∈ (2,3). When percolation
is performed with probability pc, there are of the order n isolated vertices and thus n−2ρ

times the number of isolated vertices tends to infinity. This is the reason why we must
ignore the contributions due to isolated vertices, when considering the convergence of the
component sizes in the ℓ2

↓ -topology. Note that an isolated vertex with self-loops does not
create an isolated component.

For a connected graph G, diam(G) denotes the diameter of the graph, i.e., the maxi-
mum graph distance between any pair of vertices. For an arbitrary graph G, diam(G) :=
maxdiam(C ), where the maximum is taken over all connected components. Our next result
shows that the diameter of the largest connected components is of order logn:

Theorem 2 (Diameter of largest critical clusters) Under Assumption 1,

diam(CMn(ddd, pc(λ ))) = O
P

(logn).

Thus, the maximum diameter scales logarithmically in the τ ∈ (2,3), in contrast to the other
universality classes in the τ ∈ (3,4) and τ > 4 regimes, where graph distances scale as a
positive power of n [1, 13].

2.1.4 Behavior in the near-critical regimes

We now discuss asymptotic results for the component sizes in the barely subcritical (pn ≪
pc(λ )) and barely supercritical (pn ≫ pc(λ )) regimes. The next two theorems summarize
the behavior outside the critical window:

Theorem 3 (Barely subcritical regime) For CMn(ddd, pn), suppose that n−α ≪ pn ≪ pc(λ )
and that Assumption 1 holds. Then, as n → ∞,

(
(nα pn)−1|C(i)(pn)|

)
i≥1

P−→ (θi)i≥1,

in ℓ2
↓ topology, and P(SP(C(i)(pn)) = 0) → 1, for all i ≥ 1.

Remark 3 (Components and hubs) In the barely subcritical regime, we show that the i-th
largest component is essentially the component containing the i-th largest degree vertex, or
the i-th hub. Since the hubs have degree Θ(nα), we need the assumption that pn ≫ n−α in
Theorem 3, as otherwise the hubs become isolated, in which case components are likely to
be extremely small.

For the result in the barely supercritical regime, let pc(λ ) ≪ pn ≪ 1. The exact asymptotics
of the high-degree vertices and the tail behavior in (ii) will not be required. Below, we
state the sufficient conditions for the concentration of the size of the giant component. In
Section 2.2, we will see that these conditions are satisfied when the degrees are sampled
from a power-law distribution:
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Assumption 2 For each n ≥ 1, let ddd = dddn = (d1, . . . ,dn) be a degree sequence satisfying
d1 ≥ d2 ≥ . . . ≥ dn. We assume the following about (dddn)n≥1:

(i) d1 = O(nα).
(ii) (Dn)n≥1 is uniformly integrable, and limn→∞

1
n ∑i∈[n] di = µ for some µ > 0.

(iii) Let D⋆
n denote the degree of a vertex chosen in a size-biased manner with the sizes

being (di/ℓn)i∈[n]. Then, there exists a constant κ > 0 such that

1−E[e−t p1/(3−τ)
n D⋆

n ] = κ p(τ−2)/(3−τ)
n (tτ−2 +o(1)). (2.10)

Let E(G) denote the number of edges in the graph G.

Theorem 4 (Barely supercritical regime) For CMn(ddd, pn), suppose that pc(λ ) ≪ pn ≪ 1
and that Assumption 2 hold. Then, as n → ∞,

|C(1)(pn)|
np1/(3−τ)

n

P−→ µκ1/(3−τ),
E(C(1)(pn))

np1/(3−τ)
n

P−→ µκ1/(3−τ),

and for all i ≥ 2, |C(i)(pn)| = o
P

(np1/(3−τ)
n ), E(C(i)(pn)) = o

P

(np1/(3−τ)
n ).

Remark 4 (Relation to Abel-Tauberian theorem) The infinite second-moment assumption is
captured by (iii). The identity (iii) is basically a version of the celebrated Abel-Tauberian
theorem [31, Chapter XIII.5] (see also [15, Chapter 1.7]). However, since both D⋆

n and pn
depend on n, the joint asymptotics needs to be stated as an assumption. In Section 2.2, we
discuss how this assumption is satisfied when (i) di = (1−F)−1(i/n) (ii) di is the i-th order
statistic of an i.i.d sample, where F is a power-law distribution with τ ∈ (2,3).

2.2 Discussion

Critical window: emergence of hub connectivity. The critical window is the regime in which
hubs start getting connected. Hubs are the high-degree vertices, whose asymptotic degree
is determined by Assumption 1(i). To understand the above remark more precisely, let us
denote the probability that i and j are in the same component in the p-percolated graph by
π(i, j, p). Then, for any fixed i, j ≥ 1,

limsup
n→∞

π(i, j, pn) = 0 for pn ≪ pc, (2.11)

0 < liminf
n→∞

π(i, j, pn) ≤ limsup
n→∞

π(i, j, pn) < 1 for pn = Θ(pc), (2.12)

limsup
n→∞

π(i, j, pn) = 1 for pn ≫ pc, (2.13)

Indeed, any two vertices i and j share pndid j/(ℓn − 1) edges in expectation. This expecta-
tion is o(1), Θ(1), or ω(1) depending on whether pn ≪ pc, pn ∼ pc, or pn ≫ pc. In the
subcritical regime, this observation and a simple union bound yields (2.2). For the critical
case, a method of moment computation shows that the number of edges between hubs i and
j converges in distribution to Poisson(λθiθ j/µ). We don’t prove this here, but instead refer
the reader to [36, Proposition 7.13] where similar Poisson approximation computations have
been done for the configuration model. This shows (2.2). In the super-critical regime,

P((i, j) don’t share any edge) ≤
d j

∏
l=1

(
1− pndi

ℓn −2l +1

)
≤ e−pndid j/2ℓn → 0,
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10 Dhara, van der Hofstad, & van Leeuwaarden

so that 1 − π(i, j, pn) → 0 which yields (2.2). Intuitively, in the barely subcritical regime,
all the hubs are in different components. Hubs start getting connected to each other directly,
forming the critical components as the p varies over the critical window. Finally in the
barely super-critical regime the giant component, which contains all the hubs, is formed.
The features (2.2), (2.2) and (2.2) are also observed in the τ ∈ (3,4) case [12]. However,
the key distinction between τ ∈ (3,4) and τ ∈ (2,3) is that for τ ∈ (3,4) the paths between
the hubs have lengths that grow as n(τ−3)/(τ−1), whereas they are directly connected in the
τ ∈ (2,3) regime.

Intuitive explanation for the exploration process. Suppose that we explore the critically per-
colated configuration model sequentially in a breadth-first manner. The reflected version of
the stochastic process in (2.1.2) turns out to be the limit of the process that counts the num-
ber of unpaired half-edges incident to the discovered vertices. This limiting process can be
intuitively understood as follows. When we explore hubs, the exploration process increases
drastically, causing the jumps in the first term in (2.1.2). The negative linear drift is an accu-
mulation of two effects. (1) Because we explore two vertices at each time, we get a negative
drift −2t. (2) The exploration of the low-degree vertices cumulatively causes a linear posi-
tive drift +t. The main contribution in the latter case comes due to the degree-one vertices
in the system. Thus in total, we get a drift of −t in the exploration process (2.1.2).

Assumption on the degrees. Assumptions 1, 2 hold for two interesting special cases of
power-law degrees that have received special attention in the literature: Case (I) di = (1 −
F)−1(i/n), Case (II) di’s are the order statistics of an i.i.d sample from F . Here F is some
distribution function supported on non-negative integers and (1 − F)(x) = cF k−(τ−1), for
k ≤ x < k+1, and we recall that the inverse of a bounded non-increasing function f :R 7→R

is defined as

f −1(x) := inf{y : f (y) ≤ x}.

We add a dummy half-edge to vertex 1 if necessary to make ∑i∈[n] di even. However, we
ignore this contribution since this does not change any asymptotic calculation below. Recall
that we use C as a generic notation for a constant whose value can be different between
expressions, and an ∼ bn denotes limn→∞ an/bn = 1.

For Case (I), di ∼ (cFn/i)α for all i = o(n) and di ≤C(n/i)α for all i ∈ [n]. Consequently,
Assumption 1(i) is satisfied with θi = cα

F i−α . To see Assumption 1(ii), note that

1
n ∑

i∈[n]
di ∼

∫ 1

0
(1−F)−1(x)dx =E[D],

where D has distribution function F , and

n−2α ∑
i>K

d2
i ≤ C ∑

i>K
i−2α ∼ CK1−2α → 0 as K → ∞. (2.14)

Also, Dn
d−→ D, and E[Dn] → E[D] implies that (Dn)n≥1 is uniformly integrable. To see

Assumption 2, with the above computations, we have already verified all the conditions in
Assumption 2(i),(ii). To verify Assumption 2(iii), we now show that, for tn = t p1/(3−τ)

n with
fixed t > 0,

1−E[e−tnD⋆
n ] =

1
ℓn

∑
k∈[n]

dk
(
1− e−tndk

)
∼ tτ−2

n

∫ ∞

0
cF z−α(1− e−cF z−α

)dz,
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Critical percolation on scale-free configuration model 11

and thus (iii) holds as well. Let us split the last sum in three parts by restricting to the set
{k : dk < ε(tn)−1}, {k : dk ∈ [ε(tn)−1,(εtn)−1]}, and {k : dk > (εtn)−1} and denote them by
(I), (II) and (III) respectively. Using the fact that 1− e−x ≤ x, it follows that

(I)
tτ−2
n

≤ t3−τ
n

ℓn
∑

k:dk<ε(tn)−1

d2
k ∼ Cn2α−1t3−τ

n ∑
k≥Cn(tn/ε)1/α

k−2α

∼ Cn2α−1t3−τ
n

∫ ∞

Cn(tn/ε)τ−1
x−2α dx ∼ Cn2α−1t3−τ

n (Cn(tn/ε)τ−1)1−2α ∼ Cε3−τ ,

(2.15)

and

(III)
tτ−2
n

≤ C

t(τ−2)
n ℓn

∑
k:dk>(εtn)−1

dk ≤ Cnα−1

tτ−2
n

∫ Cn(tnε)τ−1

1

dx
xα ∼ Cετ−2. (2.16)

Also, we compute (II) by

(II)
tτ−2
n

=
1

tτ−2
n ℓn

∑
k:dk∈[εt−1

n ,(εtn)−1]

dk(1− e−tndk)

∼ nα−1

µtτ−2
n

∑
k∈[c0n(tnε)τ−1,c1(tn/ε)τ−1]

cF k−α(
1− e−tn(cF n/k)α )

=
1

ntτ−1
n

∑
z∈[c0ετ−1,c1/ετ−1]

cF z−α(1− e−cF z−α
),

where we have put k = ntτ−1
n z, so that the z values increase by 1/(ntτ−1

n ) in the final sum.
Thus, in the iterated limit limε→0 limsupn→∞,

(II)
tτ−2
n

→
∫ ∞

0
cF z−α(1− e−cF z−α

)dz = κ ,

which yields (iii) by combining it with (2.2) and (2.2).
Let us now consider Case (II), i.e., the i.i.d degree setup. We have assumed that the

degree sequence is ordered in a non-decreasing manner, i.e., di is the i-th order statistic of
the i.i.d samples. We use the following construction from [21, Section 13.6]. Let (E1,E2, . . .)
be an i.i.d sequence of unit-rate exponential random variables and let Γi := ∑i

j=1 E j. Let

d̄i = (1−F)−1(Γi/Γn+1). (2.17)

Then (d1, . . . ,dn)
d= (d̄1, . . . , d̄n). Now, Γi’s follow a Gamma distribution with shape param-

eter n and scale parameter 1. Note that, by the stong law of large numbers, Γn+1/n a.s.−→ 1.
Thus, for each fixed i ≥ 1, Γn+1/(nΓi)

a.s.−→ 1/Γi. Using (2.2), we see that ddd satisfies As-
sumption 1(i) almost surely with θi = (CF/Γi)α . To see that (θi)i≥1 ∈ ℓ2

↓ \ ℓ1
↓ , observe that

Γi/i a.s.−→ 1, and α ∈ (1/2,1). Next, the first condition in Assumption 1(ii) follows from the
strong law of large numbers. To see the second condition, we note that ∑i Γ −2α

i < ∞ almost
surely. Now using the fact that Γn+1/n a.s.−→ 1, we can use arguments identical to (2.2) to show
that limK→∞ limsupn→∞ n−2α ∑i>K d2

i = 0 on the event {∑∞
i=1 Γ −2α

i < ∞}∩{Γn+1/n → 1}.
Thus, we have shown that the third condition of Assumption 1(ii) holds almost surely. The
verification of Assumption 2 is also identical to Case-(I) if we do the computations condi-
tionally on the Gamma random variables and use the above asymptotics.
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Extension to the Norros-Reittu model. A related model where one would expect the same
behavior as the configuration model is the multigraph version of the Norros–Reittu model
or the Poisson graph process [51]. Given a weight sequence (wi)i∈[n], the Norros-Reittu
multigraph is the multipgraph generated by putting Poisson(wiw j/Ln) many edges between
vertices i and j, where Ln = ∑i∈[n] wi. If Assumptions 1, 2 holds with (di)i∈[n] replaced by
(wi)i∈[n], then we expect the same results for percolation on the Norros-Reittu multigraph
about the critical and near critical regimes as described above. We do not pursue the Norros-
Reittu multigraph here.

Open Problems. We next state some open problems:

Open Problem 1. Theorem 1 studies convergence of Zn(λ ) for each fixed λ . It will be
interesting to study the distribution of (Zn(λ ))λ>0 as a stochastic process, when the perco-
lated graphs are coupled through the Harris coupling. In the τ > 4 and τ ∈ (3,4) regimes,
such evolution of critical components is described by the so-called augmented multiplicative
coalescent process. However, we do not expect the limit to be the augmented multiplicative
coalescent here. This is clear from the fact that the scaling limit in (2.1.2) is not related to the
general characterization of exploration processes that arise in relation to multiplicative co-
alescent in [5]. Heuristically, one would expect that if ∑i∈C di1{i is hub} denotes the mass
of a component, then the components would merge at rate proportional to their masses, but
additionally, there are immigrating vertices of degree-one that keep on increasing the com-
ponent sizes as well. The description of the process, and proving its Feller properties and
entrance boundary conditions, are interesting open challenges.

Open Problem 2. Is it possible to prove that the metric structure of components converges in
a suitable topology? This question is motivated by a strong notion of structural convergence
of critical components that was first established in [1] (τ > 4) and [13] (τ ∈ (3,4)). Since the
components have small distances, it may be natural to consider the local-weak convergence
framework. However, the hubs within components have unbounded degrees, which is not
covered directly in the local-weak convergence framework.

3 Properties of the excursions of the limiting process

In this section, we prove some good properties of the process (2.1.2) that allows us to con-
clude the convergence of largest excursion lengths from the stochastic process convergence.
In Section 3.1, we identify these good properties for functions in D+[0,∞) that ensure con-
tinuity of the largest excursion map. Then, we prove in Section 3.2 that Sλ

∞ satisfies these
good properties almost surely.

3.1 Continuity of the largest excursion map

Recall the definitions of excursions from (2.1.2). Also, recall from Section 2.1.2 that
¯
f (t) =

infu≤t f (u) and Z f = {t : f (t) =
¯
f (t)}. Define the set of excursions of f as

E f := {(l,r) : (l,r) is an excursion of f }.
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We denote the set of excursion begin-points (or left-points) and end-points (or right-points)
by L f and R f respectively, i.e.,

L f := {l ≥ 0 : (l,r) ∈ E f for some r} and R f := {r ≥ 0 : (l,r) ∈ E f for some l}.

We will use the following elementary fact:

Fact 1 Let f ∈ D+[0,∞). Then, for all r ∈ R f \ {∞}, f is continuous at r. Consequently,
r ∈ Z f .

Proof Using the right-continuity of f , it suffices to show that f (r) = f (r−). Suppose that
is not the case. Since f has positive jumps only, we must have that f (r−) < f (r). Since r is
an excursion ending point, there exists ε > 0 such that f (t)−

¯
f (t) > 0 for all t ∈ (r − ε ,r).

