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ABSTRACT

Using the character theory of Hopkins-Kuhn-Ravenel and the total power operation
in complex cobordism of tom Dieck, we develop a theory of power operations in
Landweber-exact cohomology theories. We give a description of the total power
operation in terms of the theory of subgoups of formal group laws developed by
Lubin.

We apply this machinery in two cases. For the cohomology theory Ej, we obtain a
formal-group theoretic condition on the oyientation which is an obstruction to the
compatibility of H,, structures in MU and E4. We show that there is a unique choice
of orientation for which this obstruction vanishes, allowing us to build a large family
of unstable cohomology operations based on E;. We show that the the multiplicative
formal group law of K-theory satisfies our condition.

In elliptic cohomology, our machinery is naturally related to quotients of elliptic curves
by finite subgroups. We adapt our machinery to elliptic cohomology, and produce
both the Adams operation and versions of the Hecke operators of Baker as power
operations.

Thesis Supervisor: Haynes Miller
Title: Professor of Mathematics
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1 Introduction

Recent work in topology [DHS88, Hop87] and in mathematical physics [Wit88, BT89)
has focused attention on a collection of complex-oriented cohomology theories that
includes K-theory, elliptic cohomology [Lan88, LRSS8S, Seg88], and various Ej;. With
the exception of K-theory, these theories are most easily defined using an algebraic
technique due to Landweber [Lan76], and one of the fundamental questions in the
subject is how to render geometric or analytic descriptions of these theories.

The algebraic description begins with a “genus”, that is, a ring homomorphism
MU* 28 E* (1.0.1)

where MU* is the cobordism ring of stably almost-complex manifolds. Landweber’s
theorem [Lan76] is a sufficient criterion on a genus for the resulting functor

X+— E* @ MU*X (1.0.2)
MU*

to be a cohomology theory on finite complexes. Because of the Mayer-Vietoris ax-
iom, this amounts to showing that tensoring with E* via the genus tg is exact for
MU* modules of the form MU*X, where X is a finite complex. For this reason, a
cohomology theory determined by (1.0.2) is called “exact.”

Knowing only the description (1.0.2) is a little like having a Greek-Greek dictio-
nary when one speaks only English: given such a theory E and a space X, one can
attempt to compute its cohomology groups, but then would have very little idea what
has been accomplished when the task is finished.

The paradigm for this problem is K-theory. The genus associated to K-theory is

the Todd genus
MUt L k.,
A theorem of Conner and Floyd tells us that
Theorem 1.0.3 ([CF686, Lan76]) The map
K* @ MU"X 5 K*X (1.0.4)
MU* ™

18 an tsomorphism when X is a finite complez.
The left-hand-side of (1.0.4) is the description of K-theory provided by exactness,
and the proof of (1.0.4) using Landweber’s theorem makes no use of vector bundles.

For the theories Ell and Ej, it’s as if we knew of the existence of K-theory, but not
about its relationship to vector bundles.



One thorny problem in understanding the geometry of a theory like E} is the
choice of the the genus itself. In stable homotopy, this problem is usually studied in
terms of the associated group law: by Quillen’s theorem, specifying a genus

MU* - E}

is equivalent to specifying a formal group law F over E*. More precisely, there is a
formal group law FMU over MU*, and MU* together with the formal group law FMV
represents functor

R FC% {Formal group laws over R}

by the correspondence

Hom,ings[MU*, R) — FGL(R)
fr fuFMY,

The ring E;, is a complete, local ring. The usual genus
MU* 2 E;

over E} results in a formal group law F}, whose reduction modulo the maximal ideal
we call ¢. It turns out that any formal group law F over E} which reduces modulo
the maximal ideal to ¢ detects the same information in stable homotopy. The formal
group law F}, has the feature that it is “p-typical”, and is an obvious choice to make
when E), is constructed from BP. However, geometric considerations, when they are
available, lead to other genera.

For example, E,; is p-adic K-theory. With respect to the genus ¢; of [Rav86] (see
section 5.1), the p-series of the resulting formal group law Fj satisfies

[p]F, (z) = pr + u?~'z” (mod degree p + 1).

From the point of view of geometry, however, the most natural formal group law is
the multiplicative formal group law G,,, which is the group law classified by the Todd
genus. It satisfies

[p]gm(:c)=px+u(g)z2+...+up’l:v".

If we were to have any hope, starting with just the description (1.0.2), of discovering
the relationship between E; and vector bundles, we would surely have needed to start
our search with the Todd genus and the multiplicative formal group law!

The main result of this paper is the description of a new canonical genus for the
cohomology theories Ej. In the case that h = 1, we recover the multiplicative group
law over p-adic K-theory.



Let F' be any formal group law over E, which reduces modulo the maximal ideal
to ¢. Over any complete, local Ej;-algebra R, the elements of the maximal ideal of
R, together with the addition law specified by the formal group law, form a group,
which we denote F(R*).

Let D* be the smallest extension of Ej which contains the roots of the p*-series
for all & > 0. Then ([Hop91]; see 2.3) D* is a Galois extension of E* with Galois
group Autgp[F(D*)ion). Let fo(z) € D*[[z]] be the power series

We) = II v+2)
veF(D*)
[p)(v)=0

By Galois invariance, the power series f;, in fact has coefficients in Ej. It is the power
series considered by Lubin in his study of finite subgroups of formal groups, in the
case that the subgroup is the p-torsion points of F(D*). Associated to it is a formal
group law F/p which is related to F' by the homomorphism of formal group laws

F—fiF/p.

f» and F/p are constructed so that
»F(D*) = Ker[F(D") & F/p(D")].
On the other hand, the p-series [p]r(z) an endomorphism of F, and certainly
,F(D*) = Ker[F(D*) 25 F(D")).

Let u denote the periodicity element of Ex; we use a version of Ej in which this
element has degree —2 (5.1). Our genus is given by

Theorem A (see section 5.4) There is a unique genus
MU* 2% E;
such that the resulting formal group law is x-isomorphic to F, and satisfies

[pl(z) = w*"~ fy(=)- (1.0.5)

The reason why we hope that the genus described in Theorem A is related to geometry
is its relationship to “power operations”, which we now describe.

Once one has a good geometric understanding of a cohomology theory, one ex-
pects to find rich additional structure in these cohomology theories coming from the
geometry. In particular, it is natural to examine symmetries of the geometry in search
of cohomology operations. This thesis represents an attempt to turn this idea on its
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head, and to study cohomology operations in exact cohomology theories as a means
of learning something about their conjectural geometry.

“Power operations” is the name of a program for constructing cohomology opera-
tions in a ring theory E. The reason for singling this method out for investigation is
that on the one hand, one can describe in purely algebraic terms what it is one would
like to do, while on the other, in every cohomology theory where power operations
have been successfully constructed, the construction relies heavily on a good descrip-
tion of the cohomology theory. Some examples are mod-p cohomology, in which one
obtains the Steenrod operations [SE62], K-theory, where one obtains the exterior
powers and Adams operations [Ati66], and complex cobordism [tDi68], where Quillen
used them to prove his theorem about MU* [QuiT71].

The basic problem in constructing power operations is as follows. Let E be a
cohomology theory with products, and let S, denote the symmetric group on n letters.
For any space X, S, acts on X". One wants to construct a “total power operation”
PE which factors the n** power map

me Tz X" Etnxn

through a suitable equivariant cohomology theory Eg,. If no better candidate is avail-
able, one simply takes E5 (X") to be E*(D,X), where D, X is the Borel construction

D, X = E’S,.;( X",

In other words, the idea is to find a natural transformation PZ filling in the
diagram

E*X =22, Eemxr

;\ I (1.0.6)

E5 (XM 5 B (x™).

where :* is the forgetful map

In fact it is often enough to construct, for = an abelian p-group of order n, a “total
power operation based on 7”

pE
E*X = E™D,X,
where D, X is the Borel construction

D,X = Ex x X",

10



and
X" = Maps|r, X]

denotes the left 7-space obtained by using the right action of 7 on itself.

In any case, with P in hand, one proceeds to produce natural transformations
E$(X™) L E*X;
then the composite
PE
E'X S EN(X™M) S E*X
is an operation on F.

For example, Atiyah [Ati66] constructed a total power operation
PK
KX —= Kg, (X™).

If

X5 xn
is the diagonal map, then A*PX lands in K5, X, which is isomorphic to RS, @ KX :

P¥ ny A°
KX — Ks,(X") — Ks,(X) 2 RS, ® KX.

Evaluation of characters on the class of an n-cycle in S, yields a ring homomorphism

RS, 2. 7,
and the composite
KX 2 Ko (X™) 25 RS, @ KX =8 kX (1.0.7)

turns out to be the (integral!) Adams operation ¥" on K X.

It is a hard problem in general to construct the total power operation P, in an
arbitrary cohomology theory (see e.g. [BMMS86]), primarily because it has never
been clear what P, should mean in any generality. One approach is to try to use tom
Dieck’s [tDi68, Qui71] construction of a total power operation

pPMU
MU*X -2 MU*™(D,X)
for complex cobordism. Then for a cohomology theory E with a complex orientation

MU 5 E,

11



(e.g. any exact theory), one might ask whether a putative total power operation PE
be compatible in the sense that the diagram

pMU

MU*X —— MU™(D,X)
tgl lts (1.0.8)

PE
E* —» E™(D,X)
commutes. If moreover E is exact, then it is determined by MU via tg (1.0.2), so
PE is determined by the diagram (1.0.8) if it exists.

This optimism is supported by the example of K-theory: tom Dieck’s operation
PMU and Atiyah’s operation PX are compatible under the Atiyah-Bott-Shapiro ori-

entation: if
MU X 8, g x

is the Atiyah-Bott-Shapiro orientation, then

murx 22, mum(p,x)
tAgsl JtAas (1.0.9)

P

KX K(D.X)

commutes [tDi68].

In practice, though, it is a tricky matter to carry this program out, for example
because PMU isn’t additive (2.1.5), and so one doesn’t expect it to behave well under
tensor products like (1.0.2).

1.1 Splitting the total power operation via character theory

Our idea is to appeal at this point to the character theory of Hopkins—Kuhn-Ravenel
[HKR91]. To focus the discussion, suppose that E* is a Noetherian local domain,
complete with respect to its maximal ideal m. Suppose that the residue characteristic
of E* is p, and that the formal group law of E* has height A. Once again, let D* be
the ring (see section 2.3) obtained from E* by adjoining the roots of the p*-series for
all k. For every subgroup

HC F(D*)

of order n, we use [HKR91] in section 3.1 to construct a character map

E*(D.X) X% D" © E°X. (1.1.1)
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The xu are the building blocks of a “total character map” which detects £*(D,X)
rationally (for more on the total character map, see section 3.3). It turns out that
D is faithfully flat over E* ([Hop91]; see section 2.3), so

D.X = D. ? E.X

is a homology theory.

We shall analyze the operation
MU
MU*X B MU™ (D, X) & E*™(D,X)
in terms of the composites
tEOP,{”U

Q¥ : MU X == E™ (D, X) X4 D™ X

as H runs over the subgroups of F(D*)sor,. The first indication that these operations
are dramatically simpler to study than PMY ig

Theorem B The operation
mu=x &, prx
is additive. In fact, it is @ homomorphism of graded rings
MU*x 25 9,07 X,

where for a graded object M*, &, M* is the graded object which is M™* in degree k.

1.2 The operation Q¥ and Lubin’s quotient formal group law.

The real power of Theorem B as a tool for understanding power operations lies in the
fact that the operations Q¥ have an elegant description in terms of the formal group
law. Lubin ([Lub67]; see 2.2) associates to the subgroup H of F a quotient formal
group law F/H and a formal homomorphism

F 5 F/H,
both defined over D*. They are constructed so that
H = Ket[F(D") 22 F/H(D")].
Our description of Q¥ is

13



Theorem C On coefficients, Q¥ is determined via Quillen’s theorem by the equation

QHFMY = F/H.
L
Moreover, if | is a complez line bundle, then
X

Q¥ (emvL) = fu(egl) € DX
where epqyL and eg L are respectively the MU and E Euler classes of L.

1.3 Factoring Qf through the orientation tg.

In relation to our original goal of producing operations in E-cohomology, the oper-
ations Q¥ have two overriding unsatisfactory features: they have the wrong source,
MU, and the wrong target, D. Making the target E instead of D can be arranged: as
has already been mentioned, the ring D* is a Galois extension of E*; the Galois group
is Aut[F'(D*)tors)- If H C F(D*)sors is a finite subgroup and g € Aut{F(D*)tors], then
it is not hard to show that

gQ" = Q.

If p is a polynomial over E* on the set of subgroups H C F(Dj,,,) of order n, denote
by @° the resulting operation

MU*X 2 E»X.

Theorem D If a polynomial p is invariant under Aut[F(D*)ior,), then the operation
@’ factors through the natural map

E*X - DX
to produce an operation
Murx & E*x,

where the degreesindicated by the asterisk on either side may not coincide.

For example, if H = «F(D*) is the full subgroup of points of order p*, then the
operation Q¥ = Q*" lands in E :

MU*x &, prthex.
To make an operation with E as source, we can take advantage of the fact that

Q| unlike the total operation tg o PMUV| is MU-linear. When E is exact (1.0.2), it
suffices by Theorem B to find a ring homomorphism

Et _ﬁ_ﬂ Dﬂ.

14



such that
BHF = F/H. (1.3.1)
Note that the existence of a homomorphism 3 satisfying (1.3.1) follows from the

existence of a total power operation PE for E which is compatible with PMU_ For
suppose one can find PF and tg such that the diagram

Murx B2, pumep x
tEl ltz': (1.3.2)

P

E*X E™D,X £, pix

commutes. In case X is a point space, the left vertical arrow is the genus (1.0.1),
which satisfies

teFMU = F. (1.3.3)

The clockwise composite is @7, which on coefficients classifies F/H, according to
Theorem B. If E* is concentrated in even dimensions (as it is in for Ej and Ell),
then the bottom row is a ring homomorphism

ﬂH
E# BN Dn#

which by (1.3.2), (1.3.3), and Theorem B must satisfy (1.3.1).

