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Due to their ability to confine light, optical resonators1–3 are of great importance to science

and technology, yet their performances are often limited by out-of-plane scattering losses

from inevitable fabrication imperfections4, 5. Here, we theoretically propose and experimen-

tally demonstrate a class of guided resonances in photonic crystal slabs, where out-of-plane

scattering losses are strongly suppressed due to their topological nature. Specifically, these

resonances arise when multiple bound states in the continuum - each carrying a topological

charge6 - merge in the momentum space and enhance the quality factors of all resonances

nearby. We experimentally achieve quality factors as high as 4.9 × 105 based on these res-

onances in the telecommunication regime, which is 12-times higher than ordinary designs.

We further show this enhancement is robust across the samples we fabricated. Our work

paves the way for future explorations of topological photonics in systems with open boundary

condition and their applications in improving optoelectronic devices in photonic integrated

circuits.
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Topological defects7 are ubiquitous in nature. Examples range from quantum vortices in su-

perfluids to singular optical beams8, which are characterized by the non-trivial winding patterns

of system parameters (velocity, phase, or polarization) in real space. Recently it is found that un-

expected topological defects can also emerge in the momentum space of a crystal and give rise to

interesting physical consequences: one such example is the optical bound states in the continuum

(BICs). BICs reside inside the continuous spectrum of extended states, yet, defying the common

intuition, remain perfectly localized in space and their lifetimes are supposed to be infinitely long.

Since their initial proposal9, BICs have been observed in a variety of wave systems, including

photonic10–21, phononic22, and water waves23. In photonic crystal (PhC) slabs, their fundamental

nature has been identified to be topological: they are essentially topological defects of polariza-

tion directions defined in the momentum space6. In practice12, 24, the Qs of BICs often fall much

shorter of their theoretical prediction of infinity, limited to only about 1 × 104. Aside from other

contributing factors such as material absorption or the finite size of the samples, the main limiting

factor of the Q of BICs comes from out-of-plane scattering losses from fabrication imperfections

or disorder - a common problem shared among many high-Q on-chip resonators 1, 2, 4, 5, 25.

Here we theoretically propose and experimentally demonstrate on-chip photonic resonances

that are much less susceptible to out-of-plane scattering losses than usual due to their unique topo-

logical nature. Specifically, we first show that the topological charges of BICs control the Qs of

their surrounding resonances; more importantly, when multiple BICs are designed to merge, all

modes nearby enjoy significant enhancements of their Qs due to a modified scaling rule. We fur-

ther numerically show that the resulting resonances, in this new topological configuration, become
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robust to fabrication imperfections and disorder. Finally, we experimentally demonstrate a 12-

times enhancement of Qs in fabricated samples using this new topological configuration of BICs

over previous designs.

We start by showing that resonances with ultra-high quality factors (Qs) that are much more

robust to out-of-plane scattering from disorder can be achieved by merging multiple topological

charges carried by BICs. First, we consider a PhC slab (Fig. 1a), where a square lattice (periodicity

a = 519.25 nm) of circular air holes (radius r = 175 nm) is patterned in a silicon layer (thickness

of h = 600 nm) placed in the air. Through numerical simulations (COMSOL Multiphysics), we

focus on the lowest TE-like band in the continuum (TE-A, red line) whose lifetime goes to infinity

at 9 discrete k points as 9 BICs (top left panel of Fig. 1b). The topological nature of the BICs

can be understood from the corresponding far-field polarization plot (bottom left panel), where

each BIC appears as a topological defect (vortex) of polarization long axes6, 26–31 characterized by

an integer topological charge of ±1. Among these 9 vortices, one is pinned at the center of the

Brilluion zone (BZ) due to symmetry, while the locations of rest 8 can be controlled by varying

system parameters such as periodicity a. For example, when a increases from 519.25 nm to 531.42

nm, the 8 off-center vortices move towards the center before all 9 of them merge into a single BIC

with charge of +1 as a further increases to 580 nm.

The topological configuration of BICs controls the radiation loss of all nearby resonances,

which further determines the highest Q achievable in practice as shown later. Specifically, Q

is shown to scale quadratically (∝ 1/k2) as the distance (k) away from a single isolated BIC
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with charge ±1; however, this scaling changes to Q ∝ 1/k6 in a sample where all 9 BICs just

merge (noted as the “merging-BIC design” hereafter). The comparison between these two scenar-

ios are shown in Fig. 1c, where Qs in a merging-BIC design (red) are always orders-of-magnitude

higher than those in an isolated-BIC design (blue) along all directions in k space due to their

fundamentally different scaling properties. This difference in scaling originates from the differ-

ent asymptotic behaviors of radiation amplitudes
√

1/Q: in the isolated-BIC case,
√

1/Q ∝ k;

in comparison, when there are also off-center BICs at ±kBIC,
√

1/Q becomes proportional to

(k+ kBIC)(k− kBIC)k. In the merging-BIC design, kBIC = 0 and we get 1/Q ∝ k6. This different

scaling is similar to some of the recent findings32–34. Further explanations from the viewpoint of

coupled-wave theory is presented in section I and II of the Supplementary Information.

