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Abstract

Social and medical scientists are often concerned that the external validity of experimental results

may be compromised because of heterogeneous treatment effects. If a treatment has different effects

on those who would choose to take it and those who would not, the average treatment effect estimated

in a standard randomized controlled trial (RCT) may give a misleading picture of its impact outside

of the study sample. Patient preference trials (PPTs), where participants’ preferences over treatment

options are incorporated in the study design, provide a possible solution. In this paper, we provide

a systematic analysis of PPTs based on the potential outcomes framework of causal inference. We

propose a general design for PPTs with multi-valued treatments, where participants state their pre-

ferred treatments and are then randomized into either a standard RCT or a self-selection condition.

We derive nonparametric sharp bounds on the average causal effects among each choice-based sub-

population of participants under the proposed design. We also propose a sensitivity analysis for the

violation of the key ignorability assumption sufficient for identifying the target causal quantity. The

proposed design and methodology are illustrated with an original study of partisan news media and

its behavioral impact. (194 words)
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1 Introduction

Randomized controlled trials (RCTs) are widely used in the social and medical sciences to estimate

the causal effects of treatments of interest. The random assignment of treatments ensures the internal

validity of the study, in the sense that observed differences in the distribution of outcomes between

randomized treatment groups can be interpreted as causal effects of the treatments. Carefully controlled

randomization, however, often comes at the cost of external validity. That is, conclusions from RCTs

may not generalize to situations outside of that particular experiment. Without sufficient external validity,

RCTs are not informative about the substantive, real-world questions in which scientists and practitioners

are ultimately interested.

In RCTs, preferences of experimental subjects over treatment options often play an important role.

Even in a well controlled study on a representative sample from the target population, heterogeneity of

treatment effects across treatment preferences may limit the study’s externally validity. For example, a

medical treatment that was found to be ineffective on average in a RCT may in fact be highly beneficial

for the patients who would choose to take it if they were able to. In a standard RCT, however, researchers

cannot make such nuanced inferences because all subjects are forced to take treatments randomly chosen

by the researchers.

In this paper, we propose a new experimental design for patient preference trials (PPTs), in which

subjects’ preferences over treatments are systematically incorporated in the study design. The proposed

design consists of two stages of randomization and synthesizes many of the variants of PPTs previously

used in social (Gaines and Kuklinski, 2011; Arceneaux et al., 2012) and medical (King et al., 2005;

Howard and Thornicroft, 2006) applications. First, all participants state their preferred treatments prior

to entering the study. Then, we randomize them into either a standard RCT or a self-selection condition.

In the latter condition, they choose the treatment as they would in the real world. Finally, we measure

the outcome variables of interest. The proposed design is novel in that it allows the researcher to in-

corporate in the analysis the discrepancy between subjects’ stated preferences and their actual choice of
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treatments. This modification is important because respondents to a survey question often fail to report

their underlying preferences to the interviewer, whether consciously or subconsciously.

Using the potential outcomes framework of causal inference (Neyman, 1923; Rubin, 1974), we de-

fine a causal quantity which we call the average choice-specific treatment effect (ACTE), representing

the conditional average treatment effect for the subpopulation of subjects who would choose a particu-

lar treatment option. We show that the point identification of this quantity for a multi-valued treatment

requires the strong assumption that the discrepancy between stated preference and actual choice is ignor-

able. That is, the naïve estimate of the ACTE using stated preference will be biased if the measurement

errors are systematically correlated with unobserved characteristics that affect the potential outcomes.

To make valid inference about the ACTE under the proposed design, we derive nonparametric sharp

bounds on this causal quantity without assuming the ignorability of the measurement error in stated

treatment preferences. We also propose a sensitivity analysis where we quantify the assumed informa-

tiveness of the stated preferences about actual choices via a sensitivity parameter and analyze how the

ACTE responds to the change in this parameter. Finally, we develop a simulation-based procedure to

make statistical inference for the bounds and sensitivity results in small samples. We provide open-

source software, ppt, for implementing the proposed methodology.

We illustrate the proposed design and methodology with an original survey experiment, where we

investigate the effect of partisan political news media on the subjects’ perception of the media and their

subsequent political behavior. Our primary interest is in how the effects of our treatments vary depending

on whether subjects would actually consume such partisan media if they could choose to do so.

Despite the prevalence of PPTs across scientific disciplines, very few methodological investigations

have been conducted on the topic from the perspective of causal inference. A notable exception is Long

et al. (2008), who employ a framework similar to ours to define causal quantities. For the identification

and estimation of those quantities, however, they assume a parametric model between the unobserved

choice and observed covariates for participants in the self-selection condition and use an EM algorithm

to estimate the causal quantities as functions of model parameters. In contrast, our model-free approach
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avoids distributional or functional-form assumptions for better credibility of the resulting inference.

The rest of the paper proceeds as follows. Section 2 describes the background motivation of the

empirical example. Section 3 formally describes the proposed design and defines causal quantities of

interest and assumptions. Sections 4, 5 and 6 discuss the proposed methodology. Section 7 applies

the method to the empirical example. Section 8 investigates finite-sample performance of the proposed

inferential approach via Monte Carlo simulations. Section 9 concludes.

2 A Motivating Example

In recent years, many scholars (e.g., Prior, 2007) have explored the political consequences of increased

media choice in the 21st century. The explosion of media outlets has vastly increased the choices avail-

able to consumers and allowed for the development of ideological “niche” news programming (Hamil-

ton, 2005). A great deal of research has sought to determine the effects of this unprecedented media

fragmentation (e.g., Stroud, 2011; Kim, 2009; Iyengar and Hahn, 2009; Levendusky, 2013).

Among several significant strands of this research program, a predominant body of scholarship has

sought to delineate the effects of consuming ideologically polarized media on attitudes towards the

broader mass media. According to Gallup (2014), between 1976 and 2014, the percentage of Ameri-

cans expressing “a great deal” or “a fair amount” of trust in the media fell from 72 to 44 percent. People

who distrust the media may conclude it cannot report in an unbiased manner. As a result, the public may

dismiss media content as unreliable and increasingly become suspicious of and antagonistic toward the

news media more generally (Arceneaux et al., 2012; Ladd, 2012).

To explore this phenomenon, we conducted an experiment in June 2014 on a sample of 3,023 Amer-

ican adults, recruited by Survey Sampling International (SSI). Our goal was to estimate the effect of ex-

posing subjects to pro- and counter-attitudinal political news programming (as opposed to non-political

entertainment shows) on their sentiment towards specific news programs and the media in general. We

also explored whether such programming produces behavioral responses, such as changes in propensity

to discuss the content of the media with friends. Specifically, we selected a short clip from each of
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the following television programs: (1) The Rachel Maddow Show (MSNBC), (2) Jamie’s Kitchen with

Jamie Oliver (Food Network), (3) Dirty Jobs with Mike Rowe (Discovery Channel), and (4) The O’Reilly

Factor with Bill O’Reilly (Fox News). We carefully selected clips from the two political shows—Rachel

Maddow and The O’Reilly Factor—to match as closely to each other in topic and content as possible. We

selected clips that focused on energy policy (specifically, the Obama administration’s policies regarding

domestic energy production and their effects on gas prices). Finally, we merged the two entertainment

shows into a single treatment condition (“entertainment”) in our analysis.

One of our primary concerns in the design of our study was that the existing experimental studies of

partisan media effects had limited external validity because they paid inadequate attention to the pref-

erences of subjects over treatment options. Namely, the average treatment effect obtained in a standard

RCT could mask fundamental heterogeneity across different types of individuals and misrepresent the

overall impact of media polarization in the “real” political world. For instance, it could be the case that

partisan news is highly persuasive for some people—say, those least likely to consume it in the real

world—while having little or no persuasive effect among people who are most likely to consume it.

A natural approach to incorporating preferences is to adopt one of the commonly used PPT designs.

For example, Arceneaux et al. (2012) conducted a similar media choice experiment in which respondents

were asked their news preferences before being randomly assigned to a particular treatment condition.

A PPT based on the measurement of stated preferences like this, however, appears inadequate in our

context. This is because research has shown that people often have difficulty assessing what they would

actually do or prefer (Clausen, 1968) or have done in the past (Prior, 2009) when offered a hypothetical

choice or asked about past behavior. Theories regarding the source of this gap between self-reported

preferences and actual behavior, like media consumption, are manifold. These theories range from a

bias toward offering socially desirable responses on topics like voting (Rogers and Aida, 2013) and

sensitive topics (Brown and Sinclair, 1999; Hser et al., 1999; Payne, 2010); to selective retention of

pro-attitudinal information (Campbell et al., 1960) or motivated reasoning (Levendusky, 2013); to an

inability to accurately remember prior behavior (Tourangeau, 1999).
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Given these considerations about the inadequacy of existing experimental designs, we implemented

a new PPT design which we will describe in Section 3. In Section 7 we present results from our analysis

of this experiment with our proposed methodology.

3 Design and Assumptions

In this section, we introduce the notation required for our methodology. We define our causal quanti-

ties of interest and discuss their substantive interpretations. We then introduce several assumptions for

identification analysis.

3.1 Notation and the Proposed Design

Suppose that we have a random sample of N experimental subjects from the population of interest. We

consider a study where the goal is to estimate the effect of a J-valued treatment on an outcome of interest.

Let Ai ∈ A ≡ {0, 1, ..., J − 1} denote the treatment that subject i actually receives in the study. For

the rest of the paper, we call this the “actual treatment,” or simply the “treatment” when the meaning is

obvious from the context. Without loss of generality, we impose the standard total ordering on A.

Our proposed design for patient preference trials proceeds as follows. First, all N subjects in the

study sample are asked to state their preferred treatment, Si ∈ A. Second, after an optional “washout”

period, or a set of additional questions as we discuss in Section 7.1, the subjects are randomized into one

of the two conditions: Either they will be forced to take the randomly assigned treatment, or they will

be allowed to freely choose the treatment of their own accord. We refer to this actual choice as Ci ∈ A.

Formally, we use the “design indicator”Di ∈ {0, 1} to denote whether subject i is in the forced-exposure

condition (Di = 1) or the free-choice condition (Di = 0). Third, the subjects then receive treatment (Ai)

according to the protocol determined by their design indicator. That is, Ai is randomized if and only

if Di = 1; in this case, Ci is unobserved. For the subjects with Di = 0, their treatments equal the

treatments they have chosen. Therefore, we have Ai = Ci if Di = 0. Finally, the outcome of interest,

Yi ∈ Y , is measured for every subject.
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Under the proposed design, the potential outcome for subject i can be defined as Yi(a) ∈ Y . This

represents the value of the outcome of interest that would be realized if i received the treatment a ∈

A. By this notation, we are implicitly making the stable unit treatment value assumption (SUTVA,

Rubin, 1990), which posits that subjects cannot be affected by the treatments received by any other

subjects (no interference) and that subjects exhibit the same value of the outcome no matter how the

treatment Ai = a was received (stability or consistency). In particular, the notation assumes that there

is no design effect, i.e., the potential outcomes remain stable across the two design conditions. Long

et al. (2008) call this assumption the exclusion restriction. The no-design-effect assumption would be

violated if, for example, a nominally identical treatment had different effects on the outcome for the

same unit depending on whether the treatment was randomly assigned in the forced-exposure condition

or voluntarily chosen in the free-choice condition. Under the SUTVA, we can express the observed

outcome as Yi =
∑

a∈A Yi(a)1{Ai = a} = Yi(Ai) for any i. The cumulative distribution function

(CDF) of Yi(a) is denoted by FY (a)(y) = Pr(Yi(a) ≤ y).

The diagram in Figure 1 graphically summarizes the proposed design. Several important features of

this design are worth mentioning. First, the proposed design combines the standard RCT (Di = 1, upper

arm) with a pure self-selection study (Di = 0, lower arm) via randomization. As discussed in Section 4,

this allows us to infer more about the unobserved choice behavior of the subjects who are assigned to the

forced-exposure condition. Second, our design clearly distinguishes the stated preference of the subjects

(Si) from their actual choice (or “revealed preferences,” as they are often called in the social sciences,

Ci). As pointed out in Section 2, social and medical scientists are often concerned that stated preferences

may be unreliable due to various sources of systematic measurement error. Thus, a “naïve” analysis that

takes the stated preferences at their face value and ignores the possible measurement error may lead to an

invalid estimate. Finally, note that we allow the treatment variable to be multi-valued, instead of binary.

In fact, as previously shown by Long et al. (2008) and Gaines and Kuklinski (2011) and revisited in

Section 4, assuming a binary treatment greatly simplifies the problem, leading to point identification of

the average choice-specific treatment effects (defined shortly). However, as in the media choice example,
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Figure 1: Diagram of the Proposed PPT Design. In the proposed design, subjects are first asked to state
preferences about the treatment options (Si) and (after an optional “washout” period) randomized into
design conditions (Di). In the “forced exposure” arm (top, Di = 1), subjects are randomly assigned to
treatments irrespective of their stated preferences (Ai). In the “free choice” arm (bottom, Di = 0), the
subjects are asked to choose the treatment they want to take (Ci) and actually exposed to that treatment
(Ai = Ci). Finally, the outcome measure is taken on all subjects (Yi). In the diagram, the blue boxes
indicate random assignment and the dashed box indicates an optional component.

social and medical scientists are often interested in testing the effects of more than two treatments in a

single study.