1.4 A new orientation on E}.

We can now explain Theorem A; for details, see section 5. One studies homomor-
phisms out of Ej in terms of the functor it represents: recall that ¢ is the reduction
of the group law Fj, modulo the maximal ideal of Ex. Then according to [LT66], the
ring Ej; represents the functor of complete local Z,-algebras

R *-isomorphism classes of
lifts of )

The quotient formal group laws F/H are lifts of ¢, so there is a unique homomorphism
B 25 p
such that BH F is x-isomorphic to F/H. According to (1.3.1), we need strict equality

in order for the operation @ to factor through Ej,. When H = ,F(D*) is the full
subgroup of points of order p, the fact that the p-series is an endomorphism of the

15



formal group law implies that 4P def B is (up to a multiple of the periodicity element)
the identity. The grading determines that this multiple is u?"~!. Since the p-series
is the unique endomorphism of a universal formal group law over E; with kernel
»F(D*), we conclude that
BIF =F/p

if and only if

[plr(2) = v~ fy(2),
which is the condition of Theorem A. This orientation is the only one that has the
possibility of making the diagram (1.3.2) commute, if PE exists.

By combining Theorems A and B, we obtain

Theorem E Let tpo denote the orientation given by Theorem A. Then there is a
unique operation

k
yP hk
E'X — EF X

such that
PN "
MU*X 22— MU% (Dprn X)
tpol 1X,,k otpo
Erx ¥, gy

commutes. On coefficients, ¥?* is given by
‘I»‘”k(m) =y~ Ty,

L
If | is a complez line bundle, then
X

U (eL) = fa(el) = =" [p*](eL).

Because of its relationship to the p-series, the operation ¥? should be thought of as an
unstable Adams operation in Ej. Thus the orientation provided by Theorem A is the
unique orientation in which the Adams operation is obtained as a power operation.
In theories such as Ej there is a well-known construction of a stable Adams operation

1
E, % E,,[;]

which is however not integral: one has to invert p in the range. It turns out that ¢?
and our ¥? are related by

upkh_l

¥ (z) = (—) F ¥*(z),

P
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so we recover the well-known fact (5.4.10) that the unstable operation
Erx XY pryx (1.4.1)

is integral on 2r-dimensional classes.

When the height h is 1, the only subgroups of the formal group law are the
subgroups of the form
vy

This is the case that corresponds to K-theory: the character map
E;D,X X5 E; X

corresponds to evaluation on the class of a p-cycle, and our construction is exactly
analogous to Atiyah’s description of the unstable integral Adams operation in K-
theory; see section 5.6.

When the height is greater than 1, there are other subgroups. In that case, the
diagram (1.3.2) provides for each subgroup H a condition on tpg for the orientation to
be compatible with PMU and any (conjectural) total power operation PEZ. However,
already the condition (1.0.5) was enough to determine the orientation. In fact, in
section 5.5 we prove

Theorem F The formal group law over Ej obtained in Theorem A satisfies (1.3.1)
for every finite subgroup H.

With Theorem F, we can use the operations Q to produce an operation
E*X ¥, p=x

for every subgroup H of F(D*)r,. We assemble these operations into a description
of a “total power operation” (5.3.5) in E}, at least in terms of the character map of
Hopkins-Kuhn-Ravenel (5.3.5). Let A, denote an abelian group isomorphic to Z,’;.
For 7 an abelian p-group, the description of E;D,.X by Hopkins-Kuhn-Ravenel is a
character map

E;D,.X % J[ D (X™®).

a
AT

The operations ¥H enable us to construct an operation

h
E;‘:*X E H D2n:(X1r/(a)),

a
A —"

17



where n is the order of x, such that

murx 25 mum(D,X)

tpolv tpo

E*X E*(D.X)

e )
™ H D2nt(X1r/(a))

a
Aco—m

commutes. This is as close as we have been able to come to constructing a total
power operation in F}; it is recorded as Theorem 5.3.5.

Another indication of interesting applications of the operations ¥# is provided by

1.5 Elliptic cohomology and Hecke operators.

In the last chapter, we begin a study of the application of our theory to elliptic coho-
mology. The study of subgroups of formal groups is a formal analogue of the study of
subgroups of elliptic curves, which are the source of “Hecke operators” [Ser70]. For
details, see section 6. Let Zy(2) denote the space of pairs

(E,m)

consisting of a lattice = C C and a point of order two n € ;C/=. An element f of
Ell*" is a function

Z(2) L C

which satisfies (among other properties: see section 6)
f@E,n) =t f(E,n).

Fix an odd prime p. A subgroup H of order p of FE! is a rule with assigns to
each pair (Z,7) a subgroup of C/= of order p, for which we also write H by abuse of
notation. Equivalently, it assigns to each lattice = a super-lattice =g D = such that

[Ex:E]=p

The p-th Hecke operator T, applied to f is given by

T,f(Z,n) = i S fEmn)
A=

18



It turns out that if f € ElI=% then also T,f € Ell"*, and Andrew Baker has shown
[Bak90] that T, can be extended to a stable operation on elliptic cohomology

Erx B Ezl[%]*x;

trying to understand his operations was one of the starting points of this investiga-
tion. Actually, Baker uses a slightly different version of elliptic cohomology, but his
construction and ours work in either context.

It turns out that Ell is more “geometric” than the Ej in that the exponential
of the Euler formal group law is an elliptic function, and so is determined (up to
constant multiple) by its divisor. Because of this, the Euler formal group 1is related
to its quotient formal group law FE"/H in a simple manner, and one can write down
a homomorphism

el 25 pre
such that
ﬂHFE” = FE"/H.

Therefore one obtains an operation
El*X X5, prrx (1.5.1)
for each subgroup H of order p, where D* is the range of the character map for elliptic
cohomology (see [Hop89] and section 6.1). By Theorem D, the sum
R,= 3 w7

HCpEu
#H=p

is an operation
eirx B lppx
p

which is we use to recover Baker’s Hecke operation in Ell (6.5.2). Actually, it seems
likely that one can do better than this, and obtain integrality results for the Hecke
operators analogous to the integrality of the unstable Adams operations (1.4.1). The
main issue is to find a better version of the ring D* for elliptic cohomology.

As Mike Hopkins has explained ([Hop89],see 6.2), for groups of exponent p* this
ring is roughly ring of meromorphic modular forms for the congruence subgroup
[(2p*). The trick is to show, for example, that this ring is flat over Eli*. Brylinski
[Bry90] has studied such a ring for elliptic cohomology which does not invert p, but
which only contains modular forms of even weight. Our constructions rely heavily on
certain modular forms of weight —1 (6.2.6), and at the present time we can only see
our way to showing that D* is flat over Ell* if we admit 1/p. However, we believe
that it will be possible to show that a ring without 1/p is flat. Our constructions lead
us to conjecture that

Conjecture G The operation p"+'T, is integral on 2r-dimensional classes.
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1.6 Organization

The rest of this paper is organized as follows. In section 2 we collect facts about tom
Dieck’s total power operation in MU (2.1) and about Lubin’s theory of subgroups of
formal groups (2.2) which we have used in our work. The most important facts are
the computation (Proposition 2.1.9) of

PYY(eL)

L
where eL is the Euler class of a line bundle | , and Lubin’s theorem (2.2.2) on the
X
existence of the quotient formal group law. In section 2.3 we describe the ring D*
which is the smallest ring over which all of the subgroups of the formal group law
occur. The essential facts about D* were provided by Mike Hopkins [Hop91].

In section 3 we use the character theory of Hopkins-Kuhn-Ravenel to study the
operations Q7. In 3.1 we construct the operation Q¥ and in 3.2 we give proofs of
Theorems B and C. Beyond the character theory, the essential ingredient is the
similarity between the expression for PYY(eL) (2.1.9) and Lubin’s homomorphism
fu(z) (2.2.1). The Q¥ can be used to give a description of the image of

mux 25 mu~p.x 5 grp_x

under the character map of Hopkins~-Kuhn-Ravenel . We work this out in 3.3 as
Theorem 3.3.3.

In section 3.4, we study the action of Gal(D*/E*) on Q¥ to obtain Theorem D.

In section 4 we explain how to use the operations Q¥ to produce operations out of
exact cohomology theories. The key point is to find the homomorphism B satisfying
(1.3.1). The result (Theorem 4.0.1) is almost trivial, but it does not appear to have
been used before to produce unstable operations. The operation Q¥ is naturally
associated to a stable operation vQ¥ (4.0.6). The comparison of these two operations
(4.0.7) is the basis of integrality statements like (1.4.1) and Conjecture G.

In section 5 we apply these results to E,. After describing briefly the “completed”
theory Ej, we use the statement of Theorem F to obtain the operations ¥H. With
these we can write down (5.3.5) a total operation out of E;X which lands in the
character-theoretic description of E;(D,X). I believe that the construction of a total
operation

E:x £ Ey(D. X)

is within reach of the methods in this paper. Theorem 5.3.5 represents the best
statement we can make at this time.

In section 5.4 we study the particular operation W?, completing the proof of The-
orem E. Finally, section 5.5 is devoted to the proof of Theorems A and F. As an
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illustration of Theorem A, we show in 5.6 that the multiplicative formal group law
satisfies (1.0.5).

In section 6 we turn to elliptic cohomology. In section 6.1, we set up the character
map and the operation Q¥ for elliptic cohomology, following [Hop89] but with some
adjustments for improvements in the character theory and to make room for conjec-
tural integrality statements. The main result is the comparison of Lubin’s quotient
formal group law FZ!/H with the Euler formal group law for the quotient elliptic
curve (6.3.8), and the consequent existence of the homomorphisms 8¥ for elliptic
cohomology (6.3.16). These combine to prove Theorem 6.3.15, which is the existence
of the operation UH of equation (1.5.1). In section 6.4, we use apply this theorem to

the full subgroup -
oF

to obtain an Adams operation in E!l (6.4.2). Finally, in 6.5, we turn to the operation
R, and Hecke operations. We provide sufficient information to prove Conjecture G
as soon as a sufficiently good ring D* becomes available.
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2 Prerequisites

2.1 Power operations in MU

We shall frequently write the Borel construction
D.X,

when 7 is an abelian group, without reference to an ambient symmetric group. In
this case, we shall mean by that notation

D.X ¥ Er x X,
where
X™ = Maps|r, X],
and the action of 7 on X~ is the left action coming from right multiplication on =.

tom Dieck and Quillen constructed a total power operation
20y PtV 2ne
MU X — MU*™(D,X)

for complex cobordism [tDi68, Qui71], where S, is the symmetric group on n letters.

Briefly, the construction is as follows. If a map

ML x!
of manifolds is complex-oriented, then there is a Gysin homomorphism
MU*M L MU=+-+x.

In particular,

f.l e MU'*X.

Thom’s theorem [Tho54] shows that every class in MU*X can be obtained in this
way.

Now suppose that
ML x
is a complex-oriented map of even dimension 2d. Then
D.M 24 p. x
inherits a complex orientation, and by definition

PMU(£,1) = (Drf).l. (2.1.1)

From this construction, one can quickly check the following properties of PMV
and PMU. When there is no possibility of confusion, we abbreviate PMU as P;.
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Lemma 2.1.2 [tDi68] P, is a “total power operation” in the sense that if

X" 5 D, X
denotes the inclusion of the fiber, then

1"Prz = 2*",

Moreover, the operation Py is natural with respect to pull-backs: for a map X ER Y,
the diagram
pMU
MUY —— MU*"(D,Y)
f‘l 1(0,,;)- (2.1.3)

MU»x 2 pure (D, x)

commutes.

Lemma 2.1.4 (compare [tDi68]) P, is multiplicative: for z € MU*X and y €
MU?X,
P,(zy) = Pr(z)Py(y) € MU D_X.

One of the features of power operations that makes subject difficult is that they are
not additive. However, the failure of P, to be additive can be expressed as a sum of
terms which are transfers. A critical feature of our operations Q¥ is that they are
additive. The demonstration (3.2.1) depends on

Lemma 2.1.5

Pz +y) =Y Trii/d (Pz x Pajy),
i=0

where

TrMV: MU*(ES, x X")— MU*(D.X) (2.1.6)

S; X Sn—j
is the MU -transfer associated to the fibration

Sal(8; % Sums) = ESa _ % X" = DX, (2.1.7)
5 X Snmj

and d is the map
ES, x X"3D;XxD.X

SjXSn—;
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PMU on Euler classes

V
Now let | be a complex vector bundle of rank r, and let
X
eV e MU¥X
V1|’
be its MU Euler class. Then 7 acts on the product | , and the resulting Borel
Xﬂ’
D,V
construction | is a complex vector bundle over D, X with rank nr. We have
D.X
Proposition 2.1.8 ([tDi68])
D,V
Pr(eV)=e ! .
D, X
V
Proof: Let ( : X — V be the zero-section. Then the Thom class of | is the image
X

of 1 under the push-forward
MU*X =5 MU XV,

By definition, the Euler class eV is the pull-back of the Thom class by (; in other
words,

eV = (*(.1.
We have '

Pr(eV) = (Dx()" Pr(¢1)
= (D,,C)'(D,C).l

D,V
()
D.X

where the first equality is the naturality of P, with respect to pull-backs (2.1.3), the
second is the definition of P, (2.1.1), and the last is the definition of the Euler class.
a
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PMU(eL) when L is a line bundle

L
Let | be a complex line bundle and eL € MU?X its Euler class. Let A denote the
X
“diagonal map”
Brx X & D, X.

One of the keystones of this paper is the formal similarity between the espression
for A*Pr(eL), which we now give, and Lubin’s homomorphism fx(z) from a formal
group law to its quotient by a finite subgroup (2.2.1).

When A4 is an abelian topological group, we denote by A* its continuous complex
dual
A" = Hom[A, C¥].

Proposition 2.1.9 (compare [Qui71],p. 42)

Ex xC
apel)=T | | & er| e MU™(Br x X),
u€r* Br

where x A}i-Uy denotes the formal sum with respect to the formal group law of MU, and

we omit symbols for the pull-backs under the projections Brx X — X and Brx X —
Br.

