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ABSTRACT

Using the character theory of Hopkins-Kuhn-Ravenel and the total power operation
in complex cobordism of tom Dieck, we develop a theory of power operations in
Landweber-exact cohomology theories. We give a description of the total power
operation in terms of the theory of subgoups of formal group laws developed by
Lubin.

We apply this machinery in two cases. For the cohomology theory Eh, we obtain a
formal-group theoretic condition on the oientation which is an obstruction to the
compatibility of H, structures in MU and Eh. We show that there is a unique choice
of orientation for which this obstruction vanishes, allowing us to build a large family
of unstable cohomology operations based on Eh. We show that the the multiplicative
formal group law of K-theory satisfies our condition.

In elliptic cohomology, our machinery is naturally related to quotients of elliptic curves
by finite subgroups. We adapt our machinery to elliptic cohomology, and produce
both the Adams operation and versions of the Hecke operators of Baker as power
operations.

Thesis Supervisor: Haynes Miller
Title: Professor of Mathematics
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1 Introduction

Recent work in topology [DHS88, Hop87] and in mathematical physics [Wit88, BT89]
has focused attention on a collection of complex-oriented cohomology theories that
includes K-theory, elliptic cohomology [Lan88, LRS88, Seg88], and various Eh. With
the exception of K-theory, these theories are most easily defined using an algebraic
technique due to Landweber [Lan76], and one of the fundamental questions in the
subject is how to render geometric or analytic descriptions of these theories.

The algebraic description begins with a "genus", that is, a ring homomorphism

MU* -+ E*, (1.0.1)

where MU* is the cobordism ring of stably almost-complex manifolds. Landweber's
theorem [Lan76] is a sufficient criterion on a genus for the resulting functor

X -E* 0 MU*X (1.0.2)MU*

to be a cohomology theory on finite complexes. Because of the Mayer-Vietoris ax-
iom, this amounts to showing that tensoring with E* via the genus tE is exact for
MU* modules of the form MU*X, where X is a finite complex. For this reason, a
cohomology theory determined by (1.0.2) is called "exact."

Knowing only the description (1.0.2) is a little like having a Greek-Greek dictio-
nary when one speaks only English: given such a theory E and a space X, one can
attempt to compute its cohomology groups, but then would have very little idea what
has been accomplished when the task is finished.

The paradigm for this problem is K-theory. The genus associated to K-theory is
the Todd genus

MU* T K*.

A theorem of Conner and Floyd tells us that

Theorem 1.0.3 ([CF66, Lan76]) The map

K* o MU* X -l+ K*X (1.0.4)
MU*

is an isomorphism when X is a finite complex.

The left-hand-side of (1.0.4) is the description of K-theory provided by exactness,
and the proof of (1.0.4) using Landweber's theorem makes no use of vector bundles.
For the theories Ell and Eh, it's as if we knew of the existence of K-theory, but not
about its relationship to vector bundles.



One thorny problem in understanding the geometry of a theory like Eh is the
choice of the the genus itself. In stable homotopy, this problem is usually studied in
terms of the associated group law: by Quillen's theorem, specifying a genus

MU* -+ Eh

is equivalent to specifying a formal group law F over E*. More precisely, there is a
formal group law FMU over MU*, and MU* together with the formal group law FMU
represents functor

FGL
R - {Formal group laws over R}

by the correspondence

Hom,ing.,[MU*, R -+ FGL(R)

f fFMU.

The ring Eh is a complete, local ring. The usual genus

MU* t+ Eh

over Eh results in a formal group law Fh whose reduction modulo the maximal ideal
we call p. It turns out that any formal group law F over Eh which reduces modulo
the maximal ideal to p detects the same information in stable homotopy. The formal
group law Fh has the feature that it is "p-typical", and is an obvious choice to make
when Eh is constructed from BP. However, geometric considerations, when they are
available, lead to other genera.

For example, E1 is p-adic K-theory. With respect to the genus t1 of [Rav86] (see
section 5.1), the p-series of the resulting formal group law F1 satisfies

[p]F1 (x) = px + uP- 1xP (mod degree p + 1).

From the point of view of geometry, however, the most natural formal group law is
the multiplicative formal group law G, which is the group law classified by the Todd
genus. It satisfies

[PIC'. ) = px + U 2 +-.. + u~x

If we were to have any hope, starting with just the description (1.0.2), of discovering
the relationship between E1 and vector bundles, we would surely have needed to start
our search with the Todd genus and the multiplicative formal group law!

The main result of this paper is the description of a new canonical genus for the
cohomology theories Eh. In the case that h = 1, we recover the multiplicative group
law over p-adic K-theory.



Let F be any formal group law over Eh which reduces modulo the maximal ideal
to ep. Over any complete, local En-algebra R, the elements of the maximal ideal of
R, together with the addition law specified by the formal group law, form a group,
which we denote F(R*).

Let D* be the smallest extension of Eh which contains the roots of the pk-series
for all k > 0. Then ([Hop91]; see 2.3) D* is a Galois extension of E* with Galois
group Auts,[F(D*)tom]. Let f,(x) E D*[x] be the power series

f,() = H (v + x).
vEF(D*) F

[p1(V)=O

By Galois invariance, the power series f, in fact has coefficients in Eh. It is the power
series considered by Lubin in his study of finite subgroups of formal groups, in the
case that the subgroup is the p-torsion points of F(D*). Associated to it is a formal
group law F/p which is related to F by the homomorphism of formal group laws

F -- F/p.

f, and F/p are constructed so that

pF(D*) = Ker[F(D*) 1) F/p(D*)].

On the other hand, the p-series [pIF(x) an endomorphism of F, and certainly

,F(D*) = Ker[F(D*) . + F(D*)].

Let u denote the periodicity element of Eh; we use a version of Eh in which this
element has degree -2 (5.1). Our genus is given by

Theorem A (see section 5.4) There is a unique genus

MU 2+ Eh

such that the resulting formal group law is *-isomorphic to Fh and satisfies

[p](x) = Uph-f,(x). (1.0.5)

The reason why we hope that the genus described in Theorem A is related to geometry
is its relationship to "power operations", which we now describe.

Once one has a good geometric understanding of a cohomology theory, one ex-
pects to find rich additional structure in these cohomology theories coming from the
geometry. In particular, it is natural to examine symmetries of the geometry in search
of cohomology operations. This thesis represents an attempt to turn this idea on its



head, and to study cohomology operations in exact cohomology theories as a means
of learning something about their conjectural geometry.

"Power operations" is the name of a program for constructing cohomology opera-
tions in a ring theory E. The reason for singling this method out for investigation is
that on the one hand, one can describe in purely algebraic terms what it is one would
like to do, while on the other, in every cohomology theory where power operations
have been successfully constructed, the construction relies heavily on a good descrip-
tion of the cohomology theory. Some examples are mod-p cohomology, in which one
obtains the Steenrod operations [SE62], K-theory, where one obtains the exterior
powers and Adams operations [Ati66], and complex cobordism [tDi68], where Quillen
used them to prove his theorem about MU* [Qui7l].

The basic problem in constructing power operations is as follows. Let E be a
cohomology theory with products, and let S,, denote the symmetric group on n letters.
For any space X, S,, acts on X". One wants to construct a "total power operation"
PE which factors the n't power map

through a suitable equivariant cohomology theory Es.. If no better candidate is avail-
able, one simply takes E*,(Xn) to be E*(DnX), where DnX is the Borel construction

DnX = ESn x X".
S,

In other words, the idea is to find a natural transformation P$ filling in the
diagram

E*X ""n E E*"X"

(1.0.6)

where i* is the forgetful map

E*n(X") + E*(X").

In fact it is often enough to construct, for 7r an abelian p-group of order n, a "total
power operation based on r"

E*X & E"*DX,

where D.X is the Borel construction

DX = Eir x X",
ir



and
X = Maps[r, X]

denotes the left -space obtained by using the right action of r on itself.

In any case, with PE in hand, one proceeds to produce natural transformations

ES(X") - E*X;

then the composite

pEf *E*X E*,"(X") --' E*X

is an operation on E.

For example, Atiyah [Ati66] constructed a total power operation

pK

KX -"-+ KS. (X").

If
X A X"

is the diagonal map, then A*P' lands in Ks.X, which is isomorphic to RSn 0 KX:

KX - Ks,(X") Ks,,(X) - RS 0 KX.

Evaluation of characters on the class of an n-cycle in Sn yields a ring homomorphism

RS - Z,

and the composite

KX -111 Ks,(X") "* RSn 0 KX ''-* KX (1.0.7)

turns out to be the (integral!) Adams operation '" on KX.

It is a hard problem in general to construct the total power operation Pn in an
arbitrary cohomology theory (see e.g. [BMMS86]), primarily because it has never
been clear what P should mean in any generality. One approach is to try to use torn
Dieck's [tDi68, Qui7l] construction of a total power operation

MU2 *X " MU2n*(DnX)

for complex cobordism. Then for a cohomology theory E with a complex orientation

MU -eE,



(e.g. any exact theory), one might ask whether a putative total power operation PE
be compatible in the sense that the diagram

MU 2*X "e > MU 2n*(DnX)

tE {tE (1.0-8)

E 2. PlfE 2"*(DnX)

commutes. If moreover E is exact, then it is determined by MU via tE (1.0.2), so
P is determined by the diagram (1.0.8) if it exists.

This optimism is supported by the example of K-theory: tom Dieck's operation
Pfu and Atiyah's operation P, are compatible under the Atiyah-Bott-Shapiro ori-
entation: if

MU 2*X tA+ KX

is the Atiyah-Bott-Shapiro orientation, then

MU 2*X * U MU2n*(DnX)

tABS ItABS (1.0.9)

KX *! K K(DnX)

commutes [tDi68].

In practice, though, it is a tricky matter to carry this program out, for example
because Pfu isn't additive (2.1.5), and so one doesn't expect it to behave well under
tensor products like (1.0.2).

1.1 Splitting the total power operation via character theory

Our idea is to appeal at this point to the character theory of Hopkins-Kuhn-Ravenel
[HKR91]. To focus the discussion, suppose that E* is a Noetherian local domain,
complete with respect to its maximal ideal m. Suppose that the residue characteristic
of E* is p, and that the formal group law of E* has height h. Once again, let D* be
the ring (see section 2.3) obtained from E* by adjoining the roots of the pk-series for
all k. For every subgroup

H c F(D*)

of order n, we use [HKR91] in section 3.1 to construct a character map

E*(DX) -x-- D* (9 E*X.(1.)
E*



The XH are the building blocks of a "total character map" which detects E*(DX)
rationally (for more on the total character map, see section 3.3). It turns out that
D* is faithfully flat over E* ([Hop9l]; see section 2.3), so

DX = D. 0 EX
E.

is a homology theory.

We shall analyze the operation

MU2 *X " MU 2n*(DnX) -E E 2"*(DnX)

in terms of the composites

Q" : MU2*X tE'pe " E 2"*(DnX) H"+ D"n*X

as H runs over the subgroups of F(D*)to,.. The first indication that these operations
are dramatically simpler to study than P,U is

Theorem B The operation

MU 2 *X -H+) D2n*X

is additive. In fact, it is a homomorphism of graded rings

MU 2*X QH )nD 2*X,

where for a graded object M*, Q.M* is the graded object which is Mnk in degree k.

1.2 The operation QH and Lubin's quotient formal group law.

The real power of Theorem B as a tool for understanding power operations lies in the
fact that the operations QH have an elegant description in terms of the formal group
law. Lubin ([Lub67]; see 2.2) associates to the subgroup H of F a quotient formal
group law F/H and a formal homomorphism

F --- F/H,

both defined over D*. They are constructed so that

H = Ker[F(D*) -ff F/H(D*)].

Our description of QH is



Theorem C On coefficients, QH is determined via Quillen's theorem by the equation

QHFMU = F/H.

L
Moreover, if I is a complex line bundle, then

X
Q(emuL) = fH(eEL) E D2"X

where eMUL and eEL are respectively the MU and E Euler classes of L.

1.3 Factoring QH through the orientation tE.

In relation to our original goal of producing operations in E-cohomology, the oper-
ations QH have two overriding unsatisfactory features: they have the wrong source,
MU, and the wrong target, D. Making the target E instead of D can be arranged: as
has already been mentioned, the ring D* is a Galois extension of E*; the Galois group
is Aut[F(D*)tor]. If H C F(D*)t., is a finite subgroup and g E Aut[F(D*)to.r], then
it is not hard to show that

gQH = QgH

If p is a polynomial over E* on the set of subgroups H C F(D*,,,,) of order n, denote
by QP the resulting operation

MU 2*X ) E2*X.

Theorem D If a polynomial p is invariant under Aut[F(D*)to4,.,, then the operation
QP factors through the natural map

E*X -+ D*X

to produce an operation
MU 2 *X QP ) E 2*X,

where the degrees indicated by the asterisk on either side may not coincide.

For example, if H = ,kF(D*) is the full subgroup of points of order p, then the

operation QH = QPk lands in E :

MU 2*X QP k-) E2pkh*X.

To make an operation with E as source, we can take advantage of the fact that

QH, unlike the total operation tE o pEMU, is MU-linear. When E is exact (1.0.2), it

suffices by Theorem B to find a ring homomorphism

E* +f D"*



such that

O*F = F/H. (1.3.1)

Note that the existence of a homomorphism OH satisfying (1.3.1) follows from the
existence of a total power operation P for E which is compatible with PfU. For
suppose one can find P and tE such that the diagram

MU 2*X " U MU 2"*DnX

tE t tE (1.3.2)

E2*X E2"*DnX XH > D2"*X

commutes. In case X is a point space, the left vertical arrow is the genus (1.0.1),
which satisfies

tE.Fu = F. (1.3.3)

The clockwise composite is QH, which on coefficients classifies F/H, according to
Theorem B. If E* is concentrated in even dimensions (as it is in for Eh and Ell),
then the bottom row is a ring homomorphism

E* -0-) D"n*

which by (1.3.2), (1.3.3), and Theorem B must satisfy (1.3.1).