There exist many previous studies in both social and medical sciences that utilize PPT designs related

to ours (King et al., 2005; Kowalski and Mrdjenovich, 2013). For example, a commonly used design in

clinical trials (Brewin and Bradley, 1989) begins by asking subjects whether they have a preference be-

tween treatment options and then randomizing only those subjects who expressed no preference. A close

variant of this design (Schmoor et al., 1996) asks participants whether they agree to be randomized into

treatment conditions. These designs may be preferable in situations where randomizing subjects against

their preferences is practically or ethically infeasible. However, these designs are critically limited in

terms of external validity because the treatment effects are only identified for subjects who have no (or

weak) treatment preferences.

The key advantage of our proposed design is the combination of stated preference measurement for

all subjects and randomization into the forced-exposure and free-choice conditions, which has never

been implemented as far as we are aware. For example, a popular approach that involves measurement

of stated preferences at the beginning of study forces all respondents to randomly assigned treatments
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(Torgerson et al., 1996), whereas studies that contain randomization into forced-exposure and free-choice

arms typically omit stated preference measurement (Gaines and Kuklinski, 2011). The importance of

measuring stated preferences before randomization is worth emphasizing, for (as formally discussed in

Section 4) the variable enables more informative inference across the forced-exposure and free-choice

arms. For example, Arceneaux et al. (2012) report results from a series of RCTs, one of which included

measurement of stated preferences and another which involved randomization into a free-choice condi-

tion. Unfortunately, these two studies are conducted separately on populations with possibly different

characteristics, rendering inference from combined data difficult.

3.2 Quantities of interest

A common causal quantity of interest in the social and medical sciences is the (population) average

treatment effect (ATE), which is defined as follows.

δ(a, a′) ≡ E[Yi(a)− Yi(a′)],

for any a and a′ ∈ A. This quantity represents the (additive) causal effect of treating a unit with treatment

a as opposed to treatment a′, averaged unconditionally over the sampling distribution. It is widely known

that the ATE can be nonparametrically identified in a standard RCT, where both treatments a and a′ are

randomly assigned with non-zero probabilities, and can be estimated with very simple estimators such

as the difference-in-means.

However, the ATE is often not the only causal parameter that is of substantive interest in a given

applied setting. For example, in the media choice experiment introduced in Section 2, our interest was

not only in the average effect of exposing every American adult to one program versus another, but also

in investigating heterogeneity in media effects based on the respondents’ likely media consumption in the

real world. Likewise, in a medical application, researchers may want to study whether a new treatment

has beneficial effects on the patients who would actually choose to use the treatment, or whether it may

have a potential harmful impact on patients if it is applied in spite of a diverging preference.
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In the rest of this paper, we focus on an alternative causal quantity which addresses these more

nuanced questions,

τ(a, a′|c) ≡ E[Yi(a)− Yi(a′)|Ci = c], (1)

for any a, a′ and c ∈ A. We call this quantity the average choice-specific treatment effect (ACTE). The

ACTE represents the average effect of treating a unit with treatment a instead of a′ among the units who

would choose treatment c if they were allowed to. For example, in the media choice experiment, we may

be interested in the effect of watching a pro-attitudinal news program (a) instead of an entertainment

show (a′) among those who would actually be watching entertainment when they were freely choosing

the programs to watch (c = a′). Similarly, a psychiatrist may want to estimate the potentially adverse

effect of imposing a new therapy on patients who would prefer to keep to the old treatment. Thus, the

ACTE is useful for the investigation of substantively meaningful heterogeneity in treatment effects in a

“natural” condition, where units would be choosing treatments without an intervention from researchers.

Note that, as expected, the overall ATE can be expressed as the weighted average of the ACTEs, where

the weights are given by the proportions of units who would choose each of the treatment options (i.e.,

δ(a, a′) =
∑

c τ(a, a′|c) Pr(Ci = c)).

The ACTE has a close connection with the more commonly used average treatment effect on the

treated (ATT), defined as follows.

γ(a, a′) ≡ E[Yi(a)− Yi(a′)|Ai = a],

for a and a′ ∈ A. The ATT represents the average effect of treatment a versus a′ among those units who

are actually treated with a. Conventionally in the literature, how those units come to be actually treated

with a is left implicit in the definition of this quantity. For example, in a standard RCT where treatments

are randomly assigned and imposed, the ATT is equivalent to the ATE because Ai is statistically inde-

pendent of the potential outcomes (i.e. γ(a, a′) = δ(a, a′) for any a, a′ ∈ A). On the other hand, in the

so-called encouragement design where an encouragement (or “instrument”) for taking a particular treat-

ment option is randomized (e.g. Hirano et al., 2000), the actual treatment status Ai reflects the subject’s
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voluntary action of choosing to take the treatment and the ATT now has a substantive meaning similar

to the ACTE. This implies that the substantive interpretation of the ATT as a causal quantity crucially

depends on the study design. In this paper, we opt to introduce the new causal quantity ACTE because

its interpretation is clearer and less affected by auxiliary design assumptions than the ATT.

3.3 Assumptions

Here, we introduce a set of statistical assumptions and discuss their relationships with the design we

propose. Note that the proposed design involves two random assignments. First, the randomization of

subjects into the forced-exposure and free-choice conditions implies the following assumption.

Assumption 1 (Randomization of Designs)

{Yi(a), Ci, Si} ⊥⊥ Di for all a ∈ A.

Long et al. (2008) refer to this assumption as “no selection bias from randomization.” Second, in the

forced-exposure condition, the treatments are randomly assigned and imposed on each subject. This

implies that the following assumption is also guaranteed to be true.

Assumption 2 (Randomization of the Forced Treatment)

{Yi(a), Ci, Si} ⊥⊥ Ai | Di = 1 for all a ∈ A.

In addition to these design-guaranteed assumptions, existing studies using PPTs often make the fol-

lowing untestable assumption (e.g. Arceneaux et al., 2012).

Assumption 3 (Mean Ignorability of Measurement Error)

E[Yi(a)|Ci = c] = E[Yi(a)|Si = c] for any a, c ∈ A.

This assumption states that the potential outcomes of the units who would choose a particular treatment

option are on average equal to the potential outcomes of the (potentially different) set of units who state

that they would choose the same treatment. In other words, Assumption 3 holds if the discrepancy
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between the stated and revealed preferences (which one may call the measurement error if the stated

preference is thought of as a measure of underlying preference) is ignorable. The assumption may be

violated if the discrepancy between the stated preference and actual choice is systematically correlated

with any background characteristic of the units that are associated with the potential outcomes.

Assumption 3 is not directly testable because the conditional expectation on the left-hand side is

unobservable for a 6= c. However, Assumption 3 has two empirical implications which can be tested

with observed information. First, Assumptions 1, 2 and 3 jointly imply the following relationship.

E[Yi|Ai = a,Di = 0] = E[Yi|Ai = Si = a,Di = 1], (2)

for any a ∈ A. Second, for outcomes that are bounded from below (y) and above (y), it can be shown

that the following inequalities must hold under Assumptions 1, 2 and 3.

y ≤ E[Yi|Ai = a,Di = 0]− E[Yi|Ai = Si = a,Di = 0] Pr(Ai = a|Si = a,Di = 0)

1− Pr(Ai = a|Si = a,Di = 0)
≤ y (3)

for any a ∈ A. Proofs are provided in Web Appendix A.1.

Assumption 3 may be attractive because, as we show in Section 4, it allows the point identification

of the ACTE only with the forced-exposure condition. By making Assumption 3, the researcher can

save the cost of employing an additional experimental arm. However, the assumption is a strong one

in many applied contexts, as we discussed in Sections 2 and 3.1. In such applications, we recommend

against dropping the free-choice condition entirely, and also recommend that the above observable impli-

cations of the assumption be tested with the collected data before the assumption is made in the analysis.

Tests can be conducted in the usual manner based on the sample analogues of the expressions and their

asymptotic sampling properties, obtained via standard techniques like the delta method.

4 Nonparametric Identification Analysis

In this section, we present the results of our nonparametric identification analysis for the ACTE. Our goal

is to find nonparametric bounds on τ(a, a′|c) as functions of the joint distribution of {Yi, Di, Ai, Si},

which are always observed for all i ∈ {1, ..., N} under the proposed design. First, we consider the
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identifiability of the ACTE when we only make the assumptions that are guaranteed to hold by the study

design (i.e. Assumptions 1 and 2) as well as the SUTVA and no design effect. In Web Appendix A.2, we

show that the ACTE can be expressed as follows under those assumptions.

τ(a, a′|c) =
1

Pr(Ai = c|Di = 0)



E[Yi|Ai = a,Di = 1]− E[Yi|Ai = a′, Di = 1]

−E[Yi|Ai = a,Di = 0]Pr(Ai = a|Di = 0)

+E[Yi|Ai = a′, Di = 0]Pr(Ai = a′|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ai = c′|Di = 0)

+
∑

c′ 6∈{a′,c} E[Yi(a′)|Ci = c′] Pr(Ai = c′|Di = 0)


, (4)

for any a, a′ and c ∈ A. Equation (4) immediately gives us three important results. First, equation (4)

contains as many as 2(J − 2) terms (when a 6= a′ 6= c) that cannot be identified from observed data

under Assumptions 1 and 2. When a 6= a′ = c or a = c 6= a′, some of these can replaced with observed

quantities, but J − 2 unidentified terms remain. Thus, it can be concluded that the ACTE is unidentified

by the proposed PPT design itself.

Second, when the treatment is binary as in many social and medical RCTs (i.e., J = 2), the uniden-

tified terms drop out of equation (4). This implies that the ACTE is point-identified under Assump-

tions 1 and 2 alone if J = 2, and is written as follows.

τ(a, a′|c) =


E[Yi|Di=0]−E[Yi|Ai=a

′,Di=1]
Pr(Ai=a|Di=0)

if c = a,

E[Yi|Ai=a,Di=1]−E[Yi|Di=0]
Pr(Ai=a′|Di=0)

if c = a′,

for a, a′ and c ∈ {0, 1}. This exactly matches Gaines and Kuklinski’s (2011, p.729) result, where they

consider a PPT design that is identical to ours except that it does not contain the measurement of stated

preferences Si and only the J = 2 case is considered. The same result is also obtained by Long et al.

(2008) using a framework more similar to ours. Thus, we verify their earlier result under the current

framework and also show that our proposed framework encompasses theirs as a special case.

Third, if we make Assumption 3 in addition to Assumptions 1 and 2, the unidentified terms in equa-

tion (4) become identified as E[Yi(a
′′)|Ci = c′] = E[Yi|Ai = a′′, Si = c′, Di = 1] for a′′ ∈ {a, a′}. This

implies that the ACTE can be point identified for any J under Assumptions 1, 2 and 3 and is given by
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the following expression.

τ(a, a′|c) = E[Yi|Si = c, Ai = a,Di = 1]− E[Yi|Si = c, Ai = a′, Di = 1], (5)

for a, a′ and c ∈ A. Equation (5) makes it clear that the forced-exposure group alone is sufficient for

the identification of the ACTE when we make Assumptions 2 and 3. Indeed, Arceneaux et al. (2012,

pp.182–3) use equation (5) to estimate the ACTE in their experiment, which consisted of the forced-

exposure arm of our proposed design alone. As we discussed in Section 3, while this design choice may

be reasonable in some applied contexts, it must be made with caution because Assumption 3 is strong

and omitting the free-choice condition precludes the testing of its observable implications. From here

on, we call equation (5) the “naïve estimator” of the ACTE.

What if we want to avoid Assumption 3 or analyze non-binary treatments? In this case, the forced-

exposure arm alone is completely uninformative about the ACTE. We present two partial identification

results using both forced-exposure and free-choice arms, which provide sharp bounds (i.e., the tightest

possible given all the observed information; Manski, 1995) on τ(a, a′|c) under various scenarios.

4.1 General Results

Our first set of results, summarized in Proposition 1, is the more general of the two and valid for any

real-valued outcome (Y ⊆ R) under the proposed design.

Proposition 1 (Nonparametric Sharp Bounds on the ACTE) Under Assumptions 1 and 2, τ(a, a′|c)

can be partially identified at least up to the following nonparametric bounds:∑
s∈A

(
lim

y∗→−∞

[∫ ∞
y∗

max

{
0, 1− 1− F (y|s, a′, 1) + {1− F (y|s, a′, 0)}P (a′|s, 0)

Pr(Ai = c|Si = s,Di = 0)

}
−min

{
1,
F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ai = c|Si = s,Di = 0)

}
dy

])
Pr(Si = s|Ai = c,Di = 0)

≤ τ(a, a′|c) ≤ (6)∑
s∈A

(
lim

y∗→−∞

[∫ ∞
y∗

min

{
1,
F (y|s, a′, 1)− F (y|s, a′, 0)P (a′|s, 0)

Pr(Ai = c|Si = s,Di = 0)

}
−max

{
0, 1− 1− F (y|s, a, 1) + {1− F (y|s, a, 0)}P (a|s, 0)

Pr(Ai = c|Si = s,Di = 0)

}
dy

])
Pr(Si = s|Ai = c,Di = 0),
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where F (y|s, a, d) = Pr(Yi ≤ y|Si = s, Ai = a,Di = d) and P (a|s, 0) = Pr(Ai = a | Si = s,Di = 0)

for any a, a′ and c ∈ A. If a′ = c, these bounds are sharp and simplify to the following expression:

∑
s∈A

(
lim

y∗→−∞

[∫ ∞
y∗

1−min

{
1,
F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ai = c|Si = s,Di = 0)

}
dy + y∗

])
Pr(Si = s|Ai = c,Di = 0)

− E[Yi|Ai = c,Di = 0]

≤ τ(a, c|c) ≤ (7)∑
s∈A

(
lim

y∗→−∞

[∫ ∞
y∗

1−max

{
0, 1− 1− F (y|s, a, 1) + {1− F (y|s, a, 0)}P (a|s, 0)

Pr(Ai = c|Si = s,Di = 0)

}
dy + y∗

])
· Pr(Si = s|Ai = c,Di = 0)− E[Yi|Ai = c,Di = 0],

for any a and c ∈ A.