Proof: By (2.1.8),

(A"(E'n';(L")
A*P,z =e l

\ BrxX

( Reg. ® L

=e l

\ Brx X

[ (szfC

=e @ l QL
vea\  BA

( Ex xC

H e 1 + el|.O
|\ Ba MU
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2.2 Subgroups of formal groups

To understand the notion of a subgroup of a formal group law, it is helpful to consider
the situation in which a formal group law yields an actual group (see also section 6 for
the example of subgroups of the group law of an elliptic curve): let R be a Noetherian
ring and m a maximal ideal of R; suppose moreover that R is complete in the m-adic
topology. Let F(z,y) € R[z,y] be a formal group law. If a,b € m are elements of
this maximal ideal then the series F(a, b) converges to an element of m. The elements
of m with the addition specified by F form a group, denoted F(m).

Now suppose H C F(m) is a finite subgroup. Lubin’s main result is to show that
the quotient F(m) — F'(m)/H is realizeable as a homomorphism of formal groups:

that is, there is a formal group law F//H over R, a homomorphism F ELAY /H, and
a commutative diagram

H —— F(m) —— F(m)/H

| I

H —— F(m) 2% F/H(m).

In other words, every subgroup H of F(m) is “formal” in the sense that it occurs as
the the kernel some formal homomorphism (F ELA F/H)(m).

The homomorphism fg is constructed in terms of its kernel H and by the formal
group law F : one takes fgy(z) to be

fa(@) = TL(h £ 2). (22.1)

heH

Since 0 € R is the identity of F(m), equation (2.2.1) guarantees that
H = {h € F(m)| fu(h) = 0}.
Also, the power series fy(z) has fg(0) = 0 and leading term

fu@ =ag= J] h

0#h€eH
given by the product of the non-zero elements of H.

Lubin’s theorem is that fy(z) is in fact a homomorphism of formal group laws.

Theorem 2.2.2 (Lubin [Lub67]) Let R be a Noetherian domain which is complete
in the topology induced by an ideal I. Let F be a formal group law over R, and suppose
that H is a finite subgroup of F(I). Let fy(z) be defined by

fa(z) =[] (r t2).

heH
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Then there is a unique formal group law F/H defined over R such that
fuF(z,y) = F/H(fu(z), fu(y)),

so H = Ker(F(I) 2% F/H(I)).

Lubin also shows that when F' is not the additive group, F/H is universal, because
homomorphisms of formal groups are formally surjective:

Theorem 2.2.3 ([Lub67]) Let R be a complete Noetherian local ring with mazimal
ideal m. Suppose that F is a formal group law over R whose reduction to the residue
field has finite height. Suppose that there are homomorphisms of formal group laws

FL R, i=1,2,

such that
Ker[fi(m)] C Ker[f,(m)].

Then there is a unique homomorphism of formal group laws

A3 ER
such that
fa=g0fi.0
If HC G C F(m), then the three finite subgroups
H C F(m),
G C F(m), and

G/H C F/H(m)
produce three formal homomorphisms

F 2% i,

F %5 F/G, and

FIH L2, (F/H)/(G/H).
An important property of Lubin’s isogeny is
Proposition 2.2.4
fe = foiu o fu,

and so

(F/H)/(G/H) = F[G.
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Proof: Let S C G be a set of coset representatives of G/H. Then
fo(z) = [1(g 4 2)

4€G
= ﬁl‘[ﬂ];[(h t9¢ z)
= QI;IS fulg + =)

= geIIS(fH(g) oy (@)
= ,EEI,H(G ERLCO)

= fe/a(fu(z)). O

Note the similarity between the expression (2.1.9) for the total power operation
P,z with respect to an abelian group 7 on the Euler class of a line bundle and the
expression (2.2.1) for the homomorphism fy(z) defined by a subgoup of a formal
group law. This simple observation is the key to Theorem C; see section 3.2.

Formal group laws over graded rings

Our method directly produces unstable integral operations. The formal groups that
occur in complex-oriented cohomology theories are graded, and keeping careful track
of the gradings will enable us to prove integrality results about associated stable
operations (4.0.7) including stable Adams operations (Theorem 5.4.10) and Hecke
operations (Conjecture G)). In this section we cast the theory of subgroups in a
graded setting.

Suppose then that R* is a graded Noetherian ring which is complete with respect
to a maximal ideal m. Let F(z,y) € R*[z,y] be a formal group law which is of degree
2n not as a power series but as an element of the graded ring R*[z,y], where z and
y are both taken to have degree 2n. In this case we say F is “homogeneous of degree
2n”. Notice that the coefficients of F' will be concentrated in R*"*.

One makes this definition so that if a and b are elements of m of degree 2n, then
F(a,b) will also be an element of m of degree 2n. The elements of m of degree 2n
with addition defined by F is a subgroup of F(m) which will be denoted F(m,2n). If
F' is a homogeneous formal group law of degree 2n and f(z) = z + o(z?) € R*[z] is
a power series which is of degree 2n when the degree of  is 2n, then the power series

G(z,y) = fF(f (=), f' ()

is also a homogeneous formal group law of degree 2n, and f(z) defines a homomorph-
ism
F(m,2n) 225 G(m, 2n).
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More generally, we have

Lemma 2.2.5 Let F 22 G be a homomorphism of formal group laws over R*.

Suppose that F is homogeneous of degree 2n, and that f(z) satisfies

i. f(z) has degree 2k when z is taken to be of degree 2n, and

i. the element a = f'(0) of R**~™ is not a zero-divisor.

Then G is also homogeneous and has degree 2k. Morever, if R is complete with respect
to the topology defined by an ideal m, then f(z) restricts to a homomorphism

F(m,2n) 225 G(m,2k).

Proof: Since
f(z) = az + o(z?), |a| = 2(k —n),

over 1 R* one can study the power series f~!(z) which has degree 2n when z is taken
to have degree 2k. Over 1R*, G is given by

G(z,y) = fF(f7' (=), f'(y))

which is homogeneous of degree 2k. Since a is not a zero-divisor, the localization
R* — 1R* is injective, and G has degree 2k as a formal group law over R*. This
sitation is summarized, and the proof of the second part of the lemma given, by the
diagram

m2n X m2n F , m2n

] |

G
m* x m2* — m2. O

Corollary 2.2.8 In the situation of Lemma 2.2.5, the coefficients of G(z,y) are
concentrated in R?**.

Now we apply (2.2.5) to Lubin’s quotient formal group law F/H. Let F be a
homogeneous formal group law of degree 2 over a graded domain R* which is complete
with respect to the ideal m. Let H be a subgroup of F(m, 2) of order n. Then by (2.2.1),
fu(z) has degree 2n when z is taken to be of degree 2, and ay = f};(0) has degree
2(n - 2).

Corollary 2.2.7 F/H is homogeneous of degree 2n. In particular, the coefficients of
F/H are concentrated in R*™*.
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The formal group laws of complex-oriented cohomology theories are homogeneous
of degree 2. If H is a subgroup of order n, then the quotient formal group law F/H is
related to a formal group law of degree 2 which we call v F/H, the normalized quotient.
It is defined in terms of the normalized homomorphism vfu(z),

vhuta) = 25 € R, (228)

The normalized formal group law v F/H is defined so that
F 2% yF/H; (2.2.9)

it is defined over R[i] since vfy(z) = = + o(z?) is an invertible power series over
R[;L]. By Corollary 2.2.7, vF/H is homogeneous of degree 2.

The integrality results (4.0.7) and (5.4.10) are based on the comparison of vF/H
and F/H. By construction, they are related by

F 4, yF/H 255 F/H.
Let u# : R[] — R[-]" and 67 : R™ — R[ﬁ;]z‘ be defined by

Imi

p(m) = ag m (2.2.10)
—iml

§3(m) = ag™m. (2.2.11)

Recall (2.2.7) that the coefficients of F/H(z,y) are concentrated in R?*"*.
Proposition 2.2.12 F/H and vF/H are related by
F/H = ul vF/H
vF/H = §8F/H

Proof: This is a consequence of the more general

Lemma 2.2.13 Let R* be a graded ring in which a is a unit such that
la| = 2(n — k).

Suppose that F is a formal group law which is homogeneous of degree 2k. Then F and
F** are related by

F= = uF
F = §F*,
where B2 25 R gnd R £ R+ gre the homomorphisms

pi(m) = a®m

6%(m) = a~Fm
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Proof: We prove one case, that F' = §2F°%. Let F* be given by
F(z,y)=z4+y+ ) %2’y € R*[z,y].
ij>1
Note that by Lemma 2.2.5, we have
i, € RIM(1-i-5)

It follows that |
BF**(z,y)=c+y+ Z yijatilgiyd,
ii>1
On the other hand,
F(z,y) = a”'F**(az, ay)

=z+y+a™ Y %,(az)(ay)

i,>1

=z+y+ Z 'y."ja"“"lx'-yj. a
0,521

2.3 D*: a universal ring for formal subgroups

In this section we assume that E* is a complete local Noetherian domain with maximal
ideal m and residue characterstic p, and we suppose that F is a homogeneous formal
group law over E* of degree 2, whose mod-m reduction has height A. Thus this
section covers the case of E, which we study in detail in section 5. The analogous
constructions for elliptic cohomology are the subject of section 6.1.

If F is a formal group law over E* and A is a finite abelian group, a monomorphism
A — F(m)

is called a “level-A structure” on F. According to (2.2.2), a level-A structure on F
over a complete Noetherian domain determines quotient formal group laws

F/B € E*[z,y]
for every subgroup B of A.

Since an element of F(E*) of order p* is exactly a root of the p*-series, which
has Weierstrass degree p**, the subgroups A which occur can be studied inside the
algebraic closure of (the fraction field of) E*. Over a complete local ring E* with
maximal ideal m we write F(E*) for F(m).

Theorem 2.3.1 ([LT65]; see also [HKR91]) Let O* be the ring of integers in the
algebraic closure of the fraction field of E*. Then
p"F(O‘vz) = (Z/pkz)h
F(O"2)irs = (Qp/Z,)"

3
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Let A, be an abelian group isomorphic to Zg, so

A% = (Q/Z,)"

although no explicit isomorphism has been chosen. Let Aj = ,xA%, be the subgroup
of elements of order p*; A} is precisely the dual of

Ak = A /P Ao.
We can rephrase Theorem 2.3.1 as saying that there exist compatible isomorphisms
Ay S . F(0%2). (2.3.2)

We describe next an observation of Hopkins—-Kuhn-Ravenel to the effect that in the
case of a ring £* = E*(pt) which comes from a cohomology theory with a complex
orientation, the orientation and the group Ax conspire to provide an extension Dj of
E* which comes equipped with a canonical level-A}, structure

AL ———>"’":" +F(D;,2).

Moreoever, the ring Dy is as small as it can be.

A complex orientation on E determines a map

EAxC
A surse l € E*BA (2.3.3)
BA

which is an element of

Homy,,[A°, F(E*BA,2)).

The role of E*BA in describing subgroups of the formal group law is moderated by
the following observation.

Lemma 2.3.4 ((HKR91)]) The natural transformation
Homg._qy[E*BA, R*] — Hom,,,[A", F(R",2)]

given by

fr—fod
is an equivalence of functors of pairs (A, R), where A is a finite abelian group, and
R* is a complete, local, graded E*-algebra.
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Lemma 2.3.4 says that £*BA reresents the functor
R* — Homgy,e[A", F(R",2)].

However, E*BA is not a domain, so Lubin’s theorem doesn’t apply. Moreover, not
every map

E*BA — R*

represents a monomorphism. Note, however, that when R* is a domain, then a
homomorphism

A5 F(RY)
is a monomorphism precisely when ¢(u) is not a zero-divisor, for u # 0.

Now take the case of Ay, and let S C E*BA; be the multiplicative set generated
by the set
{¢(u) € E*BA: | 0 # u € A}}

of Euler classes of non-trivial line bundles over BAy. The ring Dj is defined by
D; = Im[E*BAy — S™'E*BAy).
D}, comes with a homomorphism
buniv : AL 2222 F(E*BAy,2) — F(D},2) (2.3.5)
which is represented by the localization map
E*BA. S D;.
The basic results about the ring D} are

Theorem 2.3.6 ([Dri73, KM85, Hop91]) The ring D} is a domain and is faith-
fully flat over E*. It represents the functor (of complete local E*-algebras)

Di(R") = {level-A}, structures on F(R*,2)}. O
Proposition 2.3.7 The homomorphism
A: Duniv ka(D:)
is an isomorphism.

Proof: ¢yniv is the universal monomorphism which gives Proposition 2.3.6. According
to Theorem 2.3.1, the group ,«F(Dj) can be no larger than A;. O
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We proceed to construct a ring D* = D, with a full level A% -structure as a limit
of the Dj. The inclusions

Ap_, — A (2.3.8)

yield forgetful tranformations
Dy — Dy-1.

These are represented (2.3.6) by maps
k-1 — Di.
The ring D* is the colimit
D* =colim(... » D;_, = D} — ...). (2.3.9)
It comes with an isomorphism
A%, 2% (D", 2)tors
Since the D;,. are free over E*, the ring D* is flat over E*, and so
Proposition 2.3.10 The functor D*(—)
X +— D* Qg E*X

is a cohomology theory for finite spaces.

Proposition 2.3.11 If H is a finite subgroup of F(D*,2):,r, whose ezponent divides
p*, then Lubin’s isogeny fy and the quotient formal group law F/H are defined over
Dy :
fu(z) € Di=] C D*[z], and
F/H(z,y) € Dilz,y] C D*[=,y].

Proof: This follows from Lubin’s theorem (2.2.2) and the fact (2.3.6) that Dj is a
Noetherian domain. O
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3 Character theory

The main results of this section are Theorems B and C of the introduction. They
are proved in section 3.2, after we define the operation Q¥ using character theory in
section 3.1.

