
Multi-robot Path Planning for a Swarm of Robots that Can Both Fly
and Drive

Brandon Araki1, John Strang1, Sarah Pohorecky1, Celine Qiu1, Tobias Naegeli2 and Daniela Rus1

Abstract— The multi-robot path planning problem has been
extensively studied for the cases of flying and driving vehicles.
However, path planning for the case of vehicles that can both
fly and drive has not yet been considered. Driving robots, while
stable and energy efficient, are limited to mostly flat terrain.
Quadcopters, on the other hand, are agile and highly mobile but
have low energy efficiency and limited battery life. Combining a
quadcopter with a driving mechanism presents a path planning
challenge by enabling the selection of paths based off of both
time and energy consumption. In this paper, we introduce a
framework for multi-robot path planning for a swarm of flying-
and-driving vehicles. By putting a lightweight driving platform
on a quadcopter, we create a robust vehicle with an energy
efficient driving mode and an agile flight mode. We extend two
algorithms, priority planning with Safe Interval Path Planning
and a multi-commodity network flow ILP, to accommodate
multimodal locomotion, and we show that these algorithms can
indeed plan collision-free paths for flying-and-driving vehicles
on 3D graphs. Finally, we demonstrate that our system is able
to plan paths and control the motions of 8 of our vehicles in a
miniature town.

I. INTRODUCTION

We envision a future where swarms of vehicles that can
both fly and drive coordinate effectively to accomplish tasks
such as pick-up-and-delivery, surveillance, exploration, and
construction. We consider how a group of robots that have
the ability to both move on the ground and to fly decide
which locomotion modality to choose.

Flying and driving robots face two different sets of chal-
lenges - flying robots, particularly quadcopters, have limited
battery life but are fast and maneuverable, whereas driving
robots are energetically efficient but are constrained to move
on a plane. The concept of a flying-and-driving vehicle is
powerful because by combining the two forms of locomotion,
one can overcome the energy concerns of flying and the
spatial constraints of driving. In this paper, we accomplish
this task by weighting both time and energy in the path
planning cost function to strike a balance between speed
(flying) and energy efficiency (driving).

The ability to move both on the ground and through the air
is very common in nature - countless insects, birds, and other
types of animals possess both wings and feet in order to nest,
shelter, avoid aerial obstacles or bad weather, and perform
many other tasks. But despite the omnipresence of terrestrial

This work was supported by The National Science Foundation Grant No.
1240383.

1B. Araki, S. Pohorecky, J. Strang, C. Qiu, and D. Rus are with CSAIL,
the Stata Center, Building 32 Vassar Street Cambridge, MA 02139 USA
araki, strang, pohorecky, qiu, rus@mit.edu

2T. Naegeli is with the Advanced Interactive Technologies Lab, ETH
Zurich, Zurich, Switzerland naegelit@student.ethz.ch

(a) Flying cars traversing a town

(b) The same moment in simulation

Fig. 1: Experimental and simulated flying cars

locomotion abilities in flying animals, relatively few small
aerial robots are equipped with wheels. The ability to move
on the ground would allow a quadcopter to navigate narrow
passages, position itself for surveillance or data collection,
transport heavy loads, and accomplish many other tasks it
could not otherwise perform.

This paper presents a working system for the coordi-
nation and control of flying-and-driving robots in a city-
like setting. Two multi-robot path-planning algorithms, pri-
ority planning with Safe Interval Path Planning (SIPP) and
an optimal integer linear program-based algorithm, have
been implemented with multimodal locomotion in mind.
A small fleet of wheeled quadcopters with a novel design
has been constructed. And lastly, a system for controlling
these wheeled quadcopters along their desired trajectories has
been implemented. The final demonstration, showing these
wheeled quadcopters traveling by air and ground through
a miniature town, anticipates the useful applications that

flying-and-driving vehicles will hopefully one day have.
In summary, the main contributions of this paper are:
1) a hardware platform for a miniaturized wheel-based

robot that can fly and a system infrastructure for a
swarm of such robots

2) two modified algorithms for multi-robot path planning
that choose the locomotion modality and enable each
robot to reach its goal

3) experiments in a miniaturized road environment with
roads, no-fly zones, and disconnected sections that
require flying.