Intuitively, the observed forced-choice distribution of Yi(a) is a mixture of the choice-specific component

distributions, where size of each component is known but the choice-specific distribution is unobserved

for all Ci 6= Ai. We bound these unobserved component distributions by first applying the Fréchet-

Hoeffding bounds on the joint distribution of Yi(a) and Ci for each observed stratum defined by Si,

conditional on Ci 6= a. Then, sharp bounds on E[Yi(a) | Ci = c] are derived. A detailed proof can be

found in Web Appendix A.3.

We offer several remarks on Proposition 1. First, the bounds on τ(a, a′|c) are tighter when more units

choose the treatment of interest (c) in the free-choice condition. This is because, intuitively, the worst-

case assumptions for the unobserved potential outcomes apply to a smaller portion of the population.

Second, we can prove the bounds to be sharp only when a′ = c, i.e., when one of the average potential

outcomes in τ(a, a′|c) can be point identified from the observed outcome for the free-choice group. This

limitation motivates our second set of identification results.

4.2 Sharp Bounds for Binary Outcomes

Next, we restrict analysis to outcome variables that are binary (Y ∈ {0, 1}) and derive another set of

nonparametric bounds on the ACTE. In this case, we can obtain the sharp bounds on τ(a, a′|c) for any

a, a′ and c ∈ A (in particular, even when a 6= a′ 6= c) by incorporating the full joint distribution of the
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observed variables in the derivation of the bounds. This is achieved via the linear programming approach

based on principal stratification (Balke and Pearl, 1997; Frangakis and Rubin, 2002), which has recently

been used for nonparametric identification analysis of various causal quantities (e.g. Yamamoto, 2012;

Imai et al., 2013). First, we define 2JJ2 principal strata, a partition of the population of units based

on the values of their potential outcomes (Yi(0), ..., Yi(J − 1)) as well as the values of their stated and

revealed preferences (Si and Ci). Then we consider the population proportion of each principal stratum,

which we denote by φy0,...,yJ−1,s,c ≡ Pr(Yi(0) = y0, ..., Yi(J − 1) = yJ−1, Si = s, Ci = c), where

y0, ..., yJ−1 ∈ {0, 1} and s, c ∈ A. For the rest of this section, we focus on the case of a tri-valued

treatment (J = 3, as in the media choice example) for notational tractability, although the proposed

method can be applied more generally. There are a total of 72 unique principal strata when J = 3,

corresponding to unique combinations in the indices of φy0,y1,y2,s,c. The proposed method can also be

applied to non-binary categorical outcomes with a straightforward extension, which we do not pursue in

the current paper in order to keep the exposition simple.

The following proposition shows that the sharp bounds on the ACTE can be obtained by solving a

linear programming problem when the outcome is binary.

Proposition 2 (Nonparametric Sharp Bounds on the ACTE for Binary Outcomes) Under Assumptions

1 and 2 and when J = 3, the nonparametric sharp bounds on τ(a, a′ | c) for a binary outcome can be

obtained as a solution to the following linear programming problem.

min
Φ

and max
Φ

1

Pr(Ai = c|Di = 0)

 ∑
a′′∈{0,1}

∑
s∈A

(
φ1,0,ya′′ ,s,c

− φ0,1,ya′′ ,s,c

) ,

s.t. φy0,y1,y2,s,c′ ≥ 0 ∀ y0, y1, y2, s, c
′,
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A
∑

c′∈A φy0,y1,y2,s,c′ = 1,∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1} φy0,y1,y2,s,c′ · 1{yc′ = 1} = Pr(Si = s, Ai = c′, Yi = 1 | Di = 0) ∀ s, c′,∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1} φy0,y1,y2,s,c′ = Pr(Si = s, Ai = c′ | Di = 0) ∀ s, c′, and∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1}

∑
c′∈A φy0,y1,y2,s,c′ · 1{ya′′ = 1} = Pr(Si = s, Yi = 1 | Ai = a′′, Di =

1) ∀ s, a′′, where Φ ≡ {φy0,y1,y2,s,c : y0 ∈ {0, 1}, y1 ∈ {0, 1}, y2 ∈ {0, 1}, s ∈ A, c ∈ A} .

A proof is provided in Web Appendix A.4. The maximization and minimization problems in Proposi-
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tion 2 are standard linear programming problems which can be easily solved numerically with given data

using statistical software, such as the lpSolve package in R. We note that, for the τ(a, c|c) case with

binary outcomes, equation (7) simplifies to

∑
s∈A

(
1−min

{
1,
F (0|s, a, 1)− F (0|s, a, 0)P (a|s, 0)

Pr(Ai = c|Si = s,Di = 0)

})
Pr(Si = s|Ai = c,Di = 0)

− Pr(Yi = 1|Ai = c,Di = 0)

≤ τ(a, c|c) ≤∑
s∈A

(
1−max

{
0, 1− 1− F (0|s, a, 1) + {1− F (0|s, a, 0)}P (a|s, 0)

Pr(Ai = c|Si = s,Di = 0)

})
Pr(Si = s|Ai = c,Di = 0)

− Pr(Yi = 1|Ai = c,Di = 0),

which we find to numerically coincide with the linear programming bounds based on Proposition 2, as

they should.

5 Sensitivity Analysis

The nonparametric bounds in Propositions 1 and 2 represent “worst-case” scenarios, in that they allow

for the maximal deviation in the average potential outcomes between those subjects who merely state

they would take a treatment and those who actually choose to take the treatment. In contrast, the naïve

estimator given in equation (5) relies on Assumption 3 and assumes (often demonstrably falsely) that

this deviation is zero. The truth, however, lies somewhere between these two extremes.

In this section, we propose a sensitivity analysis to investigate this middle ground. Sensitivity analysis

is a commonly used inferential strategy where the degree of violation of a key identification assumption

is quantified via a sensitivity parameter (Rosenbaum, 2002) and the consequence of this violation is then

expressed and analyzed as a function of this parameter. Here, we consider a sensitivity parameter ρac

which represents the maximum absolute difference we allow to exist between the average of a potential

outcome (Yi(a)) among those who state a particular treatment preference (Si = c) and the average of

the same potential outcome among those who actually choose that treatment (Ci = c). Formally, ρac is
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defined by the following inequality,

|E[Yi(a)|Si = c]− E[Yi(a)|Ci = c]| ≤ ρac,

which implies the following additional constraint for identification analysis under Assumptions 1 and 2,

E[Yi|Si = c, Ai = a,Di = 1]− ρac ≤ E[Yi(a)|Ci = c] ≤ E[Yi|Si = c, Ai = a,Di = 1] + ρac, (8)

for a given pair of a and c ∈ A such that a 6= c.

The proposed sensitivity analysis proceeds by combining the sensitivity constraint in equation (8)

with the no-assumption bounds on average choice-specific potential outcomes,

∑
s∈A

{
π−(a|s, c) Pr(Si = s|Ai = c,Di = 0)

}
≤ E[Yi(a)|Ci = c] ≤

∑
s∈A

{
π+(a|s, c) Pr(Si = s|Ai = c,Di = 0)

}
,

where π−(a|s, c) and π+(a|s, c) are the sharp bounds on E[Yi(a) | Si = s, Ci = c] derived in Web

Appendix A.3. We therefore find bounds on τ(a, a′|c) for a given pair of (ρac, ρa′c) by the interval

difference

τ(a, a′|c) ∈

([
E[Yi|Si = c, Ai = a,Di = 1]− ρac, E[Yi|Si = c, Ai = a,Di = 1] + ρac

]
(9)

⋂[∑
s∈A

{
π−(a|s, c) Pr(Si = s|Ai = c,Di = 0)

}
,
∑
s∈A

{
π+(a|s, c) Pr(Si = s|Ai = c,Di = 0)

}])

−

([
E[Yi|Si = c, Ai = a′, Di = 1]− ρa′c, E[Yi|Si = c, Ai = a′, Di = 1] + ρac

]
⋂[∑

s∈A

{
π−(a′|s, c) Pr(Si = s|Ai = c,Di = 0)

}
,
∑
s∈A

{
π+(a′|s, c) Pr(Si = s|Ai = c,Di = 0)

}])
.

Again, when a′ = c, this expression can be simplified by substituting the second interval with the

observed quantity E[Yi|Ai = c,Di = 0], and the resulting bounds are now sharp for a given value of ρac.

When a′ 6= c, we recommend setting ρac = ρa′c = ρ and conducting the analysis with respect to a single

sensitivity parameter for both counterfactual outcomes for the sake of interpretability.

Before proceeding to binary outcomes, we note that a similar sensitivity approach can be applied to

a simpler design with only the forced-exposure arm. However, this approach is limited in two ways.
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First, the sensitivity bounds will be much wider because they will consist of Equation 9 without the latter

portion of each intersection. Second, because the free-choice arm is the only source of information about

the feasible range of ρac, even infinite values cannot be excluded in the simpler design when the outcome

variable is unbounded. At this extreme, the sensitivity ananalysis becomes completely uninformative, as

noted in Section 4.

For binary outcomes, the sharp sensitivity bounds can be numerically obtained for any τ(a, a′|c)

and given values of ρac and ρa′c by incorporating equation (8) into the linear programming problem

in Proposition 2 as another set of linear constraints. For the special case of J = 3, these constraints

can be written in terms of φy0,y1,y2,s,c as
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A φy0,y1,y2,s,c1{ya∗ = 1} ≥

{Pr(Yi = 1 | Si = c, Ai = a∗, Di = 1) − ρa∗c}Pr(Ai = c|Di = 0) and
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}∑
s∈A φy0,y1,y2,s,c1{ya∗ = 1} ≤ {Pr(Yi = 1 | Si = c, Ai = a∗, Di = 1) + ρa∗c}Pr(Ai = c|Di = 0) for

given c and a∗ ∈ {a, a′}.

6 Statistical Inference

In this section, we discuss our methods for performing statistical inference for the large-sample bounds

in Sections 4 and 5. Several approaches have been proposed for inference about partially identified pa-

rameters in the literature, including the nonparametric bootstrap (e.g. Horowitz and Manski, 2000). Here,

we take a Bayesian approach where we obtain simulated draws from the marginal posterior distribution

for the bounds on τ(a, a′|c) by Monte Carlo integration of the approximated joint posterior.

For inference about the general bounds in Proposition 1, we use the following procedure to obtain

one simulated draw of the bounds, τ−(a, a′|c)∗ and τ+(a, a′|c)∗, from their joint posterior.

Algorithm 1 (Posterior Simulation for the Bounds in Proposition 1)

1. Draw p ≡ [ps] ∼ Dirichlet(n), wheren ≡ [ns] =
[∑N

i=1 1{Si = 0}, · · · ,
∑N

i=1 1{Si = J − 1}
]>

.

2. For each s ∈ A:
(a) Draw qs ≡ [qsa] ∼ Dirichlet(n0

s), where n0
s ≡ [n0

sa] =
[∑N

i=1 1{Si = s, Ai = 0, Di =

0}, · · · ,
∑N

i=1 1{Si = s, Ai = J − 1, Di = 0}
]>

;

18



(b) For each a and c ∈ A, draw a pair [π−(a|s, c), π+(a|s, c)] from Normal
([

π̄−

π̄+

]
,
[
V − C
C V +

])
,

where expressions for π̄−, π̄+, V −, V + and C are provided in Web Appendix A.5.

3. Calculate a simulated draw of [τ−(a, a′|c), τ+(a, a′|c)] as

τ−(a, a′|c)∗ =
∑
s∈A

(
π−(a|s, c)− π+(a′|s, c)

) qscps∑
s′∈A qs′cps′

,

τ+(a, a′|c)∗ =
∑
s∈A

(
π+(a|s, c)− π−(a′|s, c)

) qscps∑
s′∈A qs′cps′

.

Note that for a = c, π(a|s, c) = π−(a|s, c) = π+(a|s, c) and Step 2b will be a draw from the univariate

normal distribution with mean π̄ and variance V , which are also given in Web Appendix A.5. This pro-

cedure asymptotically approximates the posterior for the bounds on τ(a, a′|c) without assuming a full

parametric model for the true distribution of the potential outcomes. Exact prior specifications are there-

fore unnecessary for these parameters; We use improper flat priors where explicit prior specifications are

necessary (i.e., for p and q). Details are provided in Web Appendix A.5.

For the sharp bounds for binary outcomes in Proposition 2, we can apply a similar algorithm which

simulates the joint posterior on the proportions of the observed strata and solves the linear programming

problem using the simulated draws from the posterior. The procedure is identical to Algorithm 1 except

that Steps 2b and 3 should be replaced with the following:

2. (b) For each a ∈ A, draw Hsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si = s, Ai = a,Di = 1},
∑N

i=1 1{Yi =

0, Si = s, Ai = a,Di = 1}) and Gsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si = s, Ai = a,Di =

0},
∑N

i=1 1{Yi = 0, Si = s, Ai = a,Di = 0}).

