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Abstract

The presence of a population of point sources in a data set modifies the underlying neutrino-count statistics from
the Poisson distribution. This deviation can be exactly quantified using the non-Poissonian template fitting
technique, and in this work we present the first application of this approach to the IceCube high-energy neutrino
data set. Using this method, we search in 7 yr of IceCube data for point-source populations correlated with the disk
of the Milky Way, the Fermi bubbles, the Schlegel, Finkbeiner, and Davis dust map, or with the isotropic
extragalactic sky. No evidence for such a population is found in the data using this technique, and in the absence of
a signal, we establish constraints on population models with source-count distribution functions that can be
described by a power law with a single break. The derived limits can be interpreted in the context of many possible
source classes. In order to enhance the flexibility of the results, we publish the full posterior from our analysis,
which can be used to establish limits on specific population models that would contribute to the observed IceCube
neutrino flux.
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Unified Astronomy Thesaurus concepts: Astrostatistics (1882); Astrostatistics distributions (1884); Bayesian
statistics (1900); Neutrino astronomy (1100); High energy astrophysics (739); Neutrino telescopes (1105);
Posterior distribution (1926)

1. Introduction

The conclusive discovery of an astrophysical neutrino flux at
IceCube (Aartsen et al. 2013a, 2013b, 2014a, 2015a, 2015b,
2015c) presents a new window through which we can view the
universe. With energies in the PeV range, these neutrinos free
stream to Earth over scales where extragalactic photons of the
same energy are attenuated. This makes the IceCube neutrino
window novel in terms of being a messenger as well as providing
insight into extreme energy phenomena. While evidence was
recently found for a point source of neutrinos (Aartsen et al. 2018),
at present, the origin of a large fraction of astrophysical flux
remains unknown. For a review, see Spiering (2018).

With an observed flux close to the Waxman–Bahcall bound
(Waxman & Bahcall 1999), the leading hypothesis posits that
the IceCube neutrinos are produced through extragalactic
hadronic processes, where high-energy proton interactions
produce charged pions, which in turn decay to produce
neutrinos.62 There are a number of viable models for the
origin of these hadronic collisions involving conventional
astrophysical sources; see Murase & Waxman (2016) for a
comprehensive discussion. Nevertheless, some of the promis-
ing source classes already appear to be disfavored as the sole
origin of the observed cosmic neutrinos. The current limits on
the presence of point sources in the data, which we will soon
discuss, place under tension a pure blazar origin for the
observed flux, although they may still contribute (Padovani &
Resconi 2014; Padovani et al. 2015; Petropoulou et al. 2015;
Murase & Waxman 2016)—especially in light of the recent
discovery (Aartsen et al. 2018). Further, there are claims that a
dominant starburst galaxy origin is in tension with existing
gamma-ray measurements (Tamborra et al. 2014; Bechtol et al.
2017; Sudoh et al. 2018). Viable source classes remain,
however, such as radio galaxies (Murase & Waxman 2016;
Hooper 2016; Blanco & Hooper 2017). Regardless of their
origin, due to the hadronic origin of the neutrinos in these
scenarios, a definitive identification of neutrinos from a
particular source class would provide a deep insight into the
wider problem of high-energy cosmic-ray acceleration
(Learned & Mannheim 2000; Halzen & Hooper 2002;
Anchordoqui & Montaruli 2010; Anchordoqui et al. 2014).
As such, the implications of the IceCube data set for various
source classes, even those coming from null results, are leading
to important insights into high-energy astrophysics as a whole.

As long as the question of their origin remains unanswered,
however, there will be room for speculation as to a potentially
more exotic origin for these neutrinos. A possibility that has
received significant attention in the literature is that these
neutrinos could be produced in the decay of ∼PeV scale dark
matter (see, for example, Feldstein et al. 2013; Esmaili &
Serpico 2013; Ema et al. 2014; Bhattacharya et al. 2014;
Zavala 2014; Chianese & Merle 2017; Chianese et al. 2017;
Schmaltz & Weiner 2017). While extragalactic dark-matter
decays would be distributed isotropically, decays within the
Milky Way would imprint a directional anisotropy within the

data in such a scenario. Although the present data appear to be
isotropic (Aartsen et al. 2015b), the measurements have not yet
resulted in enough significance to disfavor the dark-matter
scenarios (Esmaili et al. 2014). More stringent constraints arise
as, generically, such models produce photons or charged
cosmic-rays in addition to the neutrinos, and limits on dark
matter from such final states tend to disfavor many scenarios
(see Kalashev & Kuznetsov 2016, 2017; Cohen et al. 2017;
Kuznetsov 2017; Abeysekara et al. 2018). Nevertheless, the
possibility remains that there could be hints as to the origin of
dark matter within the IceCube data set, a possibility that
highlights the importance of a definitive determination of the
neutrino origins.
Due to their lack of electric charge, neutrinos remain

unattenuated as they travel through the magnetic fields that
permeate the universe. The neutrinos point back to their source of
origin, raising the possibility that if the incident neutrino direction
can be measured accurately enough, the source class could be
identified. A single event is unlikely to be determinative, but
statistical analyses applied to larger data sets can search for
clustering on the sky, which can indicate the presence of point
sources. A number of such searches for point sources have already
been performed within IceCube (Abbasi et al. 2011; Aartsen et al.
2013c, 2013d, 2014b, 2015e, 2015f, 2016a, 2017a, 2019; Glauch
& Turcati 2018) and ANTARES (Albert et al. 2017) but have not
yet found evidence of such clustering. The absence of any
statistically significant clustering in these analyses thus far
suggests that whatever is the primary contributor to the IceCube
flux is not a small number of bright sources but rather a larger
population of sources. In the present work, we extend this line of
investigation through the application of a novel technique for
searching for populations of sources, which should be viewed as
complementary to existing and ongoing individual source
searches. We accomplish this using a technique known as the
Non-Poissonian Template Fit (NPTF), which has found wide-
spread application to the Fermi LAT gamma-ray data but is
applied here to the IceCube neutrino data for the first time.
The basic principle underpinning the NPTF is that in the

presence of unmodeled point sources, the neutrino-count
statistics of a data set is distinct with respect to a Poisson
distribution. The requirement that the point sources are
unmodeled is central to the method; indeed, if a point source
is resolved and has a known location, a model for it can be
constructed and the observed data will represent a Poisson draw
from that model. The NPTF, however, remains agnostic as to
the location of the sources and simply accounts for the fact that
a population of point sources will result in larger upward and
downward fluctuations than can be produced by the Poisson
distribution. As we will review in this work, that deviation can
be rigorously quantified into a likelihood, which can test the
preference for non-Poissonian statistics in the data, and thereby
uncover evidence for the point-source population.
The NPTF has a number of advantages over traditional point

source search techniques. The method is naturally couched in
the language of populations of sources, as the fundamental
object constrained is the source-count distribution dN/dF, that
is the distribution of sources with a flux between F and
F+dF. By way of contrast, the standard techniques search for

62 The neutrino flavor ratio observed with IceCube is presently consistent with
a pionic origin (Aartsen et al. 2015d).
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sources of a given flux F′ one at a time. These methods are
often calibrated against simulations where N point sources each
of flux F′ have been injected, which corresponds to the special
case d= - ¢dN dF N F F( ). Studies using a similar method to
the NPTF applied to the public High Energy Starting Events
(HESE) data have shown that population-based approaches
can, under certain assumptions, probe deeper than traditional
methods and search for sources too dim to be resolved
individually (Feyereisen et al. 2017, 2018). Such techniques
have also been used to extend limits on the brightest possible
source within the data (Ando et al. 2017). Furthermore, as the
NPTF is a method for template fitting, it can readily incorporate
a nontrivial spatial dependence for the sources. Template fitting
is a technique of fitting data with models following a
predetermined spatial distribution, or templates. We will
exploit this to search for sources correlated with the disk of
the Milky Way and the Fermi bubbles, in addition to
extragalactic sources that are distributed isotropically. Even
in the case of isotropically distributed extragalactic sources,
due to the spatial variation inherent in the IceCube effective
area matrix, the resulting neutrino-count map will be non-
isotropic. This complication can be readily handled in the
NPTF. On the other hand, there are drawbacks to the method.
The NPTF is fundamentally a binned technique, which
precludes optimization through the use of event-by-event
reconstruction information. Moreover, in this work, the NPTF
is restricted to be used in a single energy bin. This is not a
fundamental limitation of the method but simply a shortcoming
in existing implementations of it. Yet, at present, this implies
that we are unable to account for the strong variation of the
response to neutrinos in the IceCube detector as a function of
energy, other than through optimizing the choice of energy bin.
Taken together, these highlight the complementary nature of
the NPTF based search presented in this work to alternative
approaches to the problem. We emphasize that the NPTF is
distinct from other novel searches for point sources that have
been applied to the IceCube data set, in that it searches for the
specific modification to the neutrino-count statistics imprinted
by a point-source population. An example of such techniques is
the multipole and two-point autocorrelation approach (Aartsen
et al. 2015e; Glauch & Turcati 2018), which search for a
statistical increase in the number of events with small angular
separation that point sources would induce. Fundamentally,
point sources produce additional clustering within the data on
the scale of the instrument point-spread function (PSF), which
is usually smaller than the scale on which the diffuse
backgrounds cluster. In that sense, the NPTF is also looking
to exploit similar information, but it approaches the problem by
instead considering how a population of point sources modifies
the statistics of the neutrino-count map. In addition to its
different approach, the NPTF also offers a number of
advantages over these techniques. Most importantly, being a
template method, it can readily account for the spatial variation
expected for galactic sources, or non-isotropic detector
response, as discussed above. Further, the NPTF can be
formulated in terms of an analytic likelihood, as we will review
in this work, and this allows for an efficient practical
implementation of the method. The NPTF is also distinct to
the search for steady point sources with specific flux-
characteristics, as considered in Aartsen et al. (2019), where
a test-statistic is estimated for a given population model with
parameterized source density and luminosity. For the NPTF, a

broader range of population models are tested, allowing the
shape of the source distribution to be additionally parameter-
ized. Constraints on models with specified flux-characteristics
can, however, be derived from the NPTF results, and we will
demonstrate this explicitly by placing constraints on the space
of standard-candle luminosity functions using FIRESONG
(Taboada et al. 2018), similar to those considered in Aartsen
et al. (2019).
The remainder of the discussion will be structured as

follows. In Section 2, we outline the event selection used to
distill the data set analyzed in this work. Section 3 is dedicated
to a review of the NPTF method, and a detailed description of
the challenges in applying the method at IceCube, and the
associated solutions. Following this, in Section 4, we determine
the expected sensitivity of the method based on Monte Carlo
simulations. Then, in Section 5, we show the result of applying
the NPTF to the real IceCube data, and in the absence of a
signal, we derive constraints. The full posterior from our
analysis is made publicly available,63 with the details of the file
discussed in Appendix A. Finally, our conclusions are
presented in Section 6.

2. Event Selection

2.1. The IceCube Neutrino Observatory

IceCube is a cubic-kilometer Cerenkov detector, which is
composed of 5160 digital optical modules (DOMs) embedded
in the Antarctic ice at the South Pole Achterberg et al. (2006).
These DOMs are attached to 86 strings of cable at depths
between 1450 and 2450 m beneath the surface of the ice. Most
of the DOMs have a vertical spacing of 17 m along the strings
and the average distance between neighboring strings is
∼125 m. Each module consists of a photomultiplier tube,
onboard digitization board, and a separate board with LEDs for
calibration (Abbasi et al. 2009, 2010).
Construction of IceCube started in 2004 and was completed

in 2010 December. Before the full detector was completed, data
were being taken in partial configurations with fewer than 86
strings. In the present work, we make use of 7 yr of IceCube
data. The first three years were taken during the 40-string
(IC-40), 59-string (IC-59), and 79-string (IC-79) configura-
tions, as described in Aartsen et al. (2013c) and Abbasi et al.
(2011). The subsequent four years of data exploited the full 86-
string (IC-86) configuration, as outlined in Aartsen et al.
(2014b, 2017a).