While simulation results of infinitely-large perfect PhCs set the theoretical upper bounds of

Qs, realistic samples (schematically shown in Fig. 2a) feature a few major differences that govern

the highest Q achievable in practice. First, all samples are finite in size; their boundaries break the

translation symmetry and introduce fractional orders of the primitive reciprocal lattice in k space

(green dots in Fig. 2a)35, 36. As a result, each infinitely-large Bloch mode with a single k-component

is split into a series of finite-size modes with multiple k-components. See Supplementary Infor-

mation Section III for an example of this effect experimentally observed in our sample. Second,

all fabricated samples exhibit disorder and imperfections with both long- and short-range correla-

tions, allowing modes at different k points to couple to each other. Due to these inevitable coupling

terms, modes at different fractional momentum orders are hybridized and all of their loss channels

become available to the final resonance37.

4



The advantage of our merging-BIC design over an isolated-BIC design is confirmed in our

simulation results (COMSOL Multiphysics) of perturbed 15 × 15 PhC super-cells. In a perfect

super-cell structure without disorder, the BIC mode with infinite-Q remains at the center of the

BZ (Fig. 2b, upper panel). To compare, perturbations are applied to both the radii (∆r) and

positions of the holes (∆x,∆y) following the statistics that best captures our samples described

later in Fig. 3. As expected, each mode in disordered samples exhibits multiple components in the

k space. Furthermore, resonances in a disordered sample originated in a merging-BIC design have

significantly lower radiation fields than those from a isolated-BIC design with the same disorder

(Fig. 2c). This result agrees well with Fig. 1b,c: all modes contributing to the final resonance

in the merging-BIC sample have much higher Qs than those in the isolated-BIC case; naturally,

resonances in the former sample are much more immune to out-of-plane scattering from disorder

than the latter. Finally, this enhancement of Q is observed to be robust across a range of k as

shown in the quantitative comparison (Fig. 2d). Here, all holes are asymmetric to present typical

fabrication error with tilted angle θ ≈2◦ and center shift (∆x=2nm, ∆y=4nm) before applying

disorder. (see Supplementary Information section IV and V for details)

To verify our theoretical findings, we fabricate PhC samples with both merging-BIC and

isolated-BIC designs using the same e-beam lithography (EBL) and induced coupled plasma (ICP)

etching processes on a 600 nm thick silicon-on-insulator wafer (see Methods for details). The

underlying SiO2 layer is then removed to restore the up-down mirror symmetry required by tunable

BICs 6, 12. The samples are about 250 × 250 µm in size. The periodicity of the sample is varied

from 530 to 580 nm to sample through designs with merging and isolated BICs. From the scanning
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electron microscope images of the samples (Fig. 3a,b), the standard deviations of hole locations

and radii are estimated to be about 5 nm, which is applied to the numerical simulations presented

above.

The experimental setup is schematically shown in Fig.3c. A tunable telecommunication laser

in the C-band is first sent through a X-polarizer (Pol,X) before being focused by lens 1 (L1) onto

the back focal plane of an infinity-corrected objective lens. The incident angle of the laser on

the sample is thus controlled by moving L1 in the x − y plane. Through this confocal setup,

reflected and scattered light are also collected by the same objective; they are then expanded by

1.67 times through a relay 4-f system and imaged on a camera. A Y-polarizer (Pol, Y) is used

to block reflected light (X-polarized), while allowing scattered light to pass (see Supplementary

Information Section VI for details). Under the on-resonance coupling condition, where the PhC

sample supports a resonance at the same wavelength as the incident light at the incident angle, iso-

frequency contours are observed on the camera, similar to previously reported results 26, 38. Three

examples of isofrequency contours are schematically shown in Fig. 4a as dashed lines.

The quality factors of resonances at different k points are further characterized through scat-

tered light. Specifically, a movable pin hole (not shown in Fig. 3c) is placed at the image plane

of the rear focal plane of the objective to specify a k point. A photo-diode connected to a lock-in

amplifier is placed behind the pin hole to record scattered light intensity as a function of the tun-

able laser wavelength (see Supplementary Information Section VI for details). As shown in Fig.