On the other hand, using the right-continuity of f and the fact that f (r) > f (r−), we obtain
that f (t) −

¯
f (t) > 0 for all t ∈ [r,r + ε) for some ε > 0. Thus, there exists a sufficiently

small ε > 0 such that f (t)−
¯
f (t) > 0 for all t ∈ (r − ε ,r + ε). This contradicts the fact that

r ∈ cl(Z f )\{∞}. ⊓⊔

For f ∈ D+[0,∞), let φi( f ) be the length of the i-th largest excursion of f . Also, let Ai( f )
denote the area under i-th largest excursion of f . We will show that if fn → f in D[0,∞)
then φi and Ai converge when the limiting function has some good properties. Let us start
by describing these good properties:

Definition 1 (Good functions) A function f ∈ D+[0,∞) is said to be good if the following
holds:

(a) For all r ∈ R f \{∞}, r is not a local minimum of f .
(b) There does not exist any interval (q1,q2) with q1,q2 ∈Q+ such that (q1,q2) ⊂ Z f .
(c) For all (l,r) ∈ E f with r < ∞, there exists ε0 = ε0(l,r) > 0 such that the following holds

for all ε ∈ (0,ε0): There exists δ = δ (ε , l,r) > 0 such that

f (t) > f (r)+δ ∀t ∈ (l + ε ,r − ε). (3.1)

(d) f does not have any infinite excursion, i.e., φ1( f ) < ∞.
(e) For any δ > 0, f has only finitely many excursions of length at least δ .
(f) For all i ≥ 1, φi+1( f ) < φi( f ).

Lemma 1 Suppose that f ∈ D+[0,∞) is good. Further, let ( fn)n≥1 ⊂ D[0,∞) be such that
fn → f in D[0,∞). Moreover, let limsupn→∞ φ1( fn) < ∞, and if zn(T) denotes the length of
the largest excursion of fn starting after T , then limT→∞ limsupn→∞ zn(T ) = 0. Then, for all
m ≥ 1, as n → ∞,

(φi( fn))i∈[m] → (φi( f ))i∈[m], and (Ai( fn))i∈[m] → (Ai( f ))i∈[m].

Proof The proof here is for m = 1, and for m > 1, we can proceed inductively. Using Def-
initions 1(d),(e), as well as the assumptions of the lemma, we can take T > 0 and n0 ≥ 1
large so that the largest excursions of fn and f end before T for all n ≥ n0. Let L de-
note the set of continuous functions Λ : [0,∞) → [0,∞) that are strictly increasing and sat-
isfy Λ(0) = 0,Λ(T ) = T . Suppose (l,r) is the longest excursion of f on [0,T ], and thus
φ1( f ) = r − l. We will first show that limn→∞ φ1( fn) = φ1( f ).
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Fix ε ,δ > 0 such that (c) holds. Let || · ||T denote the sup-norm on [0,T ]. Recall the def-
inition of the metric for Skorohod J1-topology from [14, (12.13)]. Since fn → f in D[0,T ],
there exists (Λn)n≥1 ⊂ L, and n1 ≥ n0 such that for all n ≥ n1,

|| fn ◦Λn − f ||T <
δ
2

and ||Λn − I||T < ε , (3.2)

where I is the identity function. Using (c) and (3.1), for all t ∈ (l + ε ,r − ε) and n ≥ n1,

fn ◦Λn(t) > f (t)− δ
2

> f (r)+
δ
2

=
¯
f (r)+

δ
2

,

where the last equality is due to r ∈ Z f from Fact 1. Thus, using ||Λn − I||T < ε from (3.1),

fn(t) >
¯
f (r)+

δ
2

∀t ∈ (l +2ε ,r −2ε). (3.3)

Next, note that the infimum operation is continuous in the Skorohod J1-topology [56, Theo-
rem 13.4.1], and thus

¯
fn →

¯
f in D[0,T ]. Moreover, using (2.1.2),

¯
f ∈ C[0,T ], and therefore,

there exists n2 ≥ n0, such that for all n ≥ n2

‖
¯
fn −

¯
f ‖T <

δ
4

. (3.4)

Using
¯
f (t) =

¯
f (r) for all t ∈ [l,r], this implies that, for all n ≥ n2,

¯
f (r) =

¯
f (t) >

¯
fn(t)− δ

4
∀t ∈ (l +2ε ,r −2ε),

and consequently (3.1) yields that for all n ≥ max{n1,n2}

fn(t)−
¯
fn(t) >

δ
4

∀t ∈ (l +2ε ,r −2ε). (3.5)

Thus,
liminf

n→∞
φ1( fn) ≥ r − l −4ε = φ1( f )−4ε , (3.6)

which provides the required lower bound. We now turn to a suitable upper bound on the
quantity limsupn→∞ φ1( fn). We claim that, using Definition 1(b), one can find r1, . . . ,rk ∈ R f
such that r1 ≤ φ1( f )+ε ,T −rk < φ1( f )+ε , and ri −ri−1 ≤ φ1( f )+ε ,∀i = 2, . . . ,k. Indeed,
since φ1( f ) is the largest excursion length of f , if there is no excursion end-point in between
0 and φ1( f ) + ε , then there is no excursion begin-point in [0,ε). The latter shows that the
interval [0,ε) is contained in Z f = {t : f (t) =

¯
f (t)}, which contradicts Definition 1(b). The

existence of the points r2, . . . ,rk can be shown inductively using similar argument as above.
Let l1, . . . , lk be the excursion begin-points corresponding to the endpoints r1, . . . ,rk. We will
show that, for all i, fn will have an excursion begin-point in (li − 4ε , li + 2ε) and end-point
in (ri −3ε ,ri +2ε), so that the largest excursion of fn is contained inside one of the intervals
(li −4ε ,ri +2ε) for i ∈ [k].

Using Definition 1(a), ri is not a local minimum, and thus for any ε > 0 (sufficiently
small), there exists δ > 0 and ti ∈ (ri,ri + ε) such that f (ri)− f (ti) > δ . We also let δ > 0
be sufficiently small such that (3.1) holds. Thus, using (3.1), for all n ≥ n1,

f (ri)− fn(Λn(ti)) ≥ f (ri)− f (ti)− δ
2

>
δ
2

.
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Since ti ∈ (ri,ri + ε), we have that tn
i = Λn(ti) ∈ (ri − ε ,ri +2ε). Thus, for all n ≥ n1, there

exists a point tn
i ∈ (ri − ε ,ri +2ε) such that

f (ri)− fn(tn
i ) >

δ
2

. (3.7)

Next, using (3.1),

¯
fn(ri −3ε) →

¯
f (ri −3ε) ≥

¯
f (ri) = f (ri), (3.8)

since ri ∈ Z f . Combining (3.1) and (3.1), we see that
¯
fn(ri −3ε) >

¯
fn(tn

i ), and by (3.1), we
also have that fn(ri − 3ε)−

¯
fn(ri − 3ε) > 0, when ε > 0 is so small that ri − 3ε > li + 2ε .

Thus fn must have an excursion end-point in (ri −3ε ,ri +2ε). Also, using Definition 1(b), f
has an excursion end-point r0

i ∈ (li −ε , li). The previous argument shows that fn has to have
an excursion end-point r0n

i ∈ (r0
i −3ε ,r0

i +2ε), and thus by (3.1), fn must have an excursion
begin-point in (r0n

i , li +2ε) ⊂ (li −4ε , li +2ε). Therefore,

limsup
n→∞

φ1( fn) ≤ max
i∈[k]

(ri − li)+6ε ≤ max
i∈[k]

(ri − ri−1)+6ε ≤ φ1( f )+7ε . (3.9)

Hence, the convergence of the largest excursion length follows from (3.1) and (3.1).
Next, we show that limn→∞ A1( fn) = A1( f ). Let e = (l,r) be the largest excursion of f .

Using (3.1), the interval (l − 2ε ,r + 2ε) is part of some excursion of fn. Let us denote this
excursion by en = (Ln(e),Rn(e)). We will show that en is the largest excursion of fn when n
is large. Indeed, the arguments above already show that

l −4ε ≤ Ln(e) ≤ l +2ε , and r −3ε ≤ Rn(e) ≤ r +2ε ,

and thus Rn(e)−Ln(e) ≥ r− l−5ε . Now, using Definition 1(f), we can take ε > 0 sufficiently
small such that φ2( fn) < r− l −5ε for all sufficiently large n. Thus, en = (Ln(e),Rn(e)) must
be the largest excursion of fn. The convergence of A1( fn) follows by using fn → f in D[0,∞)
together with Ln(e) → l and Rn(e) → r as n → ∞. ⊓⊔

Remark 5 We emphasize that the strict ordering between excursion lengths in Definition 1(f)
is only used in the convergence of Ai( fn). This ensures that the location of largest excursions
of fn and f approximately coincide, which is strictly stronger than requiring the convergence
of excursion lengths.

Next, we define what it means for a stochastic process X ∈ D+[0,∞) to be good:

Definition 2 (Good stochastic process) A stochastic process X with sample paths in D+[0,∞)
is said to be good if the sample path satisfies all the conditions of Definition 1 almost surely.

The following is a direct consequence of Lemma 1:

Proposition 1 Consider a sequence of stochastic processes (Xn)n≥1 and a good stochas-
tic process X such that Xn

d−→ X. Also, let (φ1(Xn))n≥1 be tight, and if Zn(T) denotes the
length of the largest excursion of Xn starting after time T , then assume that, for any ε > 0,
limT→∞ limsupn→∞P(Zn(T ) > ε) = 0. Then, for all m ≥ 1,

(
φi(Xn),Ai(Xn)

)
i∈[m]

d−→
(
φi(X),Ai(X)

)
i∈[m].
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3.2 The limiting process is good almost surely

In this section, we will show that the sample paths of Sλ
∞ are good almost surely. Throughout

this section, we assume without loss of generality that µ = 1 and ∑i θ 2
i = 1 to simplify writ-

ing. An identical proof works for the general µ and θθθ by replacing λ with λ ′ = λ µ/∑i θ 2
i .

Consider the sigma-field Ft = σ ({ξi ≤ s} : s ≤ t, i ≥ 1), where (ξi)i≥1 are the exploration
random variables used in the definition of Sλ

∞ in (2.1.2), and, for a collection of sets A ,
σ (A ) denotes the minimum sigma-algebra containing all the sets in A . Then (Ft)t≥0 is a
filtration and Sλ

∞ is adapted to (Ft)t≥0. Our goal is stated formally in the following proposi-
tion:

Proposition 2 The sample paths of Sλ
∞ satisfy the conditions of Definition 1 almost surely.

Proof of Proposition 2. The verification of each of the conditions in Definition 1 are given
separately below.

Verification of Definition 1(a). Let q ∈ Q+ and define the random time Tq = inf{t ≥ q :
Sλ

∞(t) = infu≤q Sλ
∞(u)}. We will show that, almost surely,

inf{t > 0 : Sλ
∞(Tq + t)−Sλ

∞(Tq) < 0} = 0, on {Tq < ∞}, for all q ∈Q+. (3.10)

Note that if q lies in the interior of some finite-length excursion then Tq ∈ (q,∞), and also Tq
is the end-point of that excursion. Therefore, {Tq : q ∈Q+ and Tq < ∞} contains the set of
excursion end-points of Sλ

∞. Now, (3.2) ensures that Tq is not a local minimum because we
can find u arbitrarily close to Tq such that Sλ

∞(u) < Sλ
∞(Tq). Hence, Definition 1(a) holds for

Sλ
∞ almost surely.

Thus it suffices to prove (3.2). Since Q+ is countable, it is enough to prove (3.2) for
each fixed q ∈ Q+. Let Vq = {i : Ii(Tq) = 1}. Note that Tq is a stopping time. Moreover,
conditionally on the sigma-field FTq , the process (Sλ

∞(Tq + t)− Sλ
∞(Tq))t≥0 is distributed as

Ŝλ
∞ given by

Ŝλ
∞(t) = λ ∑

i/∈Vq

θiIi(t)− t. (3.11)

Define L(t) = λ ∑∞
i=1 θiNi(t) − t, where (Ni(t))t≥0 is a rate-θi Poisson process, indepen-

dently for different i. We assume that Ŝλ
∞ and LLL are coupled by taking Ii(s) =1{Ni(s) ≥ 1},

so that Ŝλ
∞(t) ≤ L(t) for all t ≥ 0 almost surely. Thus, if R0 = inf{t > 0 : L(t) < 0}, then it

suffices to show that
P(R0 = 0) = 1, (3.12)

and (3.2) follows. Fix ε > 0 and K ≥ 1. Then,

P(R0 ≤ ε) ≥P(L(ε) < 0)

≥P
(

λ
∞

∑
i=K+1

θiNi(ε) < ε , and Ni(ε) = 0, ∀i ∈ [K]
)

=
K

∏
i=1
P(Ni(ε) = 0)×P

(
λ

∞

∑
i=K+1

θiNi(ε) < ε
)

= e−ε ∑K
i=1 θi

(
1−P

(
λ

∞

∑
i=K+1

θiNi(ε) ≥ ε
))

≥ e−ε ∑K
i=1 θi

(
1− λ

ε
E

[ ∞

∑
i=K+1

θiNi(ε)
])

= e−ε ∑K
i=1 θi

(
1−λ

∞

∑
i=K+1

θ 2
i

)
,

(3.13)
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where the one-but-last step follows from Markov’s inequality. Thus, using the fact that {R0 ≤
ε} ց {R0 = 0}, as ε ց 0,

P(R0 = 0) = lim
εց0

P(R0 ≤ ε) ≥ 1−λ
∞

∑
i=K+1

θ 2
i ,

and since the above holds for any K ≥ 1, and ∑i θ 2
i < ∞, we have proved (3.2).

Verification of Definition 1(b). Next, we verify that Definition 1(b) holds almost surely
for Sλ

∞. Since Q+ is countable, we may again work with fixed q1,q2 ∈ Q+, i.e., it suf-
fices to prove that (q1,q2) 6⊂ {t : Sλ

∞(t) = infu≤t Sλ
∞(u)} almost surely. By the description of

our thinned Lévy process, it has positive jumps only, and if there is a jump of size θi at time
t, then Sλ

∞(t +θi/2) > infu≤t Sλ
∞(u) = infu≤t+θi/2 Sλ

∞(u). Therefore, if (q1,q2) ⊂ {t : Sλ
∞(t) =

infu≤t Sλ
∞(u)}, then there is no ξi such that ξi ∈ (q1,q2). We compute

P(∀i ≥ 1 : ξi /∈ (q1,q2)) =
∞

∏
i=1
P(ξi /∈ (q1,q2)) =

∞

∏
i=1

(1− e−θiq1 + e−θiq2)

= exp
( ∞

∑
i=1

log
(

1− e−θiq1(1− e−θi(q2−q1)
))

≤ exp
(

− e−θ1q1
∞

∑
i=1

(1− e−θi(q2−q1))
)

= 0,

where the one-but-last step follows using log(1 − x) ≤ −x for all x ∈ (0,1) and e−θiq1 ≥
e−θ1q1 for all i ≥ 1, and the last step uses the fact that ∑∞

i=1(1 − e−θi(q2−q1)) = ∞, which
follows by applying the limit comparison test together with (1 − e−θi(q2−q1))/θi → q2 − q1
as i → ∞, and ∑∞

i=1 θi = ∞. Thus we have verified that Definition 1(b) holds almost surely
for Sλ

∞.

Verification of Definition 1(c). Similarly as above, for any q ∈Q+, define the stopping time
Tq(ε) = inf{t ≥ q : Sλ

∞(t) ≤ infu≤q Sλ
∞(u)+ ε}. Thus, Tq(ε) > q if Sλ

∞(q) > infu≤q Sλ
∞(u)+ ε

and Tq(ε) = q otherwise. Observe that Tq(ε) < ∞ almost surely since there are no infinite
excursions. We claim that it is sufficient to prove

lim
εց0

P(Sλ
∞ has an excursion end-point in (Tq(ε),Tq(ε)+2ε), and Tq(ε) < ∞) = 1. (3.14)

Let T −
q := inf{t > q : Sλ

∞(t−) = infu≤q Sλ
∞(u)}. Indeed, if q lies inside some excursion, i.e.,

Sλ
∞(q) > infu≤q Sλ

∞(u), then Tq(ε) ր T −
q as ε ց 0, and (3.2) shows that T −

q must be an
excursion end-point with probability 1. Now, if Sλ

∞ contains an excursion (l,r) having a
point t ∈ (l,r) such that Sλ

∞(t−) = infu≤l Sλ
∞(u) = infu≤t Sλ

∞(u), then there exists some q ∈
Q+ ∩ (l,r) such that T −

q is not an excursion endpoint. The later has zero probability as we
showed above. This completes the verification of Definition 1(c).