2.2. Neutrino Detection at IceCube

Neutrinos are notoriously difficult to detect, and just because
they point back to their origin does not mean we can
necessarily extract that direction. As we cannot detect the
neutrinos directly, the challenge is in inferring the direction
from visible products left behind from a neutral or charged-
current interaction the neutrino undergoes within or in the
vicinity of IceCube. In order to enhance our sensitivity, we
choose to focus on events where the flight direction of the
neutrino can be accurately reconstructed, as explained below.
In detail, there are three different event topologies within

IceCube produced by neutrino interactions: tracks, cascades,
and double-bangs. Tracks result from muons traversing the
detector, while cascades result from the charged-current

63 https://icecube.wisc.edu/science/data/NPTF_7yr_posterior
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interactions of electron or tau neutrinos or neutral-current
interactions of any neutrino. The interactions in cascade events
produce an almost spherical light emission making directional
reconstruction difficult. Tracks from muons of ∼TeV or greater
energies can travel several kilometers while constantly emitting
Cerenkov light, making them ideal candidates for an accurate
directional reconstruction. Double-bangs result from charged-
current interactions of tau neutrinos at very high energies where
the tau lepton decays to hadrons far enough from the initial
interaction to create two distinct cascades. The first candidates
for such events have now been identified (Stachurska 2018).
Since tracks are the optimal topology for directional accuracy,
in this paper, we will only use tracks.

The only neutrino interactions that can create tracks at TeV
energies are charged-current interactions of muon neutrinos
(and muon antineutrinos). Track events can be further divided
into two subclasses: starting tracks occur when a muon
neutrino has its charged-current interaction inside of the
detector volume, while through-going tracks occur when that
interaction occurs outside of the detector volume. Through-
going tracks can result from any high-energy muon, including
muons produced by cosmic-ray interactions in the atmosphere,
but they also have a much higher effective area for muon
neutrinos than starting tracks since the charged-current
interaction can occur in a much larger volume than the detector
volume. In this paper, we will consider only events
reconstructed as through-going tracks, in order to take
advantage of the high number of events resulting from the
much larger effective area; however, the lower purity of
astrophysical neutrinos in the sample creates a background we
will need to account for in the NPTF analysis.

2.3. Data and Simulations

With these motivations, the specific data set used in this
analysis was the through-going tracks in IceCube’s 7 yr point-
source sample (Aartsen et al. (2017a), and we refer to
Section 2.2 of that reference for a detailed account of the data
set. The 7 yr point-source sample has been accrued through
several different event selections. Events from the year of
IC-40 data were selected using fixed selection criteria on
several parameters (Abbasi et al. 2011), while events from the
remaining years (Aartsen et al. 2013c, 2014b, 2017a) were
selected using multivariate boosted decision trees (BDTs) to
classify events as signal or background. The BDTs were trained
with separate background and signal data sets. In the
background case, the BDT was trained on the data themselves,
a procedure that is justified as the data are known to be strongly
dominated by the background. For the signal, the BDT was
instead trained on muon neutrino Monte Carlo simulations.
These same Monte Carlo–simulated muon neutrinos are also
used to calculate the effective area of the detector and the PSF.
More information on the Monte Carlo simulation can be found
in Aartsen et al. (2016b). Through these selection processes,
the sample is divided into two regions, up-going (with decl.
δ>−5° ) and down-going (δ<−5°). The down-going region
is dominated by atmospheric muons, while the up-going region
is shielded from these muons by the Earth. The up-going region
is dominated by atmospheric neutrinos. Despite this distinction,
in our analysis, we will not distinguish between up- and down-
going events, instead performing a full sky analysis. As in
Aartsen et al. (2017a), the total livetime is 2431 days, with
422,791 up-going events, and 289,078 down going. The

directions of the events in this sample were reconstructed using
a likelihood-based method, which uses information on how the
photons scatter and get absorbed with the ice (Ahrens et al.
2004). The reconstructions of events in the IC-86 data used a
more advanced description of the ice (Aartsen et al. 2013e) and
a better parameterization of how the photons interact with it
Aartsen et al. (2014b). The muon energy is estimated by
approximating its energy loss along its reconstructed track
Aartsen et al. (2014c). In order to fine tune this sample for our
analysis, we make a cut on the reconstructed muon energy. The
expected energy spectrum for an astrophysical neutrino flux is
harder than the energy spectrum for the atmospheric neutrino
flux. It should also be noted that the reconstructed muon energy
is only an estimate of the muon energy at a point where it enters
the detector and, thus, can only provide an estimated lower-
bound of the primary neutrino energy, as much of the energy of
the event can be deposited outside the detector. Nevertheless, a
cut on the reconstructed muon energy can still effectively
increase the sample’s purity with respect to the harder-spectrum
astrophysical flux. We determine the optimal energy cut to be
100.5 TeV ≈3 TeV. This value is determined by maximizing
the sensitivity for the full sky analysis presented in this work.
We note that as the energy distribution of the background in the
northern and southern hemispheres is quite different, if we
performed an analysis restricting to either of these, the optimal
energy cut would vary. We also make a spatial cut around the
poles of the detector ( d > 85∣ ∣ ), as the scrambling procedure is
less effective, and the reconstructions can be poorly behaved, in
these regions. These cuts lead us to our final sample of 309,134
events.
Since the NPTF is a binned analysis, we must spatially bin

the data. For this purpose, we use HEALPix Gorski et al.
(2005) skymaps to bin the data into pixels of equal solid angle.
There is still freedom in terms of how large to choose these
bins, controlled by the nside parameter; however we find that
a value of 64 maximizes our full-sky sensitivity, which
corresponds to 49,152 bins, each of size approximately 0.84
square degrees.

3. The Non-Poissonian Template Fit

The NPTF quantifies the following observation into a
rigorous analytic likelihood: compared to a count map
following a Poisson distribution, a map determined by a
distribution of sources will have more hot and cold pixels—the
hot pixels associated with locations where there are sources,
and the cold pixels where there are none. In slightly more
detail, there are at least two steps involved in going from an
underlying point-source distribution to a neutrino-count map.
First, we need to determine how many point sources are
expected and how they are distributed on the sky. Second,
given a dN/dF, we must determine the map of neutrino counts
that is expected from this distribution of sources. The NPTF
likelihood provides the rigorous answer to these questions, as
well as incorporating additional complications arising through
detector effects such as the finite PSF of the instrument. This
likelihood, when applied to the data, allows for a determination
as to whether such a population of sources is preferred, and if
not, constraints on dN/dF can be set.
Although the NPTF is a relatively recent method, core

aspects have long been employed in astronomy. The funda-
mental observation that point-source distributions lead to more
hot and cold pixels is at the heart of the P(D) method that has
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been applied to X-ray data sets (Hasinger et al. 1993;
Georgantopoulos et al. 1993; Miyaji & Griffiths 2002;
Gendreau et al. 1998; Perri & Giommi 2000). The method
was extended to gamma-rays in Malyshev & Hogg (2011),
where the analytic likelihood was also first derived. The
likelihood was extended to the NPTF, i.e., a full template based
method, in Lee et al. (2016), and the NPTF or similar methods
have found a number of additional applications in gamma-ray
astronomy (Lee et al. 2015; Feyereisen et al. 2015; Zechlin
et al. 2016a, 2016b; Linden et al. 2016; Lisanti et al. 2016; Di
Mauro et al. 2018). As mentioned above, a related method that
is similarly population-based has been considered in the
context of publicly available IceCube data (Feyereisen et al.
2017, 2018). The NPTF has now been incorporated into a
publicly available code NPTFit (Mishra-Sharma et al.
2017),64 which we use for the present work.

The remainder of this section will begin with a more
quantitative review of the method, outlining the core ideas
leading to the NPTF likelihood. After this, we focus on some of
the challenges that had to be addressed in order to apply this
method to the IceCube data set, which, in particular, required a
careful treatment of the instrument effective area matrix and
PSF. Third, we will describe how we can combine the NPTF
likelihood with additional Poissonian models that we will use
in our hypothesis testing, and finally, we outline our inference
procedure, which we will use to search for point-source
populations in the data.

3.1. Overview of the Method

In this section, we provide a brief, quantitative review of the
NPTF likelihood framework, particularly emphasizing aspects
that will be relevant to an application at IceCube. A more
comprehensive description of the method and a derivation of all
quoted expressions can be found in Mishra-Sharma et al.
(2017).

Our ultimate goal is to write down a likelihood for a set of
model parameters q, given the data d described in Section 2—
i.e., we want a function q d( ∣ ). Let us start with a description
of the model parameters. In the case where we only have
neutrinos originating from a single point-source population,
then the model parameters specify the source-count distribution
dN/dF. In principle, it is possible to keep the form of dN/dF
very general, but a particularly simple analytic expression for
the source-count function that is likely a good approximation to
many realistic neutrino source classes is a broken power law65

q =
<
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The use of a common functional form to describe the flux of
both galactic and extragalactic sources is motivated by the fact
that this ansatz appears to be a reasonable description of both
populations in gamma-rays observed by Fermi (see, for
example, Lee et al. 2016). In Equation (1), we have added
the term Tp to the source-count function. Tp is a template, or
pixelated spatial map describing the spatial distribution of the
sources on the sky. It is the only term with an explicit pixel-by-
pixel variation. As an example, for an isotropic or extragalactic

distribution of sources, we have Tp=1 for every value of p.
This template could be considered as a model parameter and
fitted for, but in our analysis, we will take Tp to be fixed before
performing any likelihood analysis. With the template fixed,
there are four model parameters for a singly broken power law:
the normalization A, location of the break Fb, and power-law
indices above and below the break n1 and n2. Thus,
formally q = A F n n, , ,b 1 2{ }.
To provide some intuition for these parameters, note that we

can calculate the total expected number of point sources and
also the total expected flux from the population in each pixel
from direct integration of the source-count function over all
possible fluxes as follows
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In performing these integrals, we require n1>1 and n2<1 to
obtain a finite Np

PS, whereas for a finite Fp
PS we need >n 21 and

n2<2. There is an important distinction between the number
of sources and flux as given inEquation (2). The total expected
flux per pixel, Fp

PS, is related to the expected number of
neutrinos observed through the IceCube effective area, and in
this sense is tied to an observable in the data. Yet the total
expected number of sources, Np

PS, is not tied to an observable
derivable from a map of neutrino counts. In this sense, a real
map could have a best-fit value n2ä [1, 2], which corresponds
to an infinite number of sources but a finite flux. While in
practice, the total number of sources should be finite, the
effective number of sources, for realistic source populations
such as star-forming galaxies (Tamborra et al. 2014), can
appear infinite. This effect occurs because the cutoff in the
source-count distribution, dN/dS, that makes the number of
sources finite appears at flux values well below the level where
the sources contribute, on average, more than one photon or
neutrino (Lisanti et al. 2016).
When presenting results, it will be helpful to use a different

set of variables instead of A F n n, , ,b 1 2{ }. Specifically, we will
replace A and Fb with the expected number of point sources
across the whole sky, NPS, and the expected flux per source,
FPS¯ . The change of variables can be implemented as follows:
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Given a template and values of n1 and n2, we can then
change variables to these more intuitive quantities, which we
will exploit when presenting our results.
At this point, we comment on an important assumption that

will be used throughout our analysis. We have repeatedly
discussed the flux of sources, F, eschewing the question of
what energy this flux is being measured at. To resolve this, we
will assume that our point-source population follows the
canonical astrophysical expectation of E−2. In detail the flux

64 https://github.com/bsafdi/NPTFit/
65 In passing, we note that NPTFit can handle a broken power-law source-
count function with an arbitrary number of breaks.
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from an individual source is given by

F
=

-d E

dE
F

E

1 TeV
, 4

2
⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )

which serves to contextualize the quantity F discussed
throughout this section. It should be thought of as the
normalization constant for the energy dependent flux, and we
will assume an identical E−2 scaling for all sources. If the
actual spectrum is softer than this, the events will be shifted to
lower energies where the backgrounds are higher, and
generically, we would expect a reduction of the sensitivities
shown here.