II. RELATED WORK

The multi-robot path planning problem (MPP) has been
the subject of extensive research. MPP is a challenging
problem because the configuration space grows exponentially
with the number of robots [1]. It can be made tractable
through decentralized solutions such as [2]–[4] that delegate
to each robot the responsibility for avoiding other robots.
Centralized algorithms exist that can find feasible collision-
free paths for multiple robots in O(n3) time or faster [5].
Priority planning is a suboptimal but fast centralized solution
to MPP in which priorities are assigned to robots and paths
are then found for each robot in order of its priority [6], [7].
A number of tricks exist for making priority planning better.
For example, [8] suggests limiting the planning horizon,
rotating priorities amongst robots, and using a true distance
heuristic to get better paths from priority planning. [7]
proposes the idea of well-formed infrastructures in order
to generate graphs and scenarios with guaranteed solutions.
Meanwhile, approaches such as [9], [10] provide optimal
solutions but become intractable when the graph size or
number of robots goes past a certain limit. However, these
problems can be made tractable by allowing for suboptimal
solutions by for example splitting the problem into multiple
smaller problems in the time domain. We contribute to this
literature by extending MPP to include robots with multiple
modes of locomotion. We made two planners, one a fast
priority planner and the other an optimal ILP, to show that
the MPP can be extended to include the modified objective
function of flying cars.

A handful of robots that can travel on the ground and
in the air have been developed, such as the Flying Monkey
[11], MALV [12], and DALER [13], among others [14]–[17].
Most of these designs place passive wheels on a quadcopter
and use the rotors of the quadcopter for both aerial and
terrestrial locomotion. DALER, a fixed-wing aircraft, can
rotate its wings to move on the ground. MALV has wings and
wheels, while the Flying Monkey places a foldable crawling
mechanism on the bottom of a quadcopter. However, the de-
sign we chose placing wheels on the bottom of a quadcopter
although possibly the simplest and most obvious choice for a
flying-and-driving robot, seems only to have been developed
commercially [17].

In [11], experiments showed that the crawling mechanism
was ∼3x more efficient than the quadcopter used; mean-
while, in [12], the wheeled mechanism was ∼5x less efficient

than the winged aircraft. This suggests that depending on
the flying and driving mechanisms, ground locomotion may
not always be more energy efficient than air locomotion.
However, the existence of aerial constraints, such as no-
fly zones, storms, or busy aerial traffic, as well as the
convenience of taxiing on the ground for small adjustments in
position, make possession of a driving mechanism a benefit
for most aerial vehicles.

Lastly, the implementation of software architecture capa-
ble of controlling swarms of robots has also been the focus
of much interest. Due to computational, radio, and software
constraints, controlling a swarm of robots, particularly using
a central computer, is a difficult task. [18]–[21] among others
have succeeded in coordinating swarms of quadcopters by
choosing robust robots with robust communication protocols
using robust software to control them. The Crazyflie, which
we used in this project, is a popular open-source quadcopter
used for example in [21]–[23] that can communicate with a
computer using a 2.4 GHz radio.

III. PROBLEM STATEMENT

Assumptions We assume that we have a swarm of uni-
form robots that can drive and fly. They have a limited energy
budget and therefore energy consumption is a major factor
in the path planning.

Environment We model the environment by a 3D graph
that consists of a 2D road system and an aerial region, either
of which may contain disconnected regions as long as the
overall graph is connected. The map can accommodate static
obstacles, elevated “helipads”, and “no-fly zones”.

Problem Given n robots with unique start and goal
positions, find collision-free paths for each robot.

Solution We developed and implemented two algorithms:

1) Priority planning with Safe Interval Path Planning: a
relatively fast algorithm that gives guaranteed solutions
under certain conditions; however, it is not optimal.

2) Multi-commodity network flow ILP: an NP-hard prob-
lem that can provide optimal solutions in a reasonable
amount of time when the number of robots and graph
vertices is not too high.

IV. PROBLEM FORMULATION

Let W denote a workspace with W ⊂ R3. This space is
approximated by a connected, directed graph G = (V,E).
There are n robots R = {r1, . . . , rn} that can be approxi-
mated by cylinders of radius r and height h. Each robot ri
is assigned a task to move from its start position si to a
goal position gi. A scenario is defined to be a collection of
tasks {(s1, g1), . . . (sn, gn)}.