3.1 The cohomology operation Q¥ defined by a subgroup H
Generalized characters

The rings D* and Dj are the natural range of the character map of Hopkins—-Kuhn-
Ravenel . Suppose that G is a finite group and that k is so large that p* kills the

p-torsion in G. Let
Ao = A = G

be a homomorphism: if one chooses an isomorphism Zﬁ 2 Ao then a determines
an h-tuple of commuting elements of G of p-power order. The character map corre-
sponding to a is the ring homomorphism

E*BG =% D*
given by the composite
E*BG =5 E*BAy 5 D — D~

Remark: Hopkins-Kuhn-Ravenel use the ring L* = %D‘ as the range of their char-
acter map, because only after inverting p does the “total character map”

L* ®E‘ E:BG l) H L*
conj. classes

Ao —G

become an isomorphism. However, for our purposes it will be essential not to invert
p, because we must retain the maximal ideal of D* in order to realize the quotient
formal group laws F/H as deformations (See (5.2.1)).

The character map defined by a formal subgroup H

Now let H C F(D",2)s0r, be a finite subgroup of order n and exponent p*. Specifying
H is equivalent to specifying the subgroup

i H C Ay CAL.

univy
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Let Ann[H] C Ax C A be the kernel of the evaluation map
Aoo e_vai) Homgpa[¢_lH3 C* ]s

and let G be the cokernel
Amn[H] = A, =&

Lemma 3.1.1 There is a natural isomorphism

G*=H.O

Let xy be the composite

E*DgX -2 E*(BG x X) —=— E*BG ®g: E*X

Jeose (.12
D* @g. E*X.
The operation Q' is the natural transformation
Murx & prnx
given by
MU*X 28 MU™ DgX & E*™DgX X5 D™ X. (3.1.3)

We are ready to prove

3.2 Theorems B and C.

Theorem 3.2.1 (“Theorem B”) Q¥ is additive. Moreover, it is a graded ring
homomorphism

Mu*x %5 ¢, D> X, (3.2.2)

where ®,R* is the graded ring which is R™* in degree k. In particular, Q¥ is a ring
homomorphism

MU 3 8, D, (3.2.3)
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Theorem 3.2.4 (“Theorem C”) Let | be a complez line bundle, and let epuL
X

and egL denote its Euler classes in MU and E cohomology. Then Q¥ on Euler classes
is given by

Qf(emuL) = fu(egl) € D™ X. (3.2.5)
Its effect on coefficients is determined by the equation

QY FMY = F/H. (3.2.6)

The proof of the additivity of Q¥ in Theorem 3.2.1 imitates Atiyah’s proof [Ati66]
of the additivity of the Adams operations in K-theory. The basic ingredient is the
formula of Hopkins-Kuhn-Ravenel for induced characters:

Theorem 3.2.7 ([HKR91]) Let G be a finite group and let S C G be a subgroup.
For u € E*BS and A, L, G one has the formula

Xf(TrEu) = Z Xg“fg(u)a
9S€(G/S)ims

where TrE : E*BS — E*BG is the transfer map in E-cohomology associated to the
fibration G/S — BS — BQG.

Proof of Theorem 3.2.1: In (3.1.3), all the maps are ring homomorphisms except Pg.
By Lemma 2.1.4, P is multiplicative. Suppose we order the elements of G, which
determines an isomorphism

AUtsets G E’ Sn

and so a monomorphism

G = S,.
Then one obtains a character map
E'D,X X D°X
such that the diagram
MU*X -2 MU D,X

Pg w? te
MU DX E™D. X
0)‘
tg Xw

<

E'Qnt DG X XH , DZn: X
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commutes. By (2.1.5), P, is given on sums by

P.(z+y)= E Tr PxxP,,_Jy)
7=0
SO

QH(I + y) = Z XwTrfntEPJ'an—jya

i=0
since tg commutes with the transfer. By the formula for induced characters (3.2.7),

E, _
XwTrj,nu = Z Xg-lwglU,
95, %5n; €(SfS;XSny)Imw

Since the image of G in S, is transitive, the sum is empty unless j = 0 or j = n. So
Q¥(z+y) = xutePoz+ xutePsy
= Q(z) +Q%(y).
Thus Q¥ is additive. O

Proof of Theorem 3.2.4: First we prove (3.2.5); then (3.2.6) will follow from Lemma
3.2.8. In the diagram

MUrx £o,  Myurpgsx B, E?™DeX

[a- -
MU™(BG x X) —2»  E™BG x X)

(E*BG ®g- E*X)*

Xapgr

D2n X,
the right outer arrows give Q. Going around the left outer arrows, we get
Q% (emul) = ¢teA"Poemyl
EGxC
= ¢t [ |emv ! + emulL
u€G*=H BG MU
EGxC
= ¢ ] |ee ! +egl
heH BG )°

- V+@4
heH

= fu(eel).
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where the second equality is Lemma 2.1.9.

Now recall (2.3.6) that D* is a domain. The effect of Q¥ on coefficients (3.2.6)
follows from (3.2.5), Theorem 3.2.1, and

Lemma 3.2.8 Let C be a complez-oriented cohomology theory. Suppose that
MU2:(_) .9.) anb(_)

is a natural transformation of ring-valued functors. Suppose that the effect of Q on
Euler classes is given by

Qlemul) = f(ecL), (3.2.9)
where f(z) is a homomorphism of formal group laws
FCLF

such that f'(0) is not a zero-divisor in ®,C*. Then Q is determined on MU* as the
homomorphism classifying F' :

Q.FMU = F'.
Proof: Let L; and L, be the two tautological bundles over CP* x CP*. By (3.2.9),

Li®L,
]>

Q(emuLy o emvLl,) = Q(emuv i)
CP> x CP*®

Ll ® Lr

= 0(ec ! )

CP* x CP*

= o(ecLz F-‘t' ecL,-). (3.2.10)

On the other hand, we know that @ is a ring homomorphism

MU*(CP* x CP*) 2 C™(CP> x CP*),
sO
Qlemuls 4 emvLs) = QemvLi) ot Q(emuL,)

= 0(ecLy) Q‘;I-MU 0(ecL,). (3.2.11)

Comparing (3.2.10) and (3.2.11), we see that
6FC(z,y) = Q.FM(6(z),0(y)),
so Q. FMU =F'. O
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3.3 The character-theoretic description of the total power
operation

Hopkins-Kuhn-Ravenel give a description of the cohomology of the full Borel con-
struction D, X in terms of a total character map

E*(Erx X") 5 [ D (X™)
Am—anr

which we now describe. For a map A, = m, let G = (Ima) be the subgroup
generated by the image of a. The isomorphism of G-sets

T g G x (W/G)
gives an isomorphism
Fixedg[Maps[r, X]] = Maps[r/G, X]

between the fixed point set of X™ by the action of G and X*/¢. The component of ¥
corresponding to a map « is

E*(Em x X™) — E*(BG x X™/¢) X2, p*(X™/%). (3.3.1)

Let TZ be the natural transformation
MU*X 2% MU™D,X & E™D, X % J[ DX (3.3.2)
Ao Zx

which is the image of the total power operation of MU under the character map of
Hopkins—-Kuhn-Ravenel .

Theorem 3.3.3 For a map Ao, — 7, let G = (Ima) be the subgroup generated by
the image of a and let H = (Ima*) be the subgroup of A%, generated by the image of
the map

™ 55 AL
Suppose that |x| = n, |G| = r, and [v : G] = n/r = k. Then the component of TE
corresponding to a is given by

praTr(z) = Q%(z*%) € D*™(X*).

Proof: Comparison of (3.1.2) and (3.3.1) shows that if « is surjective, then
proTy = QY.

For general a, the result follows from the case of surjective a, the definition of Q¥
(3.1.3), and
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Lemma 3.3.4 In the situation of the theorem, the diagram

MU*X 2, Myump_x

MU2k~X1r/G Pg , MU?n-DG(Xr/G)

commutes.
Proof: Represent a class z € MU?*X as f.1 where f is a complex-oriented map
z 4 x.
Then P,z is represented by the map
D.Z 24 b, x.

The isomorphism of G-sets

T2Gxr/G
G
provides the vertical isomorphisms in the commutative diagram

EGx f™
EG é 2r — 4 EG é X7

DG(Z”/G) Dg(£*/9) Dg(X"/G).

The bottom row of the diagram represents Pg(z**) by definition. The top row rep-
resents the composite

MU*X &5 MU™D,. X — MU™DgX

because it fits into the pull-back diagram

EGéZ’r — D.Z

EGgf"l lef

EGéX" — D X. O3

Remarks: 1) For example, the component of T'Z corresponding to the trivial map
Ao 2, r is the nt® external power, which we knew already since P, is a total power
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operation and evaluation at 0 corresponds to the pull-back by the inclusion of the
fiber
X" — D.X.

2) Also, a computation similar to (2.1.9) shows that for
Aw > HS G,

we have
Xo(Bi)"PgeL = (fu(eL))/H,

which is a special case of Theorem 3.3.3 in view of the multiplicativity of Q¥.

3.4 Galois theory and the proof of Theorem D

The group Aut[A}] acts on Dj, because it acts on the functor Di. The fact we shall
need is

Proposition 3.4.1 ([Hop91]) The ring of Aut[A}]-invariants in D} is ezactly E*.

The group Aut[A}] also acts on the set

SG, = { subng?ps of } '
k

We can use Proposition 3.4.1 and the action on SG; to produce operations whose
target is £ rather than D. In what follows, we shall not distinguish notationally
between a subgroup

HCA;

and its image

¢(H) C pF(D},2)
under the isomorphism (2.3.7).

Proposition 3.4.2 For H € SGi and a € Aut[A}], we have
Q™ = aQ",

where on the right the action of a refers to the action of Aut[A;] on the ring Dj
induced by the action on the functor it represents (2.8.6, 3.4.1), together with the
definition (2.3.10) of D} X as

DiX = D; ®g- E*X.
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Proof: It suffices to check this when X is a point space, since yy factors through
F*(BG x X)X E*"BG Qg E*X
and the action takes place entirely on the left of the tensor product.

Aut[Af] also acts on Ay, by adjointness. The commutative square

BAr =22 BA,

Bayl 18003

BG —i“-+ BaG

shows that )
E*BaG —— E*BG

o | [

Dy —— D
commutes. The proof is complete upon observing that the diagram

MU*X —— MU*X

o B

MU™ D,cX —— MU DgX
commutes. [

Let SGi(n) denote the subset of SGi consisting of subgroups of order n, and let
Z[SGk(n)] be the polynomial ring on the set SGi(n). The action of Aut[A}] on SGy
extends to an action of Aut[A}] on Z[SGk(n)]. We define the graded set Op* by

Opn — Z[Sgk(n)]Aut[A;].
Note that Op™ doesn’t depend on k as long as n|p*. An element p of Z[SGi(n)] can

be represented by
P = Z a; H H
1€l Hea;
where I is a finite set, a; € Z, and the q; are lists of elements of SGi(n), with possible
repetitions. For p € Op™, let Q* be the operation

Murx & prx

given by
Q=Y a [ @~ (3.4.3)

i€l Hea;

In this situation, Proposition 3.4.2 imples
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Theorem 3.4.4 (Theorem D) For an element p € Op™, that is, a polynomial in
Z[SGi(n)] which is invariant under Aut[A}], the operation Q* factors through E; that
is, @, defines an operation

MUX 35 E*X.

Corollary 3.4.5 (“Adams operations”) The full subgroup ,« F(D*,2) of points of
order p* defines an operation

MU X 9L, gt x

which has all the properties described in Theorems 3.2.1 and 3.2.4.

Corollary 3.4.8 (“Hecke operations”) The operation
R.= Y Qf

HCA}
|H|=n

is an additive operation

MU*X 2 g™ X
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4 Cohomology operations out of exact cohomology
theories

In this section we describe a recipe (Theorem 4.0.1) which we shall use repeatedly to
produce cohomology operations in exact complex-oriented cohomology theories.

Suppose that E is an exact theory; recall (1.0.2) that this means that
E*X =FE* M%- MU X,
where the tensor product is with respect to a genus
MU* — E*.
The resulting natural transformation
MU*X & E*X

will be denoted tg.

Let C be a cohomology theory with a ring structure, and let @ be a natural
transformation of ring-valued functors

MU*X 3 8,0 X.

Let F'9 be the formal group law over ®,C* classified by Q(pt).

Such C and Q are given, for example, by D and @” as in Theorem 3.2.1. Other
important examples are produced by Lemma 4.0.2.

Our main result is an immediate consequence Quillen’s theorem and the properties
of the tensor product.

Theorem 4.0.1 The operation Q factors through tg to an operation
E'X 3 8,C°X

if and only if there is a ring homomorphism
B:E*— &,C"

such that
B.FE = F9.

The same result obtains if one restricts to even-dimensional classes, provided that the
ring E* is concentrated in even degrees. [
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The operations
H
MUTX 35 8. DX

of section 3.1 can be used as input to Theorem 4.0.1, and section 5 we shall produce
the homomorphisms 8% required by the theorem. Another method of producing
operations from Theorem 4.0.1 is provided by strict isomorphisms of the formal group
law. In this case, it produces a stable operation.

Lemma 4.0.2 Let C be a complez—oriented cohomology theory, and let
ecL € C*CP*
be the Euler class of the tautological bundle. For each power series
8(ecL) = ecL + o(ecL)? € C*CP*
there is a unique transformation of ring theories
MU*X & C*X

such that
te(eMuL) = a(ecL)

and
tg.FMU = (FC)O.

Proof: See, for example, Adams [Ada74]. O

Corollary 4.0.3 (e.g. Miller [Mil89]) Let E and C be complez—oriented cohomol-
ogy theories, and suppose that E is erxact. Suppose that 3 : E* — C* is a ring
homomorphism, and that there is a strict isomorphism of formal group laws

F® % B, FE. (4.0.4)

Then B extends to a stable natural transformation of functors of finite complezes (to
rings)
E'X A CX

whose effect on Euler classes is given by

/\(CEL) = a(ecL) (4.0.5)
Proof: Use Lemma 4.0.2 to produce a natural transformation of ring theories
MU*X % C*X
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whose effect on Euler classes is
to(emuL) = O(ecL).
By Lemma 3.2.8, the effect of ¢4 on coefficients is given by
FC 2ty FMU,

Now apply Theorem 4.0.1 to ¢ty and 5. O
Our main application of (4.0.2) is to the normalized quotient (2.2.8)

vig(z) = Ju(z) € iD"ﬂa:]].
ay ag

By applying Lemma 4.0.2 to v fy(z) we obtain

Proposition 4.0.6 There is a stable natural transformation

» VQH 1
MU*X — —D*'X
aH

of functors of finite complezes to rings. On coefficients, it classifies the normalized

quotient
vQHFMY = yF/H.