Returning to our derivation of the likelihood, the source-count
function parameterizes our model prediction for the population of
sources, but our goal is to embed this into a likelihood that can be
fit to neutrino-count data. As a first step toward this, we need to
address the fact that the discussion so far has been couched in the
language of fluxes per neutrino source, Φ, commonly quoted with
units of [neutrinos cm−2 s−1], whereas what is observed in the
instrument is an integer number of neutrino events. The
conversion between these two variables is provided by the
effective area matrix, which accounts for the fact that two-point
sources with equal flux at different locations on the sky will
contribute a different number of detected neutrinos within
IceCube. The effective area is the amalgamation of the detection
efficiency for neutrinos incident on the IceCube detector from
different directions, as well as an accounting for the fact the
detector has a fixed location at the South Pole.

The conversion from flux, F, in units of [neutrinos cm−2 s−1]
to counts, S, is achieved with the combination of the effective
area and collection time, usually called an exposure map, which
we denote by p—a pixel dependent quantity due to the spatial
dependence in the effective area matrix. We defer the
discussion of how the appropriate p map for our analysis
was derived until the following subsection. Assuming for now
that the map is known, then using this, we can then convert to a
source-count function in terms of counts rather than flux as
follows:
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As p can take on a different value in every single pixel, the
conversion from flux to counts should in truth be performed in
every pixel. Nevertheless, this is in practice often unnecessary.
It is usually sufficient to divide the full map into a number of
subregions, which each have comparable p values, take the
mean p in this region, and perform the conversion once per
region. Within the NPTFit framework, the number of
subregions is controlled by the keyword nexp, and results
are commonly convergent for small values of this parameter.
As the appropriate p for our data set varied significantly, albeit
smoothly, as a function of decl., we chose to use 50 exposure
regions in order to ensure the transformation from flux to
counts was accurately performed.

From dNp/dS, we can then move toward the NPTF
likelihood by deriving the following useful quantity: the
expected number of sources that will contribute m neutrinos
in a pixel p, qxp m, ( ). To do so, note that dNp/dS evaluated at a
particular S provides the expected number of sources that
contribute an expected number of counts S, where of course S

does not need to be an integer. The probability that one such
source provides m neutrinos is then determined by the Poisson
distribution, specifically Sme−S/m!. From here, qxp m, ( ) is
given by weighting this factor by the source-count distribution
and integrating over all S, as each value could Poisson fluctuate
to m. In detail,
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This expression, while intuitive, has an inherent assumption
that will be invalidated in most real applications: if a point
source is located in pixel p, then it deposits all of its observed
neutrinos in that same pixel. This neglects the finite PSF at
IceCube, but we will hold off on a discussion of how to address
this until the next subsection.
Our final goal of this subsection is to move from xp, m to the

probability of observing k neutrinos in a pixel p, pp k, .
Combining pp k, with the observed number of neutrinos in the
data, dp, and then taking the product over all pixels p, exactly
gives us the likelihood through which we can constrain dN/dF,
or more specifically q = A F n n, , ,b 1 2{ }. Being fully explicit,
we have:

q q= = d p , 7
p

p k d, p
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where the product is taken over all pixels in the data set
analyzed. In order to derive an expression for pp k, , we use the
concept of probability generating functions.66 If we have a
discrete probability distribution described by a set pp k,{ }
known for all k, then the generating function in a given pixel
is defined as
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In the case of models described by the Poisson distribution with
expected counts μp, substituting the Poisson distribution into
Equation (8) reveals the associated generating function to
be m= -P t texp 1p p( ) [ ( )].
Next, the aim is to construct the associated non-Poissonian

generating function, starting with the expected number of m-
neutrino sources, qxp m, ( ), as given in Equation (6). Of course,
m can take on any integer value, but for the moment, let us take
it to be fixed, and we will determine the generating function for
m-neutrino sources, denoted P tp

m ( )( ) . From the definition in
Equation (8), we need to know the probability of seeing k
neutrinos in the pixel p, given by pp k, , a value that will depend
on how many m-neutrino sources there are. Specifically, k must
be some integer nm multiple of m, where nm drawn from a
Poisson distribution with mean qxp m, ( ),
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66 For a review, see, for example, Section 3.6 of Hoel et al. (1971).
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where we have left the dependence on the parameters q
implicit. In terms of this, the probability for seeing k neutrinos
in pixel p is simply pp n, m

for the case that k=nm×m, or zero
otherwise as we are still keeping m fixed. Substituting this
information into Equation (8), we obtain
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where we only included the nonzero values in the sum. Now,
this result was obtained for a fixed m, but in order to obtain the
full non-Poissonian generating function, we need to account for
all possible m. As each source is independent, each value of m
is independent also. We can then make use of the fact that the
generating function of a sum of independent random variables
is given by the product of each variable’s generating function.
Accordingly, the full non-Poissonian generating function is
given by
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From here, using the inversion formula inEquation (9), the
probability of observing k neutrinos in a pixel p is
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or combining this with our earlier results
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This expression, combined withEquation (7), gives us our full
NPTF likelihood as a function of the source-count function d
Np/dF, which is exactly what we want to constrain. Although
this expression contains an unevaluated integral, in the case of
a multiply broken power law, it can be efficiently implemented
as the integral can be calculated analytically, and furthermore,
the pp,k can be evaluated recursively in k. All of these details
are described in Mishra-Sharma et al. (2017).

Below, we will outline how this likelihood can be extended
to account for the presence of additional contributions to the
data beyond just point sources. But before doing so, we turn to
the practicalities of implementing the NPTF in the specific case
of IceCube.

3.2. Implementation at IceCube

There are two immediate obstacles to implementing the
NPTF at IceCube, beyond the basic outline described in the
previous subsection. First, we need to calculate an appropriate
effective area matrix in order to determine p, which appears in
the conversion between the dN dF and dN dS, as per
Equation (5). Second, we must incorporate the real IceCube
PSF and thereby remove the assumption hidden in
Equation (6), that a source deposits all of its neutrinos in the

pixel it is located. For some of the neutrinos recorded at
IceCube, there is a small but nonzero probability that their true
incident direction is separated from the reconstructed value by
a significant (angular) distance, so this effect must be accounted
for in essentially any binning of the data. We will address each
point in turn.
Consider first the effective area matrix, a quantity that

specifies the response of the detectors to an incident neutrino of
a given energy, R.A., and decl. This, of course, cannot be
calculated analytically. Instead we take simulations of
individual events and use these to construct p. We do this
by reweighting simulated events within our energy range
according to an E−2 spectrum, as this is the spectrum that we
assume our point-source population follows, seeEquation (4)
and the surrounding discussion. This then provides the average
detector response as a function of R.A. and decl., which we can
map to galactic coordinates and provide p. As claimed above,
this map can vary significantly, by more than an order of
magnitude between locations with highest and lowest effective
area. Given IceCube’s location at the geographic South Pole,
this variation is exclusively in decl., which tracks whether the
event is arriving above from through the atmosphere, or below
through the Earth. In light of this we used a relatively large
number of 50 exposure regions to convert from flux to counts.
Turning next to the PSF, recall as discussed already that the

NPTF likelihood derived in the last subsection assumed perfect
angular reconstruction of every event. This assumption was
invoked in writing down the number of sources contributing m
neutrinos in a pixel p, denoted xp m, , inEquation (6). By
moving directly from the expected number of sources in the
pixel to the expected number of neutrino counts, implicit is the
assumption that the source deposits all of its flux into that pixel.
Yet detector effects will smear the flux of a real source among a
number of pixels. As in the NPTF, we do not keep track of
which pixels are adjacent, what we want is the distribution for
how a given source deposits its flux among the pixels on the
map, a quantity denoted ρ( f ). Here, Îf 0, 1[ ] is the fraction of
the point source’s flux; the case of near perfect angular
reconstruction, as compared to the pixel size, corresponds to a
ρ( f ) peaked near f=1, as most of the flux tends to be
distributed in one pixel (the pixel where the source is located).
Indeed in the limit of exact angular reconstruction, we have ρ
( f )=2δ( f− 1).67 More generically, however, imperfect
angular reconstruction leads to a distribution peaked nearer
f=0 as most often a pixel will only get a small fraction of the
flux. As a concrete example, consider a 3×3 grid with a point
source at the center. Imagine the source deposits 60% of its flux
in the central pixel that it inhabits, and then 5% in each of the
eight pixels surrounding it. In this case, many more pixels
experience a small amount of flux, and so ρ( f ) would still be
peaked toward smaller values of f. Further note that ρ( f ) itself
is not a probability density function, instead as the point source
must deposit all of its flux somewhere, the distribution is
normalized so that

ò r =df f f 1. 15
0

1
( ) ( )

67 Note that in this idealized case, ρ( f ) will also have a contribution at f=0 as
for perfect angular reconstruction, most of the sky will receive no flux.
Nevertheless, when f=0 there is no contribution to the neutrino flux, and so in
practice, we will always neglect the zero flux case.
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Imagine we have the appropriate ρ( f )—we will describe
how to derive this shortly—consider how this modifies xp,m.
Previously, we used the fact that dNp/dS provides the number
of sources that contribute an expected number of counts S, to
then reweight this quantity by the probability of fluctuating
from S to m, given by the Poisson distribution -S e mm S !. Now,
however, a source is only expected to deposit a fraction f of that
flux in the pixel under consideration, and so instead, the
reweighting to obtain m neutrinos is -fS e mm fS( ) !. Further-
more, the probability that a given value of f is chosen is dictated
by the distribution ρ( f ), and integrating over all possible flux
fractions, we arrive at the following modification for xp,m:

ò òq q r= ´
¥ -

x dS
dN

dS
S df f

fS e

m
; .

16

p m
p

m fS

,
0 0

1
( ) ( ) ( ) ( )

!
( )

Another way to understand the above modification is to
compare this result toEquation (6). In doing so, the
modification induced by the finite PSF is seen to be equivalent
to substituting in a modified source-count function,

ò
r

 =
dN

dS
S

dN

dS
S df

f

f

dN

dS
S f . 17

p p p

0

1
( )

˜
( ) ( ) ( ) ( )

Propagating the modification inEquation (16) through to the
NPTF likelihood then gives a full accounting for the effect of
the finite PSF, once we have ρ( f ). Note that taking ρ( f )=2δ
( f− 1), i.e., perfect angular reconstruction, the above expres-
sion reduces toEquation (6), as it must, and this can also be
seen clearly inEquation (17).

All that remains then in order to incorporate the IceCube PSF
is an algorithm for determining ρ( f ). Commonly, the
instrument PSF is stated as a probability distribution for a
given event to be located at some radius from the center of a
source. The median reconstruction angle for n n+m m¯ events can
be seen, for example, in Figure 2 of Aartsen et al. (2017a),
where the angular error can vary from half a degree to several
degrees depending on the energy and event type. Nevertheless,
this is just the median reconstruction angle; the tails of this
distribution are considerably non-Gaussian and can extend out
to very wide angles in the case of poorly reconstructed events.
Modeling the tails correctly is critical for an NPTF analysis. As
an example of why this is important, if there is a true
population of sources all with identical fluxes, a mismodeled
PSF can lead to the fit preferring an additional population of
lower flux sources associated with mis-reconstructed neutrinos.