1.4 A new orientation on Eh.

We can now explain Theorem A; for details, see section 5. One studies homomor-
phisms out of Eh in terms of the functor it represents: recall that V is the reduction
of the group law Fh modulo the maximal ideal of Eh. Then according to [LT66], the
ring E represents the functor of complete local Z,-algebras

R&f *-isomorphism classes of
lifts of V I.

The quotient formal group laws F/H are lifts of V, so there is a unique homomorphism

such that ,F is *-isomorphic to F/H. According to (1.3.1), we need strict equality
in order for the operation QH to factor through Eh. When H = ,F(D*) is the full
subgroup of points of order p, the fact that the p-series is an endomorphism of the



formal group law implies that o Lef OlH is (up to a multiple of the periodicity element)
the identity. The grading determines that this multiple is Uph 1. Since the p-series
is the unique endomorphism of a universal formal group law over Eh with kernel
,F(D*), we conclude that

#,F = F/p

if and only if

[P]F(X) = uPh1(X),

which is the condition of Theorem A. This orientation is the only one that has the
possibility of making the diagram (1.3.2) commute, if P exists.

By combining Theorems A and B, we obtain

Theorem E Let tpo denote the orientation given by Theorem A. Then there is a
unique operation

E *X ) E *X

such that
pMU

MU 2 *X '" s MU2phk(DPkhX)

tPO Xpk 0tPO

E * X -- k E phk*X

commutes. On coefficients, Tpk is given by

p -E(pkch-1)TIP (M) = U- 2 M.h1

L
If I is a complex line bundle, then

X
%''p(eL) = fpk(eL) = uI-Pkh [pk](eL).

Because of its relationship to the p-series, the operation TP should be thought of as an
unstable Adams operation in Eh. Thus the orientation provided by Theorem A is the
unique orientation in which the Adams operation is obtained as a power operation.
In theories such as Eh there is a well-known construction of a stable Adams operation

Eh VP h11Ex-*- E4-
p

which is however not integral: one has to invert p in the range. It turns out that ?kP
and our WIP are related by

pkh_ 1

0P(x) = (U ) 2P(X),
p



so we recover the well-known fact (5.4.10) that the unstable operation

E 'X P E'X (1.4.1)

is integral on 2r-dimensional classes.

When the height h is 1, the only subgroups of the formal group law are the
subgroups of the form

pi F.

This is the case that corresponds to K-theory: the character map

E*DX * E1*X

corresponds to evaluation on the class of a p-cycle, and our construction is exactly
analogous to Atiyah's description of the unstable integral Adams operation in K-
theory; see section 5.6.

When the height is greater than 1, there are other subgroups. In that case, the
diagram (1.3.2) provides for each subgroup H a condition on tpo for the orientation to
be compatible with PMU and any (conjectural) total power operation PE. However,
already the condition (1.0.5) was enough to determine the orientation. In fact, in
section 5.5 we prove

Theorem F The formal group law over Eh obtained in Theorem A satisfies (1.3.1)
for every finite subgroup H.

With Theorem F, we can use the operations QH to produce an operation

E*X +D*X

for every subgroup H of F(D*)t,.,. We assemble these operations into a description
of a "total power operation" (5.3.5) in EA, at least in terms of the character map of
Hopkins-Kuhn-Ravenel (5.3.5). Let A, denote an abelian group isomorphic to Z,.
For ir an abelian p-group, the description of EhDX by Hopkins-Kuhn-Ravenel is a
character map

E DX -x+ rJ D*(XT/(a)).

The operations %pH enable us to construct an operation

h

E *X £! ]J D2n*(Xr/(a)),



where n is the order of 7r, such that

MU2 *X " , MU2"*(DX)

tpoIt tPO

E *X E"* (DX)

jx

D D2n*(Xr/(ci))

commutes. This is as close as we have been able to come to constructing a total
power operation in Eh; it is recorded as Theorem 5.3.5.

Another indication of interesting applications of the operations %pH is provided by

1.5 Elliptic cohomology and Hecke operators.

In the last chapter, we begin a study of the application of our theory to elliptic coho-
mology. The study of subgroups of formal groups is a formal analogue of the study of
subgroups of elliptic curves, which are the source of "Hecke operators" [Ser70]. For
details, see section 6. Let Zo(2) denote the space of pairs

(E, 1 )

consisting of a lattice E C C and a point of order two q E 2C/E. An element f of
Ell 2' is a function

Zo(2) _!4 C

which satisfies (among other properties: see section 6)

fW(, 7)) = trf(=, 9).

Fix an odd prime p. A subgroup H of order p of FEL is a rule with assigns to
each pair (E, q) a subgroup of C/E of order p, for which we also write H by abuse of
notation. Equivalently, it assigns to each lattice E a super-lattice EH D E such that

[EH- E] = p.

The p-th Hecke operator T, applied to f is given by

1
T = f(E-, =).

HCFEIp
#H=p



It turns out that if f E Ell- 2 ' then also Tpf E Ell-2r, and Andrew Baker has shown
[Bak90] that T, can be extended to a stable operation on elliptic cohomology

Ell*X 14 Ell[ ]*X;
p

trying to understand his operations was one of the starting points of this investiga-
tion. Actually, Baker uses a slightly different version of elliptic cohomology, but his
construction and ours work in either context.

It turns out that Ell is more "geometric" than the Eh in that the exponential
of the Euler formal group law is an elliptic function, and so is determined (up to
constant multiple) by its divisor. Because of this, the Euler formal group is related
to its quotient formal group law FEll/H in a simple manner, and one can write down
a homomorphism

Ell* -> DP*
such that

OHF Ell = F Ell/ H.
Therefore one obtains an operation

Ell*X -H+ DP*X (1.5.1)

for each subgroup H of order p, where D* is the range of the character map for elliptic
cohomology (see [Hop89] and section 6.1). By Theorem D, the sum

R, = Z WH
HCFEL1
#H=p

is an operation

Ell*X -R EllP*X
p

which is we use to recover Baker's Hecke operation in Ell (6.5.2). Actually, it seems
likely that one can do better than this, and obtain integrality results for the Hecke
operators analogous to the integrality of the unstable Adams operations (1.4.1). The
main issue is to find a better version of the ring D* for elliptic cohomology.

As Mike Hopkins has explained ([Hop89],see 6.2), for groups of exponent pk this
ring is roughly ring of meromorphic modular forms for the congruence subgroup
l'(2pk). The trick is to show, for example, that this ring is flat over Ell*. Brylinski
[Bry90] has studied such a ring for elliptic cohomology which does not invert p, but
which only contains modular forms of even weight. Our constructions rely heavily on
certain modular forms of weight -1 (6.2.6), and at the present time we can only see
our way to showing that D* is flat over Ell* if we admit 1/p. However, we believe
that it will be possible to show that a ring without 1/p is flat. Our constructions lead
us to conjecture that

Conjecture G The operation pr+1T, is integral on 2r-dimensional classes.



1.6 Organization

The rest of this paper is organized as follows. In section 2 we collect facts about torn
Dieck's total power operation in MU (2.1) and about Lubin's theory of subgroups of
formal groups (2.2) which we have used in our work. The most important facts are
the computation (Proposition 2.1.9) of

PU(eL)

L
where eL is the Euler class of a line bundle I , and Lubin's theorem (2.2.2) on the

X
existence of the quotient formal group law. In section 2.3 we describe the ring D*
which is the smallest ring over which all of the subgroups of the formal group law
occur. The essential facts about D* were provided by Mike Hopkins [Hop9l].

In section 3 we use the character theory of Hopkins-Kuhn-Ravenel to study the
operations QH. In 3.1 we construct the operation QH and in 3.2 we give proofs of
Theorems B and C. Beyond the character theory, the essential ingredient is the
similarity between the expression for PIIU(eL) (2.1.9) and Lubin's homomorphism
fH(x) (2.2.1). The QH can be used to give a description of the image of

pMU
MU*X " b MU"*DX + E"*DX

under the character map of Hopkins-Kuhn-Ravenel . We work this out in 3.3 as
Theorem 3.3.3.

In section 3.4, we study the action of Gal(D*/E*) on QH to obtain Theorem D.

In section 4 we explain how to use the operations QH to produce operations out of
exact cohomology theories. The key point is to find the homomorphism #3 H satisfying
(1.3.1). The result (Theorem 4.0.1) is almost trivial, but it does not appear to have
been used before to produce unstable operations. The operation QH is naturally
associated to a stable operation vQH (4.0.6). The comparison of these two operations
(4.0.7) is the basis of integrality statements like (1.4.1) and Conjecture G.

In section 5 we apply these results to Eh. After describing briefly the "completed"
theory Eh, we use the statement of Theorem F to obtain the operations 1QH. With
these we can write down (5.3.5) a total operation out of EhX which lands in the
character-theoretic description of EZ(D,X). I believe that the construction of a total
operation

Eh*X -'- Eh*(DX)
is within reach of the methods in this paper. Theorem 5.3.5 represents the best
statement we can make at this time.

In section 5.4 we study the particular operation 'P, completing the proof of The-
orem E. Finally, section 5.5 is devoted to the proof of Theorems A and F. As an



illustration of Theorem A, we show in 5.6 that the multiplicative formal group law
satisfies (1.0.5).

In section 6 we turn to elliptic cohomology. In section 6.1, we set up the character
map and the operation QH for elliptic cohomology, following [Hop89] but with some
adjustments for improvements in the character theory and to make room for conjec-
tural integrality statements. The main result is the comparison of Lubin's quotient
formal group law FEll/H with the Euler formal group law for the quotient elliptic
curve (6.3.8), and the consequent existence of the homomorphisms OH for elliptic
cohomology (6.3.16). These combine to prove Theorem 6.3.15, which is the existence
of the operation Tff of equation (1.5.1). In section 6.4, we use apply this theorem to
the full subgroup

to obtain an Adams operation in Ell (6.4.2). Finally, in 6.5, we turn to the operation
R, and Hecke operations. We provide sufficient information to prove Conjecture G
as soon as a sufficiently good ring D* becomes available.



2 Prerequisites

2.1 Power operations in MU

We shall frequently write the Borel construction

D,X,

when ir is an abelian group, without reference to an ambient symmetric group. In
this case, we shall mean by that notation

D,X = Eir x X"r,ir

where
X = Maps[r, X],

and the action of 7r on X' is the left action coming from right multiplication on ir.

tom Dieck and Quillen constructed a total power operation
pMU

MU 2*X " MU2"*(DnX)

for complex cobordism [tDi68, Qui7l], where Sn is the symmetric group on n letters.

Briefly, the construction is as follows. If a map

Mk f Xt

of manifolds is complex-oriented, then there is a Gysin homomorphism

MU*M A MU*+l-kX.

In particular,
f.1 E MU -kX.

Thom's theorem [Tho54] shows that every class in MU*X can be obtained in this
way.

Now suppose that

is a complex-oriented map of even dimension 2d. Then

DM D2") DX

inherits a complex orientation, and by definition

P Mu(f.1) = (Dfff).1. (2.1.1)

From this construction, one can quickly check the following properties of Pfu
and P~fY. When there is no possibility of confusion, we abbreviate PfU as P,.



Lemma 2.1.2 [tDi68] P, is a "total power operation" in the sense that if

denotes the inclusion of the fiber, then

i* P,z = z ".

Moreover, the operation P, is natural with respect to pull-backs: for a map X --+ Y,
the diagram

pUu

MU 2*Y " ) MU2*n(D,Y)

/* {(DwI)* (2.1.3)
pMU

MU 2*X " ) MU2*"(DX)

commutes.

Lemma 2.1.4 (compare [tDi68]) P, is multiplicative: for X E MU 2 kX and y E
MU 21X,

P,(xy) = P(x)P, (y) E MU2n(k+l)Dr X.

One of the features of power operations that makes subject difficult is that they are
not additive. However, the failure of P to be additive can be expressed as a sum of
terms which are transfers. A critical feature of our operations QH is that they are
additive. The demonstration (3.2.1) depends on

Lemma 2.1.5

Pn(X + y) = Z TrMud* (Pi x x P, y),
j=O

where

TrgU: MU*(ESn x X") -+ MU*(DnX) (2.1.6)
,n Si X Sn-j

is the MU-transfer associated to the fibration

Sn/(Sj x S._.) -- + ESn x X" -+ DnX, (2.1.7)
Si x S...

and d is the map

ESn x X -d DX x Dn_;X.
S xSn-.,



PMU onir Euler classes

V
Now let I be a complex vector bundle of rank r, and let

X

eV E MU2,X

V"r
be its MU Euler class. Then ir acts on the product I , and the resulting Borel

X"
DV

construction I is a complex vector bundle over DX with rank nr. We have
DX

Proposition 2.1.8 ([tDi68])

P, (eV) = e

Proof: Let (: X -+ V be the zero-section. Then the Thom class of

of 1 under the push-forward

I is the image

MU*X £+ MU*+2rXv.

By definition, the Euler class eV is the pull-back of the Thom class by (; in other
words,

eV = (*(.1.

We have

P,(eV) = (D,()*P,((.1)

= (D,()*(D,().1

DV
e I,

DX

where the first equality is the naturality of P, with respect to pull-backs (2.1.3), the
second is the definition of P, (2.1.1), and the last is the definition of the Euler class.
0

DV

DX



PMU(eL) when L is a line bundle

L
Let I be a complex line bundle and eL E MU 2X its Euler class. Let A denote the

X
"diagonal map"

Br x X A DX.

One of the keystones of this paper is the formal similarity between the espression
for A*P,(eL), which we now give, and Lubin's homomorphism fH(x) from a formal
group law to its quotient by a finite subgroup (2.2.1).

When A is an abelian topological group, we denote by A* its continuous complex
dual

A* = Hom[A,CX].