A path is a map pi : N → V . A path is satisfying if
pi(0) = si, pi(tf) = gi for some time index tf ∈ N, and for
any 0 ≤ t < tf , {pi(t), pi(t+ 1)} ∈ E or pi(t) = pi(t+ 1).
A trajectory πi : [0,∞)→W maps a time to coordinates in
W; the transformation from pi to πi bridges the gap between
the abstract graph G and the continuous workspace W .

The trajectories πi, πj of two robots are conflict-free if
and only if the bodies of the robots i, j never intersect when
they follow the trajectories πi and πj .

Problem 1 (Multi-Robot Path Planning Problem). Given a
workspace W , a graph G, and a scenario S specifying the
start and end points for n robots, find trajectories π1, . . . , πn
that are satisfying and conflict-free.

V. METHODS

Two multi-robot path planning algorithms were imple-
mented for this project: priority planning with Safe Interval
Path Planning (SIPP) and an integer linear program (ILP)
modeling the MPP problem as a multi-commodity network
flow problem. We developed new objective functions and
graph data structures in order to extend traditional MPP
algorithms to handle the case of multimodal locomotion.

Fig. 2: Graph structure of the environment. Land nodes are
green; land waypoint nodes are purples; air nodes are blue
or white and connected by white edges.

A. Graph Data Structure

Graph G is defined in Section IV. Each edge ei is
assigned a length di that is the Euclidean distance between
its two endpoints. A cost function c(ri, ej , t), described in
the next section, assigns a cost to each edge for each robot;
this function also accepts self-referencing edges (vi, vi) and
returns the cost of waiting at that node. The graph contains
3 unique types of nodes: parking nodes, land nodes, and air
nodes. Parking nodes exist only on the sides of roads, where,
as will be explained in the next section, they are critical for
guaranteeing feasible solutions. Land nodes represent roads,
and air nodes represent chunks of air where only a single
flying car can be present. There is a layer of air nodes above
the ground, as well as “interface” air nodes that connect the
ground and air layers. The 3 node types create 4 types of
edges: takeoff edges, air edges, landing edges, and ground
edges. Each type of edge has a unique velocity associated
with it. Fig. 2 shows the graph structure of an example
map. Green node and edges on the bottom represent the
road system; blue nodes and edges represent air nodes that
interface with the two white air layers.

B. Objective Function

We assume two modes of locomotion: flying and driving,
each with an associated power consumption, Pf and Pd, and
velocity, vf and vd. For the purposes of this paper we assume
that power consumption and velocity remain constant for
each mode of locomotion. We calculate the energy cost of
each edge connecting two nodes separated by a distance d;
in the case of flight, we also consider the gain in potential
energy during takeoff caused by lifting the mass m of the
vehicle from z1 to z2. The work associated with flying is

Wf =
Pfd

vf
+mg ·max(z2 − z1, 0) (1)

and with driving is

Wd =
Pdd

vd
(2)

We can then calculate the cost of edge ei with the function

c(ei) = µ
W

Wmax
+ (1− µ) t

tmax
(3)

where 0 ≤ µ ≤ 1 and Wmax and tmax are the maximum
possible energy and time of any edge in the graph. µ is a
tuning parameter that allows the planner to weight energy
and time in the cost function. When µ is 0, the function
only weights time and the planner will simply minimize
time. When µ is 1, the function only weights energy and
the planner will minimize energy consumption. The ability
to tune µ allows users to choose between time and energy.
For example, if implemented for a flying taxi, a customer
who values time over energy can pay more to make µ lower,
so that the planner will value time more than energy.

C. Battery Life

We added a battery life constraint to the planning problems
by estimating the current consumption over each edge. Given
battery capacity C in Ah, battery voltage V (ri) as measured
for robot i, average power draw P (ej), distance d(ej), and
velocity v(ej), an approximate current I(ri, ej) and current
consumption Ic(ri, ej) can be calculated by

I(ri, ej) =
P (ej)

V (ri)
(4)

Ic(ri, ej) =
I(ri, ej)d(ej)

v(ej)
(5)

In our planners, battery capacity is not allowed to fall
below a specified level Clow.