The event-by-event determination of the angular reconstruc-
tion can be exploited in an unbinned analysis, as done for
example in Aartsen et al. (2017a). However, as the NPTF is
fundamentally a binned method, we will instead consider
quantities averaged within the data set of interest. There is no
simple analytic expression for converting from the known PSF
to ρ( f ), as, for example—unlike the PSF—ρ( f ) depends
critically on the binning of the underlying map.68 We can,
however, determine this distribution using the following
algorithmic prescription:

1. Simulate N equal-flux point sources on a blank map with
the same pixelization as the NPTF will be applied to;

2. Determine the fraction of the total flux in each pixel, fp,
defined such that å =f 1p p ;

3. Define a flux binning Δf, and as a function of flux f,
define Δn( f ) the number of pixels that have a flux
between f and f+Δf; and

4. Combine these quantities to define ρ( f ) as follows:

r »
D

D
f

n f

N f
. 18( ) ( ) ( )

The above relation is approximate and only becomes exact in
the limit  ¥N and D f 0.
In order to simulate this in practice, we deposit a large

number of sources on the sky, and for each one, we model the
neutrino distribution according to the appropriate PSF at each
location. To account for the energy dependence inherent in the
PSF of IceCube, followingEquation (4), we assume each
source has an E−2 spectrum and draw events for the source
according to this distribution. In this way, we can exactly build
up ρ( f ) as defined inEquation (18), and the result is shown in
Figure 1 for our default full-sky analysis. In that figure, we
have zoomed in on the small f values where the distribution is
peaked. That the flux fraction distribution is peaked at small
values is indicative of the fact that the IceCube PSF has tails
that extend significantly more broadly than the size of a pixel
on the map but is also quite generic of ρ( f ) unless the angular
reconstruction is significantly better than the pixel size. For
comparison, note that the linear size of our pixels is ∼0°.92,
which is comparable to the median reconstruction angle of our
events, which is ∼1°. As the PSF of IceCube varies across the
sky, ρ( f ) must be determined for each of our spatial
distributions separately.69

In light of these results, the NPTF likelihood can now be
applied to the IceCube data set. As an important validation of

Figure 1. Distribution of the frequency of pixels that contain a fraction f of the
flux from a point source, ρ( f ), for the full sky template, which is appropriate
for modeling isotropic extragalactic sources. This quantity is central to
incorporating the PSF of IceCube into the NPTF likelihood, according
toEquation (16). We have chosen to show f ρ( f ), as followingEquation (15)
this quantity integrates to one given conservation of flux. See the text for
details.

68 To highlight this, note that in the limit where the map contains only one
pixel, we must have r d= -f f2 1( ) ( ), independent of the PSF.

69 In principle, due to the spatial variation of the PSF, ρ( f ) also varies
spatially. The approximation made in this work is that we will use the mean of
ρ( f ) across the sky, as weighted by our various spatial templates.
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the method, we performed extensive tests based upon Monte
Carlo studies where we injected and then recovered point-
source populations. An example of this is shown in Figure 6,
discussed in detail below. We emphasize again that, in
particular, the details discussed in this section were critical to
the successful recovery of injected populations. With the
method validated, we can now look to calculate the expected
sensitivity at IceCube, which we turn to in Section 4. Before
doing so, however, in the next two subsections, we will discuss
how we incorporate backgrounds that are not associated with
point sources into our model and then how these various
likelihoods will be combined into an inference framework we
can use to test for the presence of point sources.

3.3. Adding Poissonian Models

At the very least, due to the presence of irreducible
backgrounds, we know that point sources cannot be the only
contribution to the IceCube data set, and in this section, we
discuss how to augment the NPTF likelihood to account for
these. These additional contributions are generally expected to
be described by the Poisson distribution, following an under-
lying spatial map. To incorporate both the Poissonian statistics
and the spatial variation, we will use the language of
Poissonian templates, following the language from a recent
application of this topic in Lisanti et al. (2018).

To begin with, as in the NPTF case, we imagine that our
model follows a spatial distribution that once pixelized can be
described by a map Tp. Unlike for an NPTF model, where Tp
specified the spatial distribution of point sources, in the Poisson
case, we require Tp to be proportional to the expected
distribution of counts, not flux. As a concrete example, in the
case where our model is for isotropic extragalactic neutrino
emission, the appropriate Tp would still have a spatial variation
inherited from the effective area matrix described in the
previous subsection. As in the non-Poissonian case, we assume
for a given model that the Poissonian template, Tp, is specified
ahead of time. What we fit for in this case is the overall
normalization of this template, in terms of which our
Poissonian model prediction is given by

qm = A T , 19p p( ) ( )

so that q = A{ }, where we emphasize that A has no pixel
dependence. Given that the sum of two Poisson distributions
with means μ1 and μ2 is again a Poisson distribution of mean
μ1+μ2, we can readily extend this formalism to account for
multiple Poisson models. For example, if we had n of these,
described by template ¼T T, ,p p

n1 , then our combined model
prediction in each pixel would be

åqm =
=

A T , 20p
ℓ

n
ℓ

p
ℓ

1

( ) ( )

where now q = ¼A A, , n1{ }. To provide a concrete example, we
may want to model the observed flux using a model that
combines three sources: 1. terrestrial backgrounds such atmo-
spheric neutrinos; 2. diffuse extragalactic emission; and 3.
diffuse emission from the Milky Way. In such a scenario, we
would have three Poissonian templates, and for each of these,
Tp

ℓ would describe the pixel dependence of the flux, and A ℓ the
overall normalization. For the case of extragalactic emission, as

the flux is expected to be isotropic, Tp
ℓ would then be a map of

the IceCube detector’s response to a uniform incident flux.
In terms of this, if all we had was a set of Poissonian models,

then we could write down our likelihood according to the
Poisson distribution,

q
qm

=
qm-

p
e

k
. 21p k

p
k

,

p

( )
( )

!
( )

( )

Nonetheless, we want to construct a likelihood incorporating
both Poissonian and non-Poissonian models. For this purpose,
we can use the property of generating functions we exploited
earlier, specifically that the generating function that describes
the sum of two independent random variables is given by the
product of the generating functions for the individual variables.
For the Poisson case, given inEquation (21), the associated
generating function according toEquation (8), is given by

q qm= -P t t; exp 1 . 22p p( ) [ ( )( )] ( )

Combined with the generating function for the non-Poissonian
case given inEquation (12), we arrive at

åq q

qm

= -

+ -
=

¥

P t x t

t

; exp 1

1 , 23

p
m

p m
m

p

1
,

⎡
⎣⎢( ) ( )( )

( )( )] ( )

where now q = ¼A F n n A A, , , , , ,b
n

1 2
1{ }. Through the use of

Equation (9), this generating function can be used to derive a
combined likelihood that includes both Poissonian and non-
Poissonian models, accomplishing one of the main aims of this
subsection.
The main application for the Poissonian template formalism

in our work will be to model the known backgrounds arising
from atmospheric neutrinos and muons. For this purpose, we
need to derive an appropriate Tp describing the spatial
distribution of these contributions. Determining this from first
principles is at present out of reach. Fortunately, however, we
can estimate the distribution from the data alone. The reason for
this is if we assume the data are made up of predominantly
background events and a subset of point sources, then we can
remove the point sources in the following way. Given the
approximate azimuthal symmetry of the effective area of
detector, we can take the data collected by IceCube and
scramble the events by assigning them a random R.A. value.
This process removes any point-source hotspots, as they will be
smeared out along bands of constant decl. Furthermore, as the
background is only expected to vary with decl., this process
does not degrade the spatial information pertaining to the
background process. Applying this process once gives a map
that is still as noisy as the data. In order to extract a more
appropriate map for the mean of a Poisson distribution, we
repeated this scrambling process a large number of times and
take the average of the resulting maps. Finally, to remove the
noise in decl., we convolve this model with a von MisesFisher
distribution that has a concentration corresponding to 1°.08,
chosen as this is the median angular resolution at ∼1 TeV. This
last step can be justified as the real data have been scrambled
on such a scale due to the PSF.
The map resulting from this procedure is shown in Figure 2,

which is the Mollweide projection of the map in galactic
coordinates. The most apparent feature in this map is the strong
variation away from the poles toward the equator where the
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largest flux is observed. Taking this map as template, we can
readily incorporate the largest expected background into our
likelihood. In subsequent discussions, we will refer to this map
as Tp

bkg.

3.4. Inference Framework

So far in this section, we have introduced the formalism
required to calculate the likelihood for a data set in the presence
of a population of sources and additional Poissonian contribu-
tions. Our goal now is to put this machinery to work in the form
of a test statistic that we can use to test for the presence of point
sources in the data. Our test statistic will compare between
two hypotheses: that point sources, distributed according to a
spatial template Tp

PS, are present in the data or they are not.
We will refer to these as the non-Poissonian and Poissonian
hypotheses, respectively.

In detail, the Poissonian hypothesis is a model consistent of
two Poisson templates: one following the dominant back-
ground contribution, given by Tp

bkg, and the other accounting
for the possibility that for a given spatial distribution Tp

PS, the
data may have a diffuse rather than an unresolved point-source
origin. For this second source of emission, as the flux is diffuse,
it is better described by Poisson statistics and, thus, follows a
template  Tp p

PS, where the extra factor of p is required to
convert to a counts map. In this case, we can write down a
likelihood function as described above, and from the data, we
can construct the marginal likelihood as follows:

ò q q q= d d d p , 240 P( ) ( ∣ ) ( ) ( )

where the subscript 0 indicates that we are using this as our null
hypothesis, and the subscript P on the likelihood identifies this
as the appropriate form for the Poissonian hypothesis. In detail,

q dP( ∣ ) can be determined directly from Equation (21), as we
are only considering Poissonian models. In addition, we have
introduced qp( ), which represents the priors on the parameters.
These are given in Table 1, where Abkg and AP are the
normalizations of the templates Tp

bkg and  Tp p
PS, respectively,

and so we see this is a two-parameter model.
The non-Poissonian hypothesis is derived from the null

hypothesis, except that we append one further model: a non-
Poissonian template following the spatial template Tp

PS. As we
will take a singly broken power law to describe the source-
count distribution, this hypothesis is a six-parameter model.

Once more, we can form the marginal likelihood using

ò q q q= d d d p , 251 NP( ) ( ∣ ) ( ) ( )

where again the priors are given in Table 1. Note that all priors
are uniform, except for A and Fb, which are log uniform. Also,
the prior for AP is allowed to float negative, in order to allow
the fit to conserve the total amount of flux when evaluating the
non-Poissonian hypothesis. To justify this choice, recall that
Tp

bkg was constructed by scrambling the real data. Accordingly,
if there is a detectable point-source population within the data,
the flux from these sources would be picked up by the non-
Poissonian template but also be present in Tp

bkg and, therefore,
double counted. A negative AP can then be loosely thought of
as subtracting that flux off, but done in such a way that the
combined Poissonian template +  A T A T 0p p p

bkg bkg P PS in
every pixel. We emphasize that the model used for non-
Poissonian hypothesis includes both Poissonian and non-
Poissonian templates, and thus, the full generating function in
Equation (23) is required.
Model selection between these two hypotheses is considered

through the use of the Bayes factor

ò
ò

q q q

q q q
= =







d

d

d

d d p

d d p
. 26NP P

1

0

NP

P

( ) ( )
( )

( ∣ ) ( )

( ∣ ) ( )
( )

From this definition, it can be seen that the Bayes factor is a
summary statistic: it integrates over all possible forms of the
source-count function through the integral over parameters. As
such, it provides a gross evaluation as to whether a point-source
population is preferred by the data, rather than singling out any
particular dN/dF. As a summary statistic, it can also serve a
secondary role as a test statistic. Our expectation for the value
of the Bayes factor can be calibrated through use of frequentist
methods such as calculating the p-value of the Bayes factor.
To compare more specific model hypotheses, we introduce

the pointwise likelihood ratio, defined as

f f p
p p

=
+




 
d

d

d d
; . 27NP NP

0 P 1 NP
( )

˜ ( ∣ )
( ) ( )

( )

where πP and πNP are, respectively, the model priors for the
Poissonian and non-Poissonian hypotheses, which have been
chosen to be equal for this presentation of the results. Here,
f = N F,PS PS{ ¯ } represents the expected number of point
sources across the whole sky and the expected flux per source
at this location in model space, both of which were defined in
Equation (3). In this expression, f dNP

˜ ( ∣ ) is similar to
q dNP( ∣ ), except that n1 and n2 have been marginalized over.

Figure 2. Data-driven background template for the spatial distribution of
atmospheric neutrinos and muons, derived using the procedure described in the
text. This map is referred to as Tp

bkg. The map is a Mollweide projection of an
underlying distribution in galactic coordinates, and the overall normalization is
arbitrary.