It remains to prove (3.2). As before, let L(t) = λ ∑∞
i=1 θiNi(t)− t, and let us also work

under the coupling under which Sλ
∞(Tq(ε)+t)−Sλ

∞(Tq(ε)) ≤ L(t) for all t ≥ 0 almost surely.
We have Sλ

∞(Tq(ε)) ≤ infu≤q Sλ
∞(u)+ ε on {Tq(ε) < ∞}, since the process has only positive
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jumps. Also, if L(2ε) < −ε , then Sλ
∞(Tq(ε)+2ε) < Sλ

∞(Tq(ε))−ε ≤ infu≤q Sλ
∞(u), and con-

sequently infu≤Tq(ε)+2ε Sλ
∞(u) < infu≤Tq(ε) Sλ

∞(u) = infu≤q Sλ
∞(u). Therefore, the event in (3.2)

holds. Thus, using identical computations as (3.2), it follows that

P(Sλ
∞ has an excursion end-point in (Tq(ε),Tq(ε)+2ε), and Tq(ε) < ∞)

≥P(L(2ε) < −ε) =P
(

λ
∞

∑
i=1

θiNi(2ε) < ε
)

≥ e−2ε ∑K
i=1 θi

(
1−2λ

∞

∑
i=K+1

θ 2
i

)
,

and (3.2) follows by taking the iterated limit limK→∞ limε→0, and using ∑i θ 2
i < ∞.

Verification of Definition 1(d). We start by providing the martingale decomposition for Sλ
∞:

Lemma 2 The process Sλ
∞ admits the Doob-Meyer decomposition Sλ

∞(t) = M(t)+A(t) with
the drift term A(t) and the quadratic variation for the martingale term 〈M〉(t) given by

A(t) = λ
∞

∑
i=1

θ 2
i min{ξi, t}− t, 〈M〉(t) = λ 2

∞

∑
i=1

θ 3
i min{ξi, t}.

Proof Define Mi(t) = 1{ξi≤t} −θi min{ξi, t}. Then

(Mi(t))t≥0 is a martingale. (3.15)

Indeed, note that Mi(t + s)−Mi(t) = 0 if ξi ≤ t. Thus,

E[Mi(t + s)−Mi(t) | Ft ] =E[1{t<ξi≤t+s} −θi(min{ξi, t + s}−min{ξi, t}) | ξi > t]

=E[1{t<ξi≤t+s} −θi min{ξi − t,s} | ξi > t]

=P(0 < ξi ≤ s)−θiE[min{ξi,s}],
(3.16)

where the last step follows from the memoryless property of the exponential distributions.
Now, using the fact that

∫
xe−axdx =−e−ax(ax+1)/a2, one can verify that θiE[min{ξi,s}] =

1−e−θis. Applying this to (3.2), we can conclude that E[Mi(t +s)−Mi(t)|Ft ] = 0, thus ver-
ifying (3.2). Moreover, the quadratic variation of (Mi(t))t≥0 is given by

〈Mi〉(t) = θi min{ξi, t}. (3.17)

This follows from the characterization of unit-jump processes given in [52, Lemma 3.1],
together with the fact that θi min{ξi, t}, the compensator of 1{ξi≤t}, is continuous in t. Then
(3.2) and (3.2) completes the proof of Lemma 2. ⊓⊔

We are now ready to verify Definition 1(d). In order to prove that Sλ
∞ does not have an

excursion of infinite length almost surely, it suffices to show that

lim
t→∞

Sλ
∞(t) = −∞ almost surely. (3.18)

Fix K ≥ 1 such that λ ∑i>K θ 2
i < 1/2. Such a choice of K is always possible as θθθ ∈ ℓ2

↓ .
Further define the stopping time T := inf{t : ξi ≤ t, ∀i ∈ [K]} = maxi≤K ξi. Thus, T < ∞
almost surely. Note that min{ξi, t} ≤ t and thus,

1
t

λ ∑
i>K

θ 2
i min{ξi, t} <

1
2
, almost surely.
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Therefore, for any t > T ,

A(t) = λ ∑
i∈[K]

θ 2
i ξi +λ ∑

i>K
θ 2

i min{ξi, t}− t < λ ∑
i∈[K]

θ 2
i ξi −

t
2
, almost surely.

We conclude that, for any r ∈ (0,1), t−rA(t) a.s.−→ −∞. For the martingale part we will use the
exponential concentration inequality [55, Inequality 1, Page 899], which is stated below:

Lemma 3 If M is any continuous time local martingale such that M(0) = 0, and supt∈[0,∞) |M(t)−
M(t−)| ≤ c, almost surely, then for any t > 0, a > 0 and b > 0,

P

(
sup

s∈[0,t]
M(s) > a, and 〈M〉(t) ≤ b

)
≤ exp

(
− a2

2b
ψ

(ac
b

))
,

where ψ(x) = ((1+ x) log(1+ x)− x)/x2.

In particular, ψ(x) ≥ 1/(2(1 + x/3)) (see [42, Page 27]). Note that 〈M〉(t) ≤ λ 2t ∑∞
i=1 θ 3

i .
We apply Lemma 3 with a = εtr, b = λ 2t ∑∞

i=1 θ 3
i , and c = θ1. Using Lemma 2, 〈M〉(t) ≤ b

almost surely. Now, ψ(ac/b) ≥ C/(1+ tr−1), and thus for any ε > 0, and r ∈ (1/2,1)

P

(
sup

s∈[0,t]
|M(s)| > εtr

)
≤ 2exp(−Ct2r−1),

for some constant C > 0, where the bound on the absolute value of M follows from the fact
that −M is also a martingale, so Lemma 3 applies to −M as well. Now an application of the
Borel-Cantelli lemma proves that t−r|M(t)| a.s.−→ 0, for any r ∈ (1/2,1). This fact, together
with the asymptotics of the drift term, completes the proof of (3.2). ⊓⊔

Verification of Definition 1(e). Fix δ > 0. Let tk = (k −1)δ/2 and define the event

Cδ
k :=

{
sup

t∈(tk−1,tk ]
Sλ

∞(tk+1)−Sλ
∞(t) > 0

}
.

Suppose that there is an excursion (l,r) with r − l > δ and l ∈ (tk−1, tk] for some k. Since
r > tk+1 and l ∈ (tk−1, tk], we have that infu≤tk+1 Sλ

∞(u) = infu∈(tk−1,tk ] S
λ
∞(u). Consequently,

Sλ
∞(tk+1) > inft∈(tk−1,tk ] S

λ
∞(t), and therefore Cδ

k must occur. Therefore, if Sλ
∞ has infinitely

many excursions of length at least δ , then Cδ
k must occur infinitely often. Using the Borel-

Cantelli lemma, the proof follows if we can show that

∞

∑
k=1
P(Cδ

k ) < ∞.

As before, fix K ≥ 1 such that λ ∑i>K θ 2
i < 1/2, and let T := inf{t : ξi ≤ t, ∀i ∈ [K]} =

maxi≤k ξi. Notice that for each K ≥ 1,

∞

∑
k=1
P(T > tk−1) =

∞

∑
k=1
P(∃i ∈ [K] : ξi > tk−1) ≤

∞

∑
k=1

Ke−θK (k−1)δ/2 < ∞,

and therefore it is enough to show that

∞

∑
k=1
P(Cδ

k ∩{T ≤ tk−1}) < ∞. (3.19)
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Now,

sup
t∈[tk−1,tk ]

[
Sλ

∞(tk+1)−Sλ
∞(t)

]
≤ M(tk+1)+ sup

t∈[tk−1,tk ]
−M(t)+ sup

t∈[tk−1,tk ]
[A(tk+1)−A(t)]

≤ M(tk+1)−M(tk−1)+ sup
t∈[tk−1,tk ]

[M(tk−1)−M(t)]

+ sup
t∈[tk−1,tk ]

[
λ

∞

∑
i=1

θ 2
i (min{ξi, tk+1}−min{ξi, t})− (tk+1 − t)

]

≤ 2 sup
t∈[tk−1,tk+1]

|M(t)−M(tk−1)|

+ sup
t∈[tk−1,tk ]

[
λ

∞

∑
i=1

θ 2
i (min{ξi, tk+1}−min{ξi, t})− (tk+1 − t)

]
.

On the event {T ≤ tk−1}, the second term inside the supremum above reduces to

λ ∑
i>K

θ 2
i (min{ξi, tk+1}−min{ξi, t})− (tk+1 − t) ≤ (tk+1 − t)λ ∑

i>K
θ 2

i − (tk+1 − t) < −δ
2

,

(3.20)
using λ ∑i>K θ 2

i < 1/2. Thus we only need to estimate

P

(
sup

t∈[tk−1,tk+1]
|M(t)−M(tk−1)| >

δ
4

)
.

Note that (M(t)−M(tk−1))t≥tk−1 is a martingale with respect to the filtration (Ft)t≥tk−1 start-
ing from zero. Moreover, using an identical argument as Lemma 2 yields that the quadratic
variation of (M(t)−M(tk−1))t≥tk−1 is given by

λ 2
∞

∑
i=1

θ 3
i
(

min{ξi, t}−min{ξi, tk−1}
)
.

Further, E[min{ξi, t}] = θ−1
i (1− e−θit). Therefore, Doob’s martingale inequality [45, The-

orem 1.9.1.3] implies

∞

∑
k=1
P

(
sup

t∈[tk−1,tk+1]
|M(t)−M(tk−1)| >

δ
4

)

≤
∞

∑
k=1

16λ 2

δ 2

∞

∑
i=1

θ 2
i (e−θitk−1 − e−θitk+1) =

16λ 2

δ 2

∞

∑
i=1

θ 2
i (1− e−θiδ )

∞

∑
k=1

e−θitk−1 < ∞,

and the proof of (3.2) now follows using (3.2).

Verification of Definition 1(f). We first prove the following:

Lemma 4 The distribution of Sλ
∞(t) has no atoms for all t > 0.

Proof Let φt(v) = E[eivS(t)] for v ∈ R. Using the sufficient condition for random variables
to have non-atomic distribution stated in [33, Page 189], it suffices to prove that

∫ ∞

−∞
|φt(v)|dv < ∞.
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Note that

φt(v) = e−ivt
∞

∏
j=1
E[eivλθ j1{ξ j≤t}] = e−ivt

∞

∏
j=1

(eivλθ j (1− e−θ j t)+ e−θ jt)

= e−ivt
∞

∏
j=1

(
(1− e−tθ j )cos(vλθ j)+ e−tθ j + i(1− e−tθ j ) sin(vλθ j)

)
.

Therefore,

|φt(v)|2 =
∞

∏
j=1

((
(1− e−tθ j )cos(vλθ j)+ e−tθ j

)2 +(1− e−tθ j )2 sin2(vλθ j)
)

=
∞

∏
j=1

(
e−2tθ j +2cos(vλθ j)e−tθ j (1− e−tθ j )+(1− e−tθ j )2

)

=
∞

∏
j=1

(
1−2e−tθ j (1− e−tθ j )(1− cos(vλθ j))

)

≤ e−∑∞
j=1 2e−tθ j (1−e−tθ j )(1−cos(vλθ j)),

where in the last step we have used the fact that 1−x ≤ e−x for all x > 0. Recall (2.1.2). Let
j0 ≥ 1 be such that max{(2|v|λ/π)θ j , tθ j} ≤ 1 for all j ≥ j0. Now, for j ≥ j0, we have that
e−tθ j ≥ e−1, (1− e−tθ j ) ≥ tθ j/2 and 1− cos(vλθ j) ≥ λ 2

π v2θ 2
j . Thus, using (2.1.2),

∫ ∞

−∞
|φt(v)|dv ≤

∫ ∞

−∞
e− λ 2t

eπ v2Mt(2|v|λ/π)dv < ∞,

and the proof now follows. ⊓⊔

In order to prove the strict ordering between excursion lengths, it is enough to show that
no two excursions of Sλ

∞ have the same length almost surely. For any q ∈Q+, if q is in some
excursion of Sλ

∞, i.e., if Sλ
∞(q) > inft≤q Sλ

∞(t), then we let e(q) be the excursion containing q,
and otherwise we let e(q) = ∅. Thus it is enough to show that for any q1,q2 ∈Q+,

P(e(q1) 6= e(q2), but |e(q1)| = |e(q2)|) = 0.

Without loss of generality, let q1 < q2. Thus, if e(q1) 6= e(q2), then e(q1) appears earlier than
e(q2). Let Vq2 = {i : Ii(q2) = 1}. As before, conditionally on Fq2 , the process (Sλ

∞(q2 +t)−
Sλ

∞(q2))t≥0 is distributed as Ŝλ
∞ given by

Ŝλ
∞(t) = ∑

i/∈Vq2

θi (Ii(t)− (θi/µ)t)+λ t. (3.21)

Therefore, the process in (3.2) again has the form (2.1.2) (see (3.2)). Now, for any x > 0, the
probability that |e(q2)| = x, conditionally on Fq2 and |e(q1)| = x, is zero using Lemma 4
together with the fact that |V c

q2
| = ∞. This concludes the verification of Definition 1(f).
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4 The critical window

In this section, we prove our results related to critical percolation on CMn(ddd). In Section 4.1,
we start by describing a way to approximate percolation on a configuration model by a
suitable alternative configuration model. In Section 4.2, we analyze the latter graph. The
first step is to set up an exploration process that approximately encodes the component
sizes in terms of excursion lengths above past minima. This exploration process is shown
to converge to Sλ

∞ (Section 4.2.1). We must also ensure that the exploration process does
not have large excursions appearing beyond the time scale of the exploration process, which
allows us to prove that the largest component sizes converge to largest excursion lengths
of Sλ

∞ (Section 4.2.2). Next we analyze the surplus edges (Section 4.2.3) and the proof of
Theorem 1 is completed in Section 4.2.4. Finally, we analyze the diameter of the critical
components in Section 4.3 and complete the proof of Theorem 2.

4.1 Sandwiching the percolated configuration model

Following the pioneering work of Aldous [4], the main tool to prove scaling limits of the
component sizes is to set up an appropriate exploration process. The idea is to explore the
graph sequentially, and the exploration process keeps track of some functional of vertices
that have been discovered but their neighborhoods have not been explored. For percolation
on the configuration model, this could be the number of unpaired half-edges of those ver-
tices. Now, for random graphs with independent connection probabilities, the exploration
process is usually Markovian, but not for the configuration model. Indeed, one has to keep
track of the degree-profile outside the explored graph in order to know the distribution of
the degree of a newly discovered vertex. For d-regular graphs, Nachmias and Peres [48]
used the above approach, but this becomes difficult in the unbounded degree case. In earlier
papers with Sen [27, 28], we have used a construction by Janson [39] which says that the
percolated configuration model can be viewed as a configuration model satisfying some crit-
icality condition, so that it is enough to analyze the behavior of these critical configuration
models. However, in the τ ∈ (2,3) regime, this construction does not work because it gives
rise to n − o(n) many degree-one vertices. As a remedy to this problem, we use a result of
Fountoulakis [32] to show that the critical configuration model can be sandwiched between
two approximately equal configuration models, as stated in Proposition 3 below. We empha-
size that Proposition 3 holds for percolation on the configuration model without any specific
assumption on the degree distribution, as long as ℓn pn ≫ log(n), and this will be used in
the proofs for the near-critical results as well. We start by describing the approximating
configuration model below:

Algorithm 1

(S0) Keep each half-edge with probability pn, independently, and delete the half-edges oth-
erwise. If the total number of retained half-edges is odd, then attach a dummy half-edge
to vertex 1.