D. Priority Planning with SIPP

Priority planning assigns a priority number to each robot
under consideration and plans collision-free paths for each
robot in order of its priority; as it iterates through the robots,
it saves the robots’ paths and the nodes within a radius r of
each path to the obstacle space. Therefore priority planning is
non-optimal and in a naive implementation is not guaranteed
to find a solution. However, if the graph on which the robots

Algorithm 1: Safe Interval Path Planning

1 Algorithm SIPP
2 Input: G, set of safe intervals, robot index i, initial

state s0, goal state sg
3 Output: collision-free path, updated safe intervals
4 OPEN = ∅;
5 insert (s0, c = 0, e = h(s0), t = start time) into

OPEN ;
6 C(s0) = 0;
7 T (s0) = starting time;
8 while sg not expanded do
9 remove (s, c, e, t) with the smallest e-value

from OPEN ;
10 successors = getSuccessors(s, t);
11 foreach s′ in successors do
12 if s′ was not visited before then
13 C(s′) = T (s′) =∞;

14 if C(s′) > c+ cost(s′) or T (s′) > time(s′)
then

15 C(s′) = min(c+ cost(s′), C(s′));
16 T (s′) = min(T (s′), time(s′));
17 insert (s′, c+ cost(s′), c+ cost(s′) +

h(s′), time(s′)) into OPEN ;
18 remove all tuples from OPEN with

s = s′ and c >= C(s′) and t >= T (s′)

19 recover pi by backtracking from gi;
20 return pi;

are traveling is structured as a well-formed infrastructure
in which the robots start and finish on endpoints that do
not obstruct the paths of other robots, then every robot is
guaranteed to have a feasible path [7]. The notion of a well-
formed infrastructure easily extends to 3D space so that a
path is guaranteed as long as each flying car starts at a
parking node, has an empty parking node as its endpoint,
and does not travel through other parking nodes on its way
to its goal.

Our Safe Interval Path Planning algorithm extends the
one in [24] and finds collision-free paths for robots with
multimodal locomotion by extending A* to the time domain,
as outlined in Algorithm 1. Unlike an approach such as
cooperative A* that discretizes the time domain [8], SIPP
allows search in continuous time. It achieves this by com-
pressing time for each node into “safe intervals” in which no
obstacle passes through the given node. For example, a node
through which no vehicles pass has a safe interval (0,∞).
If a vehicle passes through the node from times 4.5 to 5.5,
the node now has two safe intervals (0, 4.5) and (5.5,∞).
We define a state s to be a node-interval pair, in which
a node is associated with one of its safe intervals. T (s)
stores the earliest-time arrival, C(s) stores the lowest cost-to-
come, and h(s) represents the estimated cost-to-go. Arrivals
in states are stored in the set OPEN as tuples, so that the

state si, the cost-to-come c, the sum of the cost-to-come and
estimated cost-to-go e, and the arrival time t are associated
with that arrival. cost(s) returns the cost associated with
state s. state(v, i) returns the state associated with node v
and time i, while node(s) returns the node associated with
state s.

Algorithm 2: Successor Function

1 Function getSucccessors(s, t) : successors is
2 successors = ∅;
3 foreach v′ in Neighbors(node(s)) do
4 L = interval list of v′;
5 dt = time to traverse (node(s), v′);
6 foreach safe interval i in L do
7 if end time(i) > t+ dt and start time(i) <

end time(interval(s)) then
8 tarr = earliest arrival time in L;
9 cost = c(ri, (node(s), v

′), tarr − t);
10 if v′ is the goal or v′ is not parking

then
11 s’ = state(v’,i);
12 associate s′ with time tarr and cost;
13 insert s′ into successors;

14 return successors;

The successor function takes a state and the robot’s arrival
time to that state. It then finds all overlapping safe-intervals
for all neighboring nodes, storing each node-safe interval pair
as a successor state, along with the earliest arrival time and
the cost. In [24], SIPP guarantees time-cost optimality by
storing only the earliest arrival to a state, as any later arrival
would simply have a sub-set of the earlier arrival’s options.

In order to optimize energy as well as time, the choice of
successor becomes more complicated. One cannot consider
only the earliest arrival, as that may not have the lowest
cost. Nor can we ignore all but the lowest cost arrival, as
earlier arrivals could have more available safe intervals and
thus a lower cost path overall. To maintain optimality, one
would have to consider all arrivals to a state that have a lower
cost than all previous arrivals, but this causes the number of
successors considered to expand exponentially. We therefore
sacrifice optimality (we already sacrificed multi-robot opti-
mality by using priority planning) to speed up computation
times by only considering the earliest arrival and lowest cost
arrival to a state.