Table 1
List of Priors

Parameter Prior Range

log10 (A [TeV cm2 s]) [2.41,16.41]
log10 (Fb [TeV

−1 cm−2 s−1]) [−18, −7]
n1 [2, 10]
n2 [−6, 2]
Abkg [0.5, 1.5]
AP [−0.5, 1]

Note. All priors are taken to be flat in the given ranges.
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Intuitively, f d;( ) should be thought of as the probability
for the NPTF model at this particular value of N F,PS PS{ ¯ },
compared to the probability for an equally weighted mixture of
the Poissonian and non-Poissonian models. This definition was
motivated by the need for a metric that handles both the high
and low signal strength regimes. When  1NP P  ,  is
approximately the model posterior conditioned on f; while in
the  1NP P  regime, is approximately the ratio between
the posterior and prior: f fp d p( ∣ ) ( ).

Before concluding this section, we have said a number of
times that we will exploit the power of the NPTF to test several
forms for the spatial dependence of the point-source popula-
tion, specified by Tp

PS. In addition to isotropically distributed

sources, where µT 1p
PS , we will consider three additional

templates that consider the possibility of point sources
distributed within the Milky Way, all of which are shown in
Figure 3. The galactic disk template is used as a generic model
for sources distributed according to the disk of the Milky Way.
This is the line-of-sight integrated emission from a disk with a
source density that scales exponentially in radius and distance
from the plane, with a scale height of 0.3 kpc and a scale radius
of 5 kpc. Next, we consider sources distributed following the
Fermi bubbles (Su et al. 2010), large structures observed in
gamma-rays extending perpendicularly from the galactic disk.
Although the emission observed from the bubbles so far
appears diffuse, neutrino emission from the recently discovered
small scale gas clouds within the bubbles (Di Teodoro et al.
2018), could lead to point like sources. Finally, we consider the
Schlegel, Finkbeiner, and Davis (SFD) dust map (Schlegel
et al. 1998), which provides a two-dimensional distribution of
dust within the Milky Way, mapped out using the reddening of
starlight. This distribution is interesting to consider, as dust and
gas tend to have similar spatial distributions, so the map is a
proxy for the distribution of hydrogen in the Milky Way. The
hydrogen is a target for cosmic-ray proton to collide with and
form pions. The neutral pions then decay to photons, and
indeed, the SFD dust map can be seen clearly in the Fermi
gamma-ray data. If these same interactions produce higher-
energy pions, then the charged variants could produce
neutrinos at IceCube, making this an interesting spatial
distribution to consider. As the target dust has a diffuse
distribution throughout the Milky Way, in order for this
template to describe a point-source population, the sources of
the cosmic-ray protons would need to be point like, as this
would then imprint a point-source-like distribution into the

neutrino data. Note that we have chosen not to divide our
templates between the northern and southern sky, even though
this is commonly done for extragalactic point-source searches
(see, for example, Aartsen et al. 2017a). Usually, this
distinction between the northern and southern sky is imposed
due to the different backgrounds that dominate in each
hemisphere; in the northern sky, the main background is
atmospheric neutrinos, whereas in the southern sky, instead,
atmospheric muons dominate. Nonetheless, for the isotropic
case, we show both the sensitivity and results for the northern
sky in Appendix B. There we will see that the reach for the
restricted case is only slightly enhanced, justifying our choice
to focus on the full sky.

4. Expected Sensitivity

Using the techniques and statistical framework described in
the previous section, we now turn to estimating the expected
reach of this technique using Monte Carlo simulations. We will
consider both the case of setting limits and quantifying
thresholds for a discovery of a point-source population. As
we use techniques generally motivated by Bayesian statistics,
part of the aim of this section is to help develop intuition for

Figure 3. The three forms of point-source distribution considered in this work, in addition to a purely isotropic distribution. From left to right, these are a model for the
Galactic disk, the Fermi bubbles (Su et al. 2010), and the SFD dust map (Schlegel et al. 1998). In effect, these are maps of Tp

PS in galactic coordinates, and the
normalizations are arbitrary. All maps are on a linear scale except for the SFD dust map, where we use a log color axis to emphasize the more detailed structure within
this map. See the text for further description.

Figure 4. Distribution of the test statistic, as given inEquation (26), under the
background-only hypothesis for four different signal states. These distributions,
formed from 1000 trials, are used for establishing sensitivities and p-values. In
particular, the vertical lines represent a p-value of 0.5. Here, each trial is formed
by scrambling the data in R.A. See the text for details.
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what discovery and limit setting looks like in our framework.
Nevertheless, the primary output of a Bayesian analysis is the
posterior, and as mentioned, we make this publicly available,70

describing the details in Appendix A.
To begin with, we consider the expected limit sensitivity for

the analysis. The sensitivity is determined by comparing how
our test statistic, the Bayes factor given inEquation (26), is
distributed over many trials for each of the signal plus
background and background-only hypothesis. From these
distributions, our sensitivity to a given model is defined as
when 90% of the signal distribution is above 50% of the
background case. For example, the background-only distribu-
tion of the natural log of our test statistic, generated from 1000
trials, is shown in Figure 4 for each of our four signal
templates. The trials are generated by taking the real data but
scrambling the R.A. of each event, with a different scrambling
for each trial. This background-only distribution can also be

used to establish p-values, and indeed, the definition of
sensitivity is equivalent to requiring the p-value for 90% of
the signal distribution to be less than 0.5.71 Note that as
sensitivity is defined in terms of the distributions, there is no
statistical variation in its value, as opposed to say a frequentist
90% confidence limit. Where the sensitivity threshold occurs
will not be a unique point in the signal-parameter space,
established by N F n n, , ,PS PS

1 2{ ¯ }. If, however, we fix three of
the parameters, for example NPS, n1, and n2, then we can define
the sensitivity as a function of FPS¯ . With this in mind, in
Figure 5, we show the sensitivity to FPS¯ as a function of NPS,

Figure 5. The expected sensitivity and limit for the four different spatial templates considered for the point-source distributions: isotropic extragalactic sources over
the full sky (top left panel), Fermi bubbles (top right panel), SFD dust (bottom right panel), and galactic disk (bottom left panel). In each case, the sensitivity is shown
as the dashed curves for three different shapes of the source-count function. The median expected limit derived using f = d; 0.1( ) is shown in blue, as well as the
associated 10th and 90th percentiles from the distribution. See the text for details.

70 https://icecube.wisc.edu/science/data/NPTF_7yr_posterior

71 A similar procedure can be used to establish the expected discovery
sensitivity, which is defined as when 50% of the signal distribution has a
p-value less than ´ -2.87 10 7, the threshold usually referred to as a 5σ
discovery. Determining the associated test statistic that corresponds to such a
small p-value requires generating a large number of background-only trials, and
as we find no significant evidence for a signal in the present analysis, we have
not quantified the discovery threshold.
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for three different values of = -n n1 2, and for the four signal
templates.

In addition to the sensitivity, we define a contour where
f d;( ), given in Equation (27), equals 0.1. This contour is

the dividing line, above which the odds for a particular point in
parameter space are no better than 1 in 10. As f = d; 0.1( )
varies between different data sets, we show the median, 10th,
and 90th percentiles on the distribution also in Figure 5. Recall
that f d;( ) is defined by marginalizing over n1 and n2. As
explained around Equation (3), we can describe an NPTF
template in terms of NPS, FPS¯ , n1, and n2. With NPS

fixed, and
the indices marginalized over, the only remaining degree of
freedom is the average flux per source, FPS¯ , which, for a fixed
number of sources, is equivalent to the total flux associated
with the non-Poissonian template. Accordingly, the limit set
using this procedure effectively reduces to the weaker
constraint obtained by ensuring that such a population does
not overproduce the observed neutrino flux, rather than
drawing on the full power of the NPTF likelihood. This

explains why, for a large number of sources, the expected limit
is weaker for the full sky as compared with the other cases. For
the spatially restricted templates, such as the Fermi bubbles, the
point sources and the majority of their associated neutrinos are
forced within a smaller region on the sky compared with the
full sky case, leading to a stronger limit. As discussed earlier,
all templates are applied to the full data set; although for the
isotropic case, we show the sensitivity and results restricting to
the northern hemisphere in Appendix B.
In addition to being useful for setting limits, we can use

f d;( ) to map out the signal-parameter space to determine if
there are regions that are particularly preferred by the data. In
order to calibrate our analysis for this case, we will consider
three different scenarios where we look for evidence of an
actual point-source signal. In each of these scenarios, we
consider a background data set with an additional injected
point-source population. The population is distributed iso-
tropically over the full sky, where in all scenarios, the expected
number of sources is 104, but each have a source-count

Figure 6. Map of f d;( ) for three different data sets including injected point-source populations. In each of the cases, the parameters of the injected population are
shown with the red lines. Only in the case of a strong signal is this method able to identify the specific location in this reduced parameter space of the signal. See the
text for details.
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function following a singly broken power law, with
n1=−n2=2.5. The cases are distinguished by the value of
the flux break of the source-count function, Fb; we consider a
strong signal with = -F 10b

12 neutrinos cm−2 s−1 TeV−1, a
weak signal of Fb=10−14 neutrinos cm−2 s−1 TeV−1, and
finally, a case almost equivalent to no signal with Fb=10−15

neutrinos cm−2 s−1 TeV−1. Note the strong signal here corre-
sponds to value that is a factor of ∼100 brighter than the
observed diffuse flux, and the sole purpose of such a large
value is to validate that the framework has been calibrated
correctly. The distribution of f d;( ) for each of these cases
is shown in Figure 6, and we see that only in the strong signal
case is the actual injected point clearly singled out. Never-
theless, in the weak-signal case, it is clear that a nonzero-point-
source population is preferred, but the exact location is not
correctly identified. The fit is not able to distinguish between a
few bright or many dim sources. Finally, in the no-signal case,
the data set is clearly consistent with no point-source
population, as the injected population falls below the sensitivity
of our analysis. For reference, the ln NP P of the strong, weak,
and no-signal cases, is approximately ´2.3 104, 10.7, and
−0.84, respectively.

It is worth emphasizing that all results shown above, and
indeed those we derive on the actual data in the next section,
represent slices through the full model space. This is the cost of
reducing a four-dimensional parameter space into a two-
dimensional limit plot. For a specific model prediction, the full
posterior is the more relevant resource.

Finally, we emphasize that a direct comparison of this
method to limits set by previous IceCube analyses—such as
those in Aartsen et al. (2017a)—cannot be made straightfor-
wardly, as those limits are calculated by assuming a population
of equal-flux point sources. This kind of population can be
emulated by requiring n1 and n2 to be fixed to a large absolute
value, thus creating an approximate Dirac delta distribution
differential source-count function. In this limited region of

parameter space, a direct comparison is possible, and
sensitivities for the four templates under consideration, using
n1=−n2=20, are shown in Figure 7 along side the northern
and southern sky sensitivities from Aartsen et al. (2017a).72

5. Results

In this section, we apply the techniques used to estimate the
sensitivity discussed in the last section to the actual data. In
particular, we plot the distribution of values f d;( ) for each
of our signal templates. The results of this are shown in
Figure 8. These plots indicate that for each of the investigated
cases, there is no indication of a point-source population
present in the data, and accordingly, the results are consistent
with the expected limits shown in Figure 5. In each case, the
significance can be quantified as follows:

1. Full sky: = -ln 0.79NP P , p-value=0.66;
2. FermiBubbles: = -ln 0.94NP P , p-value=0.45;
3. SFD Dust: = -ln 0.92NP P , p-value=0.33; and
4. Galactic Disk: = -ln 0.97NP P , p-value=0.74.