(S1) Perform a uniform perfect matching among the retained half-edges, i.e., within the re-
tained half-edges, pair unpaired half-edges sequentially with a uniformly chosen un-
paired half-edge until all half-edges are paired. The paired half-edges create edges in
the graph, and we call the resulting graph Gn(pn).

The following proposition formally states that Gn(pn) approximates CMn(ddd, pn):
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Proposition 3 Let pn be such that ℓn pn ≫ log(n). There exists (εn)n≥1 ⊂ (0,∞) with εn → 0,
and a coupling such that, with high probability,

Gn(pn(1− εn)) ⊂ CMn(ddd, pn) ⊂ Gn(pn(1+ εn)).

Proof The proof relies on an exact construction of CMn(ddd, pn) by Fountoulakis [32] which
goes as follows:

Algorithm 2

(S0) Perform a binomial trial X ∼ Bin(ℓn/2, pn) and choose 2X half-edges uniformly at ran-
dom from the set of all half-edges.

(S1) Perform a perfect matching of these 2X chosen half-edges. The resulting graph is dis-
tributed as CMn(ddd, pn).

Notice the similarity between Algorithm 1 (S1) and Algorithm 2 (S1). In both algorithms,
given the number of retained half-edges, the choice of the half-edges can be performed
sequentially uniformly at random without replacement. Thus, given the number of half-
edges in the two algorithms, we can couple the choice of the half-edges, and their pairing
(the restriction of a uniform matching to a subset of half-edge remains uniform matching
on that subset). Let H1, H

−
2 and H

+
2 , respectively, denote the number of half-edges in

CMn(ddd, pn), Gn(pn(1 − εn)) and Gn(pn(1 + εn)). From the above discussion, the proof is
complete if we can show that, as n → ∞,

P

(
H

−
2 ≤ H1 ≤ H

+
2

)
→ 1.

We ignore the contribution due to the possible addition of only one dummy edge in Al-
gorithm 3 (S0), as it does not affect asymptotic computations. Notice that H1 = 2X , where
X ∼ Bin(ℓn/2, pn), and H

+/−
2 ∼ Bin(ℓn, pn(1±εn)). Using standard concentration inequal-

ities [42, Corollary 2.3], it follows that

H1 = ℓn pn +o
P

(
√

ℓn pn log(n)),

and
H

+
2 = ℓn pn + ℓn pnεn +o

P

(
√

ℓn pn log(n)).

If we choose εn such that εn ≫ (log(n)/(ℓn pn))1/2 and εn → 0, then, with high probability,
H1 ≤ H

+
2 . Similarly we can conclude that H

−
2 ≤ H1 with high probability, and the proof

of Proposition 3 follows. ⊓⊔

We conclude this section by stating some properties of the degree sequence of the graph
Gn(pn) that will be crucial in the analysis below. Let d̃dd = (d̃1, . . . , d̃n) be the degree sequence
induced by Algorithm 1 (S1), and let ℓ̃n = ∑i d̃i be the number of retained half-edges. Then
the following result holds for d̃dd:

Lemma 5 (Degrees of Gn(pn)) Suppose that pn ≫ n−α , and Assumption 1 holds. For each
fixed i ≥ 1, d̃i = di pn(1+o

P

(1)), ℓ̃n = ℓn pn(1+o
P

(1)), and ∑i∈[n] d̃i(d̃i −1) = p2
n ∑i∈[n] di(di −

1)(1+o
P

(1)). Consequently, for pn ≪ pc(λ ), ∑i∈[n] d̃2
i = ℓ̃n(1+o

P

(1)), whereas for pn =
pc(λ ),

ν̃n =
∑i∈[n] d̃i(d̃i −1)

∑i∈[n] d̃i
= λ (1+o

P

(1)), and lim
K→∞

limsup
n→∞

P

(
∑
i>K

d̃i(d̃i −1) > ε ℓ̃n

)
= 0,

(4.2)
for any ε > 0.
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Proof Note that d̃i ∼ Bin(di, pn), independently for i ∈ [n]. For each fixed i ≥ 1, di pn → ∞,
as pn ≫ n−α . Thus the first fact follows using [42, Theorem 2.1]. Since, ℓ̃n ∼ Bin(ℓn, pn), the
second fact also follows using the same bound. To see the asymptotics for m̃2 := ∑i∈[n] d̃i(d̃i −
1), note that E[m̃2] = p2

nm2, where m2 = ∑i∈[n] di(di − 1). Also, Var(d̃i(d̃i − 1)) = 2di(di −
1)p2

n(1− pn)(1+(2di −3)pn). Thus,

Var
(

∑i∈[n] d̃i(d̃i −1)
)

(
E[∑i∈[n] d̃i(d̃i −1)]

)2 ≤ 4d1 p3
nm2

p4
nm2

2
= O

( 1
pnnα

)
= o(1),

where the penultimate step uses the fact that m2 = Θ(n2α), d1 = Θ(nα), and in the last step
we have again used the fact that pn ≫ n−α . Using Chebyshev’s inequality, it now follows
that m̃2 = p2

nm2(1+o
P

(1)). Thus,

ν̃n = (1+o
P

(1))pn
∑i∈[n] di(di −1)

∑i∈[n] di
= (1+o

P

(1))pnνn.

For pn ≪ pc(λ ), pnνn = o(1). Thus, ∑i∈[n] d̃2
i = ℓ̃n(1 + o

P

(1)). For pn = pc(λ ), the first
equality in (5) follows using (2.1.3).

We now prove the second inequality in (5). For any ε > 0, the required probability is at
most

P

(
∑
i>K

d̃i(d̃i −1) > ε ℓ̃n,
ℓn pn

2
≤ ℓ̃n ≤ 2ℓn pn

)
+o(1)

≤P
(

∑
i>K

d̃i(d̃i −1) >
εℓn pn

2

)
+o(1)

≤ 4p2
n ∑i>K di(di −1)

εℓn pn
+o(1) =

4pn ∑i>K d2
i

εℓn
+o(1),

where the penultimate step follows from Markov’s inequality. The proof now follows us-
ing (ii) and pn = Θ(n1−2α ) for pn = pc(λ ). ⊓⊔

4.2 Scaling limits of critical components

4.2.1 Convergence of the exploration process

Let d̃dd = (d̃1, . . . , d̃n) be the degree sequence induced by Algorithm 1 (S1) with pn = pc(λ ),
and consider Gn(pc(λ )). Note that Gn(pc(λ )) has the same distribution as CMn(d̃dd). We start
by describing how the connected components in the graph can be explored while generating
the random graph simultaneously:

Algorithm 3 (Exploring the graph) The algorithm carries along vertices that can be alive,
active, exploring and killed, and half-edges that can be alive, active or killed. Alive and
killed half-edges correspond to unpaired and paired half-edges respectively, whereas active
half-edges correspond to half-edges that have been found during the exploration, but have
not been paired yet. Thus a half-edge can be alive and active simultaneously. Similarly, a
vertex is killed when all its half-edges have been explored, otherwise the vertex is alive. An
active vertex is an alive vertex that has been found already during the exploration, whereas an
exploring vertex is currently being explored. We sequentially explore the graph as follows:
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(S0) At stage i = 0, all the vertices and the half-edges are alive but none of them are active.
Also, there are no exploring vertices.

(S1) At each stage i, if there is no active half-edge at stage i, choose a vertex v proportional
to its degree among the alive (not yet killed) vertices and declare all its half-edges to be
active and declare v to be exploring. Proceed to step i+1.

(S2) At each stage i, if the set of active half-edges is non-empty, then take an active half-edge
e of an exploring vertex v and pair it with a half-edge f chosen uniformly among the alive
half-edges. Kill e, f . If f is incident to a vertex v′ that has not been discovered before,
then declare all the half-edges incident to v′ active (if any), except f . If degree(v′) = 1
(i.e. the only half-edge incident to v′ is f ) then kill v′. Otherwise, declare v′ to be active
and larger than all other vertices that are active. After killing e, if v does not have another
active half-edge, then kill v also, and declare the smallest vertex to be exploring.

(S3) Repeat from (S1) at stage i+1 if not all half-edges are already killed.

Algorithm 3 gives a breadth-first exploration of the connected components of CMn(d̃dd). De-
fine the exploration process by

Sn(0) = 0, Sn(l) = Sn(l −1)+ d̃(l)Jl −2, (4.3)

where Jl is the indicator that a new vertex is discovered at time l and d̃(l) is the degree of
the new vertex chosen at time l when Jl = 1. The −2 in (4.2.1) takes into account the fact
that two half-edges are killed whenever two half-edges are paired at some step. However, at
the beginning of exploring a component when Algorithm 3 (S1) is carried out, we do not
pair half-edges but the exploration process subtracts −2 nonetheless. For this reason, there
is an additional −2 in (4.2.1) at the beginning of exploring each component, and thus the
first component is explored when the exploration process hits −2, the second component
is explored when the process hits −4 and so on. More formally, suppose that Ck is the k-
th connected component explored by the above exploration process and define τk = inf

{
i :

Sn(i) = −2k
}

. Then Ck is discovered between the times τk−1 + 1 and τk, and τk − τk−1 − 1
gives the total number of edges in Ck. Call a vertex discovered if it is either active or killed.
Let Vl denote the set of vertices discovered up to time l and I n

i (l) := 1{i∈Vl}. Note that

Sn(l) = ∑
i∈[n]

d̃iI
n

i (l)−2l.

In the rest of this section, we often use the asymptotics in Lemma 5 even if it is not stated
explicitly. Recall that we write F

n
l = σ (I n

i (l) : i ∈ [n]). All the martingales and related
computations will be done with respect to the filtration (F n

l )l≥0.
Define the re-scaled version S̄n of Sn by S̄n(t) = n−ρ Sn(⌊tnρ⌋). Then,

S̄n(t) = n−ρ ∑
i∈[n]

(d̃i −1)I n
i (tnρ)+n−ρ ∑

i∈[n]
I

n
i (tnρ)−2t +o(1), (4.4)

where we have used the convention that I n
i (tnρ ) = I n

i (⌊tnρ⌋) when tnρ is not an integer.
The following theorem describes the scaling limit of this rescaled process:

Theorem 5 Consider the process S̄n :=(S̄n(t))t≥0 defined in (4.2.1) and recall the definition
of Sλ

∞ in (2.1.2). Then, under Assumption 1, as n → ∞,

S̄n
d−→ Sλ

∞

with respect to the Skorohod J1-topology.
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To prove Theorem 5, we need to obtain asymptotics of the first two terms in (4.2.1). The first
term accounts for the contribution due to the non-degree-one vertices during the exploration.
The first term is dominated by the contributions due to hubs, which allows us to use a
truncation argument. The convergence of the truncated sum is given by the following lemma:

Lemma 6 Fix any K ≥ 1, and Ii(s) := 1{ξi≤s} where ξi ∼ Exp(θi/µ) independently for
i ∈ [K]. Under Assumption 1, as n → ∞,

(I n
i (tnρ))i∈[K],t≥0

d−→ (Ii(t))i∈[K],t≥0

with respect to the Skorohod J1-topology.

The second term in (4.2.1) describes the proportion of time when a new vertex is found.
Since we see a new vertex of degree one in most steps of the exploration process, this term
is shown to converge to the constant function t, which is proved using martingale arguments.
This is summarized in the next lemma:

Lemma 7 For any u > 0, as n → ∞, supu≤t n−ρ ∣∣∑i∈[n] I
n

i (unρ)−unρ ∣∣ P−→ 0.

We first prove Theorem 5 using Lemmas 6 and 7. The lemmas will be proved subse-
quently. Let ℓ̃n(u) denote the number of unpaired half-edges at time ⌊unρ⌋. Thus, ℓ̃n(u) =
ℓ̃n − 2(⌊unρ⌋ − c⌊unρ ⌋) + 1, where cl is the number of components explored up to time l.
Note that ℓ̃n −2unρ +1 ≤ ℓ̃n(u) ≤ ℓ̃n. Since ℓ̃n = Θ

P

(n2ρ), we have ℓ̃n(u) = ℓ̃n(1+o
P

(1))
uniformly over u ≤ t. Let P̃(·) (respectively Ẽ[·]) denote the conditional probability (respec-
tively expectation) conditionally on (d̃i)i∈[n].

Proof (Proof of Theorem 5) Note that, I n
i (l) = 0 for all l ≥ 1 if d̃i = 0. Now, if d̃i ≥ 1, then

for any t ≥ 0, uniformly over l ≤ tnρ ,

Ẽ [I n
i (l)] = P̃(I n

i (l) = 1) ≤ ld̃i

ℓ̃n −2unρ +1
. (4.5)

Let Xn,K(t) := n−ρ supu≤t ∑i>K(d̃i − 1)I n
i (unρ). Note that I n

i (unρ) ≤ I n
i (tnρ). Also, us-

ing I n
i (unρ) = 0 whenever d̃i = 0, it follows that (d̃i − 1)I n

i (unρ ) ≥ 0 for all i ∈ [n] and
u > 0. Thus,

Ẽ[Xn,K(t)] ≤ n−ρ
Ẽ

[
∑
i>K

(d̃i −1)I n
i (tnρ)

]
≤ t

∑i>K d̃i(d̃i −1)
ℓ̃n(t)

:= εn,K(t),

where limK→∞ limsupn→∞P(εn,K(t) > δ ) = 0 for any δ > 0, due to Lemma 5. Therefore,
for any ε ,δ > 0, using Markov’s inequality,

lim
K→∞

limsup
n→∞

P

(
P̃(Xn,K(t) > ε) > δ

)
≤ lim

K→∞
limsup

n→∞
P

(
Ẽ[Xn,K(t)] > δ ε

)
= 0.

Let Bn,K := {P̃(Xn,K(t) > ε) > δ}. It follows that

P(Xn,K(t) > ε) =E
[
P̃(Xn,K(t) > ε)

]
≤P(Bn,K)+δ .

Taking the iterated limit limδ→0 limsupK→∞ limsupn→∞ yields, for any ε > 0,

lim
K→∞

limsup
n→∞

P(Xn,K(t) > ε) = 0. (4.6)
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Using (4.2.1) and Lemma 7, it is now enough to deduce the scaling limit, as n → ∞, for

S̄K
n (t) = n−ρ

K

∑
i=1

d̃iI
n

i (tnρ )− t

and then taking K → ∞. But for any fixed K ≥ 1, Lemma 6 yields the limit of SK
n , and the

proof of Theorem 5 follows. ⊓⊔

Proof (Proof of Lemma 6) By noting that (I n
i (tnρ))t≥0 are indicator processes, for any

m1 ≤ m2 ≤ m3, it follows that min{I n
i (m2)−I n

i (m1),I n
i (m3)−I n

i (m2)} = 0, and thus
[14, Theorem 13.5] implies tightness of (I n

i (tnρ ))t≥0,n≥1 for each fixed i ≥ 1. Thus, it is
enough to show that

P̃(I n
i (tinρ) = 0, ∀i ∈ [K]) P−→ P̃(Ii(ti) = 0, ∀i ∈ [K]) = exp

(
− µ−1

K

∑
i=1

θiti
)
,

for any t1, . . . , tK ∈ [0,∞). Now,

P̃(I n
i (mi) = 0, ∀i ∈ [K]) =

∞

∏
l=1

(
1− ∑

i≤K:l≤mi

d̃i

ℓ̃n −Θ(l)

)
. (4.7)

Taking logarithms on both sides of (4.2.1) and using the fact that l ≤ maxmi = Θ(nρ) we
get

P̃(I n
i (mi) = 0∀i ∈ [K]) = exp

(
−

∞

∑
l=1

∑
i≤K:l≤mi

d̃i

ℓ̃n
+o(1)

)
= exp

(
− ∑

i∈[K]

d̃imi

ℓ̃n
+o(1)

)
.