Once a path is found, the safe-intervals are updated. Nodes
are considered unsafe for the time that the robot is within a
certain radius of them. Following that, the next robot plans
its path, using the updated set of safe-intervals.

E. Multi-commodity flow with ILP
Our algorithm is based off the algorithm found in [9]. In

[9], the MPP is reformulated as a multi-commodity network
flow problem. This is achieved by discretizing the time do-
main and connecting nodes in the time domain to each other

Algorithm 3: MPP-ILP-Optimization

1 Algorithm Model Construction
Input: G,Tmax

Output: ILP model
2 construct a time-expanded version of G by

making a copy of every node for every time step
and linking nodes at time ti to nodes that are
reachable at time ti+1;

3 add arc capacity constraints;
4 add flow conservation constraints;
5 add scenario completion constraints;
6 add meet collision constraints;
7 add head-on collision constraints;
8 add battery-life constraints;
9 add objective function;

10 return ILP model

with arcs, forming a new graph G′. Multi-commodity flow
can be solved by adding a binary variable xij representing
the presence or absence of each robot i to each arc j, and
then adding constraints that prevent robots from colliding
with each other, as outlined in Algorithm 3. The specifics of
the graph construction and constraints can be found in [9];
however, we added an additional battery life constraint and
a new objective. Given binary variables xij and |G′| arcs in
G′, the battery constraint for each robot i can be expressed
as ∑

0≤j<|G′|

Ic(ri, ej) · xij ≤ Clow (6)

and the objective function as

min
∑

0≤j<|G′|,1≤i≤n

c(ri, ej) · xij (7)

In [9], the distance between nodes is assumed to be
1, and all of the robots move with the same velocity. In
order to accommodate multiple velocities we designed a
new graph structure. Given a basic graph of the road system
and desired air, takeoff, landing, and ground velocities, we
add “waypoint” nodes between the existing ground nodes so
that the time it takes to move between nodes takes about
1 timestep. We also space out the aerial nodes so that the
time it takes to travel between nodes takes about 1 timestep.
In the planning step we then assume that it takes exactly
1 timestep to travel between any two adjacent nodes; this
way, the velocity a robot must travel between adjacent nodes
remains close to, but not exactly, the original desired velocity.
Our formulation differs from the original formulation in that
our objective function incorporates both time and energy; our
graph contains arcs of different lengths that are calculated
based off of the robots’ velocities; and we include a battery
voltage constraint.

(a) The Crazyflie with driving
mechanism and motion cap-
ture markers

(b) A flying car from the bot-
tom, showing the driving ap-
paratus (two wheels and a ball
caster) and the motors and
propellers of the quadcopter.

Fig. 3: Mechanical design of the flying car

VI. ROBOT PLATFORM

A. Mechanical Design

The mechanical design of the flying car was kept as simple
as possible in order to make the fabrication of a small swarm
possible. The finished robot can be seen in Fig. 3a. We used
Bitcraze’s Crazyflie 2.0 as the base of the system since it
is fully open source and programmable. Fig. 3b shows the
underside of the robot, where the driving mechanism is most
visible. The driving portion of the flying car consists of
a PCB with a motor driver; a carbon fiber tube with two
small motors was epoxied onto the bottom of the PCB,
and a ball caster was glued onto the bottom as a passive
wheel element. The masses of the main components of the
robot are listed in Table I. Although adding two motors
to the platform increased its mass, they enabled us to use
differential control for driving. This system was small, safe,
and extremely robust. The firmware was modified so that
the wheels could be controlled via the Crazyflie’s Crazyradio
command interface.

Mass Table

Item Mass (g) Mass Percent

Motor Base 8.3 g 20.2%
Motion Capture Markers 4.2 g 10.2%
Crazyflie 28.5 g 69.5%

Total 41.0 g 100%

TABLE I: Masses of the elements of the flying car

B. Control

The planners return a list of waypoints and arrival times
for the flying car to follow. This list of waypoints is then
interpolated to make a more refined trajectory for trajectory
following. For ground waypoints, a pure pursuit controller
is used to follow the desired trajectory. The two ground
motors allow for simple differential steering control. When
a transition from a ground waypoint to an air waypoint is
detected, takeoff is initiated and an LQR flight controller