The p-values quoted here were determined from the distribu-
tion of the background-only hypotheses, which were shown in
Figure 4. From the p-values, each signal template is consistent
with the Poissonian hypothesis.
We can also consider the full posterior. In Figure 9, we show

a triangle plot generated from the posterior for the case of the
SFD dust signal template. The signal parameters are clearly
consistent with a background-only hypothesis, and we note that
the triangle plots for other templates are similar. The posterior
for each template is made publicly available, and we refer to
Appendix A for details.
The purpose of the public posterior is that they can be used

to test any point-source population model where the associated
dN/dF can be approximated by a broken power law. There are
a wide number of source classes that have been considered as
possible contributors to the IceCube neutrino flux. For an
overview, see, for example, Murase & Waxman (2016). A
fundamental problem, however, is that in many cases, there
remains considerable uncertainty in the associated luminosity
function. While we often have measurements of the photon
luminosity function in the infrared, X-ray, or γ-ray energies,
mapping from this to the neutrino luminosity function involves
a number of assumptions. For an example in the case of
blazars, see Yuan et al. (2019). For these reasons, the model
space associated with neutrino sources is significant.
One approach to simplifying this space is to consider

standard candles. Under this approach, the luminosity function
is chosen to be sharply peaked at a certain value, denoted Leff,
and then the problem is reduced to scanning a two-dimension
space parameterized by the effective luminosity, and the
density of sources, denoted ρ0. More quantitatively, following
Aartsen et al. (2019), the luminosity function of a standard
candle is defined as a log-normal distribution with median Leff
and a width of 0.01 in log10 Leff. This model is then converted
to an associated dN/dF using FIRESONG Taboada et al.
(2018), adopting a density evolution for the source population
according to the evolution of the star formation rate in Hopkins
& Beacom (2006), and a flat universe with W = 0.308M,0 ,

Figure 7. Expected sensitivities for four templates when n1=−n2=20 is
fixed, creating an approximation of an equal-flux population of sources.
Northern and southern sky hotspot sensitivities for populations of equal-flux
source from Aartsen et al. (2017a) are shown along-side. The hotspot analysis
represents a traditional approach to point-source detection, where a “hotspot” is
defined as a source that is individually detected at 3σ global significance. See
the text for details.

72 The northern sky sensitivity from Aartsen et al. (2017a) has been
recalculated to account for an incorrect treatment of signal acceptance in the
original publication.
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W =l 0.692,0 , and h=0.678 Ade et al. (2016). These output
source-count distributions were then interfaced with the NPTF
posterior, and the value of f d;( ) calculated for each point
in parameter space. The A and Fb parameters scale with ρ0 and
Leff, respectively, while n1 and n2 are set to 1.9 and −2,
respectively. A lower limit of Leff=1052 erg yr−1 was chosen
to match the prior on Fb. The result is shown in Figure 10 for
the isotropic template, and—consistent with our previous
results—we see no evidence for any particular source class.
These results, in addition to allowing a comparison with
searches for source populations with fixed flux-characteristics
(Aartsen et al. 2019), also are representative of the power and
generality of the NPTF technique.

6. Conclusion

In this work, we have performed the first application of the
non-Poissonian template fitting technique to search within the
IceCube data set for neutrino point-source populations.
Although IceCube presents novel challenges to the implemen-
tation of the NPTF, our work provides an explicit verification

that such difficulties can be addressed and that this technique is
a viable method to search for such populations. In addition to
being able to search for populations with an, in principle,
arbitrary source-count function dN/dF, this method also allows
us to search for point sources with peculiar spatial distributions,
and here we have considered spatial templates following maps
of the isotropic sky, Fermi bubbles, SFD dust map, and galactic
disk. In all cases, no significant evidence of a point-source
population has been detected, and so we have presented limits
in their absence, as shown in Figure 8. Importantly, we have
made the full posterior from our analysis publicly available,
allowing specific theory predictions for contributions to the
IceCube flux to be tested directly. This is exemplified by the
application of our results to the space of standard-candle
luminosity functions, shown in Figure 10.
There are a number of ways that the analysis presented here

can be improved upon. The IceCube data set contains a large
amount of information on the reconstruction quality of incident
candidate neutrinos on an event-by-event basis. As the NPTF is
a fundamentally binned method, much of this information is

Figure 8. Map of the pointwise likelihood ratio, f d;( ), for the four different point-source spatial distributions considered in this work: isotropic sources over the
full sky (top left panel), Fermi bubbles (top right panel), SFD dust (bottom right panel), and galactic disk (bottom left panel). In each case, the results are consistent
with the background or Poissonian hypothesis, with the most significant p-value of 0.33 occurring for the SFD dust map.
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lost and is only exploited through the optimization of various
high level cuts, such as on the energy range considered.
Yet, there is significant scope to incorporate more of this
information into the NPTF. For example, there is the potential
to incorporate energy binning into the method, and with this,
additional event information. Beyond expanding the neutrino
data set, such extensions could play an important role in
uncovering evidence for a population of astrophysical point
sources, and unravelling the mystery surrounding the origin of
the IceCube neutrinos.
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Appendix A
Description of the Public Posterior

The posterior for each of the four templates can be found at
https://icecube.wisc.edu/science/data/NPTF_7yr_posterioras an
HDF5 file. Within the file, five tables named Isotropic,
Galactic_disk, Fermi_bubble, SFD_dust, and North-
ern_sky contain the posterior for their respective templates.
Each table describes equally weighted samples using five

columns. Four columns, labeled ln_A, ln_Fb, n1, and n2
contain the coordinates for the sample in natural logarithmic
parameter space for the differential source-count function
normalization A and break Fb, while the power indices n1 and
n2 are in linear space. The fifth column—labeled loglike-
lihood—gives the natural logarithm of the likelihood
function at the location of the corresponding sample. In
addition, each table has two attributes named P_log_evi-
dence and NP_log_evidence that contain the natural
logarithm of the evidence integral for the Poissonian model
(0) and non-Poissonian model (1), respectively.
The root node of the HDF5 file also contains a series of

attributes named units_ln_A, units_ln_Fb, units_n1,
and units_n2 that specify the units that the posterior sample
coordinates are given in. Another series of root attributes
named prior_ln_A, prior_ln_Fb, prior_n1, and
prior_n2 give the probability density of the uniform priors
for each of the model parameters.
Finally, we emphasize that our analysis and, hence, these

posteriors are constructed with the assumption that the
astrophysical population produces neutrinos with an E−2

spectrum, as given in Equation (4).

Appendix B
Isotropic Sources in the Northern Sky

Traditional searches for extragalactic point sources at
IceCube are performed restricting to the northern or southern
hemispheres. The motivation for this is the northern hemi-
sphere, having a lower background, usually has an enhanced
sensitivity. In Figure 11, we show the expected sensitivity and
the pointwise likelihood ratio determined from the data for the
northern sky, which should be contrasted to the full sky result
for both hemispheres shown in Figures 5 and 8. Comparing the
two results, it is clear that restricting the NPTF to the lower-
background hemisphere only marginally improves the sensi-
tivity. This suggests that the NPTF results are not being
degraded by working with the full sky, and given our inclusion
of a number of galactic templates, justifies the choice of both
hemispheres used in the main text.

Figure 10. Map of the pointwise likelihood ratio for the isotropic template
applied to the space of standard-candle luminosity functions. The standard-
candle-approach models the luminosity function as sharply peaked in Leff, and
then the space of possible models is spanned by this parameter and the density
of sources, ρ0. This figure also allows us to contrast our results with the 90%
upper limit obtained using an analysis for steady point sources with a specified
flux-distribution, as derived in Aartsen et al. (2019). Both of these results can
be compared to a standard-candle population of sources that is compatible with
the observed diffuse flux at±1σ, as quoted in Aartsen et al. (2017b). To aid
interpretation, we have overlaid the electromagnetic luminosities associated
with several possible source classes: flat-spectrum radio quasars (FSRQ), BL
Lacertae active galactic nuclei (BL LAC), galaxy cluster, and FanaroffRiley
Class II radio galaxies (FR-II), following Kowalski (2015) and Taboada et al.
(2018). We emphasize that these are not predicted neutrino luminosities, which
are unknown, but highlight that current measurements provide information
about the relative neutrino to photon luminosities of these sources. We note that
the results in this figure were derived using the NPTF posterior, described in
Appendix A, and show the power of our result to test specific model
hypotheses. See the text for details.

18

The Astrophysical Journal, 893:102 (20pp), 2020 April 20 Aartsen et al.

https://icecube.wisc.edu/science/data/NPTF_7yr_posterior


ORCID iDs

M. Ahlers https://orcid.org/0000-0003-0709-5631
E. Bernardini https://orcid.org/0000-0003-3108-1141
P. Dave https://orcid.org/0000-0002-3879-5115
J. J. DeLaunay https://orcid.org/0000-0001-5229-1995
P. A. Evenson https://orcid.org/0000-0001-7929-810X
A. Franckowiak https://orcid.org/0000-0002-5605-2219
J. Gallagher https://orcid.org/0000-0001-8608-0408
S. Garrappa https://orcid.org/0000-0003-2403-4582
U. Katz https://orcid.org/0000-0002-7063-4418
A. Kheirandish https://orcid.org/0000-0001-7074-0539
H. Pandya https://orcid.org/0000-0002-6138-4808
B. R. Safdi https://orcid.org/0000-0001-9531-1319
M. Santander https://orcid.org/0000-0001-7297-8217
N. L. Strotjohann https://orcid.org/0000-0002-4667-6730
J. Vandenbroucke https://orcid.org/0000-0002-9867-6548

References

Aartsen, M. G., Abbasi, R., Abdou, Y., et al. 2013c, ApJ, 779, 132
Aartsen, M. G., Abbasi, R., Abdou, Y., et al. 2013d, arXiv:1309.6979
Aartsen, M. G., Abbasi, R., Abdou, Y., et al. 2013e, NIMPA, A711, 73
Aartsen, M. G., Abbasi, R., Ackermann, M., et al. 2014c, JINST, 9, P03009
Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2015b, ApJ, 809, 98
Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2015c, PhRvL, 115,

081102
Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2015f, arXiv:1510.05222
Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2016a, ApJL, 824, L28
Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2016b, ApJ, 833, 3
Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2017a, ApJ, 835, 151
Aartsen, M. G., Ackermann, M., Adams, G., et al. 2013a, PhRvL, 111, 021103
Aartsen, M. G., Ackermann, M., Adams, G., et al. 2013b, Sci, 342, 1242856
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2015a, PhRvD, 91, 022001
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2015e, APh, 66, 39
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2015d, PhRvL, 114,

171102
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2017b, arXiv:1710.01191
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2018, Sci, 361, eaat1378
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2019, EPJC, 79, 234
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2014a, PhRvL, 113, 101101
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2014b, ApJ, 796, 109
Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al. 2010, NIMPA, 618, 139

Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al. 2011, ApJ, 732, 18
Abbasi, R., Ackermann, M., Adams, J., et al. 2009, NIMPA, 601, 294
Abeysekara, A. U., Albert, A., Alfaro, R., et al. 2018, JCAP, 1802, 049
Achterberg, A., Ackermann, M., Adams, J., et al. 2006, APh, 26, 155
Ade, P. A. R., Agnahim, N., Arnaud, M., et al. 2016, A&A, 594, A13
Ahrens, J., Bai, X., Bay, R., et al. 2004, NIMPA, 524, 169
Albert, A., André, M., Anghinolfi, M., et al. 2017, PhRvD, 96, 082001
Anchordoqui, L. A., & Montaruli, T. 2010, ARNPS, 60, 129
Anchordoqui, L. A., Barger, V., Cholis, I., et al. 2014, JHEAp, 1, 1
Ando, S., Feyereisen, M. R., & Fornasa, M. 2017, PhRvD, 95, 103003
Bechtol, K., Ahlers, M., Di Mauro, M., Ajello, M., & Vandenbroucke, J. 2017,

ApJ, 836, 47
Bhattacharya, A., Reno, M. H., & Sarcevic, I. 2014, JHEP, 06, 110
Blanco, C., & Hooper, D. 2017, JCAP, 1712, 017
Buchner, J., Georgakakis, A., Nandra, K., et al. 2014, A&A, 564, A125
Chianese, M., & Merle, A. 2017, JCAP, 1704, 017
Chianese, M., Miele, G., & Morisi, S. 2017, PhLB, 773, 591
Cohen, T., Murase, K., Rodd, N. L., Safdi, B. R., & Soreq, Y. 2017, PhRvL,

119, 021102
Di Mauro, M., Manconi, S., Zechlin, H. S., et al. 2018, ApJ, 856, 106
Di Teodoro, E. M., McClure-Griffiths, N. M., Lockman, F. J., et al. 2018, ApJ,

855, 33
Ema, Y., Jinno, R., & Moroi, T. 2014, PhLB, 733, 120
Esmaili, A., Kang, S. K., & Serpico, P. D. 2014, JCAP, 1412, 054
Esmaili, A., & Serpico, P. D. 2013, JCAP, 1311, 054
Feldstein, B., Kusenko, A., Matsumoto, S., & Yanagida, T. T. 2013, PhRvD,

88, 015004
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601
Feyereisen, M. R., Ando, S., & Lee, S. K. 2015, JCAP, 1509, 027
Feyereisen, M. R., Gaggero, D., & Ando, S. 2018, PhRvD, 97, 103017
Feyereisen, M. R., Tamborra, I., & Ando, S. 2017, JCAP, 1703, 057
Foreman-Mackey, D. 2016, JOSS, 24
Gendreau, K. C., Barcons, X., & Fabian, A. C. 1998, MNRAS, 297, 41
Georgantopoulos, I., Stewart, G. C., Shanks, T., Griffiths, R. E., & Boyle, B. J.