3. Calculate a simulated draw of [τ−(a, a′|c), τ+(a, a′|c)] by solving the linear programming problem

in Proposition 2, with the probabilities of the observed strata in the constraints replaced with the

simulated draws from their posterior (q ≡ [qs],G ≡ [Gsa] andH ≡ [Hsa]).

Once we generate a large enough number of draws from the approximated joint posterior of τ−(a, a′|c)

and τ+(a, a′|c), we construct 100(1−α)% credible intervals for the bounds. For each combination of a,
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a′ and c, we use a numerical procedure to find the narrowest interval that entirely contains 1 − α of the

draws of the bounds (i.e., [τ̂−(a, a′|c), τ̂+(a, a′|c)] such that τ̂−(a, a′|c) < τ−(a, a′|c)∗ and τ+(a, a′|c)∗ <

τ̂+(a, a′|c) for 100(1−α)% of the draws). We call these the highest posterior density (HPD) intervals for

the bounds, because they contain 1− α of the posterior probability mass defined on the bounds with the

minimal width. In practice, we find that HPD intervals are virtually indistinguishable from simply taking

the α/2 and 1 − α/2 quantiles of the lower and upper bounds posteriors, respectively. In a simulation

study (Web Appendix A.7), we find that HPD intervals generally perform better than a nonparametric

bootstrap approach in finite samples in terms of frequentist coverage probability.

Finally, uncertainty estimates for the sensitivity analysis bounds in Section 5 can also be obtained

following analogous procedures. For the general bounds, the key difference is that the algorithms for

the sensitivity bounds are augmented to incorporate an additional set of parameters E[Yi|Si, Ai, Di = 1]

as part of the joint posterior to simulate from, which is used in the sensitivity constraint. Details are

provided in Web Appendix A.6.

7 Empirical Application

Now we apply the proposed methodology to the empirical example we described in Section 2.

7.1 Design and Data

In implementing the media choice experiment, we closely followed the proposed protocol as described in

Section 3.1 and summarized in Figure 1. First, to measure the stated preferences over treatment options,

early in the survey we asked, “If you were given the choice of the following four television programs

to watch, which would you choose?” We presented each television choice (listed in Section 2) with an

accompanying screenshot of the host of the show, while randomizing the order of the shows.

Subsequently, we included a “washout” period in which we asked subjects various questions not

directly related to the media choice (e.g. demographics, unrelated psychological experiments). Sur-

vey researchers have long known that the order in which questions are asked can influence subsequent
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patterns of responses. One reason is that asking a respondent a particular question can prime certain con-

cepts, making them salient at the time of response (Tourangeau et al., 2000). In this case, we included

these filler questions to minimize the possibility that responses to the initial preference question might

contaminate their subsequent media choice in the free-choice condition.

The washout items included questions about their partisanship that we used to categorize their media

preferences as pro- or counter-attitudinal. We considered Fox News “pro-attitudinal” for Republicans

and “counter-attitudinal” for Democrats. MSNBC was coded in the opposite manner. After excluding

subjects who were neither Democrats nor Republicans, 31% of the sample expressed a preference for

pro-attitudinal media (Si = 0), 12% for counter-attitudinal media (Si = 1), and the remaining 56% for

an entertainment show (Si = 2).

Next, we randomized subjects with equal probability into the forced-exposure (Di = 1) and free-

choice (Di = 0) conditions. We randomly assigned those in the forced-choice arm to watch pro-

attitudinal media (Ai = 0), counter-attitudinal media (Ai = 1), or a randomly chosen entertainment

program (Ai = 2), each with probability 1/3. For those in the free-choice arm, we instead asked,

“Which of these programs would you like to watch now?” with the same four options presented as be-

fore. Based on their partisanship and response, we recorded the actual choice Ci as 0, 1, or 2. Here, we

find that stated preferences correspond only loosely to actual choices, and that those stating a preference

for entertainment were more likely to be consistent in their actual choices (Pr(Ci = 2|Si = 2) = 0.91,

whereas Pr(Ci = 0|Si = 0) = 0.83 and Pr(Ci = 1|Si = 1) = 0.78 in the data). We assigned these

subjects to view their choice, so that Ai = Ci in the free-choice arm.

We consider two outcome variables. First, after showing the program, we asked respondents to rate

the clip they watched on a number of dimensions, which we subsequently summarized into an index of

sentiment toward media. The index ranged between 0 and 1 and the mean and standard deviation were

0.61 and 0.17, respectively. Second, to gauge behavioral responses, we asked subjects how likely they

would be to discuss the clip with a friend, which we recoded into a binary indicator. Overall, 62.5% of

subjects were at least “somewhat likely” to discuss the viewed program (= 1) while the rest answered
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Free-choice Condition (Di = 0)
Stated Preference (Si) 0 1 2
Actual Choice (Ci = Ai) 0 1 2 0 1 2 0 1 2
Strata proportions .25 .02 .03 .01 .09 .02 .03 .02 .53

Outcomes (Yi)
Sentiment toward media .67 .51 .66 .52 .56 .60 .60 .54 .68
Likely to discuss .77 .76 .62 .62 .75 .68 .82 .77 .57

Forced-exposure Condition (Di = 1)
Stated Preference (Si) 0 1 2
Randomized Treatment (Ai) 0 1 2 0 1 2 0 1 2
Strata proportions .10 .11 .11 .04 .05 .05 .20 .18 .16

Outcomes (Yi)
Sentiment toward media .67 .38 .64 .59 .54 .63 .57 .47 .64
Likely to discuss .74 .48 .42 .73 .76 .66 .66 .56 .56

Table 1: Summary of Observed Data in the Media Choice Experiment. The third row in each table shows
the observed proportion in each stated preference-treatment stratum. The bottom two rows in each table
represent the sample averages of the two outcome variables in each stratum.

they were “not likely” to do so (= 0).

Table 1 summarizes the observed data from the media choice experiment. The general pattern indi-

cates that discrepancies between stated and true preferences not only exist, but that these discrepancies

are also associated with different responses to media. For example, among those respondents in the free-

choice group who stated a preference for pro-attitudinal media and also chose a pro-attitudinal program,

mean sentiment was 0.67. In contrast, responses were significantly lower (by 0.07) among free-choice

subjects who stated a preference for entertainment but actually chose pro-attitudinal media.

7.2 Nonparametric Bounds

Given the evidence that stated preferences of subjects do not accurately reflect their actual choices, we

now seek to bound the ACTEs using the method developed in Section 4. Figure 2 presents the result-

ing nonparametric bounds, along with their 95% posterior intervals obtained via the procedure proposed

in Section 6. The left panel presents results for subjects’ sentiment toward the media watched (Proposi-

tion 1), and the right panel presents results for whether respondents were likely to discuss the story with a

friend (binary; Proposition 2). Each vertically arrayed plot depicts the effect of a particular change in the

assigned media, from entertainment to pro-attitudinal (top), entertainment to counter-attitudinal (mid-
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Figure 2: Estimated Nonparametric Bounds on the ACTE of Partisan News Media. Vertically stacked
plots correspond to the same outcome variable. Horizontally aligned plots depict the effect of a particular
change in the assigned media, i.e., E[Yi(a) − Yi(a

′)|Ci = c]. Pairs of lines correspond to the ACTE
among those that would choose a given media (horizontal axis labels). Large blue points and solid
thick blue error bars are pooled ATEs. Small blue points are naïve estimates, with blue dashed error
bars representing 95% asymptotic confidence intervals. Solid thick red error bars are estimated bounds
(posterior means) and thin error bars give 95% posterior intervals.

dle) and counter- to pro-attitudinal (bottom). The leftmost blue solid circle (point estimate) and error bar

(95% asymptotic confidence interval) in each plot is the pooled ATE. Paired lines within each plot (thin

blue and thick red) represent the estimated ACTE of that treatment among subjects that would choose

pro-attitudinal media (left), counter-attitudinal media (middle) and an entertainment show (right). Small

blue points are the point estimates under Assumptions 1, 2 and 3, i.e., the naïve estimates that assume the

ignorability of the discrepancy between stated preferences and actual choices. Blue dashed error bars are

95% asymptotic confidence intervals. Solid red error bars are nonparametric bounds on ACTEs under
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Assumptions 1 and 2 alone, with thick lines representing estimated bounds (posterior means) and thin

lines representing posterior intervals.

For example, consider the middle bars in the center left plot. Here, blue dashed estimates show

that, even among subjects that state a preference for counter-attitudinal media, this media results in

more negative sentiment than entertainment—while small, the naïve estimate is negative and statistically

significant at the 95% confidence level. In contrast, the sharp bounds, centered directly on zero, show

that this result may be misleading for the group that would actually choose counter-attitudinal media,

because inconsistency in stated and true preferences may be systematically correlated with responses.

Indeed, in Section 7.3, we will show that it is highly sensitive to assumptions about the informativeness

of the stated preference. The greatest source of this discrepancy is that for counter-attitudinal media,

stated preferences are particularly inconsistent with actual choices. In the free-choice condition, over

20% of subjects stating this preference went on to choose other media.

We now briefly discuss the remaining estimates in the left panel of Figure 2, starting with the top

left and proceeding clockwise. In the top plot, all bounds agree with naïve estimates: Differences in

sentiment toward pro-attitudinal media and entertainment are indistinguishable, except for a small ad-

verse reaction among those with a true preference for entertainment (top right). These same subjects

have a significant and seemingly larger adverse reaction to counter-attitudinal media (center right), and

the difference between pro- and counter-attitudinal media among this group is statistically significant

(lower right). Among units that would choose counter-attitudinal media, naïve estimates suggest a sig-

nificantly more positive reaction to pro- versus counter-attitudinal media (lower middle), but these re-

sults again implicitly rest on strong assumptions about the informativeness of stated preferences. Not

surprisingly, those who would choose pro-attitudinal media react more positively toward it than toward

counter-attitudinal media (lower left). Finally, estimated bounds appear to support the naïve estimate

that those who would choose pro-attitudinal media have a negative response to counter-attitudinal media

(versus entertainment, center left) and these bounds are statistically distinct from zero.

Finally, we present nonparametric sharp bounds for the binary outcome of whether subjects are likely
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to discuss the story with a friend. As explained in Section 4.2, these are the narrowest possible bounds

that can be found with the available information. We discuss statistically significant results only. Among

units that would choose pro-attitudinal media, bounds validate the naïve estimate that this media has a

large effect on the dissemination of information, both relative to entertainment (top left) and relative to

counter-attitudinal media (bottom left). Naïve estimates suggest a similar but smaller pattern of effects

for those who would choose entertainment. However, the estimated bounds are respectively consistent

with the naïve estimate in sign but statistically inconclusive (versus entertainment, top right) and entirely

inconclusive (versus counter-attitudinal media, bottom right).

7.3 Sensitivity Analysis

Next, we apply the sensitivity analysis developed in Section 5 and show how the bounds become tighter

as we allow less difference between the average potential outcomes conditional on a stated preference

versus actual choice (ρ). For illustration, we focus on the sentiment index. The results are presented in

Figure 3. The results for the binary discussion indicator are in Figure A.1 in the Web Appendix.

Using bounds on mean choice-specific potential outcomes (not presented), we find that the estimated

maximal difference for any strata is 0.18, approximately one standard deviation in the outcome variable.

Thus, in Figure 3, estimated sensitivity results have converged to the estimated bounds at or below this

level of ρ. For most strata, differences above 0.1 can be ruled out. For some ACTEs, sensitivity results are

not shown for low values of ρ because in this region, it becomes impossible to simultaneously satisfy the

sensitivity constraints implied by ρ and the naïve results, on the one hand, and the bounding constraints,

on the other.

For illustration we focus on the middle plot in the center row of Figure 3. Neglecting sampling error,

the true value of ρ here should lie somewhere in [0.02, 0.18]. The naïve estimates suggest that counter-

attitudinal media negatively affects media sentiment (relative to entertainment) even among those who

would choose counter-attitudinal media (middle plot), somewhat surprisingly. However, the upper bound

is statistically indistinguishable from zero when Assumption 3 is even slightly relaxed by ρ = 0.03.
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Sensitivity Analysis for Sentiment toward Media

Figure 3: Sensitivity Analysis for the ACTE of Partisan News Media. The plots correspond to the left
panel of Figure 2. On the left side of each plot, a blue point and error bars represent the naïve estimate
and 95% asymptotic confidence intervals, respectively. On the right side, thick red error bars represent
no-assumption bounds and thin red error bars represent 95% posterior intervals. The dark shaded region
between these depicts how bounds grow narrower as additional information from the naïve estimates
are incorporated (ρac = ρa′c = ρ grows small). Lightly shaded regions are 95% posterior regions for
sensitivity results.

Estimated bounds include zero for values of ρ > 0.07, less than half of a standard deviation in the

observed outcome variable.
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8 Simulations

To evaluate the finite-sample performance of our procedure in a naturalistic setting, we conduct Monte-

Carlo simulations that are based closely on the observed data from our empirical application. We design

our simulation study to consider two challenges that regularly arise in PPTs: the discrepancy between

stated preferences and actual choices, and the possibility that choices are related to potential outcomes

in an unobservable way. We quantify these complications via a “choice divergence” (CD) parameter and

an “outcome divergence” (OD) parameter, respectively, and examine how bias and coverage rates are

affected as they become more severe.