Vicon	

Robot	 1	 Robot	 2	

Map	 Maker	

Map	
Specifica4on	

Scenario	
Generator	

Scenario	
Specifica4on	

Planner	

Visualizer	

State	 Machine	

Driving	
Controller	

Flying	
Controller	

Driving	 Command	
Switch	 1	

Kalman	
Filter	

Radio	
Server	

Planning	 and	 Simula4on	

Robot	 n-‐1	 Robot	 n	

Driving	 Command	
Switch	 n/2	

Control	

Trajectory	
Generator	

Fig. 4: System architecture

Energetics

Vehicle
(m/s)
Speed

(min)
Time
Run

(m)
Dist
Max

(W)
Pow
Ave COT

Crazyflie 0.3 5.7 103 6.86 81.8
Flying Car 0.3 5.0 90 7.83 64.9
Wheels 0.1 42 252 0.60 14.9

TABLE II: Comparison of the energetics of the Crazyflie,
flying car, and wheel base

takes over, sending yaw, pitch, roll and thrust commands
to the Crazyflie’s on-board attitude controller. When the
transition from air to ground it detected, a landing sequence
is triggered and the flying car lands near its target. A Kalman
filter with position and yaw estimates from a Vicon motion
capture system is used to estimate the state of the robots.

C. System Architecture

This project was written in the Robot Operating System
(ROS) environment, and the overall architecture of the sys-
tem can be seen in Figure 4. The process starts with a
map configuration file, in which the road layout, as well
as any no-fly zones and helipads, is specified. A “scenario
specification” file, which specifies the parking nodes at which
each robot will begin and end its path, can also be supplied.
If not, a random scenario will be generated. The generated
3D environment and the scenario are supplied to the planner,
which calculates a set of collision-free paths for the robots.
The map and the paths are sent to a visualizer (such as
RViz) or to a trajectory generator. The trajectory generator
smooths the path into closely spaced waypoints and send
them to a state machine that determines based off of the
node type whether to send commands to the driving or
flying controller, and if it chooses the flying controller,
whether to takeoff, land, or fly. The flying controller sends
flight commands directly to a radio server. We found that a
single Crazyradio can support communication with at most

2 Crazyflies reliably. The driving controller uses a slower
communication protocol than the flying controller, so we
found that we had to serialize the driving commands being
sent to a single radio. This was accomplished using a “driving
command switch” that reads the driving commands for two
robots and sends the commands in serial to the radio server.

Fig. 5: Driving and flight paths of three flying cars. Bold
lines are recorded trajectories and dots indicate commanded
waypoints of the path with the corresponding color.

VII. EXPERIMENTS & RESULTS

A. Energetics

Experiments were conducted to determine the power con-
sumption and battery life of the robots using different modes
of locomotion. The results can be seen in Table II. Adding
wheels to the base of the Crazyflie reduced its flying time
by ∼12%. However, the battery life of the flying car using
wheels was ∼8.4 times longer than that of the flying car
when it flew, and about ∼7.4 times longer than that of
the Crazyflie. This implies that at the speeds used in the
simulations, the flying car could travel 90 m by flying and
252 m by driving. The cost of transport of driving is 87%
lower than that of flying, corroborating the results found in

[11] and supporting our argument that flying can serve as a
high-cost, high-speed transport option while driving serves
as a low-cost, low-speed option.

(a) In priority planning, the low-
est priority car flies over traffic

(b) The optimal planner coordi-
nates all robots simultaneously
so none have to fly

Fig. 6: Simulation experiments

Fig. 7: Planning times vs. number of vehicles and average
cost of paths

Fig. 8: Paths for 20 vehicles with flying and driving.

B. Simulation

Simulations were run to test the abilities of the system.
Selected simulations are shown in the attached video. We
ran simulations on over 20 maps; the largest map, shown in
Fig. 8, had 934 nodes. We could plan for up to 80 vehicles
in the large map; Fig. 8 shows paths for 20 vehicles. Fig. 6a
shows an example of how a flying car could fly over traffic
instead of waiting at an intersection for other cars to pass.
Fig. 6 is also a comparison of the priority planner and the
optimal planner; in Fig. 6a, the priority planner has the lowest
priority car fly over the other cars in a high-cost path; in
Fig. 6b, the optimal planner finds a way to coordinate the