1993, MNRAS, 262, 619
Glauch, T., & Turcati, A. 2018, ICRC (Busan), 35, 1014
Gorski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Halzen, F., & Hooper, D. 2002, RPPh, 65, 1025
Hasinger, G., Burg, R., Giacconi, R., et al. 1993, A&A, 275, 1
Hoel, P. G., Port, S. C., & Stone, C. J. 1971, Introduction to Probability Theory

(Boston, MA: Houghton Mifflin)
Hooper, D. 2016, JCAP, 1609, 002
Hopkins, A. M., & Beacom, J. F. 2006, ApJ, 651, 142
Kalashev, O. E., & Kuznetsov, M. Y. 2017, JETPL, 106, 73
Kalashev, O. K., & Kuznetsov, M. Yu 2016, PhRvD, 94, 063535
Kowalski, M. 2015, JPhCS, 632, 012039
Kuznetsov, M. Yu 2017, JETPL, 105, 561

Figure 11. Sensitivity and limit (left panel) and the pointwise likelihood ratio (right panel), analogous to the full sky results shown in Figures 5 and 8, respectively, but
here restricted to only the northern hemisphere. Interestingly, we see an at most factor of a few improvement in reach, suggesting that the NPTF technique is not being
hampered by the increased background in the southern hemisphere. For the top figure, we have explicitly reproduced the median of the full sky f = d; 0.1( )
distribution to allow a direct comparison.

19

The Astrophysical Journal, 893:102 (20pp), 2020 April 20 Aartsen et al.

https://orcid.org/0000-0003-0709-5631
https://orcid.org/0000-0003-0709-5631
https://orcid.org/0000-0003-0709-5631
https://orcid.org/0000-0003-0709-5631
https://orcid.org/0000-0003-0709-5631
https://orcid.org/0000-0003-0709-5631
https://orcid.org/0000-0003-0709-5631
https://orcid.org/0000-0003-0709-5631
https://orcid.org/0000-0003-3108-1141
https://orcid.org/0000-0003-3108-1141
https://orcid.org/0000-0003-3108-1141
https://orcid.org/0000-0003-3108-1141
https://orcid.org/0000-0003-3108-1141
https://orcid.org/0000-0003-3108-1141
https://orcid.org/0000-0003-3108-1141
https://orcid.org/0000-0003-3108-1141
https://orcid.org/0000-0002-3879-5115
https://orcid.org/0000-0002-3879-5115
https://orcid.org/0000-0002-3879-5115
https://orcid.org/0000-0002-3879-5115
https://orcid.org/0000-0002-3879-5115
https://orcid.org/0000-0002-3879-5115
https://orcid.org/0000-0002-3879-5115
https://orcid.org/0000-0002-3879-5115
https://orcid.org/0000-0001-5229-1995
https://orcid.org/0000-0001-5229-1995
https://orcid.org/0000-0001-5229-1995
https://orcid.org/0000-0001-5229-1995
https://orcid.org/0000-0001-5229-1995
https://orcid.org/0000-0001-5229-1995
https://orcid.org/0000-0001-5229-1995
https://orcid.org/0000-0001-5229-1995
https://orcid.org/0000-0001-7929-810X
https://orcid.org/0000-0001-7929-810X
https://orcid.org/0000-0001-7929-810X
https://orcid.org/0000-0001-7929-810X
https://orcid.org/0000-0001-7929-810X
https://orcid.org/0000-0001-7929-810X
https://orcid.org/0000-0001-7929-810X
https://orcid.org/0000-0001-7929-810X
https://orcid.org/0000-0002-5605-2219
https://orcid.org/0000-0002-5605-2219
https://orcid.org/0000-0002-5605-2219
https://orcid.org/0000-0002-5605-2219
https://orcid.org/0000-0002-5605-2219
https://orcid.org/0000-0002-5605-2219
https://orcid.org/0000-0002-5605-2219
https://orcid.org/0000-0002-5605-2219
https://orcid.org/0000-0001-8608-0408
https://orcid.org/0000-0001-8608-0408
https://orcid.org/0000-0001-8608-0408
https://orcid.org/0000-0001-8608-0408
https://orcid.org/0000-0001-8608-0408
https://orcid.org/0000-0001-8608-0408
https://orcid.org/0000-0001-8608-0408
https://orcid.org/0000-0001-8608-0408
https://orcid.org/0000-0003-2403-4582
https://orcid.org/0000-0003-2403-4582
https://orcid.org/0000-0003-2403-4582
https://orcid.org/0000-0003-2403-4582
https://orcid.org/0000-0003-2403-4582
https://orcid.org/0000-0003-2403-4582
https://orcid.org/0000-0003-2403-4582
https://orcid.org/0000-0003-2403-4582
https://orcid.org/0000-0002-7063-4418
https://orcid.org/0000-0002-7063-4418
https://orcid.org/0000-0002-7063-4418
https://orcid.org/0000-0002-7063-4418
https://orcid.org/0000-0002-7063-4418
https://orcid.org/0000-0002-7063-4418
https://orcid.org/0000-0002-7063-4418
https://orcid.org/0000-0002-7063-4418
https://orcid.org/0000-0001-7074-0539
https://orcid.org/0000-0001-7074-0539
https://orcid.org/0000-0001-7074-0539
https://orcid.org/0000-0001-7074-0539
https://orcid.org/0000-0001-7074-0539
https://orcid.org/0000-0001-7074-0539
https://orcid.org/0000-0001-7074-0539
https://orcid.org/0000-0001-7074-0539
https://orcid.org/0000-0002-6138-4808
https://orcid.org/0000-0002-6138-4808
https://orcid.org/0000-0002-6138-4808
https://orcid.org/0000-0002-6138-4808
https://orcid.org/0000-0002-6138-4808
https://orcid.org/0000-0002-6138-4808
https://orcid.org/0000-0002-6138-4808
https://orcid.org/0000-0002-6138-4808
https://orcid.org/0000-0001-9531-1319
https://orcid.org/0000-0001-9531-1319
https://orcid.org/0000-0001-9531-1319
https://orcid.org/0000-0001-9531-1319
https://orcid.org/0000-0001-9531-1319
https://orcid.org/0000-0001-9531-1319
https://orcid.org/0000-0001-9531-1319
https://orcid.org/0000-0001-9531-1319
https://orcid.org/0000-0001-7297-8217
https://orcid.org/0000-0001-7297-8217
https://orcid.org/0000-0001-7297-8217
https://orcid.org/0000-0001-7297-8217
https://orcid.org/0000-0001-7297-8217
https://orcid.org/0000-0001-7297-8217
https://orcid.org/0000-0001-7297-8217
https://orcid.org/0000-0001-7297-8217
https://orcid.org/0000-0002-4667-6730
https://orcid.org/0000-0002-4667-6730
https://orcid.org/0000-0002-4667-6730
https://orcid.org/0000-0002-4667-6730
https://orcid.org/0000-0002-4667-6730
https://orcid.org/0000-0002-4667-6730
https://orcid.org/0000-0002-4667-6730
https://orcid.org/0000-0002-4667-6730
https://orcid.org/0000-0002-9867-6548
https://orcid.org/0000-0002-9867-6548
https://orcid.org/0000-0002-9867-6548
https://orcid.org/0000-0002-9867-6548
https://orcid.org/0000-0002-9867-6548
https://orcid.org/0000-0002-9867-6548
https://orcid.org/0000-0002-9867-6548
https://orcid.org/0000-0002-9867-6548
https://doi.org/10.1088/0004-637X/779/2/132
https://ui.adsabs.harvard.edu/abs/2013ApJ...779..132A/abstract
http://arxiv.org/abs/1309.6979
https://doi.org/10.1016/j.nima.2013.01.054
https://ui.adsabs.harvard.edu/abs/2013NIMPA.711...73A/abstract
https://doi.org/10.1088/1748-0221/9/03/P03009
https://ui.adsabs.harvard.edu/abs/2014JInst...9P3009A/abstract
https://doi.org/10.1088/0004-637X/809/1/98
https://ui.adsabs.harvard.edu/abs/2015ApJ...809...98A/abstract
https://doi.org/10.1103/PhysRevLett.115.081102
https://ui.adsabs.harvard.edu/abs/2015PhRvL.115h1102A/abstract
https://ui.adsabs.harvard.edu/abs/2015PhRvL.115h1102A/abstract
http://arxiv.org/abs/1510.05222
https://doi.org/10.3847/2041-8205/824/2/L28
https://ui.adsabs.harvard.edu/abs/2016ApJ...824L..28A/abstract
https://doi.org/10.3847/0004-637X/833/1/3
https://ui.adsabs.harvard.edu/abs/2016ApJ...833....3A/abstract
https://doi.org/10.3847/1538-4357/835/2/151
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..151A/abstract
https://doi.org/10.1103/PhysRevLett.111.021103
https://ui.adsabs.harvard.edu/abs/2013PhRvL.111b1103A/abstract
https://doi.org/10.1126/science.1242856
https://doi.org/10.1103/PhysRevD.91.022001
https://ui.adsabs.harvard.edu/abs/2015PhRvD..91b2001A/abstract
https://doi.org/10.1016/j.astropartphys.2015.01.001
https://ui.adsabs.harvard.edu/abs/2015APh....66...39A/abstract
https://doi.org/10.1103/PhysRevLett.114.171102
https://ui.adsabs.harvard.edu/abs/2015PhRvL.114q1102A/abstract
https://ui.adsabs.harvard.edu/abs/2015PhRvL.114q1102A/abstract
http://arxiv.org/abs/1710.01191
https://doi.org/10.1126/science.aat1378
https://ui.adsabs.harvard.edu/abs/2018Sci...361.1378I/abstract
https://doi.org/10.1140/epjc/s10052-019-6680-0
https://ui.adsabs.harvard.edu/abs/2019EPJC...79..234A/abstract
https://doi.org/10.1103/PhysRevLett.113.101101
https://ui.adsabs.harvard.edu/abs/2014PhRvL.113j1101A/abstract
https://doi.org/10.1088/0004-637X/796/2/109
https://ui.adsabs.harvard.edu/abs/2014ApJ...796..109A/abstract
https://doi.org/10.1016/j.nima.2010.03.102
https://ui.adsabs.harvard.edu/abs/2010NIMPA.618..139A/abstract
https://doi.org/10.1088/0004-637X/732/1/18
https://ui.adsabs.harvard.edu/abs/2011ApJ...732...18A/abstract
https://doi.org/10.1016/j.nima.2009.01.001
https://ui.adsabs.harvard.edu/abs/2009NIMPA.601..294A/abstract
https://doi.org/10.1088/1475-7516/2018/02/049
https://ui.adsabs.harvard.edu/abs/2018JCAP...02..049A/abstract
https://doi.org/10.1016/j.astropartphys.2006.06.007
https://ui.adsabs.harvard.edu/abs/2006APh....26..155I/abstract
https://doi.org/10.1051/0004-6361/201525830
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..13P/abstract
https://doi.org/10.1016/j.nima.2004.01.065
https://ui.adsabs.harvard.edu/abs/2004NIMPA.524..169A/abstract
https://doi.org/10.1103/PhysRevD.96.082001
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96h2001A/abstract
https://doi.org/10.1146/annurev.nucl.012809.104551
https://ui.adsabs.harvard.edu/abs/2010ARNPS..60..129A/abstract
https://doi.org/10.1016/j.jheap.2014.01.001
https://ui.adsabs.harvard.edu/abs/2014JHEAp...1....1A/abstract
https://doi.org/10.1103/PhysRevD.95.103003
https://ui.adsabs.harvard.edu/abs/2017PhRvD..95j3003A/abstract
https://doi.org/10.3847/1538-4357/836/1/47
https://ui.adsabs.harvard.edu/abs/2017ApJ...836...47B/abstract
https://doi.org/10.1007/JHEP06(2014)110
https://ui.adsabs.harvard.edu/abs/2014JHEP...06..110B/abstract
https://doi.org/10.1088/1475-7516/2017/12/017
https://ui.adsabs.harvard.edu/abs/2017JCAP...12..017B/abstract
https://doi.org/10.1051/0004-6361/201322971
https://ui.adsabs.harvard.edu/abs/2014A&A...564A.125B/abstract
https://doi.org/10.1088/1475-7516/2017/04/017
https://ui.adsabs.harvard.edu/abs/2017JCAP...04..017C/abstract
https://doi.org/10.1016/j.physletb.2017.09.016
https://ui.adsabs.harvard.edu/abs/2017PhLB..773..591C/abstract
https://doi.org/10.1103/PhysRevLett.119.021102
https://ui.adsabs.harvard.edu/abs/2017PhRvL.119b1102C/abstract
https://ui.adsabs.harvard.edu/abs/2017PhRvL.119b1102C/abstract
https://doi.org/10.3847/1538-4357/aab3e5
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..106D/abstract
https://doi.org/10.3847/1538-4357/aaad6a
https://ui.adsabs.harvard.edu/abs/2018ApJ...855...33D/abstract
https://ui.adsabs.harvard.edu/abs/2018ApJ...855...33D/abstract
https://doi.org/10.1016/j.physletb.2014.04.021
https://ui.adsabs.harvard.edu/abs/2014PhLB..733..120E/abstract
https://doi.org/10.1088/1475-7516/2014/12/054
https://ui.adsabs.harvard.edu/abs/2014JCAP...12..054E/abstract
https://doi.org/10.1088/1475-7516/2013/11/054
https://ui.adsabs.harvard.edu/abs/2013JCAP...11..054E/abstract
https://doi.org/10.1103/PhysRevD.88.015004
https://ui.adsabs.harvard.edu/abs/2013PhRvD..88a5004F/abstract
https://ui.adsabs.harvard.edu/abs/2013PhRvD..88a5004F/abstract
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.398.1601F/abstract
https://doi.org/10.1088/1475-7516/2015/09/027
https://ui.adsabs.harvard.edu/abs/2015JCAP...09..027F/abstract
https://doi.org/10.1103/PhysRevD.97.103017
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97j3017F/abstract
https://doi.org/10.1088/1475-7516/2017/03/057
https://ui.adsabs.harvard.edu/abs/2017JCAP...03..057F/abstract
https://doi.org/10.21105/joss.00024
https://doi.org/10.21105/joss.00024
https://doi.org/10.1046/j.1365-8711.1998.01407.x
https://ui.adsabs.harvard.edu/abs/1998MNRAS.297...41G/abstract
https://doi.org/10.1093/mnras/262.3.619
https://ui.adsabs.harvard.edu/abs/1993MNRAS.262..619G/abstract
https://doi.org/10.1086/427976
https://ui.adsabs.harvard.edu/abs/2005ApJ...622..759G/abstract
https://doi.org/10.1088/0034-4885/65/7/201
https://ui.adsabs.harvard.edu/abs/2002RPPh...65.1025H/abstract
https://ui.adsabs.harvard.edu/abs/1993A&A...275....1H/abstract
https://doi.org/10.1088/1475-7516/2016/09/002
https://ui.adsabs.harvard.edu/abs/2016JCAP...09..002H/abstract
https://doi.org/10.1086/506610
https://ui.adsabs.harvard.edu/abs/2006ApJ...651..142H/abstract
https://doi.org/10.1134/S0021364017140016
https://ui.adsabs.harvard.edu/abs/2017JETPL.106...73K/abstract
https://doi.org/10.1103/PhysRevD.94.063535
https://ui.adsabs.harvard.edu/abs/2016PhRvD..94f3535K/abstract
https://doi.org/10.1088/1742-6596/632/1/012039
https://ui.adsabs.harvard.edu/abs/2015JPhCS.632a2039K/abstract
https://doi.org/10.1134/S0021364017090028
https://ui.adsabs.harvard.edu/abs/2017JETPL.105..561K/abstract