(4.8)

Putting mi = tinρ , Assumption 1 (i), (ii) give

mid̃i

ℓ̃n
=

θiti
µ

(1+o
P

(1)). (4.9)

Hence (4.2.1) and (4.2.1) complete the proof of Lemma 6. ⊓⊔

Proof (Proof of Lemma 7) Define Wn(l) = ∑i∈[n] I
n

i (l)− l. Recall that Vl denotes the set of
vertices discovered up to time l, τk is the time when the k-th component has been explored,
and cl is the number of components explored up to time l. Observe that

Ẽ[Wn(l +1)−Wn(l) | Fl ] = ∑
i∈[n]

Ẽ

[
I

n
i (l +1) | Fl

]
1{i/∈Vl } −1

= ∑
i/∈Vl

d̃i

ℓ̃n −2l +2cl +1
−1 =

2l −1−∑i∈Vl
d̃i −2cl

ℓ̃n −2l +2cl +1
.

(4.10)

To see that the final term in (4.2.1) is negative, note that if l = τk for some k, then ∑i∈Vτk
d̃i −

2τk = 2k, and cτk = k so that

2τk −1− ∑
i∈Vτk

d̃i −2cτk = −1 < 0. (4.11)

If τk < l < τk+1, then ∑i∈Vl\Vτk
d̃i −2(l − τk) ≥ −1, and also cl = cτk +1. Therefore, using

(4.2.1), we conclude that the final term in (4.2.1) is negative for all l ≥ 1, and consequently,
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(Wn(l))l≥1 is a super-martingale. We will use the martingale-inequality [54, Lemma 2.54.5]
stating that for any sub/super-martingale (M(t))t≥0, with M(0) = 0,

εP
(

sup
s≤t

|M(s)| > 3ε
)

≤ 3E [|M(t)|] ≤ 3
(
|E [M(t)] |+

√
Var(M(t))

)
. (4.12)

Using Taylor expansion,

P̃(I n
i (l) = 1) ≥ 1−

(
1− d̃i

ℓ̃n

)l
≥

( ld̃i

ℓ̃n
− l2d̃2

i

ℓ̃2
n

)
1{ld̃i<ℓ̃n},

and thus, using Lemma 5, and l = tnρ ,

n−ρ |Ẽ[Wn(tnρ)]| = t −n−ρ ∑
i∈[n]

P̃(I n
i (tnρ) = 1)

≤ t ∑
i∈[n]

d̃i1{d̃i>ℓ̃n/tnρ}
ℓ̃n

+
t2nρ ∑i∈[n] d̃2

i

ℓ̃2
n

.

(4.13)

Let En denote the good event that ℓn pc(λ )/2 ≤ ℓ̃n ≤ 2ℓn pc(λ ) and pc(λ )di/2 ≤ d̃i ≤ 2pc(λ )di
for all i such that di > C0nρ for some C0 (sufficiently small). Using standard concentration
inequalities for the binomial distribution [42, Theorem 2.1], P(E c

n ) < 2e−nε
for some ε > 0.

On the event En, d̃i > Cnρ , and thus di > Cnρ . We can bound

∑
i∈[n]

d̃i1{d̃i>ℓ̃n/tnρ}
ℓ̃n

≤ C1

ℓn
∑

i∈[n]
di1{di>Cnρ } = o(1),

where the final step follows using the uniform integrability from Assumption 1. The second
term in (4.2.1) is o

P

(1) using Lemma 5. Thus,

n−ρ |Ẽ[Wn(tnρ )]| = o
P

(1). (4.14)

Next, note that for any (x1,x2, . . .), 0 ≤ a+b ≤ xi and a,b > 0 one has ∏R
i=1(1−a/xi)(1−

b/xi) ≥ ∏R
i=1(1− (a+b)/xi). Thus, for all l ≥ 1 and i 6= j,

P̃(I n
i (l) = 0,I n

j (l) = 0) ≤ P̃(I n
i (l) = 0)P̃(I n

j (l) = 0),

and thus

P̃(I n
i (l) = 1,I n

j (l) = 1)

= 1− P̃(I n
i (l) = 0)− P̃(I n

j (l) = 0)+ P̃(I n
i (l) = 0,I n

j (l) = 0)

≤ 1− P̃(I n
i (l) = 0)− P̃(I n

j (l) = 0)+ P̃(I n
i (l) = 0)P̃(I n

j (l) = 0)

= P̃(I n
i (l) = 1)P̃(I n

j (l) = 1).

(4.15)

Therefore I n
i (l) and I n

j (l) are negatively correlated. Using (4.2.1), it follows that

Var(I n
i (l)|(d̃i)i∈[n]) ≤ P̃(I n

i (l) = 1) ≤ ld̃i

ℓ̃n(t)
,
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uniformly over l ≤ tnρ . Therefore, using the negative correlation in (4.2.1),

n−2ρ Var
(
Wn(tnρ)

∣∣(d̃i)i∈[n]
)

≤ n−2ρ ∑
i∈[n]

Var
(
I

n
i (tnρ)|(d̃i)i∈[n]

)

= n−2ρ tnρ ∑i∈[n] d̃i

ℓ̃n(t)
= Θ

P

(n−ρ) = o
P

(1).
(4.16)

Using (4.2.1) and (4.2.1), the proof now follows by an application of (4.2.1). ⊓⊔

4.2.2 Large components are explored early

In this section, we prove two key results that allow us to deduce the convergence of the
component sizes. Firstly, we show that the rescaled vector of component sizes is tight in ℓ2

↓
(see Proposition 4). This result is then used to show that the largest components of Gn(pc(λ ))
are explored before time Θ(nρ) (Proposition 5). The latter allows us to apply Proposition 1.
Let C(i) denote the i-th largest component for Gn(pc(λ )). Recall that our convention is to
take |C | = 0, if the component consists of one vertex and no edges.

Proposition 4 Under Assumption 1, for any ε > 0,

lim
K→∞

limsup
n→∞

P

(
∑
i>K

|C(i)|2 > εn2ρ
)

= 0.

Let G K
n be the random graph obtained by removing all edges attached to vertices 1, . . . ,K

and let ddd′ be the obtained degree sequence. Further, let C
K(v) and C

K
(i) denote the connected

component containing v and the i-th largest component respectively in G K
n . Let DK(v) =

∑k∈C K(v) d̃k and DK
i = ∑k∈C K

(i)
d̃k. Let V ∗,K

n be chosen according to the following size-biased

distribution:

P(V ∗,K
n = i) =

d̃i

ℓ̃n −∑K
i=1 d̃i

, for i ∈ [n]\ [K].

Also, denote the criticality parameter of G K
n by νK

n .

Lemma 8 Suppose that Assumption 1 holds. Then, for any ε > 0,

lim
K→∞

limsup
n→∞

P

(
Ẽ

[
∑

k∈C K(V ∗,K
n )

(d̃k −1)
]

> ε
)

= 0.

Proof Note that the criticality parameter of Gn(pc(λ )) is ν̃n = λ (1+o
P

(1)), by Lemma 5.
Now, conditionally on the set of removed half-edges, G K

n is still a configuration model with
some degree sequence ddd′ with d′

i ≤ d̃i for all i ∈ [n]\ [K] and d′
i = 0 for i ∈ [K]. Further, the

criticality parameter of G K
n satisfies

νK
n =

∑i∈[n] d′
i(d

′
i −1)

∑i∈[n] d′
i

≤ ∑i>K d̃i(d̃i −1)
ℓ̃n −2∑K

i=1 d̃i
= λ ∑i>K d̃i(d̃i −1)

∑i∈[n] d̃i(d̃i −1)
(1+o

P

(1)), (4.17)

where we have used ν̃n = λ (1+o
P

(1)) in the last step. Now, by Assumption 1 and Lemma 5,
it is possible to choose K0 large such that for all K ≥ K0

νK
n < 1 with high probability.
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This yields

Ẽ

[
∑

k∈C K(V ∗,K
n )

(d̃k −1)
]

≤ Ẽ[d̃V ∗,K
n

−1]
(

1+
Ẽ[d̃

V∗,K
n

]

(1−νK
n )

+o
P

(1)
)
, (4.18)

where d̃
V∗,K

n
is the degree of the vertex V ∗,K

n in Gn(pc(λ )). The proof of (4.2.2) uses path-
counting techniques for the configuration model [40]. Since the arguments are adaptations of
[27], we move the proof to Appendix A.1. We now use Lemma 5 to compute the asymptotics
of the different terms in (4.2.2). Note that Ẽ[d̃

V∗,K
n

] ≤ (1+o
P

(1))∑i>K d̃2
i /ℓ̃n = O

P

(1), and

Ẽ[d̃
V∗,K

n
−1] = ∑i>K d̃i(d̃i −1)

ℓ̃n −∑K
i=1 d̃i

= (1+o
P

(1))
pn ∑i>K di(di −1)

∑i∈[n] di

P−→ 0,

in the iterated limit limK→∞ limn→∞. Thus the proof of Lemma 8 follows. ⊓⊔
Proof (Proof of Proposition 4) Recall that C K

(i) denotes the i-th largest component in G K
n and

DK
i = ∑k∈C K

(i)
d̃k. Denote by SK , the squared sum of the component sizes after removing

components containing 1, . . . ,K. Note that

∑
i>K

|C(i)|2 = ∑
i≥1

|C(i)|2 −
K

∑
i=1

|C(i)|2 ≤ SK ≤ ∑
i≥1

|C K
(i)|2 ≤ 4 ∑

i≥1
DK

i ∑
k∈C K

(i)

(d̃k −1), (4.19)

where the last step uses d′
i ≤ d̃i and the fact that for any connected component C with total

degree D, we must have D−|C | ≥ |C |/4. The last fact can be seen for |C | ≥ 2 by D−|C | ≥
2(|C |−1)−|C | = |C |−2 ≥ |C |/4, and for |C | = 1 and D ≥ 2, this follows trivially. Note
here that we do not consider components with |C | = 1 and D = 0; see Remark 2. Thus it is
enough to bound the final term in (4.2.2). Now,

P̃

(
∑
i≥1

DK
i ∑

k∈C K
(i)

(d̃k −1) > εn2ρ
)

≤ 1
εn2ρ Ẽ

[
∑
i≥1

DK
i ∑

k∈C K
(i)

(d̃k −1)
]

=
ℓ̃n −∑i∈[K] d̃i

εn2ρ Ẽ

[
∑

k∈C K(V ∗,K
n )

(d̃k −1)
]
.

(4.20)

Thus, the proof follows using Lemma 8, and the fact that ℓ̃n −∑i∈[K] d̃i ≤ ℓ̃n = O
P

(n2ρ). ⊓⊔
The next proposition shows that, in Algorithm 3, the large components are explored before
time Θ(nρ ). Let C

≥T
max denote the size of the largest component whose exploration is started

by Algorithm 3 after time T nρ , and let D≥T
max = ∑k∈C

≥T
max

d̃k.

Proposition 5 Under Assumption 1, for any ε > 0,

lim
T→∞

limsup
n→∞

P

(
|C ≥T

max| > εnρ)
= 0 and lim

T→∞
limsup

n→∞
P

(
D≥T

max > εnρ)
= 0.

Proof Define A
n

K,T := {all the vertices of [K] are explored before time Tnρ}. Let C
K
(i) denote

the i-th largest component of G K
n so that

P̃

(
|C ≥T

max| > εnρ , A
n

K,T

)
≤ P̃

(
∑
i≥1

∣∣C K
(i)

∣∣2
> ε2n2ρ

)

≤ P̃
(

∑
i≥1

DK
i ∑

k∈C K
(i)

(d̃k −1) >
ε2n2ρ

4

)
.

(4.21)
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The final term tends to zero in probability in the iterated limit limK→∞ limsupn→∞, as shown
in (4.2.2). Next, using the fact that d̃ jnρ = Θ(ℓ̃n), we get

P̃

(
(A n

K,T)
c) = P̃(∃ j ∈ [K] : j is not explored before T nρ)

≤
K

∑
j=1
P̃( j is not explored before T nρ ) ≤

K

∑
j=1

(
1− d̃ j

ℓ̃n −Θ(T nρ )

)T nρ

≤
K

∑
j=1

e−CT ,
(4.22)

where C > 0 is a constant that may depend on K, and the final step holds with high proba-
bility. Now, by (4.2.2),

P̃(|C ≥T
max| > εnρ) ≤ P̃

(
∑
i≥1

∣∣C K
(i)

∣∣2
> ε2n2ρ

)
+ P̃

(
(A n

K,T)
c) .

The proof forP
(
|C ≥T

max| > εnρ)
follows by taking the iterated limit limK→∞ limT→∞ limsupn→∞.

For the upper bound on P̃
(
D≥T

max > εnρ , A
n

K,T

)
, note that

P̃

(
D≥T

max > εnρ , |C ≥T
max| ≤ εnρ/2, A

n
K,T

)
≤ P̃

(
D≥T

max(D
≥T
max −|C ≥T

max|) > ε2n2ρ/2, A
n

K,T

)

≤ P̃
(

∑
i≥1

DK
i ∑

k∈C K
(i)

(d̃k −1) >
ε2n2ρ

2

)
.

Hence, the proof for P
(
D≥T

max > εnρ)
also follows. ⊓⊔

4.2.3 Counting process that counts surplus

Let Nλ
n (k) be the number of surplus edges discovered up to time k and N̄λ

n (u) = Nλ
n (⌊unρ⌋).

Below, we prove the asymptotics for the process N̄λ
n :

Lemma 9 Under Assumption 1, as n → ∞,

(S̄n, N̄λ
n ) d−→ (Sλ

∞,Nλ ),

where Nλ is defined in (2.1.2).

Proof We write Nλ
n (l) = ∑l

i=2 ξi, where ξi = 1{Vi=Vi−1}. Let Ai denote the number of active
half-edges after stage i while implementing Algorithm 3. Note that

P̃(ξi = 1 | Fi−1) =
Ai−1 −1

ℓ̃n −2i−1
=

Ai−1

ℓ̃n
(1+O(i/ℓ̃n))+O(ℓ̃−1

n ),

uniformly for i ≤ T nρ for any T > 0. By Lemma 5, ℓ̃n = ℓn pc(λ )(1+o
P

(1)) = n2ρ λ µ2/∑i θ 2
i (1+

o
P

(1)). Therefore, the instantaneous rate of change of the re-scaled process N̄λ at time t,
conditional on the past, is

nρ A⌊tnρ ⌋

n2ρ λ µ2

∑i≥1 θ2
i

(1+o
P

(1))+o
P

(1) =
∑i≥1 θ 2

i

λ µ2 refl(S̄n(t)) (1+o
P

(1))+o
P

(1). (4.23)

Since the reflection of a process is continuous in Skorohod J1-topology (see [56, Lemma
13.5.1]), we can use Theorem 5 to conclude that refl(S̄n)

d−→ refl(Sλ
∞), so that the compensator

of N̄λ
n converges. The convergence of the compensators is usually enough for convergence of

Poisson processes. Indeed, for Erdős-Rényi random graphs [4] or rank-one inhomogeneous
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random graphs [11, 12], showing the convergence of compensators suffices using [22, Theo-
rem 1]. This is because the surplus edges can be added independently after we have observed
the whole exploration process. However, this is not true for the configuration model because
the surplus edges occur precisely at places with jumps −2. This difficulty was circumvented
in [27] for the τ ∈ (3,4) regime. In Appendix A.2, we adapt the arguments from [27] in the
τ ∈ (2,3) setting, which completes the proof of Lemma 9. ⊓⊔

4.2.4 Convergence of the component sizes and the surplus edges

We first show the asymptotics of the component sizes and surplus edges of Gn(pc(λ )) gener-
ated by Algorithm 1. Recall that SP(C ) denotes the number of surplus of C . The following
lemma states the tightness of the vector of component sizes and surplus edges of Gn(pc(λ ))
in the U0

↓ -topology:

Lemma 10 For any ε > 0,

lim
δ→0

limsup
n→∞

P

(
∑

i:|C(i) |≤δnρ
|C(i)|×SP(C(i)) > εnρ

)
= 0.

The proof of Lemma 10 is an adaptation of [27, Proposition 19] in this setting. We provide a
proof of Lemma 10 in Appendix A.3. Next, let Z′

n(λ ) denote the vector (n−ρ |C(i)|,SP(C(i)))i≥1,
ordered as an element in U0

↓ . Below, we prove the scaling limit of Z′
n(λ ):

Proposition 6 Under Assumption 1, as n → ∞,

Z′
n(λ ) d−→ Z(λ ) (4.24)

with respect to the U0
↓ topology, where Z(λ ) is defined in (2.1.2).