L
The effect of vQH on the Euler class of a line bundle | is
X

vQH(eL) = vfy(eL).
Proof: By construction (2.2.8), fi(z) = z + o(z?) is homogeneous of degree 2 when
the degree of z is 2. Also by definition
vF/H = F"/&,

Lemma 4.0.2 provides us with the operation »Q. O

The relationship between the operations vQf and Q¥ will allow us to prove
integrality statements about stable operations.

Proposition 4.0.7 Let H C A, be a subgroup of order n. On even-dimensional
classes, the diagram

MU*X —— MU*X

ol e

pmx L, lpex
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commutes, where 67 is the homomorphism of (2.2.10)
_im
69 (m) = ag™ m.

Proof: By the definition of fy and v fy, and by Theorems 3.2.4 and 4.0.6, the diagram
commutes on Euler classes of line bundles. By the definition of F/H and vF/H and
Theorems 3.2.1 and 4.0.6, it commutes on coefficients. Moreover both the clockwise
and couterclockwise composites are maps of rings. Since vQ¥ is stable, the result
follows since the facts listed so far imply that the two operations determine the same
element of

Hom, pmu[MU.MU, aiD-]. O
H

For odd-dimensional classes, it will be useful to know that

Proposition 4.0.8 The operation afvQ¥ is integral on (2r—1)-dimensional classes:

ot vQH
MUZr-lX _i_q_’ Dan—lX C _a_l_DmX
H

Proof: Let o denote the suspension isomorphism, and suppose m € MU? "' X. By
Proposition 4.0.7, we have

ayvQ"(om) = Q¥(m) € D™ X.
Since vQ¥ is a stable operation,
aywQ¥(om) = alovQH(m).

Finally, we have
Dznr—IX . _LDznr—lX
oy

DX — LDp*X. O
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5 Power operations in E

In this section we focus on the cohomology theory Ej, and study the problem of
constructing a ring homomorphism

e 8,00
such that
BYF = F/H, _ (5.0.1)

as required by Theorem 4.0.1. Our main result (Theorem 5.3.1) is that there is an
(essentially unique) genus

MU: tpos E;

such that the resulting formal group law satisfies this condition for all finite subgroups
H. This is the genus announced in Theorem A.

2% yH 2n%x

for every H. In section 5.4 we study the case of the group H = «F(D*,2), which
yields the unstable Adams operation ¥** (Theorem E). We begin by describing

5.1 The cohomology theory E;

Let E; be the complete, Noetherian, local domain
E; = ZJu,. .. ,up-1][u, v, |us =0, |u| = -2.

Let t4. be the genus
MU* — BP* 2% E;,
which is given on the Araki generators [Rav86] by

wu?'"l i <h-1,
the(vi) = {u*""! i=h, and (5.1.1)
0 i > h.

It is an immediate consequence of Landweber’s exact functor theorem that
Proposition 5.1.2 The functor
E; X =E; @ MU*X
MU*
is a cohomology theory.
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The important feature of Ej is that the coefficient ring Ej; and the formal group
law F = tp FMY represent a functor. Denote by

K; = F,lu,u™!
the graded residue field of Ej, and by

e(z,y) € Kilz,y]

the formal group law over K}, obtained by reducing the coefficients of Fj, modulo the
maximal ideal E;. Note that since the formal group law Fj satisfies [Rav86]

- -y _p(a-1) -
[plF, (z) = pz + wuP" 2P + ... + upo w1 Pt (5.1.3)
Fa Fn  Fa Fi

the formal group law ¢ satisfies

[ple(2) = uph-ll'pha
and so has height h.

Let R be a complete, local, graded Z,[u,u~!]-algebra, with residue field X*.
When f is a power series over a local ring, we denote by f the power series over the
residue field obtained by reducing the coefficients of f modulo the maximal ideal.

Definition 5.1.4 A formal group law G over R* which is homogeneous of degree 2
is a deformation of ¢ to R if

G(z,y) = ¢(z,y) € K*[=z,y].

Two deformations G, and G, are x-isomorphic if there is an isomorphism of formal
groups

G 4G,

such that _
f(z) ==z.

The fundamental result about Ej is

Theorem 5.1.5 ([LT66]) Let F be any formal group law x-isomorphic to Fy. The
ring E; and the formal group law F represent the functor

. * — isomorphism classes of
= { deformations of ¢ to R* }

In fact, if G is a deformation of ¢ to R, then there is a unique homomorphism
E 2R
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such that for any choice of F, G is x-isomorphic to B.F Moreover, the x-isomorphism
G L A F

is uniquely determined by G and F.
Let Dj be the ring of section 2.3 for the pair (E}, F}).

Corollary 5.1.6 The ring D} represents the functor

* — isomorphism classes of
deformations G of ¢ to R*,
with a level-A} structure

A: _4," G(R’ 2)tors

R+—s

Proof: This follows from Theorem 5.1.5 and Theorem 2.3.6.

5.2 Lubin’s quotients F}/H are deformations

Because the theories Ej} are periodic, constructing a homomorphism (for a subgroup
H C AL, of order n)

ﬁH
E: 25 9,0

such that
BYF = F/H
is equivalent to constructing a homomorphism
H
E; > D*
such that
n-1,

Y F = (FH" *:
by Lemma 2.2.13, B and ¥ are related by
ﬂH = /‘n 0 7Ha
where "
E; = E¥

is the homomorphism

1-n)im

pt(m)=u—2 m.

For this chapter only, we take Lubin’s quotient fy(z) to be homogeneous of degree
2. In other words, the homomorphism which is elsewhere written

u"'lfy(z).
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Similarly, we take the quotient formal group law
F/H
to be homogeneous of degree 2, so one gets a homomorphism
H — F(D",2) 4% F/H(D",2).

A x-isomorphism

FS F,

yields an isomorphism

F(R",2) = Fy(R",2),

so a level structure

A* 3 F(R)2)
is equivalent to a level structure

A* 2% Fy(R",2).
The utility of Theorem 5.1.5 in our work stems from

Lemma 5.2.1 The formal group law F/H is a deformation of ¢ to D*. Moreover,
the corresondence

F F/H

preserves x-isomorphism classes.
Proof: Recall that F/H is defined by the homomorphism
F % F/H

where .
fu(z) = w1z

F/H is a deformation since u®~'z™ is an endomorphism of ¢, so the diagram

F fu(z) F/H

L

un-l:u
p— ¥

commutes, where the vertical arrows represent reduction modulo the maximal idea.
To prove the part about preservation of *-isomorphism classes, suppose that

FLF
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is a x-isomorphism. Suppose that
¢ S o
F'=S F'|H
is the homomorphism based on the group law F’. Since
F(D*,2) & F'(D*,2) 22 F'/H(D",2)

and

F(D*,2) 4% F/H(D* 2)
have the same kernel, Theorem 2.2.3 implies that there is a unique isomorphism
FIH S F'/H

such that
F 25 F

ful lfk
F/H £ F'/H
commutes. ¢’ is a *-isomorphism since
Tu(@) = Fa(e) = w2~ O

Let
‘YH

E; — D*

be the homomorphism determined by the x-isomorphism class corresponding to H,
and let

F/H 25 AHF, (5.2.2)

be the *-isomorphism determined by H and a group law F' which is #-isomorphic to
F;. Then

Lemma 5.2.3 77 is the unique homomorphism
E; = D*
such that YA F is x-isomorphic to F/H as deformations of p. O

We really want strict equality in equation (5.2.2).
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5.3 Theorem F and power operations in E}
The main result of this chapter is

Theorem 5.3.1 (“Theorem F”) There is a unique formal group law Fpo over Ex
which is x-isomorphic to Fy and which satisfies

v¥ Fpo = Fpo/H (5.3.2)
for all finite subgroups H.

We give a proof in section 5.5. For now, we examine the consequences of Theorem
5.3.1 for cohomology operations. Let
MU*X 28 Er X

denote the orientation specified by Theorem 5.3.1. As remarked in the introduction,
equation (5.3.2) is guaranteed to be satisfied by a formal group law F if there is a
total power operation

Erx X, gD, x

which is compatible with the orientation
MU*X L E X

in the sense that

pMU

MU*X —=— MU*D.X
tl lt (5.3.3)

Erx L5, EmD.X

commutes. On the other hand, using the orientation provided by Theorem 5.3.1, the

operation @¥, and Theorem 4.0.1, we have

Corollary 5.3.4 If H C A%, is a finite subgroup of order n, then there is a unique
operation

EZ- X _‘_I’_i D?na X
such that

MU*X
H
tpol Q
Erx X, pmx
commutes.
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Theorem 5.3.5 The operation

2% Tfh 2nx
Murx I [ D x@),

Aoo:'*fr
which is the image of the total power operation of MU under the character map of
Hopkins—Kuhn-Ravenel (3.3.2), factors through the orientation
MU*X 22 Erx
to an operation
—h
E’%:X _}.)L, H D2n-x1r/(a).

Ao -:-Hr
The projection to the component corresponding to a homomorphism

Ao > 7
is .

proPa(z) = ¥ (%) € D™(X™(@),

where k =[x : (a)].

Proof: This is just Corollary 5.3.4 combined with Theorem 3.3.3. O

Corollary 5.3.4 is of particular interest in the case H = A}, for then one obtains

5.4 The unstable Adams operation ¥#* as a power operation.

Denote by f,, F/p, etc., the quotient constructions corresponding to the subgroup
A% = ,F(D*,2). By (3.4.5), we have

fo(2) € Ejfa],
Fijp(z,y) € Ei[[z,y], and
MU*x L B X.

Proposition 5.4.1 For any formal group law F *-isomorphic to F, there is a unique
*-isomorphism
FpL F

Proof: First of all, note that [p]r(z) is an endomorphism of F. Because of the co-
equalizer diagram blez)
rlz

,F(D*,2) — F(D*,2) ﬁg F(D*,2),
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it follows from Theorem 2.2.3 that there is a unique isomorphism of formal group
laws ‘

FpL F
such that
[plr(z) = ¢°(fo(2)). (5.4.2)

The fact that

Fo(z) = v 72" = [p]p(),

shows that
7(z) =z,

so g? is a *-isomorphism. O

Corollary 5.4.3 The homomorphism 4* determined by the deformation Fp is the
identity, and BP is the homomorphism

gP =y
Corollary 5.4.4 The condition
1 F = Fp,
which is a special case of equation (5.3.2), is equivalent to the condition

fo(z) = [plr(2). (5.4.5)

Proof: The proof of (5.4.3) is just Proposition 5.4.1. (5.4.4) follows from equation
(5.4.2), since with the formal group law of Theorem 5.3.1, we have

(z)==2

forall H. O

Remark: Equation (5.4.5) turns out to determine the formal group law Fpo and
figures in the proof of Theorem 5.3.1. See section 5.5.

Theorem 5.3.4 applied to QP, together with Corollaries 5.4.3 and 5.4.4, are the
case k =1 of

Theorem 5.4.6 (“Theorem E”) With the orientation

MU*X 228, Er X
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desribed in Theorem 5.3.1, the operation
k
EFrx X g™ x

obtained in Corollary 5.3.4 satisfies

UP* (eL) = u """ [p*|p(el) (5.4.7)
L
when eL € E}X is the Euler class of a complez line bundle | . On coefficients, ¥?"
X
is given b
g y ‘ppk — ppkh

The cases k > 1 are verified in the same manner. O

Remarks: Because of (5.4.7), we call ¥** the “p*th unstable Adams operation” in
E). Although an Adams operation could have been defined with any orientation on
E}, our orientation is the unique one in which the Adams operation is obtained as a
power operation, in the spirit of [Ati66]. More familiar in the context of theories like
E, is the stable Adams operation

Ex % %E,‘;X.

This operation is obtained, using the method of Corollary 4.0.3, from the power series

p p
and the homomorphism
1
E; — -E;
h o
m— p'l'_;'lm. (5.4.9)

With the orientation ¢po, it coincides with the operation produced from the stable op-
eration vQP (4.0.6) using the homomorphism (5.4.9). Then our comparison theorems
for vQP and @Q” (4.0.7,4.0.8) prove that on even-dimensional classes, we have

kh_y

uf

)5 (z),

P (z) = ( ”

and moreover that
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Proposition 5.4.10 The unstable operation p'y)® is integral on 2i and (2i — 1)-
dimensional classes:

EXX 2 EYX and
E¥-1x BY, g1y g
Remark: This result is well-known to the experts; see e.g. [Wil82]. The attractive

feature of our method is that it the proofs imitate the “geometric” proofs available
in K-theory.

The rest of this section is devoted to a

5.5 Proof of Theorem F.

Our proof is divided into two steps, of which the most important is Theorem 5.5.1.
Since the formal group laws F/H are deformations of ¢ (5.2.1), it shows there is a
unique formal group law Fy which is x-isomorphic to F/H and which satisfies equation
(5.4.5). The case H = 0 yields Fpo. Since ¥ is a ring homomorphism, it preserves
this formula for the p-series, and so must send Fpo to Fy. The second step (5.5.16)
is to show that the p-series of Fpo/H also satisfies equation (5.4.5). By uniqueness,
it will follow that
Fpo/H = Fy = v¥ Fpo.

Theorem 5.5.1 (“Theorem A”) Let E* be a complete, graded, local domain which
is a Zyu,u"']-algebra, and let F be a deformation of ¢ to E*. Let E} D E* be an
eztension over which there is a level-A] structure

A} S L F(E;,2).

There is ezactly one representative of the x-isomorphism class of F over E* which
satisfies (5.4.5).

Proof: Ezistence: It suffices to prove the statement in the universal case: suppose we
can construct a formal group law Fpp over E; satisfying (5.4.5). If

E; 2 E*
is the homomorphism such that there is a *-isomorphism
F i’ ﬂaF PO,

then the level-A} structure
A} 5 oF(E],2)
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determines an extension of 3 to a homomorphism
D: 5 E;

such that

Duniv l J}9¢

pFPO(D;,z) L’ pﬂtFPO(E;, 2).

commutes. Then

[P]B.Fpo (z) =B [H (z + ¢um'v(c))]

F
en;  TPo

=1 + 9(4(c)), (5.5.2)
cEA} *fPO
which is (5.4.5) for B.Fpo.