8.1 Divergence of actual choices from stated preferences

In our first set of simulations, we begin by generating a hypothetical population for which the observable

margins are identical to those of our empirical sample. For the unobserved variables, such as Yi(a) for

Ci 6= a, we make the most generous assumption possible—that potential outcomes among the unob-

served choice-based subgroups are identical in distribution—and generate the values accordingly. This

forms our baseline simulation data, in which Assumption 3 is satisfied and therefore the naïve estimator

for the ACTE should perform well.

We then introduce the CD parameter, which takes on values in [0, 1] and captures the informativeness

of the stated preferences. That is, we regenerate the actual choice C∗i such that Pr(C∗i = c|Si = s) =

(1 − CD) Pr(Ci = c|Si = s) + CD/J , where Ci ∈ {1, ..., J} for each c and s. When CD=0, the

joint distribution of C∗i and Si is identical to that of the experimental sample (i.e., with 87% overall

agreement between stated preferences and actual choices). When CD=1, stated preferences are entirely

uninformative, and the choice probabilities are 1/3 for every treatment.

For each value at which the CD parameter is set (0, 1/3, 2/3 and 1), we draw 500 sample datasets

of size 3,000. We focus on τ(0, 2|0) for illustration. Naïve ACTE estimates and bounds estimates are

computed in each sample dataset, averaged, and compared to the population ACTE and bounds to assess
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CD=0.00 CD=0.33 CD=0.67 CD=1.00
naïve 0.002 0.011 0.023 0.038

min -0.001 -0.001 -0.001 0.000
max -0.001 -0.001 -0.001 -0.001

N CD=0.00 CD=0.33 CD=0.67 CD=1.00
500 0.959 0.944 0.914 0.926

1000 0.956 0.926 0.930 0.924
3000 0.946 0.936 0.916 0.946

10000 0.938 0.938 0.934 0.930
50000 0.946 0.944 0.940 0.948

Table 2: Estimated Bias and Coverage Rates for Various CD Values. Results for each CD value are based
on 500 sample datasets. The bias results for the naïve and the bounds lower/upper endpoint estimators
(left) are based on datasets of size N = 3000. The bounds posterior interval coverage rates (right) have
Monte Carlo standard errors of approximately 0.01.

bias. The results of these simulations are collected in Table 2 (left panel) and show that the bias of the

naïve estimator increases as stated preferences diverge more from actual choices. At the extreme, the

bias of the naïve estimate is well over double the standard error of the naïve estimate in a particular

sample dataset (roughly 0.016 at this sample size). In contrast, ACTE bounds estimates are centered

almost exactly on their population analogue, and bias is unaffected by the CD parameter.

For each sample dataset, we also implement the procedure described in Section 6 to compute 95%

posterior intervals on the bounds. The proportion of intervals that fully contain the population bounds

is reported in Table 2 (right panel) for sample sizes of ranging from 500 to 50,000 units. We find

that when stated preferences are highly divergent from actual choices (CD is high), coverage rates are

less than nominal with small sample sizes, but they become indistingishable from 95% as the number of

observations increase. We note that when the bounds are wide relative to their credible interval, coverage

of the population bounds at level 1 − α corresponds to a worst-case coverage of the population ACTE

at level 1 − α/2. In Web Appendix A.7, the proposed method is shown to outperform both alternative

bootstrap-based approach and an extension to the parametric model of Long et al. (2008).

8.2 Divergence of outcomes between choice groups

Next, we define the outcome divergence (OD) parameter, also in [0, 1], which controls the distribu-

tions of the unobservable potential outcomes, Pr(Yi(a) ≤ y|Si = s, Ci = c,Di = 0) when c 6= a.

Specifically, we generate missing potential outcomes for the free-choice group such that Pr(Yi(a) ≤

y|Si = s, Ci = c,Di = 0) = (1 − OD){F (y|s, c, 1) − F (y|s, c, 0)P (a|s, 0)}/{1 − P (a|s, 0)} + OD ·
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OD=0.00 OD=0.33 OD=0.67 OD=1.00
naïve 0.002 0.011 0.020 0.030

min -0.001 0.001 0.001 0.001
max -0.001 -0.002 -0.002 -0.001

N OD=0.00 OD=0.33 OD=0.67 OD=1.00
500 0.959 0.967 0.970 0.962

1000 0.956 0.966 0.971 0.968
3000 0.946 0.954 0.950 0.968

10000 0.938 0.954 0.958 0.966
50000 0.946 0.954 0.954 0.946

Table 3: Estimated Bias and Coverage Rates for Various OD Values, Holding CD at 0. The left table
presents bias results for the naïve and the bounds lower/upper endpoint estimators, and the right table
presents bounds posterior interval coverage rates. These results are based on the procedure of Table 2,
which presents the same quantities for varying CD values.

1{F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0) < P (c|s, 0)}{F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)}/P (c|s, 0) for

a particular c 6= a, which then fixes the distribution of potential outcomes in the remaining choice-based

subgroup. All values of the OD parameter produce observationally equivalent simulation populations,

but the population ACTE differs depending on its setting. When OD=1, the population ACTE is the most

extreme effect consistent with the observable margins, lying on the endpoint of the population bounds.

In contrast, OD=0 produces the least extreme population satisfying the same observed margins, with

Pr(Yi(a) ≤ y|Si = s, Ci = c) identical to Pr(Yi(a) ≤ y|Si = s, Ci = c′). In these simulations, CD is

set to zero.

Table 3 (left panel) presents the bias of naïve and bounds estimates at varying levels of the OD param-

eter, with sample sizes of 3,000. Once again, results demonstrate that while naïve estimates are accurate

in a best-case simulation, bias is on the order of one standard error of any particular naïve estimate when

assumptions are violated even moderately (OD between 0.33 and 0.67). Bias of the proposed bounds

procedure remains negligible for all OD values. Table 3 (right panel) shows that coverage levels are as

expected over a wide range for OD and N, or perhaps slightly conservative at smaller sample sizes.

9 Concluding Remarks

Scholars of social and medical sciences have long sought to enhance the external validity of randomized

experiments through various means. Medical researchers have often adopted PPTs to incorporate the

preferences of experimental subjects over treatment options into their study designs, thereby tackling

the question of what impact treatments have on the kinds of people who would actually take them if
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they were allowed to choose. However, systematic analysis of causal and statistical properties of PPTs

has only just begun. In particular, researchers have largely neglected the potential discrepancy between

subjects’ stated and revealed preferences in the existing literature.

In this paper, we seek to address the challenge of improving external validity via a new experimental

design for PPTs. The proposed design involves measurement of both stated preferences and actual

choices as well as randomization into the standard RCT or a free-choice condition. The methodology

we develop systematically addresses the potential inferential threat caused by nonignorable differences

between stated and revealed preferences, using both nonparametric identification analysis and sensitivity

analysis. As we illustrate in an original empirical example where we use the proposed framework, our

method enables inference on a causal quantity of interest that captures the heterogeneity in treatment

effects across revealed preferences without relying on the assumption of ignorable measurement error.

We provide open-source software, ppt, which implements the proposed methodology.

Future statistical work on PPTs should investigate the consequence of noncompliance and differential

attrition on the estimation of ACTEs, among other inferential challenges left unaddressed by the current

paper. An important motivation for PPTs in medical research is the concern that a patient who strongly

prefers one treatment option may not follow experimental protocols and cross over to another treatment

arm or out of the study, damaging the internal validity of the experiment. Forcing patients into treatment

options against their preferences may also be considered unethical in some applications (Lambert and

Wood, 2000). One natural direction for future research is, therefore, to incorporate such complications

under the current framework.
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Supplementary Materials

A.1 Observable Implications of Assumption 3

In this section, we derive the two observable implications of Assumption 3 described in Section 3.3.

First, Assumption 3 implies,

E[Yi(a)|Ci = a] = E[Yi(a)|Si = a], (10)

for all a ∈ A. This relationship directly implies equation (2) under Assumptions 1 and 2. Second, note

that equation (10) also implies,

E[Yi(a)|Ci = a] = E[Yi(a)|Ci = a, Si = a] Pr(Ci = a|Si = a)

+ E[Yi(a)|Ci 6= a, Si = a] Pr(Ci 6= a|Si = a)

⇔ E[Yi(a)|Ci 6= a, Si = a] =
E[Yi|Ci = a,Di = 0]− E[Yi|Ci = Si = a,Di = 0]Pr(Ci = a|Si = a,Di = 0)

1− Pr(Ci = a|Si = a,Di = 0)

for all a ∈ A. Setting the unobserved term in the left-hand side to its theoretical maximum and minimum

yields equation (3).

A.2 Derivation of Equation (4)

First, consider E[Yi(a)|Ci = c]. Assumptions 1 and 2 imply Pr(Ci = c, Si = s) = Pr(Ci = c, Si =

s|Di = 0), E[Yi(c)|Ci = c, Si = s] = E[Yi|Ci = c, Si = s,Di = 0], E[Yi(a)] = E[Yi|Ai = a,Di = 1],

and E[Yi(a)|Si = s] = E[Yi|Si = s, Ai = a,Di = 1]. Now, note that

E[Yi|Ai = a,Di = 1] = E[Yi(a)] =
J−1∑
c′=0

E[Yi(a)|Ci = c′] Pr(Ci = c′),

by Assumptions 1, 2 and the law of total expectation. Substituting observed outcomes from the free-

choice group and rearranging terms, we have

E[Yi(a)|Ci = c] =
1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a,Di = 1]

−E[Yi|Ci = a,Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ci = c′|Di = 0)


1



because of Assumptions 1 and 2. By the same token,

E[Yi(a
′)|Ci = c] =

1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a′, Di = 1]

−E[Yi|Ci = a′, Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a′,c} E[Yi(a′)|Ci = c′] Pr(Ci = c′|Di = 0)


The quantity of interest is therefore

τ(a, a′|c) =
1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a,Di = 1]

−E[Yi|Ci = a,Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ci = c′|Di = 0)


− 1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a′, Di = 1]

−E[Yi|Ci = a′, Di = 0]Pr(Ci = a′|Di = 0)

−
∑

c′ 6∈{a′,c} E[Yi(a′)|Ci = c′] Pr(Ci = c′|Di = 0)


for any a, a′ and c. Thus, under Assumptions 1 and 2, we have 2(J − 2) terms that remain unidentified

when a 6= a′ 6= c. When a′ = c, the above simplifies to

τ(a, c|c) = E[Yi(a)|Ci = c]− E[Yi|Ci = c,Di = 0]

=
1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a,Di = 1]

−E[Yi|Ci = a,Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ci = c′|Di = 0)


− E[Yi|Ci = c,Di = 0]

and J − 2 terms remain unidentified.

A.3 Proof of Proposition 1

We begin by establishing several lemmas.

Lemma .1 Let Γa(y, c|s, a) = Pr(Yi(a) ≤ y, Ci ≤ c|Si = s, Ci 6= a). Under Assumptions 1 and 2, the

sharp upper and lower bounds on Γa(y, c|s, a), denoted by Γ+
a (y, c|s, a) and Γ−a (y, c|s, a) respectively,

are identified as follows.

Γ+
a (y, c|s, a) = min

{
H(c|s, a, 0),

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

1− P (a|s, 0)

}
,

Γ−a (y, c|s, a) = max

{
0, H(c|s, a, 0) +

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

1− P (a|s, 0)
− 1

}
,
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for y ∈ Y , a, c, s ∈ A and d ∈ {0, 1}, where H(c|s, a, 0) = Pr(Ai ≤ c|Si = s, Ai 6= a,Di = 0) and

F (y|s, a, d) and P (a|s, 0) are as defined in Proposition 1.

Proof. By the Fréchet-Hoeffding theorem, the sharp upper and lower bounds of the bivariate joint distri-

bution function Γa(y, c|s, a) are given by,

Γ+
a (y, c|s, a) = min {Γa(∞, c|s, a),Γa(y,∞|s, a)} , (11)

Γ−a (y, c|s, a) = max {0,Γa(∞, c|s, a) + Γa(y,∞|s, a)− 1} . (12)

Under Assumption 1, Γa(∞, c|s, a) = Pr(Ci ≤ c|Si = s, Ci 6= a) = Pr(Ai ≤ c|Si = s, Ai 6= a,Di =

0) = H(c|s, a, 0) for any c, s and a ∈ A. Under Assumptions 1 and 2, we have

Γa(y,∞|s, a) = Pr(Yi(a) ≤ y|Si = s, Ci 6= a)

=
Pr(Yi(a) ≤ y|Si = s)− Pr(Yi(a) ≤ y, Ci = a|Si = s)

Pr(Ci 6= a|Si = s)

=
Pr(Yi(a) ≤ y|Si = s)− Pr(Yi(a) ≤ y|Ci = a, Si = s) Pr(Ci = a|Si = s)

1− Pr(Ci = a|Si = s)

=
F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

1− P (a|s, 0)
,

for any a and s ∈ A. Substituting these to equations (11) and (12) yields the results in Lemma .1.

Lemma .2 Let A∗i , C
∗
i and S∗i be reordered versions of Ai, Ci and Si, respectively, such that C∗i = 0 iff

Ci = c (and likewise for A∗i and S∗i ). Then, the resulting sharp bounds on Γa(y, c | s, a)− Γa(y, c− 1 |

s, a) are also the sharp bounds on Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a) for any y and c ∈ A, where

Γ∗a(y, c | s, a) = Pr(Yi(a) ≤ y, C∗i ≤ c|Si = s, Ci 6= a).