Proposition 2.1.9 (compare [Qui71],p. 42)

A*P,(eL) H
uEir

ExxC

I) +eL
Br MU

E MU2"(Bir xX),

where x + y denotes the formal sum with respect to the formal group
we omit symbols for the pull-backs under the projections Bir x X -+ X
Br.

law of MU, and
and B rxX -+

Proof: By (2.1.8),

A*P,x = e(
(

A*(Er x L)

BrX
Br x X

Reg, ( L
e i

Br x X

Exr x C
e (E 1C

uEA' BA

EirxC

e I
us A- B A

)
)

0L

+ eL .
MUJ



2.2 Subgroups of formal groups

To understand the notion of a subgroup of a formal group law, it is helpful to consider
the situation in which a formal group law yields an actual group (see also section 6 for
the example of subgroups of the group law of an elliptic curve): let R be a Noetherian
ring and m a maximal ideal of R; suppose moreover that R is complete in the m-adic
topology. Let F(x, y) E Rx, yI be a formal group law. If a, b E m are elements of
this maximal ideal then the series F(a, b) converges to an element of m. The elements
of m with the addition specified by F form a group, denoted F(m).

Now suppose H C F(m) is a finite subgroup. Lubin's main result is to show that
the quotient F(m) --+ F(m)/H is realizeable as a homomorphism of formal groups:

that is, there is a formal group law F/H over R, a homomorphism F "+ F/H, and
a commutative diagram

H > F(m) - F(m)/H

H > F(m) )"- F/H(m).

In other words, every subgroup H of F(m) is "formal" in the sense that it occurs as

the the kernel some formal homomorphism (F -L+ F/H)(m).

The homomorphism fH is constructed in terms of its kernel H and by the formal
group law F: one takes fH(x) to be

fH(x) = rj (h + x). (2.2.1)
hEH F

Since 0 E R is the identity of F(m), equation (2.2.1) guarantees that

H = {h E F(m) IfH(h) = 0}.

Also, the power series fH(x) has fH(0) = 0 and leading term

fA(0) =a= H h
0#hEH

given by the product of the non-zero elements of H.

Lubin's theorem is that fH(x) is in fact a homomorphism of formal group laws.

Theorem 2.2.2 (Lubin [Lub67]) Let R be a Noetherian domain which is complete
in the topology induced by an ideal I. Let F be a formal group law over R, and suppose
that H is a finite subgroup of F(I). Let fH(x) be defined by

fH(x) = II (h + x).
hEH F



Then there is a unique formal group law F/H defined over R such that

fHF(x, y) = F/H(fH(x), fH(y)),

so H = Ker(F(I) + F/H(I)).

Lubin also shows that when F is not the additive group, F/H is universal, because
homomorphisms of formal groups are formally surjective:

Theorem 2.2.3 ([Lub67]) Let R be a complete Noetherian local ring with maximal
ideal m. Suppose that F is a formal group law over R whose reduction to the residue
field has finite height. Suppose that there are homomorphisms of formal group laws

F A F, i = 1,2,

such that
Ker[fi(m)] C Ker[f 2 (m)].

Then there is a unique homomorphism of formal group laws

F1 --g+ F2

such that

f2 = go f. C

If H c G c F(m), then the three finite subgroups

H C F(m),

G C F(m), and

G/H C F/H(m)

produce three formal homomorphisms

F f+ F/H,

F fG+ F/G, and

F/H "1H (F/H )/(G/H).

An important property of Lubin's isogeny is

Proposition 2.2.4

fG = fa/H o fH,

and so
(F/H)/(G/H) = F/G.



Proof: Let S C G be a set of coset representatives of G/H. Then

fG(X) 9 +x)
gEG F

= J7 17(h+g+x)
gEShEH F F

171 fH(g+x)
gES F

= H(fH(g) + fH(X))
gGS F/H

= H (a + fH(X))
EG|H FH

= fG|H(fH(X)). C

Note the similarity between the expression (2.1.9) for the total power operation
Pzx with respect to an abelian group 7r on the Euler class of a line bundle and the
expression (2.2.1) for the homomorphism fH(x) defined by a subgoup of a formal
group law. This simple observation is the key to Theorem C; see section 3.2.

Formal group laws over graded rings

Our method directly produces unstable integral operations. The formal groups that
occur in complex-oriented cohomology theories are graded, and keeping careful track
of the gradings will enable us to prove integrality results about associated stable
operations (4.0.7) including stable Adams operations (Theorem 5.4.10) and Hecke
operations (Conjecture G)). In this section we cast the theory of subgroups in a
graded setting.

Suppose then that R* is a graded Noetherian ring which is complete with respect
to a maximal ideal m. Let F(x, y) E R*[lx, yJ be a formal group law which is of degree
2n not as a power series but as an element of the graded ring R* [x, y], where x and
y are both taken to have degree 2n. In this case we say F is "homogeneous of degree
2n". Notice that the coefficients of F will be concentrated in R2 *.

One makes this definition so that if a and b are elements of m of degree 2n, then
F(a, b) will also be an element of m of degree 2n. The elements of m of degree 2n
with addition defined by F is a subgroup of F(m) which will be denoted F(m, 2n). If
F is a homogeneous formal group law of degree 2n and f(x) = x + o(x 2 ) E R*[] is
a power series which is of degree 2n when the degree of x is 2n, then the power series

G(x, y) = fF(f-1(x), f-1 (y))

is also a homogeneous formal group law of degree 2n, and f(x) defines a homomorph-
ism

F(m, 2n) - G(m, 2n).



More generally, we have

Lemma 2.2.5 Let F f G be a homomorphism of formal group laws over R*.
Suppose that F is homogeneous of degree 2n, and that f(x) satisfies

i. f(x) has degree 2k when x is taken to be of degree 2n, and

ii. the element a = f'(0) of R2(k-n) is not a zero-divisor.

Then G is also homogeneous and has degree 2k. Morever, if R is complete with respect
to the topology defined by an ideal m, then f(x) restricts to a homomorphism

F(m, 2n) W G(m, 2k).

Proof: Since
f(x) = ax + o(x 2 ), IaI = 2(k - n),

over R* one can study the power series f-'(x) which has degree 2n when x is taken
to have degree 2k. Over !R*, G is given by

G(x, y) = fF(f-1 (x), f'-(y))

which is homogeneous of degree 2k. Since a is not a zero-divisor, the localization
R* -+ R* is injective, and G has degree 2k as a formal group law over R*. This
sitation is summarized, and the proof of the second part of the lemma given, by the
diagram

m2n x m2n F m 2n

ixijf

m2k xm 2k G m2k.

Corollary 2.2.6 In the situation of Lemma 2.2.5, the coefficients of G(x, y) are
concentrated in R 2k

Now we apply (2.2.5) to Lubin's quotient formal group law F/H. Let F be a
homogeneous formal group law of degree 2 over a graded domain R* which is complete
with respect to the ideal m. Let H be a subgroup of F(m, 2) of order n. Then by (2.2.1),
fH(x) has degree 2n when x is taken to be of degree 2, and aH = f (O) has degree
2(n - 2).

Corollary 2.2.7 F/H is homogeneous of degree 2n. In particular, the coefficients of
F/H are concentrated in R2n.



The formal group laws of complex-oriented cohomology theories are homogeneous
of degree 2. If H is a subgroup of order n, then the quotient formal group law F/H is
related to a formal group law of degree 2 which we call vF/H, the normalized quotient.
It is defined in terms of the normalized homomorphism vfH(x),

l'HX)-fH(x) 1vfH(z) = E R[- *[z. (2.2.8)aHf aH
The normalized formal group law vF/H is defined so that

F I vF/H; (2.2.9)

it is defined over R[] since vfH(x) = x + o(x 2 ) is an invertible power series over
R[L]. By Corollary 2.2.7, vF/H is homogeneous of degree 2.

The integrality results (4.0.7) and (5.4.10) are based on the comparison of vF/H
and F/H. By construction, they are related by

F - vF/H -2Hx F/H.

Let pH : R[]* -+ R[-l]"* and 6 H : R2 * -+ R[gL]2 * be defined by
HH 2I! am

p (M) = a j2 (2.2.10)

6(M) = aH 2n m. (2.2.11)

Recall (2.2.7) that the coefficients of F/H(x, y) are concentrated in R2 n.

Proposition 2.2.12 F/H and vF/H are related by

F/H = p~vF/H

vF/H = 6.F/H

Proof: This is a consequence of the more general

Lemma 2.2.13 Let R* be a graded ring in which a is a unit such that

|al = 2(n - k).

Suppose that F is a formal group law which is homogeneous of degree 2k. Then F and
F"* are related by

F""x = p" F

F = 6, F",

where R 2k* A R 2n* and R 2"* 6+ R2k* are the homomorphisms

pa(m) = a~m

a(m) = a- 2m



Proof: We prove one case, that F = 6,"F"a. Let Fax be given by

F"a(x, y) = x + y + E Xy,,ztyj E R* fx, y.

Note that by Lemma 2.2.5, we have

7,ER2nol-i-J)ytj ER

It follows that
6F"a(x, y) = x + y + yi,a+j-xy.

On the other hand,

F(x, y) = a-F(ax, ay)

= x + y + a-1 E yi,(ax)'(ay)j

= x + Y + Z ij iy4a+3lx i y3.QC

2.3 D* : a universal ring for formal subgroups

In this section we assume that E* is a complete local Noetherian domain with maximal
ideal m and residue characterstic p, and we suppose that F is a homogeneous formal
group law over E* of degree 2, whose mod-m reduction has height h. Thus this
section covers the case of Eh which we study in detail in section 5. The analogous
constructions for elliptic cohomology are the subject of section 6.1.

If F is a formal group law over E* and A is a finite abelian group, a monomorphism

A Q4 F(m)

is called a "level-A structure" on F. According to (2.2.2), a level-A structure on F
over a complete Noetherian domain determines quotient formal group laws

F/B E E*[x, y]

for every subgroup B of A.

Since an element of F(E*) of order pk is exactly a root of the pk-series, which
has Weierstrass degree pkh, the subgroups A which occur can be studied inside the
algebraic closure of (the fraction field of) E*. Over a complete local ring E* with
maximal ideal m we write F(E*) for F(m).

Theorem 2.3.1 ([LT65]; see also [HKR91]) Let 0* be the ring of integers in the
algebraic closure of the fraction field of E*. Then

, kF(O*,2) = (Z/pkZ)h

F(O*,I 2)t,.., (Q,/Z,)h.



Let A. be an abelian group isomorphic to Zh soP7

A*, "- (Q,/Z,)h ,

although no explicit isomorphism has been chosen. Let AZ = kA*, be the subgroup
of elements of order pk; AZ is precisely the dual of

Ak = Ao/pk Ao.

We can rephrase Theorem 2.3.1 as saying that there exist compatible isomorphisms

A* -a , F(O*, 2). (2.3.2)

We describe next an observation of Hopkins-Kuhn-Ravenel to the effect that in the
case of a ring E* = E*(pt) which comes from a cohomology theory with a complex
orientation, the orientation and the group Ak conspire to provide an extension D* of
E* which comes equipped with a canonical level-Ar structure

A - 4*"' kF(D; ,2).

Moreoever, the ring Dk is as small as it can be.

A complex orientation on E determines a map

EAxC
A* 3 u.e I E E2 BA (2.3.3)

BA

which is an element of
Hom,,.[A*, F(E*BA, 2)].

The role of E*BA in describing subgroups of the formal group law is moderated by
the following observation.

Lemma 2.3.4 ([HKR91]) The natural transformation

HomE*-al[E*BA, R*] -+ Hom,.[A*, F(R*, 2)]

given by
f - f o 0

is an equivalence of functors of pairs (A, R), where A is a finite abelian group, and
R* is a complete, local, graded E*-algebra.



Lemma 2.3.4 says that E*BA reresents the functor

R* - Homgys[A*, F(R*, 2)].

However, E*BA is not a domain, so Lubin's theorem doesn't apply. Moreover, not
every map

E*BA -> R*

represents a monomorphism. Note, however, that when R* is a domain, then a
homomorphism

A* +F(R*)

is a monomorphism precisely when 4(u) is not a zero-divisor, for u # 0.

Now take the case of Ak, and let S C E*BAk be the multiplicative set generated
by the set

{(u) EE 2 BAk 10 # u E A*}

of Euler classes of non-trivial line bundles over BAk. The ring D* is defined by

D* = Im[E*BAk -+ S-E*BAkI.

D; comes with a homomorphism

kunv : A* u""" F(E*BAk, 2) -+ F(Dk, 2) (2.3.5)

which is represented by the localization map

E*BAk -+ D*.

The basic results about the ring D* are

Theorem 2.3.6 ([Dri73, KM85, Hop9l]) The ring Dk is a domain and is faith-
fully flat over E*. It represents the functor (of complete local E*-algebras)

Dk(R*) = {level-A* structures on F(R*, 2)}. 0

Proposition 2.3.7 The homomorphism

A~e ** ,uPk F(D*)

is an isomorphism.

Proof: 4uni, is the universal monomorphism which gives Proposition 2.3.6. According
to Theorem 2.3.1, the group ,kF(D*) can be no larger than A*. 0



We proceed to construct a ring D* = D* with
of the D*. The inclusions

A *_ -- + A*

a full level A*t-structure as a limit

(2.3.8)

yield forgetful tranformations
Dk-+ D_1.

These are represented (2.3.6) by maps

D*-_ -- + D*.

The ring D* is the colimit

(2.3.9)

It comes with an isomorphism

A*, O*"'"> F(D*,2)to,.,

Since the D* are free over E*, the ring D* is flat over E*, and so

Proposition 2.3.10 The functor D*(-)

X i D* 0 E. E*X

is a cohomology theory for finite spaces.

Proposition 2.3.11 If H is a finite subgroup of F(D*, 2)t,. whose exponent divides

pk, then Lubin's isogeny fH and the quotient formal group law F/H are defined over
D*

fH(x) E D~[x] C D*[xJ, and

F/H(x, y) E D*[x, y]j C D*[x, yJ.

Proof: This follows from Lubin's theorem (2.2.2) and the
Noetherian domain. 0

fact (2.3.6) that D* is a



3 Character theory

The main results of this section are Theorems B and C of the introduction. They
are proved in section 3.2, after we define the operation Q H using character theory in
section 3.1.