4a, when different k points are selected by the pin hole (X, Y, and Z), different scattering spectra
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are observed while all exhibiting symmetric Lorentzian features. Similar scattering phenomena

have been observed before38, and can be understood as the follows: scattered light intensity is gov-

erned by the spectral density of states of the sample at this k point, which are Lorentzian functions

centered at the resonance frequencies with linewidths determined by the Q of the resonances (see

Supplementary Information Section VII for details).

The quality factors of the resonances are extracted by numerically fitting the scattering spec-

tra to Lorentzian functions. As shown in Fig. 4a, Q increases from 2.6 × 105 to 4.5 × 105 as the

observing point moves closer to the center of the BZ from X to Z. This agrees well with simulation

results in Fig. 1. The highest Q observed on the merging-BIC sample is 4.9 × 105 at point W

(Fig. 4b). In comparison, the highest Q observed on the isolated-BIC sample, fabricated on the

same wafer through the same processes only with different structural parameters, is limited to only

4×104 - over an order of magnitude lower (Fig. 4c). This confirms our simulation results in Fig. 2

that engineering the topological configurations of BICs can significantly suppress scattering losses.

Furthermore, this over-ten-fold enhancement of quality factor is observed to be robust: not only

does it appear over a wide range in the k space as shown in Fig. 5, similar level of enhancements

also appears in all merging-BIC samples we fabricated (see Supplementary Information Section

VII for details).

Topological photonics39–41 have found tremendous success in suppressing in-plane back-

scattering losses, often based on topological protections in non-reciprocal systems with broken

time-reversal symmetry. Here, we focus on a different class of problems: to suppress the out-of-
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plane scattering losses in a reciprocal system using concepts from topology. By merging multiple

topological charges carried by BICs, we experimentally demonstrate PhC resonances with record-

high quality factors of Q = 4.9 × 105, over an order of magnitude higher than ordinary designs.

These ultra-high-Q resonances are potentially useful for chemical or biological sensing 42, 43, non-

linear generation44, and large-area laser applications45. Furthermore, governed by their topological

nature, these high-Q resonances are observed to be robust against fabrication imperfections, which

paves the way to improve the performance of optoelectronic devices using concepts from topo-

logical photonics. Finally, our fundamental concept of topological-defect engineering holds for

general linear wave systems, ranging from photonics to acoustics and electronics.

Methods

Sample fabrication. The sample was fabricated on a silicon-on-insulator (SOI) wafer with e-

beam lithography (EBL) followed by induced coupled plasma (ICP) etching. For EBL, the SOI

wafer was spin-coated with a 330nm-thick layer of ZEP520A photo-resist before being exposed

with EBL (JBX-6300FS) at beam current of 400 pA and field size of 500 µm. The sample was then

etched with ICP (Oxford Plasmapro Estrelas 100) using a mixture of SF6 and C4F8. After etching,

the resist was removed with N-Methyl-2-pyrrolidone and the buried oxide layer was removed using

49% HF.

Measurement system. The incident light source was a tunable C-band telecommunication laser

(Santec TSL-550), which was sent through a chopper for lock-in detection. A pin hole with diam-

eter of 500 µm was placed on the Fourier plane to pick out desired wavevectors. Scattered light

8



through the pin hole was collected by a photo-diode (PDA10DT-EC), which was connected to a

lock-in amplifier (SRS SR830). A flip mirror was used to switch between the camera that image

iso-frequency contours and the photo-diode. Besides characterizing far-field radiation patterns, the

setup could also take near-field images of the sample if another lens was inserted into the optical

path.
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Figure 1: | Suppressing radiation losses by merging multiple topological charges of bound

states in the continuum (BICs).a, Schematic of the PhC slab. Band TE-A is marked with a red

line. b, Multiple BICs appear on band TE-A, where the normalized radiative lifetime Q diverge.

When sample periodicity a is tuned from 519.25nm to 580nm, 9 BICs with±1 topological charges

merge into an isolated one with charge +1. c, Plots ofQ near the center of the BZ when charges just

merge (red a=531.42nm) and long after they have merged (blue a=580nm). The merging sample

(red) shows significantly higher Qs than the isolated sample due to a different scaling of Q ∝ 1/k6

instead of Q ∝ 1/k2, which is observed along both Γ−X and Γ−M direction. Simulations here

are using FEM.

