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ABSTRACT

We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles.
We find the network needs to be trained on only a small sampling of the data in order to approximate the
simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders
of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used solve
nanophotonic inverse design problems by using back-propogation - where the gradient is analytical, not numerical.
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1. INTRODUCTION

Inverse design problems are pervasive in physics.1–4 Quantum Scattering Theory,1 photonic devices,2 and thin
film photovoltaic materials3 are all problems that require inverse design. A typical inverse design problem requires
optimization in high dimensional space, which usually involves lengthy calculations. For example, in photonics,
where the forward calculations are well understood with Maxwell’s equations, solving one instance of an inverse
design problem can often be a substantial research project.

There are many different ways to solve inverse design problems, which can be classified into two main
categories: the genetic algorithm5,6 (searching the space step by step), and adjoint method7 (mathematically
reversing the equations). For problems with many parameters, solving these with genetic algorithms take a lot of
computation power and time, and this time grows exponentially as the number of parameters increases. On the
other hand, the adjoint method is far more efficient than the genetic algorithms; however, setting up the adjoint
method often requires a deep knowledge in photonics, and can be quite non-trivial even with such knowledge.

Neural Networks (NNs) have previously been used to approximate many physics simulations with high degrees
of precision. Recently Carleo et. al.8 used NNs to solve many-body quantum physics problems, and Faber et.
al.9 used NNs to approximate Density Functional Theory. In this paper, we propose a novel method to further
simulate light interaction with nanoscale structures and solve inverse design problems using Artificial Neural
Networks. In this method, a neural network is first trained to approximate a simulation; thus the neural network
is able to map the scattering function into a continuous, higher order space where the derivative can be found
analytically — based on our earlier work presented in.10 The ‘approximated’ gradient of the figure of merit
(FOM) with respect to input parameters is then obtained analytically with standard back-propagation.11 The
parameters are then optimized efficiently with the gradient descent method. Finally, we compare our performance
with the standard gradient free optimization method and find our method is orders of magnitude faster and more
effective than traditional methods.
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2. NNS CAN LEARN AND APPROXIMATE MAXWELL INTERACTIONS

We evaluate this method by considering the problem of light scattering from a multi-layer dielectric spherical
nanoparticle — Fig. 1. Our goal is to use a NN to approximate this simulation. Specifically, we consider
eight layers of alternating dielectric material (silica and TiO2) between 30nm to 70nm thicknesses per layer.
Thus the smallest particle we consider is 480nm in diameter, and the largest is 1,120nm. This problem can be
solved analytically or numerically with the Maxwell equations, though for multiple layers, the solution becomes
involved. The analytical solution is well known.12 We used the simulation to generate 50,000 examples from
these parameters with Monte-Carlo sampling.

Figure 1. The NN architecture has as its inputs the thickness of each layer of the nanoparticle, and as its output the
scattering cross section at different wavelengths of the scattering spectrum. Our actual NN has four hidden layers.

Next, we trained the NN using these examples. We used a fully connected network, with four layers and 250
neurons per layer, giving us 239,500 total parameters. The input was the thickness of each layer of material (with
the material held fixed), and the output was the spectrum sampled at points between 400 to 800 nanometers.
The network size was increased as the number of layers of material increased, with the maximum size being four
hidden layers with 300 neurons each.
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Figure 2. Left - Training loss for the eight layer case. Right - Comparison of NN approximation to the real spectrum,
with the closest training examples shown here. The training examples are the most similiar larger and smaller particle
respectively.

We trained the network using a batch size of 100, for around 16,000 epochs on most trials. The cost function
we use is the mean-square-error between each spectrum point and output neuron. The training error is graphed in
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Fig. 2. The first application was to test the forward computation of the network to see how well it approximates
the spectra it was not trained on — for an example see Fig. 2. Impressively, the network matches the sharp
peaks and high Q features with much accuracy, even though the model was only trained with 50,000 examples
— which is equivalent to sampling each layer thickness between 30-70 nanometers only four times.

To study if the network learned anything about the system and can produce features it was not trained
on, we also graphed the closest examples in the training set it was trained on. The results from Fig. 2 visually
demonstrate that the network is not simply interpolating, or averaging together the closest training spectra. This
suggests that the NN is not simply fitting to the data, but instead learning some pattern about the input and
output data such that it can solve problems it had not encountered, and to some extent generalize the physics
of the system.

2.1 NNs solve Nanophontonic Inverse Design

With the weights fixed, we set the input as a trainable variable and used back-propogation to train the inputs
of the NN. In simple terms, we run the NN ‘backwards’.

We test this inverse design on the same problem as above - an eight layer nanoparticle made of alternating
layers of TiO2 and silica. We choose an arbitrary spectrum, and have the network learn what inputs would
generate a similar spectrum. We can see an example optimization in Fig. 3. In order to ensure that we have a
physically realizable spectra, the desired spectrum comes from a random valid nanoparticle configuration.
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Figure 3. Inverse design for an eight layer nanoparticle. The legend gives the dimensions of the particle, and the blue is
the desired spectrum. The NN is seen to solve the inverse design much more accurately.

We also compare our method to state of the art numerical nonlinear optimization methods. We tested several
techniques, and found that interior-point methods13 were most effective for this problem. We then compared
these interior-point methods to our results from the NN, shown in Fig. 3. Visually, we can see that the NN is
able to find a much closer minimum than the numerical nonlinear optimization method. This result is consistent
across many different spectra, as well as for particles with different number of layers and materials.