Proof. First, consider the sharp bounds on Γa(y, c)− Γa(y, c− 1). In addition to the Fréchet-Hoeffding

constraints on its constituent parts,

Γa(y, c|s, a) ∈
[
Γ−a (y, c|s, a),Γ+

a (y, c|s, a)
]

Γa(y, c− 1|s, a) ∈
[
Γ−a (y, c− 1|s, a),Γ+

a (y, c− 1|s, a)
]
,
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the increase in cumulative probability from c− 1 to c is also subject to

Γa(y, c)− Γa(y, c− 1) ∈ [0,Γa(∞, c)− Γa(∞, c− 1)] .

The combination of these constraints yields

Γa(y, c|s, a)Γa(y, c− 1|s, a)

∈ [0,Γa(∞, c)− Γa(∞, c− 1)]
⋃

([
Γ∗−a (y, c|s, a),Γ∗+a (y, c|s, a)

]
−
[
Γ∗−a (y, c− 1|s, a),Γ∗+a (y, c− 1|s, a)

])

∈

max


0,

max

 0,

Γa(∞, c|s, a) + Γa(y,∞|s, a)− 1

−min

 Γa(∞, c− 1|s, a),

Γa(y,∞|s, a)



 ,

min


Γa(∞, c)− Γa(∞, c− 1),

min

 Γa(∞, c|s, a),

Γa(y,∞|s, a)

−max

 0,

Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1






Next, consider the sharp bounds on Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a). Because −1 lies below the

lowest possible value of C∗i , Γ∗a(y,−1 | s, a) is necessarily zero, and bounds on the difference reduce to

bounds on Γ∗a(y, 0 | s, a),

Γ∗a(y, 0|s, a) ∈
[
Γ∗−a (y, 0|s, a),Γ∗+a (y, 0|s, a)

]
∈
[

max {0,Γ∗a(∞, 0|s, a) + Γ∗a(y,∞|s, a)− 1} ,min {Γ∗a(∞, 0|s, a),Γ∗a(y,∞|s, a)}
]

∈
[

max {0,Pr(Ai = c | Si = s, Ai 6= a,Di = 0) + Γa(y,∞|s, a)− 1} ,

min {Pr(Ai = c | Si = s, Ai 6= a,Di = 0),Γa(y,∞|s, a)}
]

∈
[

max {0,Γa(∞, c|s, a)− Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1} ,

min {Γa(∞, c|s, a)− Γa(∞, c− 1|s, a),Γa(y,∞|s, a)}
]
.

We now show that the upper bound on Γa(y, c) − Γa(y, c − 1) is identical to the upper bound on
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Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a) in each of the following four possible cases. (1) Γa(∞, c|s, a) ≤

Γa(y,∞|s, a) and 0 ≥ Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1. The upper bound on Γa(y, c)−Γa(y, c−1) re-

duces to min {Γa(∞, c)− Γa(∞, c− 1),Γa(∞, c|s, a)−max {0,Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1}} .

This implies Γa(∞, c|s, a)−Γa(∞, c−1|s, a) ≤ Γa(y,∞|s, a), and so the upper bound on Γ∗a(y, 0 | s, a)

becomes Γa(∞, c|s, a)− Γa(∞, c− 1|s, a). Since 0 ≥ Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1, the upper

bound on Γa(y, c) − Γa(y, c − 1) further reduces to min {Γa(∞, c)− Γa(∞, c− 1),Γa(∞, c|s, a)} =

Γa(∞, c) − Γa(∞, c − 1), which is identical to the upper bound on Γ∗a(y, 0 | s, a). (2) Γa(∞, c|s, a) ≤

Γa(y,∞|s, a) and 0 < Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1. The upper bound on Γa(y, c)−Γa(y, c−1)

becomes min {Γa(∞, c)− Γa(∞, c− 1),Γa(∞, c|s, a)− (Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1)} =

Γa(∞, c) − Γa(∞, c − 1), since 1 − Γa(y,∞|s, a) > 0. This is again identical to the upper bound

on Γ∗a(y, 0 | s, a). (3) Γa(∞, c|s, a) > Γa(y,∞|s, a) and 0 ≥ Γa(∞, c − 1|s, a) + Γa(y,∞|s, a) − 1.

The upper bound on Γa(y, c)− Γa(y, c− 1) reduces to min{Γa(∞, c)− Γa(∞, c− 1),Γa(y,∞|s, a)−

max{0,Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1}}. Since 0 ≥ Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1, the up-

per bound on Γa(y, c)− Γa(y, c− 1) further reduces to min {Γa(∞, c)− Γa(∞, c− 1),Γa(y,∞|s, a)},

which is the original upper bound given for Γ∗a(y, 0 | s, a). (4) Γa(∞, c|s, a) > Γa(y,∞|s, a) and

0 < Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1. The upper bound on Γa(y, c)−Γa(y, c−1) further reduces to

min {Γa(∞, c)− Γa(∞, c− 1), 1− Γa(∞, c− 1|s, a)} = Γa(∞, c) − Γa(∞, c − 1). This implies that

Γa(∞, c|s, a)−Γa(∞, c−1|s, a) < Γa(y,∞|s, a). The upper bound on Γ∗a(y, 0 | s, a) then also becomes

Γa(∞, c|s, a)− Γa(∞, c− 1|s, a).

Finally, we show that the lower bound on Γa(y, c) − Γa(y, c − 1) is identical to the upper bound on

Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a) in each of the following three possible cases. (1) 0 ≥ Γa(∞, c|s, a) +

Γa(y,∞|s, a) − 1. The lower bound on Γa(y, c) − Γa(y, c − 1) reduces to max{0,−min{Γa(∞, c −

1|s, a),Γa(y,∞|s, a)}} = 0. Because Γa(∞, c|s, a) ≥ Γa(∞, c|s, a) − Γa(∞, c − 1|s, a), the lower

bound on Γ∗a(y, 0 | s, a) also becomes 0. (2) 0 < Γa(∞, c|s, a) + Γa(y,∞|s, a) − 1 and Γa(∞, c −

1|s, a) ≤ Γa(y,∞|s, a). The lower bound on Γa(y, c)− Γa(y, c− 1) reduces to max{0,Γa(∞, c|s, a) +

Γa(y,∞|s, a)− 1−min{Γa(∞, c− 1|s, a),Γa(y,∞|s, a)}}. Since Γa(∞, c− 1|s, a) ≤ Γa(y,∞|s, a),
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the lower bound on Γa(y, c)−Γa(y, c−1) reduces further to max{0,Γa(∞, c|s, a)+Γa(y,∞|s, a)−1−

Γa(∞, c− 1|s, a)}, which is the original lower bound given for Γ∗a(y, 0 | s, a). (3) 0 < Γa(∞, c|s, a) +

Γa(y,∞|s, a)−1 and Γa(∞, c−1|s, a) > Γa(y,∞|s, a). The lower bound on Γa(y, c)−Γa(y, c−1) re-

duces further to max {0,Γa(∞, c|s, a) + Γa(y,∞|s, a)− 1− Γa(y,∞|s, a)} = 0. Since Γa(∞, c|s, a)−

Γa(∞, c − 1|s, a) + Γa(y,∞|s, a) − 1 < Γa(∞, c|s, a) − Γa(y,∞|s, a) + Γa(y,∞|s, a) − 1 < 0 and

Γa(∞, c|s, a)− 1 ≤ 0, the lower bound for Γ∗a(y, 0 | s, a) is also zero.

Lemma .3 Let Φa(y|s, c) = Pr(Yi(a) ≤ y|Si = s, Ci = c). Under Assumptions 1 and 2, the sharp

upper and lower bounds on Φa(y|s, 0), denoted by Φ+
a (y|s, 0) and Φ−a (y|s, 0) respectively, are identified

as

Φ+
a (y|s, 0) = min

{
1,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

P (0|s, 0)

}
and

Φ−a (y|s, 0) = max

{
0, 1 +

P (a|s, 0) + F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)− 1

P (0|s, 0)

}
for y ∈ Y and a, s ∈ A.

Proof. First, note that

Φa(y|s, c) = Pr(Yi(a) ≤ y|Si = s, Ci = c, Ci 6= a)

=
Pr(Yi(a) ≤ y, Ci ≤ c|Si = s, Ci 6= a)− Pr(Yi(a) ≤ y, Ci ≤ c− 1|Si = s, Ci =6= a)

Pr(Ci = c|Si = s, Ci 6= a)

=
Γa(y, c|s, a)− Γa(y, c− 1|s, a)

Pr(Ci = c|Si = s, Ci 6= a)
,

for c 6= a. By Lemma .1, the sharp upper and lower bounds on Φa(y|s, c) are given by

Φ+
a (y|s, c) = min

{
1,

Γ+
a (y, c|s, a)− Γ−a (y, c− 1|s, a)

Pr(Ci = c|Si = s, Ci 6= a)

}
,

Φ−a (y|s, c) = max

{
0,

Γ−a (y, c|s, a)− Γ+
a (y, c− 1|s, a)

Pr(Ci = c|Si = s, Ci 6= a)

}
.

Because Γ+
a (y,−1|s, a) = Γ−a (y,−1|s, a) = 0 and by Lemma .1, these bounds simplify when c = 0 to

Φ+
a (y|s, 0) =

Γ+
a (y, 0|s, a)

Pr(Ci = 0|Si = s, Ci 6= a)
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= min

{
H(0|s, a, 0)

Pr(Ci = 0|Si = s, Ci 6= a)
,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ci = 0|Si = s, Ci 6= a) {1− P (a|s, 0)}

}
= min

{
H(0|s, a, 0)

Pr(Ai = 0|Si = s, Ai 6= a,Di = 0)
,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ai = 0|Si = s, Ai 6= a,Di = 0) Pr(Ai 6= a|Si = s,Di = 0)

}
= min

{
1,
F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ai = 0|Si = s,Di = 0)

}
and

Φ−a (y|s, 0) =
Γ−a (y, 0|s, a)

Pr(Ci = 0|Si = s, Ci 6= a)

= max

{
0,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)− {1−H(0|s, a, 0)} {1− P (a|s, 0)}
Pr(Ci = 0|Si = s, Ci 6= a) {1− P (a|s, 0)}

}
= max

{
0,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)− 1 + P (a|s, 0)

Pr(Ai = 0|Si = s,Di = 0)
+ 1

}
.

Now we provide a proof for the bounds in Proposition 1. We only consider the case of c = 0. This

can be done without loss of generality by Lemma .2. Now, note that τ(a, a′|0) can be written under

Assumption 1 as,

τ(a, a′|0) =
∑
s∈A

{π(a|s, 0)− π(a′|s, 0)}Pr(Si = s|Ai = 0, Di = 0), (13)

where π(a|s, c) ≡ E[Yi(a)|Si = s, Ci = c] for any a and c ∈ A. Under Assumption 1, π(a|s, 0) can be

point-identified when a = 0 as

π(0|s, 0) = E[Yi|Ai = 0, Si = s,Di = 0], (14)

for any s ∈ A, but not when a 6= 0. To find the sharp bounds on π(a|s, 0) when a 6= 0, note that

π(a|s, 0) = lim
y∗→−∞

{∫ ∞
y∗

1− Φa(y|s, 0) dy + y∗
}
.

By Lemma .3, π−(a|s, 0) ≤ π(a|s, 0) ≤ π+(a|s, 0) where

π−(a|s, 0) ≡ lim
y∗→−∞

{∫ ∞
y∗

1− Φ+
a (y|s, 0) dy + y∗

}
, (15)

π+(a|s, 0) ≡ lim
y∗→−∞

{∫ ∞
y∗

1− Φ−a (y|s, 0) dy + y∗
}
. (16)
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The bounds, π−(a|s, 0) and π+(a|s, 0), are the sharp lower and upper bounds on π(a|s, 0) because

Φ+
a (y|s, 0) and Φ−a (y|s, 0) are the sharp upper and lower bounds on Φa(y|s, 0), respectively.

Substituting Equations (14), (15) and (16) into Equation (13) and simplifying the terms yield the

sharp bounds on τ(a, 0|0),

∑
s∈A

{
π−(a|s, 0) Pr(Si = s|Ai = 0, Di = 0)

}
− E[Yi|Ai = 0, Di = 0]

≤ τ(a, 0|0) ≤ (17)∑
s∈A

{
π+(a|s, 0) Pr(Si = s|Ai = 0, Di = 0)

}
− E[Yi|Ai = 0, Di = 0]

for any a ∈ A. For τ(a, a′) where a 6= a′, we obtain the following bounds,

∑
s∈A

{
π−(a|s, 0)− π+(a′|s, 0)

}
Pr(Si = s|Ai = 0, Di = 0)

≤ τ(a, a′|0) ≤ (18)∑
s∈A

{
π+(a|s, 0)− π−(a′|s, 0)

}
Pr(Si = s|Ai = 0, Di = 0)

which are not necessarily sharp because π−(a|s, 0) and π+(a′|s, 0) may not be simultaneously attainable,

and vice versa. Finally, Lemma .2 implies that (17) and (18) are both valid as bounds for τ(a, c|c) and

τ(a, a′|c), respectively, for any c ∈ A. This completes the proof of Proposition 1.