cars in order to main low-cost driving paths for all of them.
Fig. 7 shows a comparison of the run times and the path
cost returned by the optimal and priority-based planners.
20 trials were run for both planners for 3-6 vehicles in
the 125-node map in Fig. 6. Note that planning time did
not vary significantly with the number of vehicles. The plot
on the right of the figure shows the average cost, which
is a dimensionless value, of all 80 trials for both planners.
The mean cost of the optimal planner was 0.155, or 91%
lower than the 1.76 mean cost of the paths returned by
the priority-based planner. Meanwhile, the mean planning
time of the priority-based planner was 0.106 seconds, 0.85%
of the value of the 1.25-second mean planning time of the
optimal planner. Therefore the two planners offer a clear
tradeoff in planning time versus cost optimality. The optimal
planner is slow but returns low-cost paths, and the priority-
based planner is fast but returns relatively high-cost paths.

C. Physical Experiment

Finally, a physical experiment using 8 flying cars was
conducted. We provided a scenario in which each robot
had to travel from a start position to a goal position. The
full experiment can be viewed in the video attachment. A
4.2m x 2.1m map was constructed using velvet mats. Fig. 1a
shows the experiment in progress; Fig. 1b shows the same
moment in time in simulation. The map of the demonstration
was constructed so that the road system consists of two
disconnected regions; in order to travel from one region to
another, the flying cars must fly above the gap between the
two. This situation is common in the real world; for example,
the gap between the road sections could be a wall, a lake, a
fallen tree, or any number of other obstacles. Moreover, only
a narrow corridor of land, colored in green in Fig. 1b, has
available airspace; the rest of the land, colored in orange, is a
no-fly zone. The narrow corridor forces the cars to coordinate
their motion, and such corridors of restricted flight are also
a possibility in the future; for example, delivery drones or
personal flying cars may not be allowed to fly over residential
areas at night. The recorded flying and driving trajectories
of three of the flying cars is shown in Fig. 8. The robots
successfully completed the objective of the experiment by
traveling from their start positions to their goal positions in
collision-free paths.

VIII. DISCUSSION & CONCLUSION

In this paper, we introduced a framework for multi-robot
path planning for a swarm of flying-and-driving vehicles.
By putting a lightweight driving platform on a Crazyflie,
we created a robust vehicle with an energy efficient driving
mode and an agile flight mode. We extended two algorithms,
priority planning with SIPP and a multi-commodity network
flow ILP, to accommodate multimodal locomotion, and we
showed that these algorithms can indeed plan collision-
free paths for flying-and-driving vehicles on 3D graphs. We
created a system architecture to coordinate the planning and
control of a swarm of our vehicles, and we demonstrated that

our system was able to plan paths and control the motions
of 8 of our vehicles in a miniature town.

Although we explored multi-robot path planning for a
swarm of robots with multimodal locomotion in this paper,
there are many other avenues of exploration regarding this
type of robot. Path planning through an unknown environ-
ment, for example a disaster zone, with a robot that can fly
and drive would enable a robot to decide when to fly over
debris or drive through small holes. A surveillance robot
could quickly fly to its target, use its wheels to position itself
to collect data, and then fly back once its mission is complete.
Flying taxis could decide when to speed through the air or
drive on congested streets based on how much a customer
is willing to pay. At a construction site, robots could deliver
heavy loads by wheel and then fly back to pick up the next
payload. By presenting a working system for multi-robot,
multimodal planning and control, this work hopes to inspire
further exploration of the tasks that flying-and-driving robots
make possible.

ACKNOWLEDGMENT

We are grateful to Jingjin Yu for advice in implementing
his multi-commodity flow ILP; to Alex Wallar for his help
with ROS; to Cenk Baykal for his help with experiments;
and to Robert Katszchmann for advice on the mechanical
design of the flying cars.

REFERENCES

[1] John E Hopcroft, Jacob Theodore Schwartz, and Micha Sharir. On
the complexity of motion planning for multiple independent objects;
pspace-hardness of the” warehouseman’s problem”. The International
Journal of Robotics Research, 3(4):76–88, 1984.

[2] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha.
Reciprocal n-body collision avoidance. In Robotics research, pages
3–19. Springer, 2011.