Proof Recall from Proposition 2 that the limiting process Sλ
∞ is good in the sense that all

the conditions in Definition 1 are satisfied. Also, Proposition 5 ensures that the additional
restriction on the pre-limit process in Proposition 1 is satisfied. Thus, using Theorem 5, an
application of Proposition 1 yields the finite-dimensional convergence in (6). Finally, the
convergence in the U0

↓ -topology follows using the tightness in Lemma 10. ⊓⊔

We now provide a proof of Theorem 1:

Proof (Proof of Theorem 1) Throughout the proof, we ignore the λ in a predefined notation
to simplify writing. We will work under the coupling under which Proposition 3 holds,
i.e., Gn(pc(1 − εn)) ⊂ CMn(ddd, pc) ⊂ Gn(pc(1 + εn)), where εn → 0. We write C

−
(i) , C(i) and

C
+
(i) to denote the i-th largest component of Gn(pc(1− εn)), CMn(ddd, pc) and Gn(pc(1+ εn))

respectively, and let Z−
n , Zn and Z+

n be the corresponding vectors, rearranged as elements of
U0

↓ . Then,

Z+
n and Z−

n have identical scaling limits as Proposition 6.

Let dU denote the metric for the U0
↓ topology defined in (2.1.2). The proof is complete if we

can show that, as n → ∞,

dU(Z+
n ,Zn)

P−→ 0. (4.25)
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First, we prove that, for any K ≥ 1,

lim
n→∞

P(C −
(i) ⊂ C

+
(i) , ∀i ≤ K) = 1. (4.26)

If C
−
(1) is not contained in C

+
(1), then |C −

(1)| ≤ |C +
( j)| for some j ≥ 2, which implies that |C −

(1)| ≤
|C +

(2)|. Suppose that there is a subsequence (n0k)k≥1 ⊂N along which

lim
n0k→∞

P(|C −
(1)| ≤ |C +

(2)|) > 0. (4.27)

If (4.2.4) yields a contradiction, then (4.2.4) is proved for K = 1. To this end, first note that
(n−ρ(|C −

(i) |, |C +
(i) |)i≥1)n≥1 is tight in (ℓ2

↓ )2. Thus taking a subsequence (nk)k≥1 ⊂ (n0k)k≥1
along which the random vector converges, it follows that

n−ρ
k (|C −

(i) |, |C +
(i) |)i≥1

d−→ (γi, γ̄i)i≥1 in (ℓ2
↓ )

2,

where (γi)i≥1
d= (γ̄i)i≥1. Thus, along the subsequence (nk)k≥1,

lim
nk→∞

P(|C −
(1)| ≤ |C +

(2)|) =P(γ1 ≤ γ̄2). (4.28)

Fact 2 For all i ≥ 1, γi = γ̄i almost surely.

Proof Under the coupling in Proposition 3, ∑ j≤i |C −
( j)| ≤ ∑ j≤i |C +

( j)| and thereforeP(∑ j≤i γ j ≤
∑ j≤i γ̄ j) = 1, for each fixed i ≥ 1. In particular, γ1 ≤ γ̄1 almost surely. But, since γ1, γ̄1 have
the same distribution, it must be the case that γ1 = γ̄1 almost surely. Inductively, we can
prove that γi = γ̄i almost surely. ⊓⊔
Thus, using Fact 2, (4.2.4) reduces to

lim
nk→∞

P(|C −
(1)| ≤ |C +

(2)|) =P(γ1 ≤ γ2) =P(γ1 = γ2) = 0, (4.29)

where the last equality follows from Definition 1(f) and Proposition 2. Note that (4.2.4)
contradicts (4.2.4), and thus (4.2.4) follows for K = 1. For K ≥ 2, we can use a similar
argument to show that, with high probability, ∪i≤KC

−
(i) ⊂ ∪i≤KC

+
(i) . If both C

−
(1) and C

−
(2) are

contained in C
+
(1), then |C +

(1)| ≥ |C −
(1)|+ |C −

(2)|, which occurs with probability tending to zero.
This follows using Fact 2 and P(γ̄1 ≥ γ1 +γ2) =P(γ1 ≥ γ1 +γ2) = 0. Thus, C

−
(2) ⊂ C

+
(2) with

high probability and we can use similar arguments to conclude (4.2.4) for i ≤ K.
Next, we show that, for any K ≥ 1,

lim
n→∞

P

(
C

−
(i) ⊂ C(i) ⊂ C

+
(i) , ∀i ≤ K

)
= 1. (4.30)

If C(1) is not contained in C
+
(1), then |C(1)| ≤ |C +

(2)|. However, since |C −
(1)| ≤ |C(1)|, it follows that

|C −
(1)| ≤ |C +

(2)|. Now, one can repeat identical argument as in (4.2.4) to prove that C(i) ⊂ C
+
(i)

for all i ≤ K with high probability. Moreover, since Gn(pc(1−εn)) ⊂ CMn(ddd) and C
−
(i) ⊂ C

+
(i)

for all i ≤ K with high probability, it must also be the case that C
−
(i) ⊂ C(i) ⊂ C

+
(i) for all i ≤ K

with high probability. Thus we conclude (4.2.4). Finally, since Z−
n and Z+

n have the same
distributional limit, it follows using (4.2.4) that, for all i ≤ K,

|C +
(i) |− |C −

(i) | = o
P

(nρ) and SP(C +
(i) )−SP(C −

(i) )
P−→ 0.

Thus, (4.2.4) yields
∣∣|C +

(i) |− |C(i)|
∣∣ = o

P

(nρ) and
∣∣SP(C +

(i) )−SP(C(i))
∣∣ P−→ 0.

Moreover, since both (Z−
n )n≥1 and (Z+

n )n≥1 are tight in U0
↓ , it also follows that (Zn)n≥1 is

tight in U0
↓ . Thus (4.2.4) follows and the proof of Theorem 1 is now complete. ⊓⊔
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4.3 Analysis of the diameter

In this section, we investigate the asymptotics of the diameter of Gn(pc(λ )). As in the proof
of Theorem 1, an application of Proposition 3 yields the diameter of CMn(ddd, pc(λ )) and
completes the proof.

Proof (Proof of Theorem 2) First let us fix λ < 1 and use path counting. Let Pl denote the
number of paths of length l in Gn(pc(λ )). Since λ < 1, we have that ν̃n = λ (1+o

P

(1)) < 1
with high probability. Now, an application of [40, Lemma 5.1] yields that for all l ≥ 1,
Ẽ[Pl ] ≤ ℓ̃n(ν̃n)l−1. Thus, on the event {ν̃n < 1}, for any K ≥ 1,

P̃(diam(Gn(pc(λ ))) > K) ≤ ∑
l>K
Ẽ[Pl ] ≤

ℓ̃n(ν̃n)K

1− ν̃n
(4.31)

Now, taking K = C logn for some large constant C > 0 gives the desired logn bound on the
diameter of Gn(pc(λ )) with high probability for λ < 1.

To extend to the case λ ≥ 1, we delete R highest-degree vertices to obtain a new graph
G R

n . Using (4.2.2), G R
n is a configuration model with the criticality parameter νR

n < 1 with
high probability. Thus the above result applies for G R

n . However, after putting back the R
deleted vertices, the diameter of G >R can increase by at most a factor of R. This implies
the logn bound on the diameter of Gn(pc(λ )) with high probability for λ ≥ 1. Finally, as
remarked in the beginning of this section, the proof of Theorem 2 follows by invoking Propo-
sition 3. ⊓⊔

5 Near-critical behavior

Finally we consider the near-critical behavior for CMn(ddd, p) in this section. The analysis for
the barely subcritical and supercritical regimes are given separately in Sections 5.1 and 5.2
respectively.

5.1 Barely-subcritical regime

In this section, we analyze the barely-subcritical regime (pn ≪ pc) for percolation and com-
plete the proof of Theorem 3. Recall the exploration process from Algorithm 3 on the graph
Gn(pn), starting with vertex j. Let C ( j, pn) denote the connected component in Gn(pn) con-
taining vertex j. We will use the same notation for the quantities defined in Section 4.2.1,
but the reader should keep in mind that we now deal with different pn values. We avoid
augmenting pn in the notation for the sake of simplicity. Consider exploring the graph using
Algorithm 3 but starting from vertex j. The exploration process S j

n is given by

S j
n(0) = d̃ j, S j

n(l) = d̃ j + ∑
i:i6= j

d̃iI
n

i (l)−2l.

Thus the exploration process starts from d̃ j now. Now, for any u > 0, as n → ∞,

sup
u≤t

(nα pn)−1
∣∣∣ ∑

i:i6= j
I

n
i (unα pn)−unα pn

∣∣∣ P−→ 0.
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This follows using identical arguments as in Lemma 7, and thus is skipped here. Consider
the re-scaled process S̄ j

n defined as S̄ j
n(t) = (nα pn)−1S j

n(⌊tnα pn⌋). Then,

S̄ j
n(t) = (nα pn)−1d̃ j +(nα pn)−1 ∑

i:i6= j
d̃iI

n
i (tnα pn)−2t +o

P

(1)

= θ j +(nα pn)−1 ∑
i:i6= j

(d̃i −1)I n
i (tnα pn)− t +o

P

(1).

Recall that Ẽ is the conditional expectation conditionally on (d̃i)i∈[n]. Now, since the vertices
are explored in a size-biased manner with the sizes being (d̃i/ℓ̃n)i∈[n], for any t ≥ 0,

Ẽ

[
1

nα pn
∑

i:i6= j
(d̃i −1)I n

i
(
⌊tnα pn⌋

)]
≤ tnα pn

nα pnℓ̃n
∑

i∈[n]
d̃i(d̃i −1) = o

P

(1),

where the first inequality uses (4.2.1), and the final step follows from Lemma 5. Conse-
quently, S̄ j

n converges in probability to the deterministic process (θ j − t)t∈[0,θ j ]. Thus

# edges in C ( j, pn)
P−→ θ j. (5.1)

Next, the proof above shows that maxl≤θ j nα pn S j
n(l) ≤ 2θ jnα pn with high probability. Thus,

the probability of creating a surplus edge at each step is at most 2θ jnα pn/ℓ̃n. This im-
plies that the probability of creating at least one surplus edge before θ jnα pn is at most
2θ 2

j n2α p2
n/ℓ̃n = O

P

(n2α−1 pn) = o
P

(1). Together with (5.1) yields

(nα pn)−1|C ( j, pn)| P−→ θ j, and P(SP(C ( j, pn)) = 0) → 1.

From (5.1), we can also conclude that limn→∞P(i ∈ C ( j)) = 0 for all i, j ≥ 1 and i 6= j,
since, if i ∈ C ( j), then the number of edges in C ( j, pn) is at least d̃i + d̃ j = nα pn(θi + θ j).
Thus, C (i, pn) and C ( j, pn) are disjoint with high probability.

To conclude Theorem 3, we show that the rescaled vector of ordered component sizes is
tight in ℓ2

↓ . This tightness also yields that, for each fixed j ≥ 1,

|C ( j, pn)| = |C( j)(pn)|, with high probability.

To show ℓ2
↓ -tightness, it is enough to show that, for any ε > 0,

lim
K→∞

limsup
n→∞

P

(
∑
i>K

|C(i)(pn)|2 > εn2α p2
n

)
= 0.

This can be concluded using identical arguments as in the proof of Proposition 4 above. The
proof of Theorem 3 is now complete.

5.2 Barely-supercritical regime

In this section, we provide the proof of Theorem 4. Let pn = λnn−η , where λn → ∞ since
pn ≫ pc(λ ). Our main tool here is a general result [38, Theorem 5.4], that provides asymp-
totics of the component sizes, if one can verify certain properties of an associated explo-
ration process. Using Proposition 3, it is enough to prove Theorem 4 for the graph Gn(pn)
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generated by Algorithm 1. Let d̃dd denote the degree sequence obtained after performing Algo-
rithm 1 (S1). Thus, Gn(pn) is distributed as CMn(d̃dd). We will verify Assumptions (B1)–(B8)
from [38] on the graph Gn(pn), which allows us to conclude Theorem 4 from [38, Theorem
5.4]. We start by describing the following exploration process on Gn(pn) from [38, Section
5.1]:

Algorithm 4

(S0) Associate an independent Exponential(1) clock ξe to each half-edge e. Any half-edge
can be in one of the states among sleeping, active, and dead. Initially at time 0, all
the half-edges are sleeping. Whenever the set of active half-edges is empty, select a
sleeping half-edge e uniformly at random among all sleeping half-edges and declare it
to be active. If e is incident to v, then declare all the other half-edges of v to be active as
well. The process stops when there is no sleeping half-edge left; the remaining sleeping
vertices are all isolated and we have explored all other components.

(S1) Pick an active half-edge (which one does not matter) and kill it, i.e., change its status to
dead.

(S2) Wait until the next half-edge dies (spontaneously). This half-edge is paired to the one
killed in the previous step (S1) to form an edge of the graph. If the vertex it belongs to is
sleeping, then we declare this vertex awake and all of its other half-edges active. Repeat
from (S1) if there is any active half-edge; otherwise from (S0).

Denote the number of living half-edges upto time t by Ln(t). Let Ṽn,k(t) denote the number
of sleeping vertices of degree k such that all the k associated exponential clocks ring after
time t. Define

Ṽn(t) =
∞

∑
k=1

Ṽn,k(t), S̃n(t) =
∞

∑
k=1

kṼn,k(t), Ãn(t) = Ln(t)− S̃n(t). (5.2)

We show that Assumptions (B1)–(B8) from [38] hold with

ζ = κ
1

3−τ , γn = βn = p
τ−2
3−τ
n , ψ(t) = κtτ−2 − t, ĝ(t) = t, ĥ(t) = κtτ−2 + t,

where we recall the definition of κ from (iii). The ζ in our notation corresponds to τ in the
notation of [38, Theorem 5.4]. We have used ζ instead of τ , since in our paper τ denotes the
power-law exponent.

We first find the number of vertices in Gn(pn). Let ñ := #{i : d̃i ≥ 1}. Recall that Vn is a
vertex chosen uniformly at random from [n] and let Dn = dVn be the degree of Vn in CMn(ddd).
Note that

E[ñ] =E
[

∑
i∈[n]

1{d̃i≥1}
]

= ∑
i∈[n]

(
1− (1− pn)di

)
= nE[1− (1− pn)Dn ]. (5.3)

Using that 1 − (1 − x)k ≤ kx for any k ≥ 1 and x ∈ (0,1), we have E[ñ] ≤ nE[Dn]. Also,
using 1− (1− x)k ≥ kx− k2x2/2 for any kx < 1, k ≥ 1 and x ∈ (0,1),

E[1− (1− pn)Dn ] ≥E[1− (1− pn)Dn
1{pnDn<1}]

≥ pnE[Dn1{pnDn<1}]−
p2

n

2
E[D2

n1{pnDn<1}]

= pnE[Dn]− pnE[Dn1{pnDn≥1}]−
p2

n

2
E[D2

n1{pnDn<1}].
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Using Assumption 2 (ii), (Dn)n≥1 is uniformly integrable and thus E[Dn1{pnDn≥1}] = o(1),
where in the last step we have used that pn ≪ 1. For the third term, since (Dn)n≥1 is uni-
formly integrable, we have that (Dn)n≥1 is also tight. Thus, pnDn

P−→ 0. Using the uniform
integrability of (Dn)n≥1 again together with pnDn1{pnDn<1} ≤ 1 and pnDn

P−→ 0, we conclude
that E[Dn × (pnDn1{pnDn<1})] → 0. From (5.2), and Assumption 2 (ii), we now conclude
that

E[ñ] = npn(µ +o(1)). (5.4)

Further, using standard concentration inequalities for sums of independent Bernoulli random
variables [42, (2.9), Theorem 2.8], it follows that

P(|ñ−E[ñ]| > logn
√

npn) ≤ 2e−C(logn)2
, (5.5)

for some constant C > 0. In what follows, we will often use (5.2) and (5.2) to replace ñ by
npnµ .