3.1 The cohomology operation QH defined by a subgroup H

Generalized characters

The rings D* and D* are the natural range of the character map of Hopkins-Kuhn-
Ravenel . Suppose that G is a finite group and that k is so large that pk kills the
p-torsion in G. Let

A,, - A -+ G

be a homomorphism: if one chooses an isomorphism Zh 25 A,, then a determines
an h-tuple of commuting elements of G of p-power order. The character map corre-
sponding to a is the ring homomorphism

E*BG -0 D*

given by the composite

E*BG ' E*BAk + D* -+ D*.

Remark: Hopkins-Kuhn-Ravenel use the ring L* = !D* as the range of their char-
acter map, because only after inverting p does the "total character map"

L* 0 E. E*BG -+ II L*
conj. classes

A,,, -- +G

become an isomorphism. However, for our purposes it will be essential not to invert
p, because we must retain the maximal ideal of D* in order to realize the quotient
formal group laws F/H as deformations (See (5.2.1)).

The character map defined by a formal subgroup H

Now let H C F(D*, 2 )to,, be a finite subgroup of order n and exponent pk. Specifying
H is equivalent to specifying the subgroup

u-sH C A* C A*,.



Let Ann[H] C AC c A. be the kernel of the evaluation map

A0 -a$ Hom.,[0-1 H, C'],

and let G be the cokernel
Ann[H) "* A,,, aH+ G.

Lemma 3.1.1 There is a natural isomorphism

G* ~ H. 0

Let XH be the composite

E*DGX > E*(BG x X) 25 > E*BG 0E. E*X

D* OE. E*X.

(3.1.2)

The operation QH is the natural transformation

MU2 *X 4 D 2*"X

given by

(3.1.3)MU 2*X P MU2"*DGX -- E 2n*DGX "+ D2"*X.

We are ready to prove

3.2 Theorems B and C.

Theorem 3.2.1 ("Theorem B") QH is additive. Moreover, it is a graded ring
homomorphism

MU2*X -H + OnD 2*X, (3.2.2)

where tR* is the graded ring which is Rnk in degree k. In particular, QH is a ring
homomorphism

MU* Q D*. (3.23)(3.2.3)



L
Theorem 3.2.4 ("Theorem C") Let I be a complex line bundle, and let eMUL

X
and eEL denote its Euler classes in MU and E cohomology. Then QH on Euler classes
is given by

QH(eMUL) = fH(eEL) E D2"X. (3.2.5)

Its effect on coefficients is determined by the equation

Q" FMU = F/H. (3.2.6)

The proof of the additivity of QH in Theorem 3.2.1 imitates Atiyah's proof [Ati66]
of the additivity of the Adams operations in K-theory. The basic ingredient is the
formula of Hopkins-Kuhn-Ravenel for induced characters:

Theorem 3.2.7 ([HKR91]) Let G be a finite group and let S C G be a subgroup.
For u E E*BS and A -f+ G one has the formula

XI(TrEu) = Xg fg(U),
gSE(G|S)Imf

where TrE : E*BS -+ E*BG is the transfer map in E-cohomology associated to the
fibration GIS -+ BS -+ BG.

Proof of Theorem 3.2.1: In (3.1.3), all the maps are ring homomorphisms except PG.
By Lemma 2.1.4, PG is multiplicative. Suppose we order the elements of G, which
determines an isomorphism

Aut,,,. G + Sn

and so a monomorphism
G 4 Sn.

Then one obtains a character map

E*DnX -W + D*X

such that the diagram

MU 2*X " MU2"* DnX

PG{ {tE
PG

MU2 *DGX E2 "*DnX

tE IxW
E 2n*DGX XH D2"*X



commutes. By (2.1.5), P, is given on sums by
n

Pn(x +y)= Z Tryu (Pjx x P,_jy)
j=0

QH(x + y) = Z XWir tEPjXPn-jy,
j=0

since tE commutes with the transfer. By the formula for induced characters (3.2.7),

XTrfEu = E
93jxSn-j E(Sn/SjxSn-.j)1mm

Xg-MWU,

Since the image of G in Sn is transitive, the sum is empty unless j = 0 or j = n. So

QH(x+y) = XHtEPGX + XHtEPGY
= QH(X) +QH(y).

Thus QH is additive. O

Proof of Theorem 3.2.4: First we prove (3.2.5); then (3.2.6) will follow from Lemma
3.2.8. In the diagram

MU2"DGX TE

M AU

MU 2n (BG x X) 2t4

E2"DGX

E2"(BG x X)

(E*BG ®E. E*X) 2n

D2 "X,
the right outer arrows give QH. Going around the left outer arrows, we get

= OtEAPGCMUL

= tE II
uEG*=H

= I eE (
hEH

eh

E

EGx
U I

BG

GxC

BG E

= llh+eEL
hEH

= fH(eEL).

MU 2 X -" >

QH(eMUL)

C

CMUL

eEL



where the second equality is Lemma 2.1.9.

Now recall (2.3.6) that D* is a domain. The effect of QH on coefficients (3.2.6)
follows from (3.2.5), Theorem 3.2.1, and

Lemma 3.2.8 Let C be a complex-oriented cohomology theory. Suppose that

MU 2*(-) Q_ +1C 2*(_)

is a natural transformation of ring-valued functors. Suppose that the effect of Q on
Euler classes is given by

Q(emuL) = f(ecL), (3.2.9)

where f(x) is a homomorphism of formal group laws

FC f F'

such that f'(0) is not a zero-divisor in QC*. Then Q is determined on MU* as the
homomorphism classifying F':

Q.FMU = F'.

Proof: Let L, and L, be the two tautological bundles over CP** x CP**. By (3.2.9),

[ LI 0 L 1
Q(eMUL + eMUL,) = Q(eMu I)MU (COO XCOO

Li 0L,.
=60(eC I)

CP** x CP**

= 6(ecLi + ecL,). (3.2.10)
FC

On the other hand, we know that Q is a ring homomorphism

MU*(CP* x CP*) Q C"*(CP** x CP**),

so

Q(emuLI + eMuL,) = Q(emuLt) + Q(emuL,)
MU QFMU

= 8(ecLi) + O(ecLr). (3.2.11)
G.FMU

Comparing (3.2.10) and (3.2.11), we see that

OFC(x, y) = Q.FMU(O(x), 0(y)),

so Q.FMU = F'. C



3.3 The character-theoretic description of the total power
operation

Hopkins-Kuhn-Ravenel give a description of the cohomology of the full Borel con-
struction DX in terms of a total character map

E*(Er x X") _ Ix D*(Xr/(O))
Ai 4i

which we now describe. For a map A,. 2 r, let G = (Ima) be the subgroup
generated by the image of a. The isomorphism of G-sets

ir G x (7r1/G)
G

gives an isomorphism

FixedG[Maps[r, X]] a Maps[r/G, X]

between the fixed point set of X1 by the action of G and X"/G. The component of x
corresponding to a map a is

E*(E7r x X") - E*(BG x Xr/G) X+ D*(Xv/G). (3.3.1)
iF

Let T be the natural transformation

MU*X -"> MU"* DX - En* D, X _x f Dn*Xi/(a) (3.3.2)
A,, -i+r

which is the image of the total power operation of MU under the character map of
Hopkins-Kuhn-Ravenel .

Theorem 3.3.3 For a map A. -_ r, let G = (Ima) be the subgroup generated by
the image of a and let H = (Ima*) be the subgroup of A* generated by the image of
the map

x* A*,

Suppose that Ir| = n, IGI = r, and [r : G] = n/r = k. Then the component of T4
corresponding to a is given by

prT(z) = QH(Zxk) e D 2n*(Xk).

Proof: Comparison of (3.1.2) and (3.3.1) shows that if a is surjective, then

proT = QH

For general a, the result follows from the case of surjective a, the definition of QH
(3.1.3), and

--- ,-- - _==M__ - - - '-



Lemma 3.3.4 In the situation of the theorem, the diagram

MU 2*X ">

X _xk t

MU2"*D,X

'I
MU2k*X,/G G MU2"*DG(X,/G)

commutes.

Proof: Represent a class z E MU 2 *X as f.1 where f is a complex-oriented map

z-4*X.

Then Pz is represented by the map

DZ -f DX.

The isomorphism of G-sets
7 i= G x w/G

G

provides the vertical isomorphisms in the commutative diagram

EGxf"

EGxZ" G EGxX"
G G

DG(Z,/G) DG(f *G), DG(X,/G)

The bottom row of the diagram represents PG(zxk) by definition. The top row rep-
resents the composite

MU*X P"+ MU'*DX - MU'*DGX

because it fits into the pull-back diagram

EG x Z" DZ

EGxf"j IDf
EG x X" DX. 0

G

Remarks: 1) For example, the component of T corresponding to the trivial map
Ao -+ r is the nth external power, which we knew already since P, is a total power



operation and evaluation at 0 corresponds to the pull-back by the inclusion of the
fiber

X' -+ D,X.

2) Also, a computation similar to (2.1.9) shows that for

A "-+ H A G,

we have
x(Bi)*PGeL = (fH(eL))IG/H|,

which is a special case of Theorem 3.3.3 in view of the multiplicativity of QH.

3.4 Galois theory and the proof of Theorem D

The group Aut[A*] acts on DZ, because it acts on the functor Dk. The fact we shall
need is

Proposition 3.4.1 ([Hop91]) The ring of Aut[A;]-invariants in D* is exactly E*.

The group Aut[Ai] also acts on the set

Sga subgroups of

We can use Proposition 3.4.1 and the action on Sgk to produce operations whose
target is E rather than D. In what follows, we shall not distinguish notationally
between a subgroup

H c Ak

and its image
4(H) C PkF(Dk*, 2)

under the isomorphism (2.3.7).

Proposition 3.4.2 For H E SgA and a E Aut[Af], we have

QaH = aQH,

where on the right the action of a refers to the action of Aut[A;] on the ring D*
induced by the action on the functor it represents (2.3.6, 3.4.1), together with the
definition (2.3.10) of D*X as

D*X = D* ®&E* E*X.



Proof: It suffices to check this when X is a point space, since xH factors through

E*(BG x X)^: E*BG E. E*X

and the action takes place entirely on the left of the tensor product.

Aut[A*] also acts on Ak, by adjointness. The commutative square

BAk Ba > BAk

BaH{ BaH

BG Ba > BaG

shows that
E*BaG " E*BG

XaH {XH

D* a DZ
commutes. The proof is complete upon observing that the diagram

MU 2*X MU 2*X

PaG PG

MU2 *DaGX "> MU2"*DGX

commutes. 0

Let Sgk(n) denote the subset of Sgk consisting of subgroups of order n, and let
Z[Sgk(n)] be the polynomial ring on the set Sgk(n). The action of Aut[A*] on Sg!
extends to an action of Aut[Ae] on Z[Sgk(n)]. We define the graded set Op* by

Op"l = Z[Sgk(n)]Aut(A ].

Note that Op" doesn't depend on k as long as nlpk. An element p of Z[Sgk(n)] can
be represented by

p=Zai 1f H
iEI HEai

where I is a finite set, a, E Z, and the a, are lists of elements of Sgk(n), with possible
repetitions. For p E Op", let QP be the operation

MU 2*X -2-p D2*X

given by

QP = Zaj 11 QH. (3.4.3)
iGI HEai

In this situation, Proposition 3.4.2 imples



Theorem 3.4.4 (Theorem D) For an element p E Op, that is, a polynomial in
Z[Sg!(n)] which is invariant under Aut[Af], the operation QP factors through E; that
is, Q, defines an operation

MU 2* X Q E 2*X.

Corollary 3.4.5 ("Adams operations") The full subgroup ,h F(D*, 2) of points of
orderpk defines an operation

MU2*X k E2pkh*X

which has all the properties described in Theorems 3.2.1 and 3.2.4.

Corollary 3.4.6 ("Hecke operations") The operation

R= Z QH
HCAk

IHI=n

is an additive operation
MU2*X n E2"*X



4 Cohomology operations out of exact cohomology
theories

In this section we describe a recipe (Theorem 4.0.1) which we shall use repeatedly to
produce cohomology operations in exact complex-oriented cohomology theories.

Suppose that E is an exact theory; recall (1.0.2) that this means that

E*X = E* 0 MU*X,
MU*

where the tensor product is with respect to a genus

MU* E*.

The resulting natural transformation

MU*X 1 E*X

will be denoted tE-

Let C be a cohomology theory with a ring structure, and let Q be a natural
transformation of ring-valued functors

MU*X Q+ QC*X.

Let F4 be the formal group law over Q.C* classified by Q(pt).

Such C and Q are given, for example, by D and QH as in Theorem 3.2.1. Other
important examples are produced by Lemma 4.0.2.

Our main result is an immediate consequence Quillen's theorem and the properties
of the tensor product.

Theorem 4.0.1 The operation Q factors through tE to an operation

E*X 1 +.C*X

if and only if there is a ring homomorphism

3: E* -+nC*

such that
.F E = FQ.

The same result obtains if one restricts to even-dimensional classes, provided that the
ring E* is concentrated in even degrees. 0



The operations

MU 2 *X £H <b4D2*X

of section 3.1 can be used as input to Theorem 4.0.1, and section 5 we shall produce
the homomorphisms #3 H required by the theorem. Another method of producing
operations from Theorem 4.0.1 is provided by strict isomorphisms of the formal group
law. In this case, it produces a stable operation.

Lemma 4.0.2 Let C be a complex-oriented cohomology theory, and let

ecL E C2CPo

be the Euler class of the tautological bundle. For each power series

O(ecL) = ecL + o(ecL)2 E C2 CPo

there is a unique transformation of ring theories

MU*X & C*X

such that
te(emuL) = O(ecL)

and
te.FMU (Fc)e.

Proof: See, for example, Adams [Ada74]. O

Corollary 4.0.3 (e.g. Miller [Mil89]) Let E and C be complex-oriented cohomol-
ogy theories, and suppose that E is exact. Suppose that 0 : E* C* is a ring
homomorphism, and that there is a strict isomorphism of formal group laws

FQ __ #,F 404

Then / extends to a stable natural transformation of functors of finite complexes (to
rings)

E*X + C*X

whose effect on Euler classes is given by

A(eEL) = O(ecL). (4.0.5)

Proof: Use Lemma 4.0.2 to produce a natural transformation of ring theories

MU*X to C*X



whose effect on Euler classes is

to(emuL) = 0(ecL).