We turn to the universal case. For the purposes of the exposition, it is extremely
convenient to take advantage of the distinction between formal groups and formal
group laws: let £ denote the Lubin-Tate formal group on Ej for lifts of the formal
group law . For any choice of coordinate y on £, denote by F¥ the resulting formal
group law. Then the homomorphism

A; S FY(DY)

factors as
A 2 (D) S FY(DY).
Under a change of coordinate

Fv 2, F=
J*—iso

the level-A] structure changes by
A} —— L£(D}) —*— F¥(Dj)
l: 1= ‘ 15
A; 2= £(D}) —> Fe(D))
In this language, Lubin’s homomorphism f, becomes

72(2) = TL(= 4 ¥($())-

c€A}
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The proof is inductive, on powers of the maximal ideal I of Dj. Let y be any coordinate
on £ which gives a group law FY x-isomorphic to Fj. Let g¥(t) € E;[t] denote the
unique +—isomorphism

F'lp s F*
such that
lplrs(t) = ¢*(£5 (1)), (5.5.3)

whose existence and uniqueness are the matter of Proposition 5.4.1. Write
¢(t) =t +alt).

Since g¥ is a *-isomorphism, we get automatically the case n = 2 of the hypothesis

that .
a(t) = )_a;t’, with a; € I"™.

ix1
Let 6(t) be the power series
6(t) =t —a(t).
Since ¢V is defined over Ej, the coordinate
z=46(y)

on L yields a formal group law F* over Ej. We shall show that the *-isomorphism
g*(t) such that

[plF=(t) = 9" (f5 (1)) (5.5.4)
satisfies
g°(t) =t (mod I™). (5.5.5)
By construction, ¢ is a homomorphism of formal group laws
Fr i pe,

Thus the diagram

Fv X, F=

w| |

Fv 2, Fe

commutes; in other words, we have

8([p)*(y)) = [p*6(y)- (5.5.6)
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Substituting (5.5.3) and (5.5.4) into this equation yields

§lg*(f3 (¥ = g°1f7 (6(v))]- (5.5.7)

Notice that

f;6w) = v "~ I1 6w g =(6(0)
= W H6 v) & 67 (2(4())
= v ,_.Q; 5(y  ¥(8(<)),
so (5.5.7) becomes
Sle* () = "l T &(v & w((e))]. (5.5.8)

cEAS

We can evaluate the left side modulo I™ very easily:

6(g*(f3(¥))) = 6(f;(y) + a(£3 ()
= 5(f3(y) +a(w”"y™)) (5.5.9)
= fi(y) +a(w"7'y?) — a(f3(y) + a(w" 1)
= f1(y) + a(w"7'y") — a(f3(v)
= f(y),
where the equlva.lences are all modulo I™. The first equivalence uses the fact that
fiy) = w?"~1y?" (mod I) plus the fact that a(t) is a power series with constant term

zero and coefficients in I"~! (with n > 2!). The third equivalence follows from this
description of a(t), and the last equivalence is like the first.

All we know a priori about ¢” is that it is a power series of the form

g°(t) =t +b(t)
where

bt) =D bit), b e, » (5.5.10)

i21

61



so we start by evaluating right-hand-side of (5.5.8) modulo I?>. We can compute
[leea; 6(y F—f; y(é(c))) modulo I™ :

IT &y & w(e(e)) = T (v £ 9(8(0)) = a(y  y(4(c)))]

cEA} cEA}
=TI £ v(4) - X [H(v £ ¥(#(d)))
c ¢ ld#c
=TIy + y(6(c) = X " a(y) (5.5.11)

a(y + 9(4(c)))

o

(Recall that p € I is contained in the maximal ideal.) Continuing (5.5.11) modulo 7

shows that X
I 6y 4 y((e) = 4" (mod I).

cEAY

Equipped with these observations, we compute that if
b(t)=0 (mod '), j >2,
then for j < n,

g (@ [T 8(v + w(8(e)) = v~ I &(y 4 ¥(é(c)))

cEAY cEA?

+ (" T 8y 4 9(4(c)))

cEAY
= fYy)+ b y?") (mod ) (5.5.12)

Comparing (5.5.9) and (5.5.12), it follows in view of (5.5.10) that
b(t)=0 (mod IY),

and inductively that
b(t)=0 (mod I™).

Uniqueness: Suppose that FV satisfies (5.4.5) and that
Fv 2 e
i8 a *isomorphism '
6(ty=t+> ajt’.

j21
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Let m be the maximal ideal of E*, and let n be as large as possible so that
aj €m"

for all ;. Note that n > 1, and that if n = co then F' = F”, so we may suppose that
n is finite. Then, working modulo m™*!, we have

[pI*(z) = 6([p]*(67"(2)))
= 8(w" T (6 H(2) 4 y(4(c)))

cEAY

5wt T 67 (= 4 6(y(4(c)))))

cEAY
= "1 H 6! c)))+a(u" 17" )
c€AY
= f7(z) —w! Z a(z 4 2(8(9) [I (= & =(#(0)) + a(w”"~'="")
cEAY d#c

= fi(z) - w"1p a(w:):z:’"”'l + a(u? G )
= f; () + a(w”"'a?"),
so F* fails to satisfy (5.4.5). O

Denote by Fpo the formal group law over Ej *-isomorphic to Fj which is con-
structed in Theorem 5.5.1. For a finite subgroup H C AZ, of exponent p* and order
n and for [ > k we get level-A;/ H structures on the formal group law Fpo/H via

H —— H
'3

A} =2 Fpo(D},2) (5.5.13)
fu

A‘/H #H, Fpo/H(D;,2).

Corollary 5.5.14 The formal group law v¥ Fpo is the unique formal group law in the
*-isomorphism class determined by H over D} such that over Di_,,

Phareo@) = I (2 + 8¢/H(e)), (5.5.15)
ce,\;“/y 8 Fpo

where § is the x-isomorphism

Fpo/H 5 +H Fpo
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Proof: Let Aj denote the group
Al = oAk / H).

Any isomorphism

determines a level-A; structure
. 6¢/H »
Ay 2 A 28 Foo/H(DL,,2).
and so an extension of v7 to a homomorphism
* ‘YH *
DI — Diy,.

We are now in the situation in the beginning of the proof of Theorem 5.3.1; compare
(5.5.2). O

The proof of Theorem 5.3.1 is completed by

Proposition 5.5.18 For any finite subgroup H C A%, the quotient formal group law
Fpo/H satisfies (5.5.15).

Proof: The quotient Fpo/H is determined by the homomorphism fy. The p-series
[PlFpo/H(x) is determined by the functional equation

Fpo -2 Fpo/H
mp,,ol l[plppo (5.5.17)
Fpo —12. Fpo/H.
Let Z(z) be the product
Z(z)=uw"' I (= et ¢/H(c)).

CEA;,“/H Po/
pc=0

We are going to show that Z(z) satisfies (5.5.17). Let p~' H denote the subgroup
p'H={c|pce H} CApyy
Then Z(z) is exactly the Lubin isogeny

Z(z) = fo-1n/u(z)
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for the group law Fpo/H. The composition rule (2.2.4) applied to this case is
forrma(fu(2)) = fom1m.
On the other hand, by construction

[p]FPO (x) = fp(m)a

SO

fu([plFeo(2)) = fu(fo(<))
= fp-1H($). O

5.6 Example: K-theory
The group law of K-theory is the multiplicative group law
zry=z+y-vay,

where v € K~2 is the Bott element. This group law arises from the fact that the
L

Euler class of a line bundle | is

X
el =v7'(1 - L).
The roots of the p-series of FX are
M1-¢),0<j<p,

where ¢ = e?"/?,

Suppose p = 2. Then
[2)(z) = 2z — vz

On the other hand,
fa(z) = v_l(], - L)[v_l(l -L) -}t; 21,'-1]

=v}(1-L)[1-L+2-2+2L]
=v72(1 - L%
= v~ 1[2](z).

Similarly, for p odd, we have
[pl(z) = v™'(1 - L?)
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while

o) = [T = 1) 070 = 02
p—-1
= v [[(1- L)
— v—pcp(p-l)ﬂ ﬁ(c-i -L)
=v7P(1 - L?)

= v'7?[p](z).

Thus the multiplicative group law is the unique formal group law over (p-adic) K-
theory which is x-isomorphic to F; and which satisfies (5.4.5). In the case of E;,
Theorem A picks out the multiplicative formal group law.

The construction of the Adams operation U? given as Theorem E in p-adic K-
theory is in the same spirit as Atiyah’s construction [Ati66]. In the case of the
multiplicative group law, the only finite subgroups of the formal group law are the
groups ,FX, since the height of the group law is one. For greater heights, however,
there are other interesting subgroups of order n. As an example, we turn now to the
study of elliptic cohomology.
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6 Elliptic cohomology

Mike Hopkins [Hop89] has described the application of the character theory of
Hopkins-Kuhn-Ravenel to the elliptic cohomology theory Ell of Landweber-Ravenel-
Stong [LRS88]. In this section we add this information to the ideas developed in
sections 3 and 4 to produce two sorts of operations in elliptic cohomology. In section
6.4 we produce an “Adams operation”

Elrx X, %En'-’v’*x

L
whose effect on the Euler class of a line bundle | is given by
X

¥P(el) = 5'1;4L2 [pleu(eL),

where ¢ is a unit in Ell*; see below. The technique is the same as that of Theorem
5.4.6.

In the case of K-theory, this is essentially the only kind of power operation there
is, because the only subgroup of G,, of order n is the group ,G,. In the case of the
formal group law FZ" of elliptic cohomology, however, we have

FF = (Z/nZ)?,

so there are interesting subgroups of order n. These non-trivial subgroups are the
source of Hecke operators. As operations on Elliptic cohomology, they have been
constructed by Andrew Baker [Bak90]. In section 6.5 we show how to realize these
operations as power operations. To prepare for the discussion in sections 6.4 and 6.5,
we adapt in sections 6.1 and 6.2 the machinery developed in section 3 to the case of
elliptic cohomology.

In our work on Ej, the operations Q¥ were only a small part of the battle, and
the really interesting problem was to produce the homomorphism

* ﬁ” ns
Eh—"’D

such that
B2 Fpo = Fpo/H.

Part of the reason why we think that the orientation Fpo which we discovered in the
process is “analytic” is that in the case of K-theory, we recover the multiplicative
group. Another reason is that in the case of Ell, the exponential of the formal group
law is an elliptic function, so it is determined up to a constant multiple by its divisor.
This simple fact identifies the quotient formal group law FEY/H, and enables us to
produce the homomorphisms 3 (section 6.3).

67



6.1 A review of elliptic cohomology

We use the version of elliptic cohomology whose coefficient ring is the ring of modular
forms over Z[3] for curves with I'g(2) structure, with possible poles at the cusps; thus

Bl ~ Z[-;—][&,e, AY/(A = ¢(8% — ¢)),

where 6 € Ell~* and ¢ € Ell~® are modular forms of weight 2 and 4 repspectively.
Let Z, denote the space of pairs

(Em)
where = is a lattice in C, and 7 is a non-trivial point of order two of C/=. Zy comes
with an action of C* by homotheties:

t(Z,n) = (t=,tn), t € C*.
A modular function f of weight r is a function
Z(2) L C
such that for t € C*,
f@#(E,n) =t f(E,n). (6.1.1)

Let h denote the complex upper half-plane; then the quotient Z,/C* is the modular
curve

Yo =To(2)\b.

For 7 € h let [r] denote its orbit modulo I'y(2). The projection Zo — Y, comes with
a section

[7] ¥ (47iTZ + 4miZ, 271). (6.1.2)

Via the section o and the projection b 5 Y, a modular function f pulls back to a
function f on h such that

flar) = (er + d) f(r),

a=(‘: Z)EP0(2).

A meromorphic modular form f € Ell~* is a modular function of weight r on Zo
such that f is an analytic function on h whose g-expansions at the two inequivalent
cusps of I'¢(2) have coefficients in Z[}].

where
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There is a formal group law FE" defined over Ell* called the Euler formal group
law [Igu59], given by

FE“(xl,xz) _ I R(.’EQ) + IQ\/R(.’El) (6]_3)

2.2 )
1 - 8:171.'232

where
R(z) =1 —262% + ex?.

This determines a genus

MU* 28 ElI*.

Once again the exact functor theorem applies and shows
Theorem 6.1.4 ([LRS88, Lan88]) The functor
X ElrX ¥ Er @ MU"X
MU*
is a cohomology theory on finite complezes. O

Remark: Franke [Fra92] has recently shown that the extension of Ell*(—) to infinite
complexes is unique.

The exponential of FE! is a power series
s(z) € Q® ElI*[7]

which has a characterization as an elliptic function.

Lemma 6.1.5 ([CC88, Zag88]) For pair (Z,7) € Zo, there is a unique meromor-
phic function
s(—,Z,7): C—>C

which satisfies
i. s(z+¢,2,7)=3(z,Z,9) for{ € Z,
i. s(z+19,2,n7) = -3s(2,Z,1), and
it. 8(z,Z,n) = z + o(22).
The function s(—,=,7) and its derivative satisfy the functional equation
§? =1-26(Z,1)s* +&(Z,n)s%, (6.1.6)
and so uniformize the Jacobi quartic

C:y*=1-26E,n)z*+¢(Z, 7). (6.1.7)

69



via the map

c/z LEeENSENY o - p2 (6.1.8)

As written, the Jacobi quartic has a singularity at oo, but this singularity is minor.
The compactification of C in P3 via the map

C (lszvxzvy) P3

is a smooth curve Cy such that
CoN{Xo # G C.

So by choosing the origin to be (0,1,1), the Jacobi quartic becomes an elliptic
curve; as such, it is a group. Because of (6.1.5, iii), the function s determines a
parameter near the origin, with respect to which the group law of the curve (6.1.7)
becomes the Euler formal group law specialized at (Z,7) :

FEU (g, z,) = ALY Ty (6.1.9)

T 1-¢(E,n)2%?