Conditions (B1)–(B4) [38] are straightforward. (B8) follows using maxi∈[n] d̃i = O
P

(nα pn) =
o
P

(ñγn). To verify Conditions (B5)–(B7), we first obtain below the asymptotics of the mean-
curve and then show that the processes S̃SSn, ṼVV n, ÃAAn remain uniformly close to their expected
curves. These are summarized in the following two propositions:

Proposition 7 For any fixed u > 0, as n → ∞,

sup
t≤u

∣∣∣∣
1

npnµβn

(
E[S̃n(0)]−E[S̃n(βnt)]

)
− ĥ(t)

∣∣∣∣ → 0, (5.6)

sup
t≤u

∣∣∣∣
1

npnµβn

(
E[Ṽn(0)]−E[Ṽn(βnt)]

)
− ĝ(t)

∣∣∣∣ → 0, (5.7)

sup
t≤u

∣∣∣∣
1

npnµγn
E[Ãn(βnt)]−ψ(t)

∣∣∣∣ → 0.

Proposition 8 For any fixed u > 0, as n → ∞, all the terms supt≤u |S̃n(βnt) −E[S̃n(βnt)]|,
supt≤u |Ṽn(βnt) −E[Ṽn(βnt)]|, and supt≤u |Ãn(βnt) −E[Ãn(βnt)]| are o

P

(npnβn) (and thus
o
P

(npnγn)).

To prove Propositions 7 and 8, we make crucial use of the following lemma:

Lemma 11 For any t > 0, as n → ∞,

E

[
∑

i∈[n]
d̃ie−tβnd̃i

]
= (1+o(1))pne−tβn ∑

i∈[n]
die−tβn pndi ,

E

[
∑

i∈[n]
e−tβnd̃i

1{d̃i≥1}
]

= (1+o(1)) ∑
i∈[n]

(
e−tβn pndi − (1− pn)di

)
. (5.8)

Proof Note that if X ∼ Bin(m, p), then

E

[
Xe−sX ]

= mpe−s(1− p+ pe−s)m−1.

Putting m = di, p = pn, and s = tβn, it follows that

E

[
d̃ie−tβnd̃i

]
= di pne−tβn

(
1− pn

(
1− e−tβn

))di−1
= (1+o(1))di pne−tβn (1− pntβn)di

= (1+o(1))di pne−tβn e−tβn pndi .

(5.9)
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To prove (11), note that E[e−sX
1{X≥1}] = E[e−sX ]−P(X = 0). The proof of (11) now fol-

lows similarly. ⊓⊔

Proof (Proof of Proposition 7) Note that, by Lemma 11,

E

[
S̃n(βnt)

]
=E

[
∑

i∈[n]
d̃ie−tβnd̃i

]
= (1+o(1))ℓn pne−tβn

E

[
e−tβn pnD⋆

n
]
,

E

[
Ṽn(βnt)

]
=E

[
∑

i∈[n]
e−tβnd̃i

1{d̃i≥1}
]

= (1+o(1))n
(
E

[
e−tβn pnDn − (1− pn)Dn

])
,

(5.10)

where D⋆
n has a size-biased distribution with the sizes being (di/ℓn)i∈[n], and Dn is the degree

of a vertex chosen uniformly at random from [n]. By the convergence of E[Dn] in Assump-
tion 1,

E[Ṽn(0)]−E[Ṽn(βnt)] = (1+o(1))nE
[
1− e−tβn pnDn

]
= (1+o(1))tnβn pnµ ,

where the asymptotics of nE
[
1−e−tβn pnDn

]
follows using identical arguments as (5.2). Fur-

ther, by using (iii),

E[S̃n(0)]−E[S̃n(βnt)] = (1+o(1))ℓn pnE
[
1− e−tβn e−tβn pnD⋆

n
]

= (1+o(1))ℓn pnE[1− (1− tβn +o(βn))e−tβn pnD⋆
n ]

= (1+o(1))ℓn pn
(
E[1− e−tβn pnD⋆

n ]+ tβn +o(βn)
)

= (1+o(1))nµ pnβn(κtτ−2 + t +o(1)).

(5.11)

Thus, (7) and (7) follows. Moreover, Ln(t) is a pure death process, where Ln(0) = ∑i∈[n] d̃i,
and the jumps occur at rate Ln(t), and at each jump Ln(t) decreases by 2. Therefore,E[Ln(t)] =
E[Ln(0)]e−2t and consequently, by (5.2) and (5.2),

E[Ã(βnt)] = ℓn pn
(
e−2βnt − e−βnt

E

[
e−t pnβnD⋆

n
])

+o(nβn pn)

= nµ pnγn(κtτ−2 − t)+o(nβn pn).

Thus the proof follows. ⊓⊔

Proof (Proof of Proposition 8) Let us consider S̃n only; the other inequalities follow using
identical arguments. We will show that

E

[
sup

t≤uβn

|S̃n(t)−E[S̃n(t)]|2
]

= o((npnβn)2), (5.12)

then an application of Markov’s inequality completes the proof. To prove (5.2), we will use
[38, Lemma 5.15], which says that

E

[
sup

t≤uβn

|S̃n(t)−E[S̃n(t)]|2
]

≤ CE
[

∑
i∈[n]

d̃2
i min{d̃iuβn,1}

)]
. (5.13)

Although, [38, Lemma 5.15] was stated under Assumptions (A1)-(A4) of this paper, this
particular proof does not use this assumption. The proof only uses [38, Lemma 4.2]. Indeed,
the deductions in (5.62)–(5.65) of [38] does not require any assumption on the degrees. We
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skip redoing the proof of (5.2) here. Using the fact that 1−e−x ≥ (1∧x)/3 in (5.2), it follows
that

E

[
sup

t≤uβn

|S̃n(t)−E[S̃n(t)]|2
]

≤ CE
[

∑
i∈[n]

d̃2
i
(
1− e−uβn d̃i

)]
.

Now, using standard concentration inequalities for tails of binomial distributions [42, Theo-
rem 2.1], for any i ∈ [n],

P(d̃i > 2d1 pn) ≤ Ce−Cd1 pn = Ce−Cnρ λn ,

where λn = pnnη → ∞. Therefore maxi∈[n] d̃i ≤ 2d1 pn, almost surely. Thus,

1
(ℓn pnβn)2E

[
sup

t≤uβn

|S̃n(t)−E[S̃n(t)]|2
]

≤ C2d1 pn

(ℓn pnβn)2E

[
∑

i∈[n]
d̃i

(
1− e−uβn d̃i

)]

≤ C2d1 pnℓn pn

(ℓn pnβn)2 E
[
1− e−uβn pnD⋆

n
]
,

(5.14)

where the last step follows using (5.2). The final term in (5.2) can be shown to be O(βn)
using identical computations as (5.2). Thus,

1
(ℓn pnβn)2E

[
sup

t≤uβn

|S̃n(t)−E[S̃n(t)]|2
]

≤ C2d1 pnℓn pnβn

(ℓn pnβn)2 = O(d1/nβn) = O
(
λ− τ−2

3−τ
n

)
= o(1),

since λn → ∞, as n → ∞. Thus the proof follows. ⊓⊔

Proof (Proof of Theorem 4) The proof follows by applying [38, Theorem 5.4]. Proposi-
tions 7, 8 verify conditions (B5)–(B7) in [38], and the rest of the conditions are straightfor-
ward to verify. ⊓⊔
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R., López, E., Havlin, S., Stanley, H.E.: Optimal path and minimal spanning trees in
random weighted networks. Int. J. Bifurc. Chaos 17(07), 2215–2255 (2007)

21. Breiman, L.: Probability. Classics in Applied Mathematics. SIAM: Society for Indus-
trial and Applied Mathematics (1968)

22. Brown, T.C.: Compensators and Cox convergence. Math. Proc. Cambridge Philosophi-
cal Society 90(02), 305 (1981).

23. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network Robustness and
Fragility: Percolation on Random Graphs. Phys. Rev. Lett. 85(25), 5468–5471 (2000).

24. Cohen, R., Ben-Avraham, D., Havlin, S.: Percolation critical exponents in scale-free
networks. Phys. Rev. E 66(3), 36113 (2002).

25. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Resilience of the internet to random
breakdowns. Phys. Rev. Lett. 85(21), 4626–4628 (2000).

26. Dhara, S.: PhD Thesis: Critical Percolation on Random Networks with Prescribed De-
grees. Technische Universiteit Eindhoven, arXiv:1809.03634 (2018)

27. Dhara, S., van der Hofstad, R., van Leeuwaarden, J.S.H., Sen, S.: Heavy-tailed con-
figuration models at criticality. To appear Ann. Inst. H. Poincaré (B) Probab. Statist.
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A Appendix

A.1 Path counting

Recall the notation from in Section 4.2.2. We complete the proof of (4.2.2) using path-counting techniques
for configuration models from [40, Lemma 5.1]. Let Al(v,k) denote the event that there exists a path of length
l from v to k in the graph G K

n . Also, let Pl denote the number of paths of length l. Notice that

Ẽ

[
∑

k∈[n]
(d̃k −1)1{

V∗,K
n  k

}
∣∣∣V ∗,K

n = v
]

≤ d̃v −1+
(logn)2

∑
l=1

∑
k∈[n]

(d̃k −1)P̃(Al(v,k))+max
k∈[n]

(d̃k −1)×n ∑
l≥(logn)2

Ẽ[Pl].

(A.1)

Let Il(v,k) denote the collection of xxx = (xi)0≤i≤l such that x0 = v, xl = k and the xi’s are distinct. Then, an
identical argument to the proof of [40, Lemma 5.1] shows that, for l = o(n2ρ ), the expected number of paths
of length exactly l starting from vertex v and ending at k is given by

∑
xxx∈Il (v,k)

d′
x0

d′
xl ∏l−1

i=1 d′
xi
(d′

xi
−1)

(ℓ′
n −1) · · · (ℓ′

n −2l +1)
≤ d′

vℓ
′
n

ℓ′
n −2l +3

(νK
n )l−1 =

(
1+O

P

( l
ℓ̃n

))
d′

v(νK
n )l−1,

where ℓ′
n = ∑i∈[n] d′

i . Recall that ℓ′
n = ℓ̃n(1+o

P

(1)). Thus, the second term in (A.1) is at most

(logn)2

∑
l=1

∑
k∈[n]

(d̃k −1) ∑
xi 6=x j ,∀i 6= j

d′
vd′

k ∏l−1
i=1 d′

xi
(d′

xi
−1)

(ℓ′
n −1) · · · (ℓ′

n −2l +1)

≤ (1+o
P

(1))d̃v

(
1
ℓ̃n

∑
k∈[n]

d′
k(d̃k −1)

) ∞

∑
l=1

(νK
n )l−1

≤ (1+o
P

(1))d̃v

(
1
ℓ̃n

∑
k>K

d̃k(d̃k −1)
) ∞

∑
l=1

(νK
n )l−1 ≤ (1+o

P

(1))
d̃vE[d̃

V ∗,K
n

−1]

1−νK
n

,

where in the one-but-last step we have used d′
i = 0 for i ≤ K, d′

i ≤ d̃i for i > K and νK
n < 1. The third term in

(A.1) is o
P

(1) uniformly over v by (4.3). Thus the proof of (4.2.2) follows. ⊓⊔

A.2 Convergence of process tracking surplus

In this section, we complete the proof of Lemma 9. We first argue that, for any fixed u > 0,

(
N̄λ

n (u)
)

n≥1 is tight in R+. (A.2)

Fix ε > 0. Recall the asymptotics from Lemma 5 which will be used throughout the proof. Also, recall that P̃
and Ẽ respectively denote the conditional probability and expectation conditionally on (d̃i)i∈[n]. To simplify
writing, when we write bounds on the conditionals probabilities P̃ and Ẽ, we always implicitly assume
that the bounds hold with high probability. Recall from (4.2.3) that the compensator of N̄λ

n is approximately
proportional to refl(S̄n)

d−→ refl(Sλ
∞), where the distributional convergence follows using Theorem 5 and the
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continuity of the reflection map (see [56, Lemma 13.5.1]). We write Ai denote the number of active half-edges
after stage i while implementing Algorithm 3. Thus n−ρ A⌊tnρ ⌋ = refl(S̄n(t)). Using the fact that the supremum
of a process is continuous with respect to the Skorohod J1-topology [56, Theorem 13.4.1], we can choose
K ≥ 1 large enough so that for all sufficiently large n

P̃

(
sup

i≤⌊unρ ⌋
Ai > Knρ

)
< ε . (A.3)

Fix times 0 < l1 < · · · < lm ≤ ⌊unρ ⌋, and let A (l1, . . . , lm) denote the event that the surplus edges appear at
times l1, . . . , lm and Al j−1 ≤ Knρ for all j ∈ [m]. Then,

P̃

( ⌊unρ ⌋
∑
i=2

ξi ≥ m, and sup
i≤⌊unρ ⌋

Ai ≤ Knρ
)

≤ ∑
0<l1<···<lm≤⌊unρ ⌋

P̃(A (l1, . . . , lm))

≤ ∑
0<l1<···<lm≤⌊unρ ⌋

Ẽ

[
P̃(surplus created at lm|Flm−1)1{Alm−1≤Knρ}1A (l1 ,...,lm−1)

]

≤ Knρ

ℓ̃n −2⌊unρ ⌋+1 ∑
0<l1<···<lm≤⌊unρ ⌋

P̃(A (l1, . . . , lm−1)).

Continuing the iteration in the last step, it follows that with high probability

P̃

( ⌊unρ ⌋
∑
i=2

ξi ≥ m, and sup
i≤⌊unρ ⌋

Ai ≤ Knρ
)

≤ (1+o(1))
( Knρ

ℓ̃n

)m (⌊unρ ⌋)m

m!
, (A.4)

where (n)m = n(n−1) . . . (n−m+1). The last term in (A.2) tends to zero in the iterated limit limm→∞ limsupn→∞.
An application of (A.2) now yields (A.2).

Next, let S′
n be the process obtained by discarding the points where a surplus edge was added. More

precisely, if ζl = Sn(l)−Sn(l −1), then we can define S′
n(l) = S′

n(l −1)+ζ ′
l , where

ζ ′
l = ζkl , with kl = inf{ j > kl−1 : ζ j 6= −2}, k0 = 0.

Let S̄′
n(t) = n−ρ S′

n(⌊tnρ ⌋). Also, let dJ1 ,T denote the metric for the Skorohod J1-topology on D([0,T ],R).
We claim that, for any T > 0 and ε > 0,

lim
n→∞

P

(
dJ1 ,T (S̄′

n, S̄n) > ε
)
= 0. (A.5)

First, let 1 ≤ l1 < · · · < lK ≤ ⌊Tnρ ⌋ denote the times where the surplus edges have occurred. Also, let A be
the good event that l j +1 < l j+1 for all j ≤ K, i.e., none of the surplus edges occur in consecutive steps. Note
that

P̃

(
A

c
⋂{

sup
i≤⌊T nρ ⌋

Ai ≤ Knρ
})

≤ Tnρ
( Knρ

ℓ̃n

)2
= O(n−ρ ), (A.6)

and thus using (A.2),P(A c) → 0. We now restrict ourselves on A . Putting l0 = 0 and lK+1 = ⌊Tnρ ⌋+1, let

Λn(l) =





l + j −1 for l j−1 < l < l j ,

l j + j −1 for l = l j −0.5,

l j + j for l = l j .