By Lemma 3.2.8, the effect of to on coefficients is given by

Fc to.FMU

Now apply Theorem 4.0.1 to to and /. 0

Our main application of (4.0.2) is to the normalized quotient (2.2.8)

=fH(x) 1
VfH(X) = 6 -- D* X.aH aH

By applying Lemma 4.0.2 to vfH(x) we obtain

Proposition 4.0.6 There is a stable natural transformation

MU*X "QH) 1 D*X
aH

of functors of finite complexes to rings. On coefficients, it classifies the normalized
quotient

vQ" FMU = vF/H.

L
The effect of vQH on the Euler class of a line bundle I is

X

vQH(eL) = vfH(eL).

Proof: By construction (2.2.8), fH(x) = x + o(x 2) is homogeneous of degree 2 when
the degree of x is 2. Also by definition

vF/H = FfH.

Lemma 4.0.2 provides us with the operation vQH. 0

The relationship between the operations vQ" and Q" will allow us to prove
integrality statements about stable operations.

Proposition 4.0.7 Let H c A* be a subgroup of order n. On even-dimensional
classes, the diagram

MU2 *X __MU
2*X

QH 
VQH

D2"*X 6H J D2* X
aH



commutes, where 6H is the homomorphism of (2.2.10)

0(m) = aH 2 m.

Proof: By the definition of fH and vfH, and by Theorems 3.2.4 and 4.0.6, the diagram
commutes on Euler classes of line bundles. By the definition of F/H and vF/H and
Theorems 3.2.1 and 4.0.6, it commutes on coefficients. Moreover both the clockwise
and couterclockwise composites are maps of rings. Since vQH is stable, the result
follows since the facts listed so far imply that the two operations determine the same
element of

1
Hom,.uv[MU.MU, -- D*]. O

aH

For odd-dimensional classes, it will be useful to know that

Proposition 4.0.8 The operation a'HVQH is integral on (2r -1)-dimensional classes:

MU 2 ,- 1 X H iqH 12n'-lX c D

DaHD*X. aH

Proof: Let o denote the suspension isomorphism, and suppose m E MU2, 1 X. By
Proposition 4.0.7, we have

a'H QH(aM) = QH(m) E D2 nrX.

Since vQH is a stable operation,

a' ,QH(am) r aVQH(M).

Finally, we have
D2nr-lX -1D2nr-1XGH

D 2nr X - -LD 2nrX. C]
aH



5 Power operations in Eh

In this section we focus on the cohomology theory Eh, and study the problem of
constructing a ring homomorphism

E* - <b D*

such that

#" F/H, . (5.0.1)

as required by Theorem 4.0.1. Our main result (Theorem 5.3.1) is that there is an

(essentially unique) genus
MU* **> E*

such that the resulting formal group law satisfies this condition for all finite subgroups
H. This is the genus announced in Theorem A.

As a result, one obtains an operation

E2*X L D2* X

for every H. In section 5.4 we study the case of the group H = ,kF(D*, 2), which

yields the unstable Adams operation %IPp (Theorem E). We begin by describing

5.1 The cohomology theory Eh

Let Eh be the complete, Noetherian, local domain

E* = Zi, hu... , U , u1], 1u;1 = 0, lul = -2.

Let t, be the genus
MU* -+ BP* -** E*

which is given on the Araki generators [Rav86] by

uiu?'-1 i < h - 1,
th.(v;) = uP"-' i = h, and (5.1.1)

0 i > h.

It is an immediate consequence of Landweber's exact functor theorem that

Proposition 5.1.2 The functor

E X = Eh ( MU*X
MU*

is a cohomology theory.



The important feature of Eh is that the coefficient ring E and the formal group
law Fh = thFMU represent a functor. Denote by

K* = F,[u, u~1]

the graded residue field of Eh, and by

ep(x, y) E K x, yj

the formal group law over K obtained by reducing the coefficients of Fh modulo the
maximal ideal Eh. Note that since the formal group law Fh satisfies [Rav86]

[p]Fa(z) = pX + uiu'XP + ... h- ~1~ + U*~1 , (5.1.3)
Jh/ Fh Fh Fh Fh

the formal group law p satisfies

[p,(x) = Uph1X ph,

and so has height h.

Let R* be a complete, local, graded Z,[u, u-']-algebra, with residue field C*.
When f is a power series over a local ring, we denote by f the power series over the

residue field obtained by reducing the coefficients of f modulo the maximal ideal.

Definition 5.1.4 A formal group law G over R* which is homogeneous of degree 2

is a deformation of p to R if

~C(x,y) = p(x,y) E K*[x,yj.

Two deformations G1 and G2 are *-isomorphic if there is an isomorphism of formal

groups
GI -+ G2

such that
f(x) = x.

The fundamental result about E is

Theorem 5.1.5 ([LT66]) Let F be any formal group law *-isomorphic to Fh. The

ring E and the formal group law F represent the functor

* - isomorphism classes of
R deformations of p to R*

In fact, if G is a deformation of W to R, then there is a unique homomorphism



such that for any choice of F, G is *-isomorphic to /.F Moreover, the *-isomorphism

G f-+ O.F

is uniquely determined by G and F.

Let D* be the ring of section 2.3 for the pair (En, Fh).

Corollary 5.1.6 The ring D* represents the functor

* - isomorphism classes of
deformations G of <p to R*,

R with a level-Ar structure -

Ak -0 G(R, 2)t,.,

Proof: This follows from Theorem 5.1.5 and Theorem 2.3.6.

5.2 Lubin's quotients F;/H are deformations

Because the theories E are periodic, constructing a homomorphism (for a subgroup
H C A*, of order n)

-HE* -- + <0,D*

such that
H F = F/H

is equivalent to constructing a homomorphism

E* H D*

such that
7yF = (F/H)" :

by Lemma 2.2.13, #H and -f H are related by

01= pn o -YH

where
E* An Eh*

is the homomorphism
p"(m) = U 2 m.

For this chapter only, we take Lubin's quotient fH(x) to be homogeneous of degree
2. In other words, the homomorphism which is elsewhere written

u~ 1fH(x).



Similarly, we take the quotient formal group law

F/H

to be homogeneous of degree 2, so one gets a homomorphism

H - F(D*,2) IH+ F/H(D*,2).

A *-isomorphism

F + F
yields an isomorphism

so a level structure

F(R*, 2) . F,(R*, 2),

A* AF(R*,2)

is equivalent to a level structure

A* - Fh(R*, 2).

The utility of Theorem 5.1.5 in our work stems from

Lemma 5.2.1 The formal group law F/H is a deformation of p
the corresondence

F - F/H

preserves *-isomorphism classes.

Proof: Recall that F/H is defined by the homomorphism

F -H F/H

to D*. Moreover,

where

fH~(z) = U"~9".

F/H is a deformation since U"-l" is an endomorphism of p, so the diagram

F H F/H

commutes, where the vertical arrows represent reduction modulo the maximal idea.
To prove the part about preservation of *-isomorphism classes, suppose that



is a *-isomorphism. Suppose that

F' F'/H

is the homomorphism based on the group law F'. Since

F(D*, 2) -4 F'(D*, 2) -4 F'/H(D*, 2)

and
F(D*,2) F/H(D*,2)

have the same kernel, Theorem 2.2.3 implies that there is a unique isomorphism

F/H "'+ F'/H

such that
F g F'

fH t IfH,
F/H -'->*F'/ H

commutes. g' is a *-isomorphism since

fH(x) = fH(x) = u"-1 x".

Let

E* H D*

be the homomorphism determined by the *-isomorphism class corresponding to H,
and let

F/H -'HF (5.2.2)

be the *-isomorphism determined by H and a group law F which is *-isomorphic to
Fh. Then

Lemma 5.2.3 yH is the unique homomorphism

E* -+ D*

such that -H F is *-isomorphic to F/H as deformations of p. 0

We really want strict equality in equation (5.2.2).



5.3 Theorem F and power operations in Eh

The main result of this chapter is

Theorem 5.3.1 ("Theorem F") There is a unique formal group law Fpo over EH
which is *-isomorphic to Fh and which satisfies

-yHFpo = Fpo/H (5.3.2)

for all finite subgroups H.

We give a proof in section 5.5. For now, we examine the consequences of Theorem
5.3.1 for cohomology operations. Let

MU*X -t% E*X

denote the orientation specified by Theorem 5.3.1. As remarked in the introduction,
equation (5.3.2) is guaranteed to be satisfied by a formal group law F if there is a
total power operation

which is compatible with the orientation

MU*X -' E X

in the sense that

MU 2*X ""I MU2n*DX

tj it (5.3.3)

E *X P"S El"*DX

commutes. On the other hand, using the orientation provided by Theorem 5.3.1, the

operation QH, and Theorem 4.0.1, we have

Corollary 5.3.4 If H C A*, is a finite subgroup of order n, then there is a unique
operation

E 2*X -He D2"*X
such that

MU 2*X

tPO

E *X IH ) D 2n*X

commutes.



Theorem 5.3.5 The operation

MU 2*X r 1 D2n*X'/(*),

which is the image of the total power operation of MU under the character map of
Hopkins-Kuhn-Ravenel (3.3.2), factors through the orientation

MU*X - E X

to an operation

E *X £ D 2"*Xir(a).

A_-, ir

The projection to the component corresponding to a homomorphism

Aoo0 -+ 7r

is
praph,(z) = VH(Zxk) E D

where k = [r : (a)].

Proof: This is just Corollary 5.3.4 combined with Theorem 3.3.3. 0

Corollary 5.3.4 is of particular interest in the case H = A*, for then one obtains

5.4 The unstable Adams operation TY' as a power operation.

Denote by f,, F/p, etc., the quotient constructions corresponding to the subgroup
Al = ,F(D*, 2). By (3.4.5), we have

f,(z) E Eh*z],

F,/p(x, y) E E*Jx, y], and

MU 2 *X -9 E2p*X.

Proposition 5.4.1 For any formal group law F *-isomorphic to Fh, there is a unique
*-isomorphism

F/p - F.

Proof: First of all, note that [p}F(X) is an endomorphism of F. Because of the co-
equalizer diagram LV]F(z)

,F(D*, 2) -- F(D*, 2) ) F(D*, 2),



it follows from Theorem 2.2.3 that there is a unique isomorphism of formal group
laws

F/p o F

such that

[P]F(X) = 9g(fp(x)). (5.4.2)

The fact that

T( x) = uh"~1 h = [PIF(X)i

shows that

so 9P is a *-isomorphism.

Corollary 5.4.3 The
identity, and OP is the

homomorphism -yP determined by the deformation F/p is the
homomorphism

Corollary 5.4.4 The condition

-,PF = F/p,

which is a special case of equation (5.3.2), is equivalent to the condition

f,(X) = [p]F(X). (5.4.5)

Proof: The proof of (5.4.3) is just Proposition 5.4.1. (5.4.4) follows from equation
(5.4.2), since with the formal group law of Theorem 5.3.1, we have

9H(X) = X

for all H. 0

Remark: Equation (5.4.5) turns out to determine the formal group law Fpo and
figures in the proof of Theorem 5.3.1. See section 5.5.

Theorem 5.3.4 applied to QP, together with Corollaries 5.4.3 and 5.4.4, are the
case k = 1 of

Theorem 5.4.6 ("Theorem E") With the orientation

MU*X - E X



desribed in Theorem 5.3.1, the operation

E*X ) E 2pk*X

obtained in Corollary 5.3.4 satisfies

IPP"(eL) = ul-P kh[PF(e L) (5.4.7)

L
when eL E E2X is the Euler class of a complex line bundle , . On coefficients, 1 Pk

X
is given by k=kh

The cases k > 1 are verified in the same manner. O

Remarks: Because of (5.4.7), we call %FP" the "pkth unstable Adams operation" in
Eh. Although an Adams operation could have been defined with any orientation on
Eh, our orientation is the unique one in which the Adams operation is obtained as a
power operation, in the spirit of [Ati66]. More familiar in the context of theories like
Eh is the stable Adams operation

E*X k I E*X.
P

This operation is obtained, using the method of Corollary 4.0.3, from the power series

[P]F(eL) E ECPoo (5.4.8)
p P

and the homomorphism

1

p

M p 2M. (5.4.9)

With the orientation tpo, it coincides with the operation produced from the stable op-
eration vQP (4.0.6) using the homomorphism (5.4.9). Then our comparison theorems
for vQP and QP (4.0.7,4.0.8) prove that on even-dimensional classes, we have

UPkh-i
bp(x) = (U ) Wp(x),

p

and moreover that



Proposition 5.4.10 The unstable operation p'iiP is integral on 2i and (2i - 1)-
dimensional classes:

E X EhX and

E 21X Po E 2i~1X. 0

Remark: This result is well-known to the experts; see e.g. [Wil82]. The attractive
feature of our method is that it the proofs imitate the "geometric" proofs available
in K-theory.

The rest of this section is devoted to a

5.5 Proof of Theorem F.

Our proof is divided into two steps, of which the most important is Theorem 5.5.1.
Since the formal group laws F/H are deformations of (p (5.2.1), it shows there is a
unique formal group law FH which is *-isomorphic to F/H and which satisfies equation
(5.4.5). The case H = 0 yields Fpo. Since 1H is a ring homomorphism, it preserves
this formula for the p-series, and so must send Fpo to FH. The second step (5.5.16)
is to show that the p-series of Fpo/H also satisfies equation (5.4.5). By uniqueness,
it will follow that

Fpo/H = FH = - Fpo.

Theorem 5.5.1 ("Theorem A") Let E* be a complete, graded, local domain which
is a Z,[u, u-1]-algebra, and let F be a deformation of p to E*. Let Ej* D E* be an
extension over which there is a level-A* structure

A* A ,F(E*,2).

There is exactly one representative of the *-isomorphism class of F over E* which
satisfies (5.4.5).