[3] Michal Čáp, Jiřı́ Vokřı́nek, and Alexander Kleiner. Complete decen-
tralized method for on-line multi-robot trajectory planning in well-
formed infrastructures. In Twenty-Fifth International Conference on
Automated Planning and Scheduling, 2015.

[4] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot:
A low cost scalable robot system for collective behaviors. In 2012
IEEE International Conference on Robotics and Automation, pages
3293–3298. IEEE, May 2012.

[5] Daniel Martin Kornhauser, Gary L Miller, and Paul G Spirakis.
Coordinating pebble motion on graphs, the diameter of permutation
groups, and applications. Master’s thesis, M. I. T., Dept. of Electrical
Engineering and Computer Science, 1984.

[6] Michael Erdmann and Tomas Lozano-Perez. On multiple moving
objects. Algorithmica, 2(1-4):477–521, 1987.

[7] Michal Čáp, Peter Novák, Alexander Kleiner, and Martin Seleckỳ.
Prioritized planning algorithms for trajectory coordination of multi-
ple mobile robots. IEEE Transactions on Automation Science and
Engineering, 12(3):835–849, 2015.

[8] David Silver. Cooperative pathfinding. AIIDE, 1:117–122, 2005.
[9] Jingjin Yu and Steven M LaValle. Optimal multi-robot path planning

on graphs: Complete algorithms and effective heuristics. arXiv preprint
arXiv:1507.03290, 2015.

[10] Glenn Wagner and Howie Choset. Subdimensional expansion for
multirobot path planning. Artificial Intelligence, 219:1–24, 2015.

[11] Yash Mulgaonkar, Brandon Araki, Je-sung Koh, Luis Guerrero-
Bonilla, Daniel M Aukes, Anurag Makineni, Michael T Tolley, Daniela
Rus, Robert J Wood, and Vijay Kumar. The flying monkey: A
mesoscale robot that can run, fly, and grasp. In 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 4672–
4679. IEEE, 2016.

[12] Richard J. Bachmann, Frank J. Boria, Ravi Vaidyanathan, Peter G. Ifju,
and Roger D. Quinn. A biologically inspired micro-vehicle capable
of aerial and terrestrial locomotion. Mechanism and Machine Theory,
44(3):513–526, 2009.

[13] Daler Ludovic, Mintchev Stefano, Stefanini Cesare, and Floreano
Dario. A bioinspired multi-modal flying and walking robot. Bioinspi-
ration & Biomimetics, 10(1):016005, 2015.

[14] A. Kalantari and M. Spenko. Modeling and performance assessment
of the hytaq, a hybrid terrestrial/aerial quadrotor. Robotics, IEEE
Transactions on, 30(5):1278–1285, 2014.

[15] Jared R Page and Paul EI Pounds. The quadroller: Modeling of a
uav/ugv hybrid quadrotor. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4834–4841. IEEE, 2014.

[16] SH Jeong and S Jung. A quad-rotor system for driving and flying
missions by tilting mechanism of rotors: From design to control.
Mechatronics, 24(8):1178–1188, 2014.

[17] Syma X9 Flying Car. http://www.symax9.com/.
[18] Alex Kushleyev, Daniel Mellinger, and Vijay Kumar. Towards a swarm

of agile micro quadrotors. In in Robotics: Science and Systems (RSS,
2012.

[19] M. Turpin, N. Michael, and V. Kumar. Decentralized formation control
with variable shapes for aerial robots. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 23–30, May
2012.

[20] Y. Mulgaonkar, G. Cross, and V. Kumar. Design of small, safe and
robust quadrotor swarms. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pages 2208–2215, May 2015.

[21] Wolfgang Hönig, Christina Milanes, Lisa Scaria, Thai Phan, Mark
Bolas, and Nora Ayanian. Mixed reality for robotics. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on, pages 5382–5387. IEEE, 2015.

[22] Benoit Landry. Planning and control for quadrotor flight through clut-
tered environments. PhD thesis, Massachusetts Institute of Technology,
2015.

[23] Hao Jiang, Morgan T Pope, Matthew A Estrada, Bobby Edwards,
Mark Cuson, Elliot W Hawkes, and Mark R Cutkosky. Perching failure
detection and recovery with onboard sensing. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, pages
1264–1270. IEEE, 2015.

[24] Mike Phillips and Maxim Likhachev. Sipp: Safe interval path planning
for dynamic environments. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 5628–5635. IEEE, 2011.