A.4 Proof of Proposition 2

We begin by considering the joint distribution of all variables in the study population when J = 3:

Pr(Si = s,Di = d, Ci = c, Ai = a, Yi = y, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2)

= Pr(Yi(d) = y|Ai = a, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2)

×Pr(Ai = a|Ci = c,Di = d)

×Pr(Si = s, Ci = c, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2) Pr(Di = d)

= Pr(Yi(d) = y|Ai = a, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2)

×{Pr(Ai = a|Ci = c,Di = 0)(1− d) + Pr(Ai = a|Di = 1)d}
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×Pr(Si = s, Ci = c, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2) Pr(Di = d), (19)

where the first equality follows from Assumption 1 and the fact that Yi(0), Yi(1), Yi(2) and Ai are

sufficient for Yi and that Ci and Di are sufficient for Ai. The second equality is by Assumption 2. Note

that Pr(Yi(d) = y|Yi(0), Yi(1), Yi(2)) and Pr(Ai = a|Ci, Di = 0) are degenerate and that Pr(Ai =

a|Di = 1) and Pr(Di = d) are fixed by the experimental design. Therefore, the remaining component

of equation (19), Pr(Si = s, Ci = c, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2), completely specifies the data

generating process, with |A|2 · |Y||A|− 1 = J22J − 1 free parameters needed to describe it. Balke (1995,

Section 3.5) shows that bounds on counterfactual probabilities found by optimizing over such a complete

model are sharp; that is, they are guaranteed to be at least as tight as bounds calculated from any partial

(marginalized) model.

We express the complete model in terms of φy0,y1,y2,s,c ∈ Φ. First, note that
∑

y0∈{0,1}
∑

y1∈{0,1}∑
y2∈{0,1}

∑
s′∈A

∑
c′∈A φya,ya′ ,ya′′ ,s′,c′ = 1. Next, from the free-choice condition, we observe Pr(Si =

s, Ci = c, Yi = y | Di = 0), which is completely specified by |A|2 · |Y| − 1 = 2J2 − 1 free parameters.

We use the following 2J2 marginals as constraints on φy0,y1,y2,s,c (with one redundant):

Pr(Si = s,Ai = c | Di = 0) = Pr(Si = s, Ci = c) =
∑
a∈A

∑
ya∈{0,1}

φy0,y1,y2,s,c, (20)

Pr(Si = s,Ai = c, Yi = 1 | Di = 0) = Pr(Si = s, Ci = c, Yi(c) = 1) =
∑
a6=c

∑
ya∈{0,1}

φy0,y1,y2,s,c, (21)

for all s and c ∈ A. Similarly, from the forced-choice condition, we observe

Pr(Si = s, Ai = a, Yi = y | Di = 1)

= Pr(Yi = y | Si = s, Ai = a,Di = 1) Pr(Ai = a | Di = 1) Pr(Si = s | Di = 1)

where the equality holds by Assumption 2. Because Pr(Ai = a | Di = 1) is fixed a priori by randomiza-

tion, the observed distribution from the forced-choice arm can be fully characterized by (|Y| − 1)|A|2 +

|A|−1 = J2 +J−1 free parameters. We use the following J2 +J margins as constraints on φy0,y1,y2,s,c,
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noting that one of them is redundant:

Pr(Si = s | Ai = a,Di = 1) = Pr(Si = s) =
∑
a∈A

∑
ya∈{0,1}

∑
c∈A

φy0,y1,y2,s,c, (22)

Pr(Si = s, Yi = 1 | Ai = a,Di = 1) = Pr(Si = s, Yi(a) = 1) =
∑
a′∈A

∑
ya′∈{0,1}

∑
c∈A

φy0,y1,y2,s,c · 1{ya = 1},

for all s and a ∈ A. However, note that equation (22) are merely linear combinations of equation (20)

and can therefore be omitted.

Finally, the quantity of interest can be written in terms of φy0,y1,y2,s,c as,

τ(a, a′ | c) = E[Yi(a) | Ci = c]− E[Yi(a
′) | Ci = c]

=

∑
y0∈{0,1}

∑
y2∈{0,1}

∑
s φ1,y1,y2,s,c

Pr(Ai = c|Di = 0)
−
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s φy0,1,y2,s,c

Pr(Ai = c|Di = 0)
,

assuming a′ = 1 and a = 0 without loss of generality. Solving for the extrema of τ(a, a′ | c) under

the above set of linear constraints, which incorporate the full information in the observed data as well as

probability axioms, yields its sharp upper and lower bounds as displayed in Proposition 2.

A.5 Statistical Inference for the Bounds

Let p = [ps] = [Pr(Si = 0), · · · ,Pr(Si = J − 1)]> be a stochastic vector of stated-preference

probabilities. q = [qsc] = [Pr(Ci = c|Si = s)] is a row-stochastic matrix, where row s, denoted

qs, represents the distribution of true preferences (Ci) among those with the stated preference Si =

s. Also let π+ = {π+(a|s, c) : a, s, c ∈ A} and π− = {π−(a|s, c) : a, s, c ∈ A}, where π+(a|s, c)

and π−(a|s, c) are defined in Appendix A.3. Let F 1 = {F (y|s, a, d) : s, a ∈ A, d = 1} and F 0 =

{F (y|s, a, d) : s, a ∈ A, d = 0}, where F (y|s, a, d) is defined in Proposition 1. Finally, we use τ+ and

τ− to denote the sets of the upper and lower bounds on τ(a, a′|c) for all a, a′, c ∈ A, respectively, and

X to indicate all observed data.

Our goal is to approximate the posterior distribution of (τ−, τ+) with Monte Carlo simulations. We

begin by the general bounds in Proposition 1. Note that τ− and τ+ are deterministic functions of π−,
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π+, p and q, such that

τ−(a, a′|c) =
∑
s∈A

(
π−(a|s, c)− π+(a′|s, c)

) qscps∑
s′∈A qs′cps′

,

τ+(a, a′|c) =
∑
s∈A

(
π+(a|s, c)− π−(a′|s, c)

) qscps∑
s′∈A qs′cps′

for all a, a′, c ∈ A. Therefore, we consider the problem of simulating samples from the joint posterior of

π−, π+, p and q, which can be written as,

f(π+,π−,p, q|X) = f(π+,π−|F̂ 1, F̂ 0, q) f(q|n0
s) f(p|n)

under Assumptions 1 and 2, where F̂ 1 and F̂ 0 are empirical CDFs corresponding to F 1 and F 0, re-

spectively. For p and q, we use the noninformative improper priors p ∼ Dirichlet(0) and qs ∼

Dirichlet(0) ∀ s ∈ A. Then, qs |X ∼ Dirichlet(n0
s) ∀ s and p |X ∼ Dirichlet(n).

We are now left with f(π+,π−|F̂ 1, F̂ 0, q). Because of the way these bounds are constructed (see

Proposition 1),

π+(a|s, c), π−(a|s, c) ⊥⊥ π+(a|s′, c), π−(a|s′, c) | F̂ 1, F̂ 0, q and

π+(a|s, c), π−(a|s, c) ⊥⊥ π+(a′|s, c), π−(a′|s, c) | F̂ 1, F̂ 0, q

for s 6= s′ and a 6= a′. Therefore, to fully characterize the posterior of [τ−(a′, a′′|c), τ+(a′, a′′|c)] for each

a, a′′ and c ∈ A, it is sufficient to only consider the bivariate posterior distribution of [π+(a|s, c), π−(a|s, c)]

for a ∈ {a′, a′′} and s ∈ A. Note that, under mild assumptions and with a sufficiently large sample size,

the posterior for each pair [π+(a|s, c), π−(a|s, c)] can be approximated by a bivariate normal distribution

due to the Bayesian central limit theorem. That is, we have:π−(a|s, c)

π+(a|s, c)

 | q,X ≈ Normal


 π̄−(a|s, c, qs,X)

π̄+(a|s, c, qs,X)

 ,
 V −(a|s, c, qs,X) C(a|s, c, qs,X)

C(a|s, c, qs,X) V +(a|s, c, qs,X)


(23)

when N is sufficiently large, and the means and covariances can be approximated by the asymptotic

means and covariances of the frequentist sampling distributions of [π−(a|s, c), π+(a|s, c)], respectively,

as shown below. Note that priors on π−(a|s, c), π+(a|s, c) can be ignored and therefore left unspecified
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when N is large because of the Bernstein-von Mises theorem.

Let y be the natural lower bound of Yi(a) if it exists and min{Yi : Si = s, Ai = a}, which is

the lowest point at which the estimated conditional CDF, Γ̂a(y,∞|s, a), is nonzero, if it does not. Let

Γ−1
a (·) be the inverse of Γa(y,∞|s, a) (see Section A.3 for the definition) with respect to y, so that

Γ−1
a (Γa(y,∞|s, a)) = y, and let Γ̂−1

a (·) be its sample analogue, such that Γ̂−1
a (p) = min{y : p ≤

Γ̂a(y,∞|s, a)}. Let b = qsc
1−qsa . For the means, note that the π−(a|s, c) and π+(a|s, c) are functions of

F (y|s, a, 0), F (y|s, a, 1) and P (a|s, 0) (as shown in Appendix A.3), which can be consistently estimated

by their nonparametric maximum likelihood estimates F̂ (y|s, a, 0), F̂ (y|s, a, 1) and qsa, respectively.

This implies the following plug-in estimators for π̄−(a|s, c, qs,X) and π̄+(a|s, c, qs,X):

ˆ̄π−(a|s, c, qs,X) = Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy

ˆ̄π+(a|s, c, qs,X) = Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy,

where we used the fact that Φ+
a (y|s, c) = 1 for y ≥ Γ−1

a (b) and Φ−a (y|s, c) = 0 for y ≤ Γ−1
a (1− b) (see

Appendix A.3 for the definitions of Φ+
a (y|s, c) and Φ−a (y|s, c)).

For the variances and covariances, we use the fact that for any ECDF F̂ (·), Cov
(
F̂ (a), F̂ (b)

)
=

F (a)−F (a)F (b)
n

for a ≤ b where n is the number of steps in F̂ (·).

V −(a|s, c, qs,X)

= Var

(
Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy

)

=

(
1

qsc

)2

Var

(∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa dy

)

=

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

= 2

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy
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= 2

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov
(
F̂ (y|s, a, 1), F̂ (x|s, a, 1)

)
dxdy

+ 2

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov
(
F̂ (y|s, a, 0), F̂ (x|s, a, 0)

)
dxdy

=
2

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy,

where n0
sa is as defined in Section 6 and n1

sa =
∑N

i=1 1{Si = s, Ai = a,Di = 1}. Similarly,

V +(a|s, c, qs,X)

= Var

(
Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy

)

=
2

n1
sa

(
1

qsc

)2 ∫ ∞
Γ̂−1
a (1−b)

∫ ∞
y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n0
sa

(
qsa
qsc

)2 ∫ ∞
Γ̂−1
a (1−b)

∫ ∞
y

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

We estimate these quantities by substituting F (·|s, a, d) with F̂ (·|s, a, d) for d = 0, 1. A small sample

correction can optionally be applied to these estimates by replacing ndsa with ndsa − 1 for d = 0, 1.

The covariance between π−(a|s, c) and π+(a|s, c) depends on whether b < 1
2
, in which case they are

based on disjoint (but still correlated) portions of the same ECDFs, or whether b ≥ 1
2
, in which case they

are based on overlapping regions of the ECDFs and are therefore more correlated. If b ≥ 1
2
,

C (a|s, c, qs,X)

= Cov

(
Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy,

Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy

)

= Cov

(∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy,

∫ ∞
Γ̂−1
a (1−b)

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy

)

13



=

(
1

qsc

)2 ∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

+2

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ Γ̂−1
a (b)

y

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

+

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ ∞
Γ̂−1
a (b)

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

=
1

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

+
2

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ Γ̂−1
a (b)

y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ Γ̂−1
a (b)

y

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

+
1

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ ∞
Γ̂−1
a (b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ ∞
Γ̂−1
a (b)

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

and if b < 1
2
,

C (a|s, c, qs,X)

=
1

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy.

Again, we estimate these by replacing F (·|s, a, d) with F̂ (·|s, a, d) for d = 0, 1. The small sample

correction can also be applied.

Finally, in the special case of a = c, the quantity π(a|s, c) = π(c|s, c) is point-identified. There-

fore, equation (23) reduces to a univariate normal distribution such that π̄ ≡ π̄−(c|s, c, qs,X) =

π̄+(c|s, c, qs,X) and V ≡ V −(c|s, c, qs,X) = V +(c|s, c, qs,X) = C(c|s, c, qs,X). In fact, the es-
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timators of these parameters provided above reduce to the sample mean and the sampling variance for

the mean, respectively, for the corresponding subgroup:

ˆ̄π = y +

∫ ∞
y

1− F̂ (y|s, c, 0)dy

= y +

∫ ∞
y

N∑
i=1

(
1− 1{Yi ≤ y}

)
· 1{Si = s, Ai = c,Di = 0}

n0
sc

dy

= y +
1

n0
sc

N∑
i=1

(∫ Yi

y

1 dy +

∫ ∞
Yi

0 dy

)
· 1{Si = s, Ai = c,Di = 0}

=
1

n0
sc

N∑
i=1

Yi · 1{Si = s, Ai = c,Di = 0},

and

V̂ =
2

n0
sc

∫ ∞
y

∫ ∞
y

F̂ (y|s, c, 0)
(

1− F̂ (x|s, c, 0)
)

dxdy

=
2

n0
sc

∫ ∞
y

∫ ∞
y

(
N∑
i=1

1{Yi ≤ y} · 1{Si = s, Ai = c,Di = 0}
n0
sc

)

×

(
N∑
j=1

(
1− 1{Yj ≤ x}

)
· 1{Sj = s, Aj = c,Dj = 0}

n0
sc

)
dxdy

=
2

(n0
sc)

3

∫ ∞
y

(
N∑
i=1

1{Yi ≤ y} · 1{Si = s, Ai = c,Di = 0}

)

×
N∑
j=1

(∫ ∞
y

(
1− 1{Yj ≤ x}

)
· 1{Sj = s, Aj = c,Dj = 0} dx

)
dy

=
2

(n0
sc)

3

N∑
i=1

N∑
j=1

∫ ∞
y

1{Yi ≤ y} · 1{Si = s, Ai = c,Di = 0}

×
(

1− 1{Yj ≤ y}
)

(Yj − y) · 1{Sj = s, Aj = c,Dj = 0} dy

=
2

(n0
sc)

3

N∑
i=1

∑
j∈J

1{Si = s, Ai = c,Di = 0} · 1{Sj = s, Aj = c,Dj = 0}
∫ Yj

Yi

(Yj − y) dy,

with J =
{
j ∈ 1, · · · , N : Yj ≥ Yi

}
=

1

n0
sc

N∑
i=1

∑
j∈J

(Yj − Yi)2

(n0
sc)

2
· 1{Si = s, Ai = c,Di = 0} · 1{Sj = s, Aj = c,Dj = 0}

=
1

(n0
sc)

2

N∑
i=1

(Yi − π̄)2 · 1{Si = s, Ai = c,Di = 0},
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for any c, s ∈ A. Again, a small sample correction can be applied for V̂ by multiplying it by n0
sc/(n

0
sc−1).