Proof: Existence: It suffices to prove the statement in the universal case: suppose we
can construct a formal group law Fpo over E satisfying (5.4.5). If

E 0+ E *

is the homomorphism such that there is a *-isomorphism

F - #.Fpo,

then the level-A* structure

A* - ,+F (E1,2)



determines an extension of 3 to a homomorphism

D* E*

such that
A* A

p Fpo(D*, 2) p 0* ,Fro (El**, 2).

commutes. Then

[14 .Fro(X) = +. [l(x F Ouniv(C))
.cEAI* Fpo

= H (x + g(4(c))), (5.5.2)
cEA[ O.Fpo

which is (5.4.5) for .*Fpo.

We turn to the universal case. For the purposes of the exposition, it is extremely
convenient to take advantage of the distinction between formal groups and formal
group laws: let C denote the Lubin-Tate formal group on Eh for lifts of the formal
group law <p. For any choice of coordinate y on 4, denote by FY the resulting formal
group law. Then the homomorphism

A* -+ F"(D*)

factors as
A* C(D*) -9-+ FY(D*).

Under a change of coordinate
FY F",

*-iso

the level-A* structure changes by

A* -4 >C(D*) - > FY(D*)

A* C >(D*) )i Fr(D*)

In this language, Lubin's homomorphism f, becomes

fl(x) = H (X + y(O(c))).
cEA Fy



The proof is inductive, on powers of the maximal ideal I of D*. Let y be any coordinate
on C which gives a group law FY *-isomorphic to Fh. Let g(t) E E*t denote the
unique *-isomorphism

Fy/p -y+ FY

such that

[P]F(t) = g(,,"(t) (5.5.3)

whose existence and uniqueness are the matter of Proposition 5.4.1. Write

g"(t) = t + a(t).

Since gy is a *-isomorphism, we get automatically the case n
that

a(t) = E ajt', with a3 E I"~.
j>1

Let 6(t) be the power series
6(t) =t -a(t).

Since gy is defined over EZ, the coordinate

x = 6(y)

on C yields a formal group
gz(t) such that

= 2 of the hypothesis

law FT over Eh. We shall show that the *-isomorphism

[PIFz(t) = 9' f(t)) (5.5.4)

satisfies

g(t) = t (mod In). (5.5.5)

By construction, 6 is a homomorphism of formal group laws

FYA F".

Thus the diagram
F- L- F*

[Ply I [P]

commutes; in other words, we have

6([p]'(y)) = [p1 6 (y). (5.5.6)



Substituting (5.5.3) and (5.5.4) into this equation yields

= 9[f,(6(y))]. (5.5.7)

Notice that

f,(b(y)) = Uh_1 I (6(y) + X(q(c)))
cEA1

U Ph- -1 (bS'6(y) + b6'(x((c)))
cEA Fy

cEA[ FY

so (5.5.7) becomes

6[gy(f,(y))] = gX[Uh_1 ~7 6(y + y(4(c)))]. (5.5.8)
cEA

We can evaluate the left side modulo P very easily:

6(gy(fP(y))) = S(fpy(y) + a(f (y)))

6(fj(y) + a(uphlyph)) (5.5.9)

fj(y) + a(uph-lyph) - a(f(y) + a(uPh-1yph))

Sf,(y) + a(up-yph) - a(f(y))

fP f(y),

where the equivalences are all modulo P. The first equivalence uses the fact that

f (y) = uph-yPh (mod I) plus the fact that a(t) is a power series with constant term
zero and coefficients in P 1 (with n > 2!). The third equivalence follows from this
description of a(t), and the last equivalence is like the first.

All we know a priori about g' is that it is a power series of the form

gx(t) = t + b(t)

where

b(t) = E bit', bi E I, (5.5.10)
S>1



so we start by evaluating right-hand-side of (5.5.8) modulo I2. We can compute
lcEA- 6(y + y(O(c))) modulo P

(y+ y(4(c))) = II [(y + y(O(c))) - a(y +y((c)))]
cEA*

S(y y(4c))) - E [(y y(4(d)))

S]J(y + y(4(c))) - Zyh -a(y)

C y

C F

a(y +y(4(c)))

(5.5.11)

(Recall that p E I is contained in the maximal ideal.) Continuing (5.5.11) modulo I
shows that

I 6(y + y(4(c))) yph
cEA F

(mod I).

Equipped with these observations, we compute that if

b(t) = 0 (mod I-13), j > 2,

then for j < n,

9(u~l I
cE A*

= ~Ph1 II 6(y + dc)
cEA*

+ b( uPh- II b(y +Y((C)))
cEA F

= fy(y) + b(uPh' yPh) (mod P) (5.5.12)

Comparing (5.5.9) and (5.5.12), it follows in view of (5.5.10) that

b(t) = 0 (mod P),

and inductively that
b(t) = 0 (mod I").

Uniqueness: Suppose that FY satisfies (5.4.5) and that

is a *-isomorphism
6(t) = t+(aiti.

j>1

I
cEA[

b(Y + y(4c)))



Let m be the maximal ideal of E*, and let n be as large as possible so that

a3 E M"

for all j. Note that n > 1, and that if n = oo then F = F', so we may suppose that
n is finite. Then, working modulo mn+1 , we have

[p|x(x) = ([p]"(6-'(x)))

= 6(u~ -' J (6-_(x) + y(4(c)))
cEAT FY

= 6(uph-1 II 6-(x + 4(y((c)))))
cEA Fz

=U ph -1 JJ 6'1(x + x(qO(c))) + a(Uph-lXph)

cEA c Fd

2 E1 'x P1~ a(x + x(qO(c))) j(x + x(q$(c))) + a( uPhlx

cEA* Fx d,4c F:

Sf,(x) - Uph.1ph()Xph~1 + a(UPhlxPh)

2 f(x) + a(up-xPh),

so FO fails to satisfy (5.4.5). 0

Denote by Fpo the formal group law over EZ *-isomorphic to Fh which is con-
structed in Theorem 5.5.1. For a finite subgroup H C A* of exponent pk and order
n and for 1 2 k we get level-AI/H structures on the formal group law Fpo/H via

H

AT - > Fpo(D* 2)

I jfH

A*/H |H, Fpo/H(D*, 2).

(5.5.13)

Corollary 5.5.14 The formal group law -f.Fpo is the unique formal group law in the
*-isomorphism class determined by H over D; such that over D*+,

[PlF Fpo(x) = II (x + 64/H(c)),
cEA*,/H '? Fpo

pc=O

where S is the *-isomorphism

Fpo/ H -_ 1 FPo

(5.5.15)



Proof: Let A' denote the group

A' =,(Ak+1/ H).

Any isomorphism

A* -'' A'

determines a level-A1 structure

A* _LW A' 61 Fpo/H(D*gi,2).

and so an extension of -H to a homomorphism

D* I-+ D*+.

We are now in the situation in the beginning of the proof of Theorem 5.3.1; compare
(5.5.2). 0

The proof of Theorem 5.3.1 is completed by

Proposition 5.5.16 For any finite subgroup H C A*,, the quotient formal group law
Fpo/H satisfies (5.5.15).

Proof: The quotient Fpo/H is determined by the homomorphism fH. The p-series
[p]Fo/H(x) is determined by the functional equation

Fpo fH ) Fpo/H

[P]FPO I I [PFPO (5.5.17)

Fpo fH Fpo/ H.

Let Z(x) be the product

Z(x) = U"~ II (x + 4/H(c)).
cEA ',/H Fpo/H

pc=0

We are going to show that Z(x) satisfies (5.5.17). Let p-'H denote the subgroup

p-'H = {c | pc E H} C A*i.

Then Z(z) is exactly the Lubin isogeny

Z(x) = f,-IHIH(X)



for the group law Fpo/H. The composition rule (2.2.4) applied to this case is

fp-1H/H(fH(X)) = fp-1H-

On the other hand, by construction

[P]Fo (X) =fp(X),

so

fH([P]Fo(x)) =fH(fp(X))

= fp-1H(x). 

5.6 Example: K-theory

The group law of K-theory is the multiplicative group law

x + y = x + y - vxy,
K

where v E K-2 is the Bott element. This group law arises from the fact that the
L

Euler class of a line bundle I is
X

eL = v~ 1(1 - L).

The roots of the p-series of FK are

v~1(1 - 7), 0 j < p,

where ( = e21s/p.

Suppose p = 2. Then
[2](x) = 2x - v 2 .

On the other hand,

f 2 (X) = V-1(1 - L)[v~1 (1 - L) + 2v-1]
K

= v- 2 (1 -L)[1 -L+2-2+2L]

=v~2(1 - L 2)
= v-1[2](x).

Similarly, for p odd, we have

[p](x) = V-1(1 - LP)



while

p-1

fp(x) = fl[v~'(1 - L) + v-'(1 -
3=0

p-1

=V - (1L-L)
=0

p-1

= V~C ~ -((C~5 -/ L )

j=0

= V -P(1 - LP)

= 1-p](x ).

Thus the multiplicative group law is the unique formal group law over (p-adic) K-
theory which is *-isomorphic to F1 and which satisfies (5.4.5). In the case of E1 ,
Theorem A picks out the multiplicative formal group law.

The construction of the Adams operation TP given as Theorem E in p-adic K-
theory is in the same spirit as Atiyah's construction [Ati66]. In the case of the
multiplicative group law, the only finite subgroups of the formal group law are the
groups ,FA, since the height of the group law is one. For greater heights, however,
there are other interesting subgroups of order n. As an example, we turn now to the
study of elliptic cohomology.



6 Elliptic cohomology

Mike Hopkins [Hop89] has described the application of the character theory of
Hopkins-Kuhn-Ravenel to the elliptic cohomology theory Ell of Landweber-Ravenel-
Stong [LRS88]. In this section we add this information to the ideas developed in
sections 3 and 4 to produce two sorts of operations in elliptic cohomology. In section
6.4 we produce an "Adams operation"

Ell2*X * n Ell2p2 *X
p

L
whose effect on the Euler class of a line bundle I is given by

X

qVP(eL) = e [p]EIl(eL),

where e is a unit in Ell*; see below. The technique is the same as that of Theorem
5.4.6.

In the case of K-theory, this is essentially the only kind of power operation there
is, because the only subgroup of G, of order n is the group nG,. In the case of the
formal group law FEll of elliptic cohomology, however, we have

,FEll 2,

so there are interesting subgroups of order n. These non-trivial subgroups are the
source of Hecke operators. As operations on Elliptic cohomology, they have been
constructed by Andrew Baker [Bak90]. In section 6.5 we show how to realize these
operations as power operations. To prepare for the discussion in sections 6.4 and 6.5,
we adapt in sections 6.1 and 6.2 the machinery developed in section 3 to the case of
elliptic cohomology.

In our work on Eh, the operations QH were only a small part of the battle, and
the really interesting problem was to produce the homomorphism

E -i--+ Dn*

such that
fH Fpo = Fpo/H.

Part of the reason why we think that the orientation Fpo which we discovered in the
process is "analytic" is that in the case of K-theory, we recover the multiplicative
group. Another reason is that in the case of Ell, the exponential of the formal group
law is an elliptic function, so it is determined up to a constant multiple by its divisor.
This simple fact identifies the quotient formal group law FEl/H, and enables us to
produce the homomorphisms OH (section 6.3).



6.1 A review of elliptic cohomology

We use the version of elliptic cohomology whose coefficient ring is the ring of modular
forms over Z[1] for curves with Jo(2) structure, with possible poles at the cusps; thus

Ell* = Z[ ][6, e1 A"]/(A = e(62 _ )),

where b E Ell- 4 and e E Ell-8 are modular forms of weight
Let Zo denote the space of pairs

(E,)

where E is a lattice in C, and 7 is a non-trivial point of order
with an action of C' by homotheties:

t(=, 7) = (tE, tt7), t E C".

A modular function f of weight r is a function

Zo(2) _+ C

2 and 4 repspectively.

two of C/E. Zo comes

such that for t E Cx,

f(t(2, )) = t~rf(2, 7). (6.1.1)

Let [ denote
curve

For r E t let
a section

the complex upper half-plane; then the quotient Zo/C is the modular

Yo = dFo (2)\ .

[r] denote its orbit modulo Io(2). The projection Zo --+ Yo comes with

[r] A+ (4rirZ + 4riZ, 27ri). (6.1.2)

Via the section a and the projection 4 A+ Yo, a modular function f pulls back to a
function f on [ such that

where

f(ar) = (cr + d)''f(r),

a=(a E ro(2).

A meromorphic modular form f E Ell-2 , is a modular function of weight r on Zo
such that f is an analytic function on 4 whose q-expansions at the two inequivalent
cusps of Po(2) have coefficients in Z[j].



There is a formal group law FEll defined over Ell* called the Euler formal group
law [Igu591, given by

FEll(X1IX2) x IR(x 2) + x2 R(x1)
F (x1, x2) = 2,(.131 -xx2

where
R(x)=1-26x2+E4 X.

This determines a genus
MU* - Ell*.

Once again the exact functor theorem applies and shows

Theorem 6.1.4 ([LRS88, Lan88]) The functor

X - Ell*X L Ell* 0 MU*X
MU*

is a cohomology theory on finite complexes. G

Remark: Franke [Fra92] has recently shown that the extension of Ell*(-) to infinite
complexes is unique.

The exponential of FEl is a power series

s(z) E Q 0 Ell*[z]

which has a characterization as an elliptic function.

Lemma 6.1.5 ([CC88, Zag88]) For pair (=, 77) E Zo, there is a unique meromor-

phic function
s(- 2 9 :C - C

which satisfies

i. s(z + ,7E) = s(z, =, q) for e E ',

ii. s(z + q, E, 9) = -s(z, E, 7), and

iii. s(z, E,,q) = z + o(z 2).

The function s(-, E, q) and its derivative satisfy the functional equation

s= 1 - 26(E, q)s 2 + 4, )s', (6.1.6)

and so uniformize the Jacobi quartic

C : y2 = 1 - 26(=, t)x 2 + e(2, y)z 4 . (6.1.7)
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via the map

C/CE ~'(,E'd ) '"' C p2. (6.1.8)

As written, the Jacobi quartic has a singularity at oo, but this singularity is minor.
The compactification of C in P3 via the map

C (I''',) P3

is a smooth curve Co such that

CO n Co #0= C.