Further results demonstrated the network was able to behave fine even in regions where ε has a strong
dependence on ω, such as in J-Aggregates,14 where the spectra are very sharp and complex.

3. NNS CAN BE USED TO OPTIMIZE BROADBAND AND
SPECIFIC-WAVELENGTH SCATTERING

For optimization, we want to be able to give the boundary conditions for a model (for instance how many layers,
how thick of a particle, what materials it could be), and find the optimal particle to produce σ(λ) as close as
possible to the desired σdesired(λ). We consider two optimization problems: maximizing at a single wavelength,
and maximizing a broad-spectrum.

Proc. of SPIE Vol. 10526  1052607-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



To do this, we fix the weights of the NN, and create a cost function that will produce the desired results. We
simply compute the average of the σ(λ) inside of the range of interest, and compute the average of the points
outside the range, then minimize this ratio. This cost function J is J = σin

σout
.
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Figure 4. Spectra produced by using our approach as an optimization tool. Left - demonstrates scattering at a narrow
range close to a single wavelength. Right - Demonstrates scattering across a broad-band of wavelengths. The legend
specifies the thickness of each layer in nm, alternating TiO2 and silica layers.

Ideally, this optimization would be performed using metals and other materials with plasmonic resonances14

in the desired spectrum range. These materials are well-suited for having sharp, narrow peaks, and as such can
generate spectra that are highly efficient at scattering at precisely a single wavelength. Our optimization here
uses solely dielectric materials. By using materials that do not have sharp plasmonic resonances, we force the
NN to find a total geometry that still scatters at a single peak, despite the underlying materials being unable
to. A figure showing the results of this for a narrow set of wavelengths close to 465 nanometers can be seen in
Fig. 4.

Next, we consider the case of broadband scattering, where we want a flat spectrum across a wide array of
wavelengths. In this case, we choose the same J as above - minimizing the ratio of values inside to outside. After
training the network for a short number of iterations, we achieve a geometry that will broad-band scatter across
the desired wavelengths. A figure of this can be seen in Fig. 4.

4. COMPARISON OF NNS WITH SOME CONVENTIONAL INVERSE DESIGN
ALGORITHMS
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Figure 5. Left - Comparison of forward runtime versus complexity of the nanoparticle. The simulation becomes infeasible
to run many times for large particles. The scale is log-log. Right - Comparison of inverse design runtime versus complexity
of the nanoparticle. The runtime of the numerical optimization is seen to increase more quickly than that of the NN. The
simulation is fit with a 4.5 degree power.

We tested several techniques, and found that interior-point methods13 were most suited for nanoparticle
inverse design. To compare this numerical nonlinear optimization method to our NN, we use the same cost
function for both, and code both the NN and simulation in Matlab.
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We train a different NN on each number of particle layers from two to ten. The networks’ size increased as
we increased the number of layers. We tested the approximation speed, after-training, by averaging the runtime
for 100 spectra. A plot of these results is shown in Fig. 5. Once fitting, it is evident that for complex problems,
the simulation would struggle to run more than a few layers, while the NN would be able to handle more.

Next, we looked at the optimization runtime versus the problem complexity. To find the speed of this
optimization, we chose a spectrum and set a threshold cost, and timed how long it took to find a spectrum below
this cost or that converged to a local minimum. Results demonstrated that NN inverse design was able to handle
more complex problems than the numerical inverse design — see 5.

5. CONTRIBUTIONS

The results of this method suggest that it can be easily used and implemented, even for complex inverse design
problems. The architecture used in the examples above — a fully connected layer — was chosen without much
optimization, and still performs quite well. Our preliminary testing with other architectures (convolutions,
dropouts, and residual networks) appeared to have further promise as well.

Perhaps the two most surprising results were how few examples it takes for the network to approximate the
simulation, as well as how complex the approximation can really be. For instance, in the eight layer case the NN
only saw 50,000 examples over eight independent inputs. This means that on average it sampled only four times
per layer thickness, and yet could reproduce the entire range of 30-70 nanometer layer thickness continuously.
The approximation was even able to handle quite sharp features in the spectrum that it otherwise had not seen.

One clear concern with the method is that we still have to generate the data for each network, and this takes
up time for each inverse design problem. It is true that generating the data takes significant effort, but there
are two reasons why this method is still very useful. First, hardware is cheap, and the generation of data can be
done easily in parallel across machines. This is not true for inverse design. Inverse Design must often be done in
a serial approach as each step gets a little closer to the optimal, so the time cannot be reduced significantly by
parallel computation. The second reason this method is highly valuable is because while the forward propagation
is linear in complexity, the optimization is polynomial. Specifically, by looking at Fig. 5, we can see that the
inverse design speed is growing much faster than the forward runtime. This is important because it means that
for complex simulations, the numerical inverse design could take an infeasible amount of time, while the NN
forward calculation may not take long; it will simply have many variables.

This method could be used in many other fields of computational physics; it would allow us to approximate
physics simulations in fractions of the time. Furthermore, owing to the robustness of back-propogation, this
method allows us to solve many inverse design problems without having to manually calculate the inverse
equations. Instead, we simply have to write a simulation for the forward calculation, and then train the model
on it to easily solve the inverse design.
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