Learned, J. G., & Mannheim, K. 2000, ARNPS, 50, 679
Lee, S. K., Lisanti, M., & Safdi, B. R. 2015, JCAP, 1505, 056
Lee, S. K., Lisanti, M., Safdi, B. R., Slatyer, T. R., & Xue, W. 2016, PhRvL,

116, 051103
Linden, T., Rodd, N. L., Safdi, B. R., & Slatyer, T. R. 2016, PhRvD, 94, 103013
Lisanti, M., Mishra-Sharma, S., Necib, L., & Safdi, B. R. 2016, ApJ, 832, 117
Lisanti, M., Mishra-Sharma, S., Rodd, N. L., Safdi, B. R., & Wechsler, R. H.

2018, PhRvD, 97, 063005
Malyshev, D., & Hogg, D. W. 2011, ApJ, 738, 181
Mishra-Sharma, S., Rodd, N. L., & Safdi, B. R. 2017, AJ, 153, 253
Miyaji, T., & Griffiths, R. E. 2002, ApJL, 564, L5
Murase, K., & Waxman, E. 2016, PhRvD, 94, 103006
Padovani, P., Petropoulou, M., Giommi, P., & Resconi, E. 2015, MNRAS,

452, 1877
Padovani, P., & Resconi, E. 2014, MNRAS, 443, 474
Perri, M., & Giommi, P. 2000, A&A, 362, L57
Petropoulou, M., Dimitrakoudis, S., Padovani, P., Mastichiadis, A., &

Resconi, E. 2015, MNRAS, 448, 2412

Robitaille, T. P., Tollerud, E. J., Greenfield, P., et al. 2013, A&A, 558, A33
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Schmaltz, M., & Weiner, N. 2017, arXiv:1709.09164
Spiering, C. 2018, PPN, 49, 497
Stachurska, J. 2018, in 28th Int. Conf. Neutrino Physics and Astrophysics,

386
Su, M., Slatyer, T. R., & Finkbeiner, D. P. 2010, ApJ, 724, 1044
Sudoh, T., Totani, T., & Kawanaka, N. 2018, PASJ, 70, 49
Taboada, I., Tung, C. F., & Wood, J. 2018, ICRC (Busan), 35, 663
Tamborra, I., Ando, S., & Murase, K. 2014, JCAP, 1409, 043
Waxman, E., & Bahcall, J. N. 1999, PhRvD, 59, 023002
Yuan, C., Murase, K., & Mészáros, P. 2019, arXiv:1904.06371
Zavala, J. 2014, PhRvD, 89, 123516
Zechlin, H.-S., Cuoco, A., Donato, F., Fornengo, N., & Regis, M. 2016a,

ApJL, 826, L31
Zechlin, H.-S., Cuoco, A., Donato, F., Fornengo, N., & Vittino, A. 2016b,

ApJS, 225, 18
Zonca, A., Singer, L., Lenz, D., et al. 2019, JOSS, 4, 1298

20

The Astrophysical Journal, 893:102 (20pp), 2020 April 20 Aartsen et al.

https://doi.org/10.1146/annurev.nucl.50.1.679
https://ui.adsabs.harvard.edu/abs/2000ARNPS..50..679L/abstract
https://doi.org/10.1088/1475-7516/2015/05/056
https://ui.adsabs.harvard.edu/abs/2015JCAP...05..056L/abstract
https://doi.org/10.1103/PhysRevLett.116.051103
https://ui.adsabs.harvard.edu/abs/2016PhRvL.116e1103L/abstract
https://ui.adsabs.harvard.edu/abs/2016PhRvL.116e1103L/abstract
https://doi.org/10.1103/PhysRevD.94.103013
https://ui.adsabs.harvard.edu/abs/2016PhRvD..94j3013L/abstract
https://doi.org/10.3847/0004-637X/832/2/117
https://ui.adsabs.harvard.edu/abs/2016ApJ...832..117L/abstract
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97f3005L/abstract
https://doi.org/10.1088/0004-637X/738/2/181
https://ui.adsabs.harvard.edu/abs/2011ApJ...738..181M/abstract
https://doi.org/10.3847/1538-3881/aa6d5f
https://ui.adsabs.harvard.edu/abs/2017AJ....153..253M/abstract
https://doi.org/10.1086/338794
https://ui.adsabs.harvard.edu/abs/2002ApJ...564L...5M/abstract
https://doi.org/10.1103/PhysRevD.94.103006
https://ui.adsabs.harvard.edu/abs/2016PhRvD..94j3006M/abstract
https://doi.org/10.1093/mnras/stv1467
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.1877P/abstract
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.1877P/abstract
https://doi.org/10.1093/mnras/stu1166
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443..474P/abstract
https://ui.adsabs.harvard.edu/abs/2000A&A...362L..57P/abstract
https://doi.org/10.1093/mnras/stv179
https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.2412P/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://doi.org/10.1086/305772
https://ui.adsabs.harvard.edu/abs/1998ApJ...500..525S/abstract
http://arxiv.org/abs/1709.09164
https://doi.org/10.1134/S1063779618040536
https://ui.adsabs.harvard.edu/abs/2018PPN....49..497S/abstract
https://ui.adsabs.harvard.edu/abs/2018npa..confE.386S/abstract
https://doi.org/10.1088/0004-637X/724/2/1044
https://ui.adsabs.harvard.edu/abs/2010ApJ...724.1044S/abstract
https://doi.org/10.1093/pasj/psy039
https://ui.adsabs.harvard.edu/abs/2018PASJ...70...49S/abstract
https://doi.org/10.1088/1475-7516/2014/09/043
https://ui.adsabs.harvard.edu/abs/2014JCAP...09..043T/abstract
https://doi.org/10.1103/PhysRevD.59.023002
https://ui.adsabs.harvard.edu/abs/1999PhRvD..59b3002W/abstract
http://arxiv.org/abs/1904.06371
https://doi.org/10.1103/PhysRevD.89.123516
https://ui.adsabs.harvard.edu/abs/2014PhRvD..89l3516Z/abstract
https://doi.org/10.3847/2041-8205/826/2/L31
https://ui.adsabs.harvard.edu/abs/2016ApJ...826L..31Z/abstract
https://doi.org/10.3847/0067-0049/225/2/18
https://ui.adsabs.harvard.edu/abs/2016ApJS..225...18Z/abstract
https://doi.org/10.21105/joss.01298
https://ui.adsabs.harvard.edu/abs/2019JOSS....4.1298Z/abstract

	1. Introduction
	2. Event Selection
	2.1. The IceCube Neutrino Observatory
	2.2. Neutrino Detection at IceCube
	2.3. Data and Simulations

	3. The Non-Poissonian Template Fit
	3.1. Overview of the Method
	3.2. Implementation at IceCube
	3.3. Adding Poissonian Models
	3.4. Inference Framework

	4. Expected Sensitivity
	5. Results
	6. Conclusion
	Appendix ADescription of the Public Posterior
	Appendix BIsotropic Sources in the Northern Sky
	References