So by choosing the origin to be (0, 1, 1), the Jacobi quartic becomes an elliptic
curve; as such, it is a group. Because of (6.1.5, iii), the function s determines a
parameter near the origin, with respect to which the group law of the curve (6.1.7)
becomes the Euler formal group law specialized at (., 77)

F l(x 1 , x 2) = -XYl + X 2 . (6.1.9)
1 - e(E=, 77)xlx2

As promised, [Zag88] s is the exponential for the Euler formal group law:

s(z+w, E,7) = s(z, E, 7) + s(w, E,7), (6.1.10)
FEII

so the uniformization (6.1.8) is a homomorphism of groups.

We shall use two additional facts about FEll. First, equation (6.1.6) and the fact
that s is characterized by the three properties listed above imply, in view of the
weights of 6 and e, that s satisfies the homogeneity property

s(tz, tE, t7) = ts(z, E, 7). (6.1.11)

The second fact about the group law FEll is that for N odd, the series [N]FEII (X)
has a "Weierstrass factorization" already over Ell* :

Theorem 6.1.12 ([Igu59]) There are polynomials

PN(X),9N(x) E Ell*[x]

with

N2-1 N2
pN(x)= Nx +... e-4x and

9N(6) = 1

such that

[N]FEII (x) PN(X)

9N W)



6.2 The operations QH in the case of elliptic cohomology

The ring "D*" for elliptic cohomology

Now let p be an odd prime. As in section 2.3, we let A,. be an abelian group
isomorphic to Z', so that its dual is

A*, : (Q,/Z,)2.

We denote by
A;e = ,% A*

the pk-torsion subgroup of A* . For the purposes of this chapter, it will be convenient
to choose explicit compatible isomorphisms

A* - (Z/p)2;

then we refer to the chosen generators of A* as ek and fk.

In this version of elliptic cohomology, also we have to keep track of the point r; of
order 2, so we let A' be the family of groups

A' = (Z/2pk)2

with generators e2k and f2k. The point of order 2, r/, will be the point pke 2 k. Thus
there are compatible inclusions

A* A'

A* > A'gk+

under which

ek I'4 
2 e2k and

fk '-+ 
2 f2k.

Let Z(2pk) be the space of pairs
(2, a)

consisting of a lattice E C C and an isomorphism

A' b.W

A' "+k 2,(C/=)

such that

W2,a(a(e2k), c(fpk)) = (2p e , (6.2.1)



where WN is the Weil pairing for points of order N of C/. given by ([KM85],p. 90)

WN(V/N, v2 /N) = exp(2ri Im( V2)

N A(E)

where v1, v2 E E and A(E) is the area of a fundamental parallelogram for E.

C' acts on Z(2pk) by homotheties; that is,

t(E, a) = (tE, ta),

and the quotient Z(2pk)/Cx is the modular curve

Y(2pk) = I(2pk)\E,.

The projection Z(2pk) -+ Y( 2 pk) comes with a section

Y( 2 p*k) A Z(2pk)
[r] - (4pkrirZ + 4riZ, a(bf + ce) = 2 +rirb + C)-

The group SL 2Z/2pk ' SL 2 Z/pk x SL 2 Z/2 acts on Z(2pk). Let Gk c SL 2Z/2 c
SL 2 Z/2pk be the subgroup (isomorphic to Z/2) such that

g(7) = 7.

Let Zo(pk) be the orbit space of the action of Gk on Z(2pk). It is the space of triples

(Ea, 7)

where E is a lattice in C, 77 is a non-trivial point of order two in C/E, and a is an
isomorphism

A O A C/=

such that
wPk(a(ek), a(fk)) = (,h.

Once again, there is a map

Y( 2 pk) A Zo(pk)
[r] - (4pkrirZ + 4riZ, a(bfk + ceA) = 4rirb + ' 2 (6.2.2)

A "meromorphic modular form of level 2pk and weight r" is a function f on Z(2pk)
which behaves as (6.1.1) with respect to homotheties and whose pull-back via the
section a is analytic on Ij and has q-expansions at every cusp which are finite-tailed
laurent series with coefficients in Z [-, (2,k ]. The ring of meromorphic modular forms
of level 2pk will be denoted El( 2 p).



The ring which is the range of the character map for elliptic cohomology is the
ring of modular functions on Zo(pk) which pull back via o to analytic functions on )
whose q-epansions at the cusps of Y( 2pk) have coefficients in the ring Z[-, (2pk]. It
is exactly the subring (Ell* )Gk of Ell* 2p invariant under the action of Gk. We
denote this ring by Ell*k.

The map "forget a" gives a projection Zo(pk) -+ Zo and exibits Ell*k as an
Ell*-algebra. Brylinski has shown

Proposition 6.2.3 ([Bry9O]; see also [KM85]) Ell*k is a faithfully flat Ell*-
algebra.

Proof: The proof of [Bry90] is based on the study of the moduli schemes for level
structures on elliptic curves [KM85]. His proof can be imitated in our situation,
with one important modification. Brylinski studies modular forms of even weight,
and obtains a ring Ell;(N) of modular forms whose q-expansions have coefficients

in Z[, (NI. We shall need modular forms of odd weight, namely the functions 4(a)
(6.2.5). For a moduli space M with a universal curve E "+ M, one defines the
invertible sheaf

W = ffr.0'E/.

Let T be the circle bundle of w. It is a principal Gm-bundle over M, and one can view
modular functions as functions on the space T, graded by the Gm-action. In order
study q-expansions of modular forms in this setting, one must be able to extend the
sheaf w to a sheaf on the compactified moduli space M, as the cusps are precisely the
points one adds in compactifying. Actually, only the square w®2 extends in general
([KM85], section 10.13), which enables Brylinski to study modular forms of even
weight. Fortunately, there is a natural extension of w in case the moduli problem is
"elliptic curves with level 2p-structure over Z[-, (2,]," ([KM85],(10.13.9.1), [Kat73])
and this moduli space can be used in Brylinksi's argument, now for the ring of modular
forms with possibly odd weight. Unfortunately, we have had to invert p. See the
remarks at the end of this chapter. 0

We shall need the additional facts that

Proposition 6.2.4 (compare 3.4.1) Ell*, is a domain (since it is a subring of a

ring of functions on Y( 2pk)). The group

Aut[Zo(pk)/Zo] - SL2 Z/pk x Gal(Z[(2p]/Z)

acts on Ell*,, and the ring of invariants is Ell*.

Proof: By definition, an element of Ellk which is invariant under SL2 Z/pk is a

modular form for the group I'o(2) whose q-expansions have coefficients in Z[ , (2pk].



Denote this ring by

M(Lo (2), Z (2pk])-
2p

Then [Kat73]

M(Po (2), Z[-, (2pl = Z[ -,(2p] 0 Ell*.
2p 2p zt1

(Actually, Katz shows this for the ring of cusp forms for the congurence subgroup 1(2).
His argument applies also to the group Fo(2). Then [Bak90] we can use multiples of
A, which is a cusp form, to convert a modular form f to a cusp form Ydf. Since
A-' E Elli" is already a defined over Z[j], the result follows for the full ring of
modular forms). C

The character map for elliptic cohomology

We need an assignment

A; -O ElG,,

that will play the role of the map , constructed in (2.3.5). The key idea is to use
the exponential map for elliptic cohomology to find roots of the pk-series, in the same
way that roots of the pk-series in K-theory are

1- e , 0 ; j < pk.

We define the map 4 to be

4(a) = {(,a, q) '- s(a(a), E, 7).} (6.2.5)

This definition only makes 4(a) a complex-valued function on Zo(pk). Notice, how-
ever, that by the homogeneity property of s (6.1.11), 4 satisfies

4(a)(tE, tatrh) = t4(a)(7, a,

so 4(a) has the right behavior with respect to homotheties to be an element of Ell}.

Proposition 6.2.6 4(a) is an element of Ell.

Proof: It remains to show that the q-expansions of 4(a) have coefficients in Z[ , (2pt]

at every cusp. To simplify the notation, let N = pk. The cusps of Y(2N) correspond
to choices of level structure on the "Tate curve" Tate(q2N) [Kat73]. Via the map a
(6.2.2), we are led to consider the lattice

= 4riNrZ + 41riZ



and the function
9(z, q) = s(z,E, 27ri),

where q = e2'. According to [CC88, Zag88], 9(z, q) is given by

9(z, q) = (e2 - e-) 1 Nm Nm-z (-1)

Then

4(bfk+ ceka)(E,2xri,a) = s(4ribr + -,,2xri)
N

= (Cqb - (Cq~b) (6.2.7)

(1 - qmN+2b2c)(- mN-2b-2c) (1)m

1 (1 - qmN)2

21ri

where ( = e- is a pk-th root of unity. For each point a E (Z/p)2, then, the
expression (6.2.7) has coefficients of q in Z[j, (N]. Fixing this level pk structure and
letting a vary over (Z/pk)2 is equivalent to fixing an a and varying over all level pk
structures. There are other cusps which correspond to varying the point of order 2.
However, it in fact suffices to check each q(a) at one cusp, because of the q-expansion
principle ([Kat73]): by choosing a value of the Weil pairing (6.2.1), we have restricted
ourselves to one component of the moduli space Katz calls M 20 - 0

The significance of the modular forms 4(a) is that they are the roots of the pk
series of F Ell .

p]FEI( a))(" , = [Pk]FEu s(a(a), , 7)

= s(pka(a), E, 7) = 0.

Proposition 6.2.8 Let N = pk. The p2k modular forms 4(a) are the roots of fN:

fN4-1 = 1 (x -40(a)). 0C
aEA[

Let S = Im(4) be the image of the map (of sets) 4. Notice that for any two elements
4(a) and 4(b), their formal sum is

4 (a + b)(%, a, q) = s(a(a + b), E, q)
= s(ca(a) + a(b), E, i9)

= s(a(a), ,9) + s(a(b), E, 7)
F U

= (4(a) + 4(b))(E, a, 7).
FEL

In particular, 4(a) + I4(b) = 4(a + b) is an element of S. Let FELL(S) be the group
FE

made of the set S together with the formal sum FEL. We have shown



Proposition 6.2.9 4 is an isomorphism of groups

A* -0 FE1 Ell

In order to construct the character map, we have to complete Ell*, with respect

to the ideal I generated by the set S. Let Ell, denote the completion of Ell*, with

respect to I, and I the extension of I to Ell,.

Proposition 6.2.10 4 induces an isomorphism

A* - ,4 PF l2i

Moreover, 4 is represented (in the sense of (2.3.4)) by a homomorphism

Ell*BAk - Ell~.

Proof: Ell k is a domain, so by Krull's theorem

Ell;,, - EllP

is injective. The first part then follows from (6.2.9) since by Igusa's theorem (6.1.12),

[pk]FEII(x) has p2k roots. The definition of the map 4 is (compare 2.3.3)

EAk x C
e I' - 4 (a) (6.2.11)

BAk

for a E A;. It defines a map since power series in the 4(a) converge in Ell*, . 0

Theorems B and C for Ell.

We can use the maps 4 and j to imitate the constructions in section 3.1, and so to
obtain versions of Theorems B and C. Let H C A* be a subgroup of order n.

Theorem 6.2.12 There is a natural transformation

U2*X QH -2

of functors of finite spaces to graded rings, whose effect on the Euler classes of a line
L

bundle J is
X

QH(eL) = fH(eL)= I (4(h) + eL).
hEH F,911

Its effect on coefficients is determined by the equation

QIFMU = FEL/H.



6.3 The Euler form of the quotient formal group law.

In the case of elliptic cohomology, the theory of elliptic functions enables us to show
that the quotient formal group law FEll/H takes a particularly nice form. A finite
subgroup of odd order

H C C/E

determines a quotient map
H -- C/E -- C/=,

where EH denotes the lattice in C obtained from the union of E and the preimage of
H under C -+ C/., and we have denoted again by 7 the image of the point 77 E C/E
under the projection. This quotient uniformizes the Jacobi quartic

CH : y2 = 1 - 26(EH, i)x 2 + e(EH, 7)x4, (6.3.1)

which is the quotient of C by the subgroup H, via the map

C/E ((- ,n),'(-,),1) CH C p 2 . (6.3.2)

With respect to the parametrization (6.3.2), the group law of the curve becomes the
Euler formal group law for the quotient curve:

=x 1 ERH(x2) + x2 RH(xl)
F-((, 2) =2 2 (6.3.3)

1 C(EH, 77)X X2

where
RH(X) = 1 - 26(EH, 7)X2 + e(EH, 7)X4 .

Now suppose the H C A*. Then by using the level structure component of Zo(pk),
we can associate a quotient curve to each triple (=, a, q)

Proposition 6.3.4 For H c A; and a modular form f E Ell 2 r, the modular func-
tion 7 Hf given by

7"f(%, a, 7) = f(EH, ) (6.3.5)

1-2r.
is an element of E ll,

Proof: The only thing to show is that 7 Hf has q-expansions in Z[g, (2,a]((q)). By
decomposing the subgoup H via short exact sequences, it suffices to prove this when
the order of H is p. Suppose that

f(, 2ri) = anq E Z[
n>-oo



where q = e21il and once again E is the lattice

= 4rirZ + 4riZ.

The q-expansions we need to check are obtained by evaluating f on the quotients by
subgroups of order p of C/E(p), where E(p) is the lattice

=(p) = 4riprZ + 4riZ,

so
f(-(p),27ri)= an

n>-oo

For any level-p structure on C/E(p), the quotients by subgroups of order p correspond
to the lattices

Ej= 47ri(r +!)Z+4riZ,O <j <p, and
p

,= 4rip'rZ +-Z.
p

We have

f(E, 2 ri) = n ag"(2n, 0 j <p, and (6.3.6)
n>-oo

f(,, 2ri) = f((4rip2 rZ + 4riZ, 2ri)) = p' E anq ,
p n>-oo

where ( = e2ri/p. Q

Corollary 6.3.7 The formal group law FHl is defined over Ell*. It is classified by
the homomorphism

H
Ell* -L+ Ell* .