For the binary-outcome bounds in Proposition 2, we employ a similar procedure. Let H = [Hsa] =

[Pr(Yi = 1|Si = s, Ai = a,Di = 1)] and G = [Gsa] = [Pr(Yi = 1|Si = s, Ai = a,Di = 0)].

In this case, τ− and τ+ are completely determined by H , G, p and q. The endpoints of the ACTE

bounds τ−(a, a′|c) and τ+(a, a′|c) are respectively given by the solutions to the linear problem described

in Proposition 2:

min
Φ

and max
Φ

1

Pr(Ai = c|Di = 0)

 ∑
a′′∈{0,1}

∑
s∈A

(
φ1,0,ya′′ ,s,c

− φ0,1,ya′′ ,s,c

) , (24)

s.t. φy0,y1,y2,s,c′ ≥ 0 ∀ y0, y1, y2, s, c
′,
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A
∑

c′∈A φy0,y1,y2,s,c′ = 1,∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1} φy0,y1,y2,s,c′ ·1{yc′ = 1} = qsc′psGsc′ ∀ s, c′,

∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1}

φy0,y1,y2,s,c′ = qsc′ps ∀ s, c′, and
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

c′∈A φy0,y1,y2,s,c′ · 1{ya′′ = 1} = psHsa′′

∀s, a′′, where Φ ≡ {φy0,y1,y2,s,c : y0 ∈ {0, 1}, y1 ∈ {0, 1}, y2 ∈ {0, 1}, s ∈ A, c ∈ A} .

The joint posterior of these parameters can be factorized as f(H ,G,p, q|X) = f(H|F̂ 1) f(G|F̂ 0)

f(q|n0
s)f(p|n) under Assumptions 1 and 2. We use the improper priors Hsa ∼ Beta(0, 0) and Gsa ∼

Beta(0, 0). The posteriors are then given by Hsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si = s, Ai = a,Di =

1},
∑N

i=1 1{Yi = 0, Si = s, Ai = a,Di = 1}) and Gsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si = s, Ai = a,Di =

0},
∑N

i=1 1{Yi = 0, Si = s, Ai = a,Di = 0}).

A.6 Statistical Inference for the Sensitivity Analysis

Our approach to statistical inference for the sensitivity analysis in Section 5 is similar to the procedure

outlined in Section 6. In addition to the parameters defined there, we have the naïve estimates η =

{η(a|s) : a, s ∈ A}, where η(a|s) = E[Yi|Si = s, Ai = a,Di = 1]. For a given value of the sensitivity

parameter, ρ = ρac = ρa′c, the sets of upper and lower bounds on τ(a, a′|c) are denoted τ−ρ and τ+
ρ for

a, a′, c ∈ A.

Given π−, π+, p, q, and η, we can deterministically find τ−ρ and τ+
ρ . Each pair of τ−ρ (a, a′|c) and
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τ+
ρ (a, a′|c) are equal to the endpoints of the following interval:

τ(a, a′|c) ∈([
η(a|c)− ρac, η(a|c) + ρac

]⋂[∑
s∈A

π−(a|s, c) qscps∑
s′∈A qs′cps′

,
∑
s∈A

π+(a|s, c) qscps∑
s′∈A qs′cps′

])

−

([
η(a|c)− ρa′c, η(a|c) + ρac

]⋂[∑
s∈A

π−(a′|s, c) qscps∑
s′∈A qs′cps′

,
∑
s∈A

π+(a′|s, c) qscps∑
s′∈A qs′cps′

])
.

We therefore simulate from the posterior of (τ−, τ+) by drawing samples of π−, π+, η, p and q,

f(π+,π−,η,p, q|X) = f(π+,π−,η|F̂ 1, F̂ 0, q) f(q|n0
s) f(p|n)

under Assumptions 1 and 2. Note that this differs from Appendix A.5 only in that the distributions of

π+ and π− are considered jointly with η. These have the additional independence relations

η(a|s) ⊥⊥ π+(a|s′, c), π−(a|s′, c), η(a|s′) | F̂ 1, F̂ 0, q and

η(a|s) ⊥⊥ π+(a′|s, c), π−(a′|s, c), η(a′|s) | F̂ 1, F̂ 0, q

for s 6= s′ and a 6= a′.

We can therefore approximate the posterior of sensitivity bounds by Monte Carlo simulation of p,

q, and the trivariate distributions [π−(a|s, c), π+(a|s, c), η(a|c)] for a ∈ {a′, a′′} and s ∈ A. By the

Bayesian central limit theorem, the latter is given by
π−(a|s, c)

π+(a|s, c)

η(a|c)

 | q,X ≈ Normal



π̄−(a|s, c, qs,X)

π̄+(a|s, c, qs,X)

η̄(a|c,X)

 ,Σ(a|s, c)

 , where

Σ(a|s, c) =


V −(a|s, c, qs,X) C(a|s, c, qs,X) C−η (a|s, c, qs,X)

C(a|s, c, qs,X) V +(a|s, c, qs,X) C+
η (a|s, c, qs,X)

C−η (a|s, c, qs,X) C+
η (a|s, c, qs,X) Vη(a|s, qs,X)


when N is large, and the additional parameters η̄, C−η , C+

η , and Vη are defined below.
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Note that naïve estimate η(a|s) is point-identified, and its posterior mean and variance are equivalent

to the sample mean and the sampling variance for the mean for the corresponding forced-choice units.

These are given by:

η̄(a|s) = y +

∫ ∞
y

1− F (y|s, a, 1) dy,

Vη(a|s) =
2

n1
sa

∫ ∞
y

∫ ∞
y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy.

Derivations closely follow Section A.5 and therefore are omitted here. Estimation can be done by plug-in

with an optional small sample correction.

The posterior of η(a|s) covaries with those of π−(a|s, c) and π+(a|s, c) because the latter parameters

depend partially on the ECDF of the same forced-choice units.

C−η (a|s, c, qs,X)

= Cov

(
Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy, y +

∫ ∞
y

1− F̂ (y|s, a, 1) dy

)

=
2

n1
sa · qsc

∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n1
sa · qsc

∫ Γ̂−1
a (b)

y

∫ ∞
Γ̂−1
a (b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

C+
η (a|s, c, qs,X)

= Cov

(
Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy,

y +

∫ ∞
y

1− F̂ (y|s, a, 1) dy

)

=
1

n1
sa · qsc

∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n1
sa · qsc

∫ ∞
Γ̂−1
a (1−b)

∫ ∞
y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

for any s, c 6= a ∈ A.

Thus, each draw of the sensitivity results from their posterior is generated by the following procedure:

1. Draw p ≡ [ps] ∼ Dirichlet(n), wheren ≡ [ns] =
[∑N

i=1 1{Si = 0}, · · · ,
∑N

i=1 1{Si = J − 1}
]>

.
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2. For each s ∈ A:

(a) Draw qs ≡ [qsa] ∼ Dirichlet(n0
s), where n0

s ≡ [n0
sa] =

[∑N
i=1 1{Si = s, Ai = 0, Di =

0}, · · · ,
∑N

i=1 1{Si = s, Ai = J − 1, Di = 0}
]>

;

(b) For each a and c ∈ A, draw a triplet [π−(a|s, c), π+(a|s, c), η(a|s)] from the trivariate normal

distribution defined above.

3. For a given ρ, calculate a simulated draw of [τ−ρ (a, a′|c), τ+
ρ (a, a′|c)] according to equation (9).

The sensitivity procedure for binary outcomes differs only in the last two steps:

2. (b) For each a ∈ A, draw Hsa and Gsa from the posteriors discussed in Sections 6 and A.5.

3. Calculate a simulated draw of [τ−(a, a′|c), τ+(a, a′|c)] by solving the linear programming problem

in equation (24), with the additional sensitivity constraints
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A

φy0,y1,y2,s,c1{ya∗ = 1} ≥ (Hsa∗−ρa∗c)
∑

s∈A qscps and
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A φy0,y1,y2,s,c

1{ya∗ = 1} ≤ (Hsa∗ + ρa∗c)
∑

s∈A qscps for given c and a∗ ∈ {a, a′}.

A.7 Additional Simulation Results

In this section, we present additional results from the simulations described in Section 8. First, we ex-

plore the performance of the EM-algorithm-based parametric approach proposed by Long et al. (2008)

(hereafter LLL) in a setting close to our empirical application. This necessitates extending LLL’s original

methodology, as it was developed for a binary treatment. We thus modify their parametric model to ac-

commodate a categorical treatment by modeling the treatment choice with the multinomial logit model,

as opposed to the binary logit model. (We have confirmed that our own R implementation of this exten-

sion replicates the simulation results reported by LLL in their original article almost exactly.) To make

LLL’s approach comparable to our proposed method in terms of observed information used, we set sub-

jects’ stated preferences as the covariate in their choice and outcome models (i.e., X1i = X2i = Si using

their notation). We then apply the LLL estimator to the same 500 simulated datasets as in Section 8.
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CD=0.00 CD=0.33 CD=0.67 CD=1.00
LLL 0.053 0.028 0.019 -0.020

naïve 0.002 0.011 0.023 0.038
min -0.001 -0.001 -0.001 0.000
max -0.001 -0.001 -0.001 -0.001

Table A.1: LLL bias for various CD values, holding OD at zero. Naïve and bounds biases from Sec-
tion 8.1 are reproduced here for convenience.

OD=0.00 OD=0.33 OD=0.67 OD=1.00
LLL 0.053 0.062 0.072 0.080

naïve 0.002 0.011 0.020 0.030
min -0.001 0.001 0.001 0.001
max -0.001 -0.002 -0.002 -0.001

Table A.2: LLL bias for various OD values, holding CD at zero. Naïve and bounds biases from Sec-
tion 8.2 are reproduced here for convenience.

Tables A.1 and A.2 show the results in terms of bias at the sample size of 3,000 (second row from the

top), along with the comparable results for the naïve estimator and our proposed bounds estimator (third

row and below), which are reproduced from Tables 2 and 3 in the main text. Somewhat surprisingly, and

contrary to the original findings by LLL based on a much simpler simulation setup, the LLL estimator

exhibits substantial bias even when both CD and OD are zero. This suggests that finite-sample perfor-

mance of the LLL estimator is rather poor when applied to datasets like ours, rendering it an unattractive

option for inference.

Next, we contrast the proposed Bayesian inferential approach described in Section A.5 to an alterna-

tive method based on the nonparametric bootstrap. We construct the 95% bootstrap confidence intervals

by taking the 2.5th and 97.5th percentiles of parameter estimates in 1000 bootstrap draws. For the

bounds, we take those percentiles from the lower and upper bound estimates, respectively, to construct

confidence intervals that are purported to cover the nonparametric bounds 95% of the time.

Tables A.3 and A.4 show estimated coverage rates for the 95% bootstrap confidence intervals at

various values of the CD and OD parameters. The comparable results for our proposed Bayesian intervals

can be found in Tables A.3 and A.4 in the main text. In general, we find that the coverage of the

bootstrap intervals is noticeably below that of our proposed method, and the bootstrap coverage rates are
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n CD=0.00 CD=0.33 CD=0.67 CD=1.00
500 0.944 0.930 0.895 0.891

1000 0.941 0.915 0.911 0.906
3000 0.952 0.914 0.908 0.924

10000 0.930 0.924 0.924 0.928
50000 0.936 0.940 0.940 0.942

Table A.3: Bootstrap coverage rates for various CD values, holding OD at zero.

n OD=0.00 OD=0.33 OD=0.67 OD=1.00
500 0.944 0.954 0.949 0.950

1000 0.941 0.960 0.956 0.959
3000 0.952 0.942 0.952 0.944

10000 0.930 0.952 0.950 0.958
50000 0.936 0.948 0.944 0.946

Table A.4: Bootstrap coverage rates for various OD values, holding CD at zero.

substantially below nominal at lower sample sizes and for larger values of the CD parameter.
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Sensitivity Analysis for Discussing Story with Friends (binary)

Figure A.1: Sensitivity Analysis for the ACTE of Partisan News Media (Binary Outcome). The plots
correspond to the right panel of Figure 2. See caption for Figure 3 for the explanation of graph elements.
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