(A.7)

Λn(t) is obtained by linearly interpolating between the values specified by (A.2). Also, note that the definition
of Λn works well on A , and on A c we define Λn(t) = t. Using (A.2) and (A.2), it immediately follows that

sup
l≤T nρ

|Λn(l)− l| = o
P

(nρ). (A.8)

Moreover, the occurrence of each surplus edge causes |S′
n(l)−Sn(Λn(l))| to increase by at most 2, so that

sup
l≤Tnρ

|S′
n(l)−Sn(Λn(l))| = o

P

(nρ ). (A.9)
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Now, (A.2) follows by combining (A.2) and (A.2). We now proceed to complete the proof of Lemma 9.
Let set up some notation for the rest of the proof. Fix T > 0, k ≥ 0 and let SurpT = {l1, . . . , lk}, where
1 ≤ l1 < l2 < · · · < lk ≤ ⌊Tnρ ⌋+k. Let (zl)l≤⌊T nρ ⌋+k be a sequence of integers such that zli = −2 and zl ≥ −1
for l /∈ {l1, . . . , lk}. Thus (zl)l≤⌊T nρ ⌋+k represents a sample path of Sn which has explored k surplus edges,
and SurpT is the set of times when surplus edges are found. Next, (z′

l)l≤⌊T nρ ⌋ denote the sequence obtained
from (zl)l≤⌊T nρ ⌋+k by deleting the −2’s. Thus, (z′

l)l≤⌊T nρ ⌋ corresponds to a sample path of S′
n. Recall that

ζl = Sn(l)−Sn(l −1). Let ωn → ∞ sufficiently slowly. Thus,

P̃(Nλ
n (⌊Tnρ ⌋+ k) = k|(S′

n(l))l≤⌊T nρ ⌋ = (z′
l)l≤⌊T nρ ⌋,N

λ
n (⌊Tnρ ⌋+ k) ≤ ωn)

= ∑
1≤l1<···<lk≤T nρ

P

(
surplus occurs only at times l1, . . . , lk

∣∣∣∣
(

S′
n(l)

)
l≤T nρ =(z′l )l≤T nρ ,

Nλ
n (⌊T nρ ⌋+k)≤ωn

)

= ∑
1≤l1<···<lk≤T nρ

P̃(ζl = zl , for all 1 ≤ l ≤ ⌊Tnρ ⌋+ k)
P̃(

(
S′

n(l)
)

l≤Tnρ = (z′
l)l≤Tnρ ,Nλ

n (⌊Tnρ ⌋+ k) ≤ ωn)
.

(A.10)

Define m1 = {i ∈ [n] : di = z1 +2}, and for l /∈ SurpT , we denote ml = #{i ∈ [n] : di = zl +2}−#{ j < l : z j =
zl}. Next, let al denote the number of active half-edges at time l when the exploration process takes the path
(zl)l≤⌊T nρ ⌋+k, and a′

l = S′
n(l)−min j<l S′

n( j). Now,

P̃(ζl = zl , ∀l ≤ ⌊Tnρ ⌋+ k) =
∏l /∈SurpT

ml ×∏k
j=1(al j−1 −1)

(ℓ̃n −1)(ℓ̃n −3) . . . (ℓ̃n −2⌊T nρ ⌋−2k+1)

=
∏l /∈SurpT

ml ×∏k
j=1(al j−1 −1)

(ℓ̃n −1) . . . (ℓ̃n −2⌊T nρ⌋+1)
× (1+o

P

(1))
k

∏
j=1

a′
l j−1

ℓ̃k
n

,

(A.11)

where the o
P

(1) term above is uniform over k ≤ ωn = logn. Thus,

(A.2) = (1+o(1))
∑1≤l1<···<lk≤⌊T nρ ⌋+k ∏k

j=1

a′
l j−1

ℓ̃k
n

∑ωn
r=0 ∑1≤l1<···<lr≤⌊T nρ ⌋+r ∏r

j=1

a′
l j−1

ℓ̃r
n

=: (1+o(1))
βn,k

∑∞
r=0 βn,r

,

where βn,r = 0 for r > ωn. We write µ̃ = λ µ2/∑i θ 2
i , so that ℓ̃n = µ̃n2ρ(1 + o

P

(1)). Now, using refl(S̄′
n)

d−→
refl(Sλ

∞), it follows that

(
(βn,r)r≥0,(S̄′

n(u))u≤T

)
d−→

(( 1
r!

( 1
µ̃

∫ T

0
refl(Sλ

∞(u))du
)r)

r≥0
,(Sλ

∞(u))u≤T

)
, (A.12)

where the convergence of (βn,r)r≥0 holds with respect to the product topology on R∞. Next, let us ensure
that ∑∞

r=0 βn,r in (A.2) converges to the desired quantity. To this end, consider a probability space where
the convergence of (A.2) holds almost surely. On this space, supl≤Tnρ +k refl(S′

n(l)) ≤ 2(supl≤Tnρ +k S′
n(l)+

ωn) =: Xn(T ), and thus

βn,r ≤ (T nρ +ωn)r

r!
Xn(T )r

ℓ̃r
n

.

Since n−ρ supl≤Tnρ +k S′
n(l) converges, an application of Dominated Convergence Theorem yields that

∑
r≥0

βn,r
a.s.−→ ∑

r≥0

1
r!

( 1
µ̃

∫ T

0
refl(Sλ

∞(u))du
)r

= exp
(

1
µ̃

∫ T

0
refl(Sλ

∞(u))du
)

. (A.13)

Next, for bounded continuous functions φ1 : D([0,T ],R) →R and φ2 :N→R,

E

[
φ1

((
S̄′

n(u)
)

u≤T

)
φ2(N̄λ

n (T ))
]

=E
[
φ1

((
S̄′

n(u)
)

u≤T

)
φ2(N̄λ

n (T ))1{Nλ
n (⌊T nρ ⌋+k)≤ωn}

]
+o(1)

= o(1)+E
[

φ1
((

S̄′
n(u)

)
u≤T

)
1{Nλ

n (⌊T nρ ⌋+k)≤ωn} × (1+o(1))
∑k≥0 φ2(k)βn,k

∑r≥0 βn,r

]

= o(1)+E
[

φ1
((

S̄′
n(u)

)
u≤T

)
× ∑k≥0 φ2(k)βn,k

∑r≥0 βn,r

]
→E

[
φ1

((
Sλ

∞(u)
)

u≤T

)
φ2(Nλ (T ))

]
,
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where Nλ (T ), conditionally on (Sλ
∞(u))u≤T , is distributed as Poisson( 1

µ̃
∫ T

0 refl(Sλ
∞(u))du). We have used

(A.2) in the third step, and the final step follows by combining (A.2) and (A.2). Hence, we have shown that,
for any T > 0,

((
S̄′

n(u)
)

u≤T ,N̄λ
n (T )

)
d−→

((
Sλ

∞(u)
)

u≤T ,Nλ (T )
)
. (A.14)

Next, let Un
1 < Un

2 < ... denote the location of surplus edges in the process Sn . Then, using (A.2) yields

P̃

(
Un

j = l j , for all j ∈ [k]
∣∣∣
(
S̄′

n(u)
)

u≤T ,N̄λ
n (T ) = k

)

= (1+o(1))
1
ℓ̃k

n
∏k

j=1(Al j −1)

∑1≤l′1<···<l′k≤⌊T nρ ⌋+k
1
ℓ̃k

n
∏k

j=1(Al′j
−1)

.
(A.15)

From this, it can be seen that the law of n−ρ (Un
j ) j∈[k], conditionally on (S̄′

n(u))u≤T , and N̄λ
n (T ) = k, converges

to the order-statistics of k i.i.d random variables with density
1{u∈[0,T ]}refl(Sλ

∞(u))
∫ T

0 refl(Sλ∞(u))du
. This shows that the location

of the occurrence of surplus edges, conditionally on (S̄′
n(u))u≤T , converges in distribution to the location of

the points of the Poisson process (2.1.2) on [0,T ] conditionally on
(
Sλ

∞(u)
)

u≤T . Convergence of the total
number of surplus edges created, conditionally on (S̄′

n(u))u≤T , is given by (A.2). Thus combining (A.2) and
(A.2), it follows that

((
S̄′

n(u)
)

u≤T ,
(
N̄λ

n (u)
)

u≤T

)
d−→

((
Sλ

∞(u)
)

u≤T ,
(
Nλ (u)

)
u≤T

)
.

Now, an application of (A.2) completes the proof of Lemma 9. ⊓⊔

A.3 Tightness of component sizes and surplus

In this section, we prove Lemma 10. Let V∗
n denote a vertex chosen in a size-biased manner with sizes being

(d̃i)i∈[n], independently of the graph CMn(ddd). Let C (V∗
n ) denote the component containing V∗

n , D(V ∗
n ) =

∑k∈C (V∗
n ) d̃k, and Di = ∑k∈C(i)

d̃k . Since component sizes corresponding to the components having one vertex
and no edges is zero by our convention, |C(i)| ≤ Di for all i. Thus, it is enough to show that, for any ε > 0,

P̃

(
∑

i:Di≤δ nρ
Di ×SP(C(i)) > εnρ

)
P−→ 0,

in the iterated limit limδ→0 limsupn→∞. The following estimate will be our crucial ingredient. We first prove
Lemma 10 using Lemma 12, and the proof of Lemma 12 will come after that.

Lemma 12 Assume that λ < 1. Let δk = δk−0.12. Then, for δ > 0 sufficiently small, with high probability,

P̃(SP(C (V∗
n )) ≥ K,D(V ∗

n ) ∈ (δKnρ ,2δK nρ )) ≤ C
√

δ
nρ K1.1 ,

where C is a fixed constant independent of n,δ ,K.

Proof (Proof of Lemma 10 using Lemma 12) First, let us consider the case λ < 1. Fix any ε ,δ > 0. Note that

P̃

(
∑

Di≤δ nρ
DiSP(C(i)) > εnρ

)
≤ 1

εnρ Ẽ

[ ∞

∑
i=1

DiSP(C(i))1{|Di≤δ nρ }

]

=
ℓ̃n

εnρ Ẽ
[
SP(C (V ∗

n ))1{|C (V∗
n )|≤δ nρ }

]

=
ℓ̃n

εnρ

∞

∑
k=1

∑
i≥log2(1/(k0.12δ ))

P̃

(
SP(C (V ∗

n )) ≥ k, |C (V∗
n )| ∈ (2−(i+1)k−0.12nρ ,2−ik−0.12nρ ]

)

≤ C
ε

∞

∑
k=1

1
k1.1 ∑

i≥log2(1/(k0.12δ ))

2−i/2 ≤ C
ε

∞

∑
k=1

√
δ

k1.04 = O(
√

δ/ε),
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where the last-but-second step follows from Lemma 12, and the inequality holds with high probability. The
proof of Lemma 10 now follows for the λ < 1 case.

Now consider the case λ > 1. Fix a large integer R ≥ 1 such that λ ∑i>R θ 2
i < 1. This can be done because

θθθ ∈ ℓ2
↓ . Using (4.2.2), for any δ0 > 0, it is possible to choose T > 0 such that

limsup
n→∞

P(all the vertices 1, . . . ,R are explored within time T nρ ) > 1−δ0.

Let Te denote the first time after Tnρ when we finish exploring a component. By Theorem 5, (n−ρ Te)n≥1
is a tight sequence. Let G ∗

T denote the graph obtained by removing the components explored up to time Te.
Then, G ∗

T is again a configuration model conditioned on its degrees. Let ν∗
n denote the value of the criticality

parameter for G ∗. Then using (4.2.2) and the fact that λ ∑i>R θ 2
i < 1, ν∗

n < 1 − ε0 with high probability for
some ε0 > 0. Thus, if C ∗

(i) denotes the i-th largest component of G ∗
T , then the argument for λ < 1 yields

lim
T→∞

lim
δ→0

limsup
n→∞

P

(
∑

i:|C ∗
(i)|≤δ nρ

|C ∗
(i)|×SP(C ∗

(i)) > εnρ
)

= 0. (A.16)

To conclude the proof for the whole graph (with λ > 1), let

K
T

n := {i : |C(i)| ≤ δnρ , |C(i) | is explored before the time Te}.

Note that

∑
i∈K T

n

|C(i)|×SP(C(i)) ≤
(

∑
i∈K T

n

|C(i)|2
)1/2

×
(

∑
i∈Kn

SP(C(i))2
)1/2

≤
(

∑
|C(i)|≤δ nρ

|C(i)|2
)1/2

×SP(Te),

where SP(t) is the number of surplus edges explored up to time tnρ and we have used the fact that ∑i∈K T
n

SP(C(i))2 ≤
(∑i∈K T

n
SP(C(i)))2 ≤ SP(Te)2. From Lemma 9 and Proposition 4 we can conclude that for any T > 0,

lim
δ→0

limsup
n→∞

P

(
∑

i∈K T
n

|C(i)|×SP(C(i)) > εnρ
)

= 0. (A.17)

The proof is now complete for the case λ > 1 by combining (A.3) and (A.3). ⊓⊔

Proof (Proof of Lemma 12) We use a generic constant C to denote a positive constant independent of n,δ ,K.
Consider the graph exploration described in Algorithm 3, but now we start by choosing vertex V ∗

n at Stage 0
and declaring all its half-edges active. The exploration process is still given by (4.2.1) with Sn(0) = d̃V∗

n . Note
that C (V∗

n ) is explored when Sn hits zero, and the hitting time at zero gives D(V ∗
n )/2. For H > 0, let

γ := inf{l ≥ 1 : Sn(l) ≥ H or Sn(l) = 0}∧2δK nρ .

Here, we let A be the intersection of all the events described in Lemma 5, which are shown to hold with high
probability. Recall that we write Fl = σ(Ii(l) : i ∈ [n])∩A . Note that

Ẽ [Sn(l +1)−Sn(l) | Fl ] = ∑
i∈[n]

d̃iP̃(i /∈ Vl , i ∈ Vl+1 | (I n
i (l))n

i=1)−2

=
∑i/∈Vl

d̃2
i

ℓ̃n −2l −1
−2 ≤ ∑i∈[n] d̃2

i

ℓ̃n −2l −1
−2

: = (λ −1)+
2l +1

ℓ̃n −2l −1
× ∑i∈[n] d̃2

i

ℓ̃n
≤ 0,

uniformly over l ≤ 2δK nρ for all small δ > 0 and large n, where the last step uses that λ < 1. Therefore,
{Sn(l)}2δK nρ

l=1 is a super-martingale. The optional stopping theorem now implies

Ẽ

[
d̃V ∗

n

]
≥ Ẽ [Sn(γ)] ≥ HP̃(Sn(γ) ≥ H) .
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Thus,

P̃(Sn(γ) ≥ H) ≤ Ẽ[dV∗
n ]

H
.

Put H = nρ K1.1/
√

δ . To simplify the writing, we write Sn[0,t] ∈ A to denote that Sn(l) ∈ A, for all l ∈ [0,t].
Notice that

P̃(SP(C (V∗
n )) ≥ K,D(V ∗

n ) ∈ (δKnρ ,2δK nρ ))

≤ P̃(Sn(γ) ≥ H)+ P̃(SP(C (V∗
n )) ≥ K,Sn [0,2δK nρ ] < H,Sn [0,δK nρ ] > 0) .

(A.18)

Now,

P̃(SP(C (V∗
n )) ≥ K,Sn [0,2δK nρ ] < H,Sn[0,δK nρ ] > 0)

≤ ∑
1≤l1<···<lK≤2δKnρ

P̃(surpluses occur at times l1, . . . , lK ,Sn[0,2δK nρ ] < H,Sn[0,δK nρ ] > 0)

= ∑
1≤l1<···<lK≤2δKnρ

Ẽ

[
1{0<Sn[0,lK−1]<H,SP(lK −1)=K−1}Y

]
,

where

Y = P̃
(

Kth surplus occurs at time lK ,Sn[lK ,2δK nρ ] < H,Sn[lK ,γ ] > 0 | FlK −1

)

≤ CK1.1nρ

ℓ̃n
√

δ
≤ CK1.1

nρ
√

δ
.

Therefore, using induction, (A.3) yields

P̃(SP(C (V∗
n )) ≥ K,Sn [0,2δK nρ ] < H,Sn[0,δK nρ ] > 0)

≤ C
(

K1.1
√

δnρ

)K (2δnρ )K−1

K0.12(K−1)(K −1)!

2δK nρ

∑
l1=1

P̃(D(V ∗
n )| ≥ l1) ≤ C

δ K/2

K1.1nρ Ẽ [D(V∗
n )] ,

where we have used the fact that #{1 ≤ l2, . . . , lK ≤ 2δnρ } = (2δnρ)K−1/(K −1)! and Stirling’s approxima-
tion for (K − 1)! in the last step. Since λ < 1, we can use (4.2.2) to conclude that, for all sufficiently large
n,

Ẽ [D(V∗
n )−1] ≤ C,

with high probability for some constant C > 0. Thus, we get the desired bound for (A.3). The proof of
Lemma 12 is now complete. ⊓⊔