As promised, [Zag88] s is the ezponential for the Euler formal group law:
sz +w,Zn) =s(2,5,1) 4 s(w,E,n), (6.1.10)

so the uniformization (6.1.8) is a homomorphism of groups.

We shall use two additional facts about FEY. First, equation (6.1.6) and the fact
that s is characterized by the three properties listed above imply, in view of the
weights of § and ¢, that s satisfies the homogeneity property

s(tz,t=,tn) = ts(z, =2, n). (6.1.11)

The second fact about the group law FE is that for N odd, the series [N]peu(z)
has a “Weierstrass factorization” already over Ell* :

Theorem 6.1.12 ([Igu59]) There are polynomials
pn(z),gn(z) € Ell*[z]

with
on(z) =Nz +... :!:egcr:jv2 and
gn(0) =1
such that @)
_ PN\T
[N]psu(z) = gN(-‘C).
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6.2 The operations Q7 in the case of elliptic cohomology

The ring “D*” for elliptic cohomology

Now let p be an odd prime. As in section 2.3, we let A, be an abelian group
isomorphic to Z2, so that its dual is

A% = (Q/Z,)"

We denote by
AL = Ay

the p*-torsion subgroup of A%, . For the purposes of this chapter, it will be convenient
to choose explicit compatible isomorphisms

= (2
then we refer to the chosen generators of A} as ex and fi.

In this version of elliptic cohomology, also we have to keep track of the point 5 of
order 2, so we let A} be the family of groups

& = (Z/2%)

with generators ey; and fa;. The point of order 2, 5, will be the point p*ez. Thus
there are compatible inclusions

A, —— AL

L

® !
k1 T 1V
under which

€ 262), and
S 2fa.

Let Z(2p*) be the space of pairs
(E )

consisting of a lattice = C C and an isomorphism
Ak = 2?"(C/ Z)
such that

waps(a(ear), (k) = Copp = 17", (6.2.1)
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where wy is the Weil pairing for points of order N of C/= given by ([KM85],p. 90)

2w . Im(7v,)

wN(vl/N,vg/N) = exp(W w),

where v1,v; € Z and A(Z) is the area of a fundamental parallelogram for =.
C* acts on Z(2p*) by homotheties; that is,
t(S,a) = (I, ta),
and the quotient Z(2p*)/C* is the modular curve
Y(2p*) = T(2p*)\b.
The projection Z(2p*) — Y (2p*) comes with a section

Y(2p*) =5 Z(2p%)
[T] — (4pk7riTZ + 47riZ, a(bf+ ce) = 27r1'7'b + %":ﬁ)

The group SL,Z/2p* = SL,Z/p* x SLyZ/2 acts on Z(2p*). Let G C SL,Z/2 C
SL,Z/2p* be the subgroup (isomorphic to Z/2) such that

g(n) =n.

Let Zo(p*) be the orbit space of the action of Gi on Z(2p*). It is the space of triples

E,a,n)

where = is a lattice in C, 7 is a non-trivial point of order two in C/Z, and a is an
isomorphism
Ay = #C/=

such that
wpr(a(ex), o fi)) = (pr.

Once again, there is a map

Y(Zpk) l’ ZO(pk) i 6.2.2
[r] = (4P*7itZ + 4miZ, o(bfi + cex) = 4mith + 45E, 2xi) (6.2.2)
A “meromorphic modular form of level 2p* and weight r” is a function f on Z(2p*)
which behaves as (6.1.1) with respect to homotheties and whose pull-back via the
section o is analytic on h and has g-expansions at every cusp which are finite-tailed
laurent series with coefficients in Z[}p, (2pt]. The ring of meromorphic modular forms

of level 2p* will be denoted Ell;(zp,).
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The ring which is the range of the character map for elliptic cohomology is the
ring of modular functions on Zy(p*) which pull back via o to analytic functions on b
whose g-epansions at the cusps of Y (2p*) have coefficients in the ring Z[-zl;, Copr). Tt
is exactly the subring (Ell;(zp,‘))G* of Ell;(zpk) invariant under the action of Gx. We
denote this ring by Ell},.

The map “forget a” gives a projection Zo(p¥) — Zo and exibits Ell;,, as an
Ell*-algebra. Brylinski has shown

Proposition 6.2.3 ([Bry90]; see also [KM85]) Eil’, is a faithfully flat Ell*-
algebra.

Proof: The proof of [Bry90] is based on the study of the moduli schemes for level
structures on elliptic curves [KM85]. His proof can be imitated in our situation,
with one important modification. Brylinski studies modular forms of even weight,
and obtains a ring Ellfy) of modular forms whose g-expansions have coeficients
in Z[3,(n]. We shall need modular forms of odd weight, namely the functions ¢(a)
(6.2.5). For a moduli space M with a universal curve E -5 M, one defines the
invertible sheaf

w = r.Q}g/M.

Let T be the circle bundle of w. It is a principal G,,-bundle over M, and one can view
modular functions as functions on the space T, graded by the G,,-action. In order
study g-expansions of modular forms in this setting, one must be able to extend the
sheaf w to a sheaf on the compactified moduli space M, as the cusps are precisely the
points one adds in compactifying. Actually, only the square w®? extends in general
([KM85], section 10.13), which enables Brylinski to study modular forms of even
weight. Fortunately, there is a natural extension of w in case the moduli problem is
“elliptic curves with level 2p*-structure over Z[3, (5+],” ([KM85],(10.13.9.1), [Kat73])
and this moduli space can be used in Brylinksi’s argument, now for the ring of modular
forms with possibly odd weight. Unfortunately, we have had to invert p. See the
remarks at the end of this chapter. O

We shall need the additional facts that

Proposition 6.2.4 (compare 3.4.1) Ell}, is a domain (since it is a subring of a
ring of functions on Y (2p*)). The group

Aut[Zo(p*)/Z0] & SL,Z/p* x Gal(Z[(ph)/Z)

acts on Ell’,, and the ring of invariants is %Ell‘.

Proof: By definition, an element of EIl’, which is invariant under SLZ/pF is a
modular form for the group I'g(2) whose g-expansions have coefficients in lel;;v Capr]-
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Denote this ring by
1
M(Fo(2),Z[2—p, Capr])-
Then [Kat73]
1 1
—_— k = Z -~ "
M(Fo(z),Z[Qp,Czp ]) [2p’<2pk] Z%] Ell

(Actually, Katz shows this for the ring of cusp forms for the congurence subgroup I'(2).
His argument applies also to the group ['¢(2). Then [Bak90] we can use multiples of
A, which is a cusp form, to convert a modular form f to a cusp form A4f. Since
A~! € EI'® is already a defined over Z[}], the result follows for the full ring of
modular forms). O

The character map for elliptic cohomology

We need an assignment
5 B
that will play the role of the map ¢,n;, constructed in (2.3.5). The key idea is to use

the exponential map for elliptic cohomology to find roots of the p*-series, in the same
way that roots of the p*-series in K-theory are

1—62—:?,0§j<pk.
We define the map ¢ to be
é(a) = {(E,a,n) = s((a),Z,n).} (6.2.5)

This definition only makes ¢(a) a complex-valued function on Zy(p*). Notice, how-
ever, that by the homogeneity property of s (6.1.11), ¢ satisfies

¢(a)(1=, ta, tn) = té(a)(E, &, n),
so ¢(a) has the right behavior with respect to homotheties to be an element of Ell2,.

Proposition 8.2.6 4(a) is an element of Ell3,.

Proof: It remains to show that the g-expansions of ¢(a) have coefficients in Z[3;, (5]

at every cusp. To simplify the notation, let N = p¥. The cusps of Y(2N) correspond
to choices of level structure on the “Tate curve” Tate(¢*V) [Kat73]. Via the map o
(6.2.2), we are led to consider the lattice

= =4miN1Z + 4miZ
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and the function
5(z,9) = s(z,Z, 2m1),
where ¢ = €2™". According to [CC88, Zag88), §(z, q) is given by

— gN™me? — gNme—2 (-nym
§(z,q)=(e§—e‘§)H{(1 9 )(1 1 )} .

m>1 (1 — gNm)2
Then
o(bfx + cera)(Z,2mi,a) = s(4mibr + 4N = 2mi)
= (Comc) (6.2.7)
H {(1 - qu+ch2c)(1 - qu—Zbc_gc) }(_1)m
m>1 (1 — gmN)2 ,

where ( = e is a p*-th root of unity. For each point a € (Z/p*)?, then, the
expression (6.2.7) has coefficients of ¢ in Z[%, (n]. Fixing this level p* structure and
letting a vary over (Z/p*)? is equivalent to fixing an a and varying over all level p*
structures. There are other cusps which correspond to varying the point of order 2.
However, it in fact suffices to check each ¢(a) at one cusp, because of the ¢g-expansion
principle ([Kat73]): by choosing a value of the Weil pairing (6.2.1), we have restricted
ourselves to one component of the moduli space Katz calls M. O

The significance of the modular forms ¢(a) is that they are the roots of the p*
series of FE!

[pk]FE"(¢(a))(E7 a, 77) = [pk]FE“s(a(a)’ =,1)
= s(p"a(a),E, 7)=0
Proposition 6.2.8 Let N = p*. The p”‘ modular forms ¢(a) are the roots of fn:

fn(z) = :te T H(z— #(a)). O

aeAk

Let S = Im(¢) be the image of the map (of sets) ¢. Notice that for any two elements
#(a) and ¢(b), their formal sum is

¢(a +b)(E,a,n) = s(ala +b),Z,79)
= s(a(a) +a(8), Z,7)
= s(a(a),Z,1) 1, s(a(b),Z,0)

= (4(a) £, $O)E 1)

In particular, ¢(a) h #(b) = ¢(a + b) is an element of S. Let FE'(S) be the group
made of the set S together with the formal sum FE!, We have shown
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Proposition 6.2.9 ¢ is an isomorphism of groups
Ay 5 FEU(S).

In order to construct the character map, we have to complete EII;., with respect
to the ideal I generated by the set S. Let ﬁ;g denote the completion of Ell%, with
respect to I, and T the extension of I to ﬁ;k.

Proposition 6.2.10 ¢ induces an isomorphism
Ay 5 W FEY(T,2).
Moreover, ¢ is represented (in the sense of (2.3.4)) by a homomorphism
El"BA, 2 ElL,,.
Proof: Ell, is a domain, so by Krull’s theorem
Ell — EIL,

is injective. The first part then follows from (6.2.9) since by Igusa’s theorem (6.1.12),
[p*]Feu(z) has p** roots. The definition of the map ¢ is (compare 2.3.3)

EAk >a< C
e l — ¢(a) (6.2.11)
BAg

for a € A}. It defines a map since power series in the ¢(a) converge in E‘Tl;p.. O

Theorems B and C for Ell.

We can use the maps ¢ and J; to imitate the constructions in section 3.1, and so to
obtain versions of Theorems B and C. Let H C A} be a subgroup of order n.

Theorem 6.2.12 There is a natural transformation
2= QH T
MU*X = ®,Ell X

of functors of finite spaces to graded rings, whose effect on the Euler classes of a line

bundle | s
X

Q¥ (eL) = fuleL) = T[ (4(h) 4, D)

Ell
heH
Its effect on coefficients is determined by the equation

QHFMU = FE"/H.
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6.3 The Euler form of the quotient formal group law.

In the case of elliptic cohomology, the theory of elliptic functions enables us to show
that the quotient formal group law FEY/H takes a particularly nice form. A finite
subgroup of odd order

HcC/=

determines a quotient map

H—-C/=z - C/zy,

where =y denotes the lattice in C obtained from the union of = and the preimage of
H under C — C/=, and we have denoted again by n the image of the point € C/=
under the projection. This quotient uniformizes the Jacobi quartic

Cy:yt=1- 26(Zw, 17)232 + E(Ey,n)$4, (6.3.1)
which is the quotient of C by the subgroup H, via the map

C/EH (8(_vEH)ﬂ)"'("vsHﬂi)vl): CH C on (6.3.2)

With respect to the parametrization (6.3.2), the group law of the curve becomes the
Euler formal group law for the quotient curve:

FEW(zy,25) = 2V Ru(@s) + 22y Bulzr) | (6.3.3)

1- 6(EH’ 77)1'%3"%

where
Ry(z) =1 —26(Zq,n)z? + €(Zm, n)z*.

Now suppose the H C A}. Then by using the level structure component of Zo(p*),
we can associate a quotient curve to each triple (2, a, 7).

Proposition 6.3.4 For H C A} and a modular form f € EU~?", the modular func-
tion vH f given by

7Hf(3a a, 7)) = f(EH, T’) (63‘5)

is an element of E'Il;,?".

Proof: The only thing to show is that 4 f has g-expansions in Z[zl—p, C2px)((9))- By
decomposing the subgoup H via short exact sequences, it suffices to prove this when
the order of H is p. Suppose that

fE2m) = ¥ and” € 215)((@))

ny—oo
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2miT

where ¢ = ¢“™" and once again = is the lattice

= =4mrZ + 47 Z.

The g-expansions we need to check are obtained by evaluating f on the quotients by
subgroups of order p of C/=(p), where =(p) is the lattice

=(p) = 4miprZ + 4miZ,

SO

f(E(P),Qﬂ'?:)= Z anqpn_

n»-—o0o0

For any level-p structure on C/=(p), the quotients by subgroups of order p correspond
to the lattices

=, = dmi(T + J;)z +4miZ,0< j < p, and

- : 4me
=p =4mprZ + %Z.