15



O

O´ (∆x,∆y)

r

r+∆r

θ

c)

-0.5 0 0.5 

Isolated BIC

k
x
 (2π/a)

10-3

10-4

10-5

10-6

10-7

0 

0.5 

-0.5

k
y
(2

π
/a

)

-0.5 0 0.5 

Merged BIC

0 

0.5 

-0.5

k
y
(2

π
/a

)

k
x
 (2π/a)

10-3

10-4

10-5

10-6

10-7

d)a)

(∆x,∆y)

a

∆r

Real space

β
N
=2π/Na

First Brillouin Zone

Reciprocal space

b)

Disordered 

1

10-2

10-4

10-6

-0.5 0 0.5 
k

x
 (2π/a)

Perfect

-0.5 0 0.5 

0 

0.5 

-0.5

k
y
(2

π
/a

)

0 

0.5 

-0.5

k
y
(2

π
/a

)

1

10-2

10-4

10-6

k
x
 (2π/a)

k
x
 (2π/a)

0 0.02 0.04 0.06 0.08 0.1

107

106

105

104

103

 Q

530nm
532nm
580nm

Merging

Isolated

Figure 2: | Robustness to scattering losses due to topological protection. a, Schematic of a

fabricated PhC sample (solid lines) with disorder in hole locations and radii compared to a perfect

one (dashed lines). Fractional orders of momentum (green dots) are introduced by the super-cell.

b, Energy distribution of the highest-Q mode on TE-A band in the momentum space of a merging-

BIC design in a perfect (upper) and a disordered structure (lower) inside the first BZ. c, Momentum

energy distribution of the far-field radiation in a disordered sample with merging BICs (upper)

and one with an isolated BIC (lower). The while circles represent the light-cone. The radiative

scattering loss is significantly lower in the merging sample than the isolated one. Simulations are

performed in 15×15 super-cell using FEM. d, Schematic of typical fabrication error in asymmetric

hole (upper) and plots of Q near the BZ center with disorders accordingly (lower).

16



a)

b)

c)

0.5µm 530nm

6
0

0
n

m

0.5µm

Laser

Pol Y

Camera/PD

Sample
L2

L3

Pol X
Rear 

focal plane
L1BSObj

X

Y

YX

Si

Figure 3: |Experimental setup. a,b Scanning electron microscope (SEM) images of the fabricated

PhC sample from the top and cross-section view. The chosen structural parameters correspond to

when the 9 BICs just merge in middle panel of Fig. 1b. The underlying SiO2 layer is later removed

for measurements. c, Schematic of the measurement setup. The blue lines refer to the incident

light and its direct reflection. The red region refers to radiation losses induced by scattering from

disorder. L, lens; Obj, objective; PD, photodiode; Pol, polarizer.

17



a)

1572.51 1572.52 1572.53 1572.54 1572.55 1572.56
0

0.5

1

X Y Z

W

In
te

n
s
it
y
(a

.u
.) X Q=2.6×105

1569.24 1569.25 1569.26 1569.27 1569.28 1569.29
0

0.5

1

In
te

n
s
it
y
(a

.u
.) Y

Q=2.6×105

Experiment Fitting

1568.31 1568.32 1568.33 1568.34 1568.35 1568.36
0

0.5

1

In
te

n
s
it
y
(a

.u
.) Z

Q=4.5×105

Wavelength (nm)

Iso-frequency contour

λ=1568.334nm

λ=1572.558nm

λ=1569.273nm

I

b) c)Merged Isolated

Q=4.0×104

1600.16 1600.2 1600.24
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)Wavelength (nm)

1568.3 1568.34 1568.38
0

0.2

0.4

0.6

0.8

1

In
te

n
s
it
y
(a

.u
.)

Q=4.9×105W

Figure 4: | Experimental results. a, Iso-frequency contours of the sample at different wavelengths

are observed on the camera. Three examples at 1572.558 nm, 1569.273 nm, and 1568.334 nm are

shown as dashed lines. Scattered light intensity at different points in the momentum space (X,Y,Z)

are further characterized by a PD, which all exhibit symmetric Lorentzian functions as the incident

wavelength. The linewidth is determined by the Q of the underlying resonance. b, The highest Q

observed in the merging-BIC sample is 4.9× 105 at point W, which is over an order of magnitude

than the isolated-BIC sample fabricated under the same processes (Q = 4.0× 104 as shown in c).
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Figure 5: | Twelve-times enhancement of quality factors via topological protection. a, The

dispersion of resonances are measured at different points in the momentum space (circles), which

show good agreements with simulation predictions with FEM (dashed lines) both along Γ − X

(upper panel) and Γ−M directions (lower panel). b, Over ten-fold enhancement of Q is observed

over a wide range in the momentum space in the merging-BIC samples (red and blue) compared

to the isolated-BIC sample (purple) due to topological protection.
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