By the miracle of complex analysis, the group law FH" is very simply related to
Lubin's quotient FEll/H. Let

aH = f,(0) = O 4(h) E Ell P-2
O$hEH

Theorem 6.3.8 FEl/H is related to the formal group law FH" by

FEl -"H- FEll/H.

In other words, FE" is exactly the "normalized" quotient formal group law vFEl/H
of (2.2.9).



Proof: Since the ring ElUk is torsion-free (6.2.4), formal group laws over ElCp are

determined by their exponentials over Q 0 Ell%. Let t(z) denote the power series

t(z) = fH(s(z)) E Q 0 E 4lzlI,

and let G, denote the additive group. Then t, s, and fH fit into a diagram of formal
group laws

Ga * F Ell

Ga *t F ElIIg

The function t(z) is an element of Q 0 El",Jzl, so we evaluate it on the triple

(E,a, 7?) E ZO(pk).

t(z)("Ea, ) = [1 (O(h) +FEUI s(Z))(, a, q)
hEH

= J (s(a(h), E,q) +FELL s(z,7,7))
hGH

= f s(z + a(h), E, ?). (6.3.9)
hEH

Now we use the key fact that as a function on C/,, s(z, E, 7) is characterized by
Lemma 6.1.5. Think of z as a complex parameter. Then by (6.3.9), t(z)(E, a, 7) is a
complex-valued function

C4 C

which satisfies

t(z + () = t(z), E E, (6.3.10)

t(z+v9) = II s(z+ 7, ,7) (6.3.11)
hEH

= (-1)" JJ s(z, z,r9)
hGH

= -t(z), and

t(z + a(h)) = t(z), h E H. (6.3.12)

Together, equations (6.3.10-6.3.12) imply that for each triple (2, a, q), t(-, E, a, 7) is
a constant multiple of the function s(-, EH, 7) = 7"s(-, E, 9). We can compute this
multiple using the last part of Lemma 6.1.5:

t(z, ', a, 7) = c(2, a, 7)S(z,



where

c(7, a, 77) = lim t(z, E, a, 7)
-O s(z, ZH,77)

= urn t'(z, E, a, )
z-O s'(z, Z H, 77)

= J7J s(a(h), ,77)
OAhEH

= aH(., a, 77).

It follows that
FEll/H = G= )"H

since t fits into the diagram of formal group laws over Q 9 EllC

Ga FH

sj IH (6.3.13)

FEll fH OF ElL/H. 0

Proposition 6.3.14 The stable operation

MU*X VQ-H -Eli X
aH P

factors through the map
1 1 -
-Ell*kX - -Ell kX.

aH aH
Moreover, vQH factors through the orientation

MU*X -- Ell*X

to produce a stable ring operation

Ell* "%+ 1 Ell*kX
aH

for X a finite complex.

Proof: By (6.3.8), the homomorphism of formal group laws

F -+ FEl

is given by the normalized quotient

1 1
vfH(x) = -fH(x) E -Elli J,

aHj aH

80



and so one gets the operation vQH by .(4.0.2). By (6.3.7), the ring homomorphism
which classifies FEl is

7 H 0 tEll-

Since it factors through tEll*, we get vA!H by (4.0.3). 1

Factoring QH through the orientation tEll

Combining (6.3.8) and (6.3.7) with (6.2.12), we obtain

Theorem 6.3.15 Let H C A* be a subgroup of order n. The operation

MU2*X Ellp X

factors through the orientation

MU*X - Ell*X

to produce an natural transformation of functors of finite complexes to rings

Ell2*X PE k X.

L
In particular, if I is a complex line bundle, then

X

TH(eL)= fH(eL) E EllPX.

On coefficients, Tff is given by

9I #) = #(m) = (aH) 2y(m); (6.3.16)

more succinctly, we have the equation

OH F Ell = F Ell/H. 0

6.4 An example: the Adams operation.

When the machinery of 6.2 is applied to the full group A*, one obtains an Adams
operation for Ell. Let N = p", and write %pN for pAk. The main task is to use (6.3.8)
to identify the formal group law FEll/N.



Lemma 6.4.1 For the full subgroup AZ of N torsion points, the constant aN of
(6.3.8) is given by

1-N
2

aN= 0 #(h)= ±Ne 4
Oph

[N](h)=o

Proof: The 4(h) are exactly the non-zero roots of the N-series for FE! by (6.2.9).
The result follows from (6.2.8). 0

Theorem 6.4.2 The operation

Ell2*X N - 2N 2
*

E12  
-4 Ellh

factors through an operation

E l2* X q N E l2Nh*X.

p

L
The effect of TN on the Euler class of a line bundle I is given by

X

(eL) = fN(eL) = ke4 [N]FEul(eL). (6.4.3)

On coefficients, %pN acts by

%pNyf) = (±F1-N
2

4 2 f.

The associated stable operation

Ell*(-) -+ -Ell*(-)
p

is the usual stable Adams operation whose effect on Euler classes is given by

N(eL) = [NFEu(eL). (6.4.4)

Proof: According to (6.3.14), the effect of vipN on coefficients is given by

Ell* 2 - Ell* (6.4.5)
p

f - {(7, ) '-4 f( (Er)) = N -2



Moreover, the formal group law F has exponential

expFN(z) = S(z,+N N

I= -s(Nz, ,)
1

= [N]EllS(z,=,,).

which proves (6.4.4). Since uAJN on coefficients and on Euler classes lands in !Ell, it
p

is in fact an operation

Ell*X 1Ell*X.
P

According to (4.0.7), vQN and QN are related by

vQN N 2 QN(x).

Since aN is a unit in Ellg, it follows that

QNI NQN(X) = N Q x

1-N 2 I![ VN 1122xX
- (±Ne ) 2vQ (x) E Ell2N2 ||X.

P

The proof is complete once we observe that by (6.3.8), the homomorphism

Ell* N N EllN2*

P

such that
O.FEll = FEll/N

is
ISd

QN 1N

1-N2 g

4 ze)'Jf 0

6.5 Hecke operators as power operations

Associated to a finite subgroup H C A* and the Jacobi quartic C we have seen that
there is a quotient curve CH. The Hecke operator T. on a modular form f is obtained
by evaluating f on the quotient curve CN as H runs over all subgroups of a given
order. Specifically, the p-th Hecke operator T, is given by

TPf = 1E 7f (6.5.1)
P HcAI

#H=,



where -7 is the map defined in (6.3.5). Indeed, the computations (6.3.6) in the
proof of Lemma 6.3.4 are exactly the famous computation of the effect of T, on the
q-expansion of a modular form [Ser70].

Let T, be the operation
1

P HCA1#H=p

Theorem 6.5.2 (compare [Bak9O]) The operation

1
T, =- Z VTH

P HCA1
#H=p

is an additive operation
1

Ell*X -+ -Ell*X
P

Its effect on coefficients is given by (6.5.1).

Proof: The only thing to check is the claim about the range: a priori, the operation
lands in

1
-Ell*X,

A '

where
A= HaH.

HCA1
#H=p

At the end of this section we shall prove

Proposition 6.5.3 Each of the constants aH is a unit in Ell*.

Granting this, the operation T, lands in Ell*X. Visibly, it is invariant un-
der SL2 ZIp, so it lands in Z[, (2p] ® Ell*(-) by (3.4.6). It is invariant under
Aut[Zo(pk)/Zo] because it is on coefficients and on Euler classes: on coefficients by
the formulas (6.3.6), and on Euler classes because by equation (6.3.13), we have

fH(s(z)) = aHT Hs(z) E Q ® Ell* z]. 0

This operation is entirely analogous in its effect to Baker's [Bak90] Hecke operation
T, for his slightly different version of elliptic cohomology. What is new here is the
realization of the operation as a sum of power operations VTH. It shows that the
Hecke operator is a very natural operation in elliptic cohomology in much the way
that the Adams operation is a natural operation in K-theory.



Our description of the situation in elliptic cohomology is far from ideal. A better
approach would have used as the range of the character map a ring in which p is
not a unit: for example, the ring of meromorphic modular forms for Zo(pk) whose
q-expansions have coefficients lying in the ring Z[j][(2p,]. Then, as in the case of
K-theory and the Eh, one could use the unstable operation WH to prove integrality
theorems about their stable counterparts. For example, we conjecture

Conjecture ("Conjecture G") The operation pr+1T, is integral on
2r-dimensional classes.

This conjecture would followsimmediately from the computation of the constants
aH in the proof of Proposition 6.5.3, below, once a better version of Ellp* is available.
Additionally, we would get the integrality theorem about the Adams operation %FN
analogous to (5.4.10).

All the constructions in this chapter would apply with this more stringent inte-
grality condition: most crucially, the computations in (6.2.6) show that the roots of
the p-series 4(a) have q-expansions with coefficients in Z[j][(2,k]. What is missing is a
proof that the ring of such modular forms is flat over Ell* and so defines a cohomology
theory. In fact, Brylinski shows that such a ring is flat, but only for modular forms
with even weight. I believe that the right ring for this discussion exists, is within
reach, and is even possibly interesting in its own right; however, I don't know enough
to say more about it, let alone use it, at this time.

Finally, I owe the reader a

6.6 Proof of Proposition 6.5.3.

This is simply a matter of computation. Let E(p) be the lattice

E(p) = 4riprZ + 4riZ.

Then the sugroups of C/.(p) of order p correspond the superlattices

E1 =47ri(r + -)Z + 4riZ, 0 < j < p, and
p

41ri
,= 4riprZ + -Z.

p

Varying the level structure interchanges these lattices and so the constants aH, so
it is enough to fix the level structure, and check that aH('(p), a, 2ri) is a unit in
Z[, (2,]((q)) for various H. Let the level structure be given by

a(bf + ce) = 4xirb+ .
p



Let H be the subgroup of A* generated by f + je, where 0 < j < p - 1. Then we
claim that

aH(E(p), a, 27ri) = (-1)(1-p)/2(q-1)(p 2 _1)/4 1 -1q"(")P 2(-)" (6.6.1)
1 - gpn)P I

where ( = e2,i/p. This is even a unit in Z[!][(]((q)). We do this in a series of steps.
First of all, by (6.2.7),

P~1 4rijr
ay(E(p), a, 27ri) = J s(47rirr + , E(p), 2ri)

r=1

P-1 ((2j g2r _ ) ( mp+2,-(2jr)(1 _ mp-2,-(-25,-) (= 'jf \ ,qr - 1 1 - qm+7.(1 - )"'

r=1 >q , 1 (1 - qmP) 2  (6.6.2)

We move the product over r inside, and collect terms. The terms of the form (1 -qmP) 2

contribute a factor

12(p-1) (6.6.3)
,>1 (1 - 92s)

to the infinite product. We treat the other part of the infinite product in two steps,
the numerator and denominator. The numerator corresponds to m even in (6.6.2).
It produces a term of the form

JJ(1 - q2sp+ 2 C2)) q. . ( _2+2(p-(2j(p-)
3>1

(1 - 22(-2) .q. (1 p-2(p- -2j(P-0).

Collecting terms in q21, we find for each I prime to p and also greater than p a term
of the form

(1 -201)2

where one factor comes from the (1 - q2 sp+ 2r(2r) side, and the other from the (1 -
g2&,-2r5-2,) side.

When 1 is less than p, we get since s > 1 only one term of the form

1 - 2 210.

Here, however, the numerator of the leading factor

P-1 ((2rq 2r - 1)
H CQtq'



comes to the rescue, and contributes the missing terms

((2j 2 1 ))((4 4

up to a factor of (-1)P-' = 1!

The denominator (m odd in (6.6.2)) is a product of the form

J1(1 - q( 2 s-)p+2 2 ) . (1 _ (2s-)p+ 2(p-1)2(p-1)
s>1

(1 - q(2s-l)p- 2
(- 2

j) . (2s-1)p-2(p-1)(-2j(-1). (6.6.4)

Proceeding analogously, we find, upon collecting terms of the form (1 - q21-i
that for 21 - 1 prime to and greater than p, we get a term of the form

(1 - q21-i(j21-1))2

where one factor comes from the (1 - q(2 -l)p+ 2r( 2,.) and the other from the (1 -
q(2-1)p-2,.-2r) side. Now however there are no terms of the form (1 - q2 -1CI( 21- 1 )) at
all for 21 - 1 < p. However, there are messy terms arising on the (1 - q( 2 -1)p-2r(-2,)
side when s = 1: the factor is

(1 - qp-2(-2j)(1 - qP-4(- 4 ) ... (1 - -p+ 2 -2 (p-1)). (6.6.5)

It includes negative exponents of q, which would be very bad in the denominator.
Once again, the denominator of the leading factor saves the day, this time by con-
tributing a factor of

1+2+...+(p-1).

Multiplying (6.6.5) by this factor yields

2+4+...+(P-l)(qP2 _ - 2 (p-1)i )(qP-4 _ -2(p-2))

.. (q - C("~'~')(i q((P-l)j) ... (1 - q(-)-j

= q(p2 l)/4(....)(p-l)/2(..(P2...)i/4(1 - q~j ) 2 ... (1 - q (p 2 )(- 2
3)

2

which are exactly the missing terms.

Assembling the numerator, denominator, and (6.6.3) gives

aH(z(p), o', 2ir) - (_ (1-p)/ 2  -1)(p 2 _1)/4 -q 2 1 ) 1s s2(-1)'

8>1 (8 >1
(S)=1

= (is)(1-p/2 -1)p2-1/4 1 - q"("i 2(- )

n>1 l1-q'")p]

which is (6.6.1).



The remaining subgroup of A* is the one generated by e. In that case, we have

aH(.p, a, 27r0 = nc r
r=1 m>1

q'P(")(1 - qPgn-
2 r) 2I

(1 - qmP) 2 JI
Since p is odd, we get

and

1+2+...+(p-1) - =(-)/2

p-1

r=(C 2 )p.
r=1

Also,

p-1

11(1 - qmp(:: 2 ') = 1 + qmP +.
r=1

1 - qmP2

1 - qm P

Putting these together, we find

a ("p, a, 2ri) = p q [1 - "2 -] 2(1)

M>1 n 2 )

which is a unit in Z[-L, ( 2 pk ]((q)). 0

. . + gne(p- 1)
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