We have
f(Ej2m)= ) an,q"(*™,0<j<p, and (6.3.6)
ny—o0
f(Zp,271) = f(-Il;(41rip21'Z +4miZ,271)) =p" Y ang” ",
ny»-—0o

where ¢ = 2™/, O

Corollary 6.3.7 The formal group law FF" is defined over EIL,. It is classified by
the homomorphism

» ’YH -
E” - E'Ilpk.
By the miracle of complex analysis, the group law F4" is very simply related to

Lubin’s quotient FEY/H. Let

ay = f;{(O) = H ¢(h) € Ellzz“z
0#heH

Theorem 6.3.8 FEYH is related to the formal group law F5" by
FEU 225, pEUH,

In other words, FE" is ezactly the “normalized” quotient formal group law vFEYH
of (2.2.9).
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Proof: Since the ring ETI;;‘ is torsion-free (6.2.4), formal group laws over E\”;k are

determined by their exponentials over Q ® E’Tl;,,. Let t(z) denote the power series

(z) = fu(s(2)) € Q® Ellju[],

and let G, denote the additive group. Then ¢, s, and fy fit into a diagram of formal

group laws
G, s , FEU

-| |

G, -t FEII/H

The function #(z) is an element of Q ® ﬁ;k[[z]], so we evaluate it on the triple
(Eaav 77) € Zo(pk)

t(2)(E, a,n) = [] ($(h) +reu 5(2))(E, ;1)

heH

= H (s(a(h),Z,n) +Feu s(2,2,7))
heH

= [T s(z + a(h),Z,n). (6.3.9)
heH

Now we use the key fact that as a function on C/Z, s(z,Z,n) is characterized by
Lemma 6.1.5. Think of z as a complex parameter. Then by (6.3.9), t(2)(Z,a,n) is a

complex-valued function
C t(=)(E,a,n) C

which satisfies

t(z+¢) =t(z), £ €, (6.3.10)
t(z+n) =[] s(z+n,Z,9) (6.3.11)
heH
=(-1)" H s(z,Z,7)
heH
= —t(z), and
t(z+ a(h)) =t(z), h € H. (6.3.12)

Together, equations (6.3.10-6.3.12) imply that for each triple (S, a,7), t(—,Z,a,7) is
a constant multiple of the function s(—,Zg,1) = 7 s(—,Z, 7). We can compute this
multiple using the last part of Lemma 6.1.5:

t(za Ev «, 77) = C(E’ Q, 71)3(2, EH; ’7)
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where

t z? E’ b
c(Z,a,n) = lim(“_,a—,—72
20 S(Z, :'Han)

. t(z2,=
=hrn——————l(z _:a,n)
z—0 S(Zy-—'-"H,ﬂ)

= I s(a(h),Z,n)

O#heH

= aH(E, a, 7]).

It follows that
FE'H/H — Gta = (Fgll)agz,

since ¢ fits into the diagram of formal group laws over Q ® E’Tl;k
Ga 'Y:I" Fgu
. 1 t Ja,, (6.3.13)
FE0 15, pEyg O
Proposition 6.3.14 The stable operation
vQH 1 =
MU*X —— —EllL X
ag
factors through the map
LRI X — L ElLkX.
ay ay
Moreover, vQf factors through the orientation
MU*X 2 EIr X

to produce a stable ring operation

Eu 2, L i, x
ag

for X a finite complez.

Proof: By (6.3.8), the homomorphism of formal group laws

F - Fﬁ"

is given by the normalized quotient
1 |
viu(z) = Efy(z) € ;Ellpuﬂx]],
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and so one gets the operation vQf by (4.0.2). By (6.3.7), the ring homomorphism
which classifies FE" is

H
Y7 O tEl.

Since it factors through tgy., we get v¥ by (4.0.3). O

Factoring Qf through the orientation tgy
Combining (6.3.8) and (6.3.7) with (6.2.12), we obtain

Theorem 6.3.15 Let H C A} be a subgroup of order n. The operation

—— 2

murx & Bl x
factors through the orientation
MU*X 2% ElI*X

to produce an natural transformation of functors of finite complezes to rings

—=2n»

Eurx X5 B X

L
In particular, if | s a complez line bundle, then

X
UH(eL) = fu(eL) € EILX.
On coefficients, ¥ is given by
V¥ (m) = B¥(m) = (ar) T7¥ (m); (6.3.16)
more succinctly, we have the equation

ﬂfIFE“ = FE”/H. a

6.4 An example: the Adams operation.

When the machinery of 6.2 is applied to the full group A}, one obtains an Adams
operation for Ell. Let N = p*, and write ¥ for ¥Ai. The main task is to use (6.3.8)

to identify the formal group law FE"/N.
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Lemma 6.4.1 For the full subgroup A; of N torsion points, the constant ay of
(6.3.8) is given by

1=N2

ay = H #(h) = £Ne
0#h
[N}(h)=0

Proof: The ¢(h) are exactly the non-zero roots of the N-series for FE¥ by (6.2.9).
The result follows from (6.2.8). O

Theorem 6.4.2 The operation
— 2.
Eurx X BN x

factors through an operation

Elrx ¥ %Euw’*x.

L
The effect of UV on the Euler class of a line bundle | is given by
X
WN(eL) = f(eL) = £ [N]psu(eL). (6.4.3)

On coefficients, UV acts by
V() = (29 E
The associated stable operation
Eli*(-) 25, %Ell‘(—)
is the usual stable Adams operation whose effect on Euler classes is given by

WV (el) = -}V[N]Fm.(eL). (6.4.4)

Proof: According to (6.3.14), the effect of ¥V on coefficients is given by
Eur 25 Lpg (6.4.5)
p

frAE ) = A En) = N4 1@ ),
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Moreover, the formal group law F&" has exponential

1_ 1
expr, (2) = s(z, N Nn)
%(Nz,u,n)
1

= v Veus(z,E,m).

which proves (6.4.4). Since v¥¥ on coefficients and on Euler classes lands in 1E I, it
is in fact an operation

Elr'X — EII'X
According to (4.0.7), v@Q" and QV are telated by

vQN(z) = a5 Q”( )-

Since ay is a unit in Ell,, it follows that

=]
QN (z) = a3 vQ" ()
= (N 50N (0) € %Euwlzlx.

The proof is complete once we observe that by (6.3.8), the homomorphism

B 2% Lpyve

p

such that

ﬂNFEII = FEII/N
is

I=l
BY(f)=ag A" f
= )% 0

6.5 Hecke operators as power operations

Associated to a finite subgroup H C A} and the Jacobi quartic C' we have seen that
there is a quotient curve Cy. The Hecke operator T, on a modular form f is obtained
by evaluating f on the quotient curve Cy as H runs over all subgroups of a given
order. Specifically, the p-th Hecke operator T}, is given by

1
T,f=-= Y 1/, (6.5.1)
p HCM
#H=p
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where v is the map defined in (6.3.5). Indeed, the computations (6.3.6) in the
proof of Lemma 6.3.4 are exactly the famous computation of the effect of T, on the
g-expansion of a modular form [Ser70).

Let T, be the operation

T, =l E v,
P HCM
#H=p

Theorem 6.5.2 (compare [Bak90]) The operation

T,,=1 > veH

P gca,
#H=p

is an additive operation

Ell'X — %EII‘X
Its effect on coefficients is given by (6.5.1).

Proof: The only thing to check is the claim about the range: a priori, the operation

lands in
1

A

A= H ay.

HCA
#H=p

At the end of this section we shall prove

ElX,

where

Proposition 6.5.3 Each of the constants ay is a unit in Ell},.

Granting this, the operation T, lands in E!l;X. Visibly, it is invariant un-
der SL2Z/p, so it lands in Z[3;, (3] ® Ell*(—) by (3.4.6). It is invariant under
Aut[Zo(p*)/Zo] because it is on coefficients and on Euler classes: on coefficients by
the formulas (6.3.6), and on Euler classes because by equation (6.3.13), we have

fu(s(2)) = agv¥s(z) e Q® ElL[2]. O

This operation is entirely analogous in its effect to Baker’s [Bak90] Hecke operation
T, for his slightly different version of elliptic cohomology. What is new here is the
realization of the operation as a sum of power operations v¥#. It shows that the
Hecke operator is a very natural operation in elliptic cohomology in much the way
that the Adams operation is a natural operation in K-theory.
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Our description of the situation in elliptic cohomology is far from ideal. A better
approach would have used as the range of the character map a ring in which p is
not a unit: for example, the ring of meromorphic modular forms for Zy(p*) whose
g-expansions have coefficients lying in the ring Z[3]{¢;,%]. Then, as in the case of
K-theory and the Ej, one could use the unstable operation ¥ to prove integrality
theorems about their stable counterparts. For example, we conjecture

Conjecture (“Conjecture G”) The operation p™*'T, is integral on
2r-dimensional classes.

This conjecture would followsimmediately from the computation of the constants
ap in the proof of Proposition 6.5.3, below, once a better version of E'll;,. is available.

Additionally, we would get the integrality theorem about the Adams operation ¥V
analogous to (5.4.10).

All the constructions in this chapter would apply with this more stringent inte-
grality condition: most crucially, the computations in (6.2.6) show that the roots of
the p-series ¢(a) have g-expansions with coefficients in Z(3][¢;,+]. What is missing is a
proof that the ring of such modular forms is flat over Ell* and so defines a cohomology
theory. In fact, Brylinski shows that such a ring is flat, but only for modular forms
with even weight. I believe that the right ring for this discussion exists, is within
reach, and is even possibly interesting in its own right; however, I don’t know enough
to say more about it, let alone use it, at this time.

Finally, I owe the reader a

6.6 Proof of Proposition 6.5.3.

This is simply a matter of computation. Let =(p) be the lattice
Z(p) = 4miprZ + 4miZ.

Then the sugroups of C/=(p) of order p correspond the superlattices

=, = 4mi(r + 1)Z + 47miZ,0 < j < p, and

p
- : 4mi
Zp = 4miprZ + zz.
p

Varying the level structure interchanges these lattices and so the constants ag, so

it is enough to fix the level structure, and check that ag(Z(p),a,2ri) is a unit in
Z[;‘;, Capx)((q)) for various H. Let the level structure be given by

a(bf + ce) = 4mitb+ %E.
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Let H be the subgroup of A} generated by f + je, where 0 < j < p — 1. Then we
claim that

1-—- n(‘nJ 2(-1)"
ap(Z(p), a, 2mi) = (=1)1-P/3(¢g= 1PV T [ e ] , (6.6.1)
n>1 1- q

where ( = e?™/?. This is even a unit in Z[3][¢]((g)). We do this in a series of steps.
First of all, by (6.2.7),

p=1 drijr
ag(Z(p), a,2mi) = [] s(4mirr + —— ” ,...(p) 271)
r=1
_ p-1 (C2jrq2r - 1) {(1 - qmp+2r(2jr)(1 _ qmp-2r<—2jr) }(—l)m
r-l:Il (’rq ,gl (1-gm) (6.6.2)

We move the product over r inside, and collect terms. The terms of the form (1—¢™?)?

contribute a factor
- (p-1)
(1-¢*M)*
.,1;[1 [ i q"”) (6.6.3)

to the infinite product. We treat the other part of the infinite product in two steps,
the numerator and denominator. The numerator corresponds to m even in (6.6.2).
It produces a term of the form

H(l _ q2ap+2<2j) e (1 —_ q23p+2(p—1)4~2j(p—1))
s>1
(1 _ q2ap—2<-—2j) .. (1 - q2sp-2(p—1)c-2j(p—l))'

Collecting terms in ¢*, we find for each ! prime to p and also greater than p a term
of the form

(- e,
where one factor comes from the (1 — ¢?*?*?"(?r) side, and the other from the (1 —
anp—Qrc—2r) side.

When [ is less than p, we get since s > 1 only one term of the form

1 — gH¢Hl,
Here, however, the numerator of the leading factor

p—1 (<2jrq2r _ 1)

r=1 erqr
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comes to the rescue, and contributes the missing terms
(¢¥q* - D(CYg* = 1)...
up to a factor of (—1)P~! = 1!
The denominator (m odd in (6.6.2)) is a product of the form

H(1 _ q(2a—l)p+2<2j) (1= q(Zs-l)p+2(p—1)C2j(p—l))
s>1

(1 — g P=2¢=2) . (1 = g DP-2e=D=2ip-1)) (6 6 4)

Proceeding analogously, we find, upon collecting terms of the form (1 — g%-1¢7(3-1)),
that for 2/ — 1 prime to and greater than p, we get a term of the form

(1- q2l—-l<j(2l-1))2’

where one factor comes from the (1 — ¢(?*=VP+27¢?") and the other from the (1 —
q(22-1p=2r¢-2r) side. Now however there are no terms of the form (1 — ¢2-1¢#(2-1)) at
all for 2/ — 1 < p. However, there are messy terms arising on the (1 — ¢g(2s-1)p=2r(=2r)
side when s = 1: the factor is

(1 — qP-ZC-ZJ')(l — qp-4C-4) L (1 _ q-p+2(~—2(p—1)j)' (6.6.5)

It includes negative exponents of ¢, which would be very bad in the denominator.
Once again, the denominator of the leading factor saves the day, this time by con-

tributing a factor of

q1+2+...+(p—1)'

Multiplying (6.6.5) by this factor yields
q2+4+-"+(7‘1)(q1’.‘" - C-2(p—l)j)(qp-4 - C-—?(p—?)j )
(g = (VL — =) (1 — =)
= q(P’-l)/4(_1)(1’-1)/2(—(?’-1)1'/4(1 - ch)2 (1= q(p-2)c-21‘)2

which are exactly the missing terms.

Assembling the numerator, denominator, and (6.6.3) gives

_ ) _ _ _ i 1— 2s-1 Co(_1ve
a;:;(.:(p),(.uz,21rz)=(—1)(1 3 ((q) lV‘H E——qz—,)] II (1—¢°¢¥)*-1)
1l (1-4¢*) | 5
(a,p-j=l
—  q2-1)
- _ _ 1-— qncrq 2
= (=1)=P2(¢ g1y 514 __]
nl;Il (1 —gP)?

which is (6.6.1).
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The remaining subgroup of Aj is the one generated by e. In that case, we have

—_ . Pzl ctr 1 = g™PCT)(1 — q™PL % (-1)™
an(Zp, a,27mi) = 1:11 (¢ z ) I;Il{( q (Cl j(qmp)g ¢ )}

Since p is odd, we get
<1+2+...+(p—1) = (p(p—l)ﬂ =1

and
p—-1
[[¢r-1)=p
r=1

Also,

p—-1
[[(1 =gy =1+q"" +...+ gm0V

r=1
1—qm*
= 1= qmp .

Putting these together, we find

1- q"‘l’2 =07
ag(=p,a,2m) =p [——m———} ,

which is a unit in Z[zlp,fl,pk]((q)). a
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