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ABSTRACT 21 

Sedimentary pyrite formation links the global biogeochemical cycles of carbon, sulfur and 22 

iron that, in turn, modulate the redox state of the planet’s surficial environment over geological 23 

timescales. Accordingly, the sulfur isotopic composition (δ34S) of pyrite has been widely employed 24 

as a geochemical tool to probe the evolution of ocean chemistry. Characteristics of the depositional 25 

environment and post-depositional processes, however, can modify the δ34S signal that is captured 26 

in sedimentary pyrite and ultimately preserved in the geological record. Exploring sulfur and iron 27 

diagenesis within the Bornholm Basin, Baltic Sea, we find that higher sedimentation rates limit 28 

the near-surface sulfidization of reactive iron, facilitating its burial and hence subsurface 29 

availability of reactive iron for continued and progressively more 34S-enriched sediment-hosted 30 

pyrite formation (δ34S ≈ −5‰). Using a diagenetic model, we show that the amount of pyrite 31 

formed at the sediment–water interface has increased over the last few centuries in response to 32 

expansion of water-column hypoxia, which also impacts the sulfur isotopic signature of pyrite at 33 

depth. This contribution highlights the critical role of reactive iron in pyrite formation and 34 

questions to what degree pyrite δ34S values truly reflect past global ocean chemistry and 35 

biogeochemical processes. This work strengthens our ability to extract local paleoenvironmental 36 

information from pyrite δ34S signatures.  37 
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INTRODUCTION 38 

 Microbially-mediated marine biogeochemical sulfur cycling has played a fundamental role 39 

in regulating the chemistry of Earth’s surface, coupling redox reactions with organic carbon and 40 

molecular oxygen over Earth History (Canfield and Teske, 1996; Garrels and Lerman, 1981). The 41 

various redox transformations of sulfur are often accompanied by isotope fractionation, which may 42 

then propagate throughout environmentally-relevant sulfur pools (Canfield, 2001; Jørgensen et al., 43 

2019). Given that sedimentary pyrite represents the dominant marine sulfur sink (Berner, 1984), 44 

the sulfur isotopic composition (δ34S) of sedimentary pyrite has been frequently employed to 45 

elucidate the evolution of ocean chemistry and to detect changes in Earth’s surface environment 46 

(Canfield and Teske, 1996; Gill et al., 2011; Hammarlund et al., 2012). Recent studies, however, 47 

have elucidated that rather than informing on large-scale changes in global sulfur cycling, pyrite 48 

δ34S records integrate multiple signals and are impacted by local depositional and post-depositional 49 

processes, such as changes in sedimentation rate (Fike et al., 2015; Lang et al., 2020; Liu et al., 50 

2019; Pasquier et al., 2017). 51 

Pyrite formation is controlled by the availability of both reduced sulfur species and reactive 52 

iron (Berner, 1984; Rickard and Luther, 2007). Ultimately, the δ34S of pyrite is a function of the 53 

δ34S of reduced sulfur species at the depth of pyrite precipitation (Butler et al., 2004). Higher 54 

sedimentation rates reduce the exchange of sulfate between sediment porewater and the overlying 55 

water-column, allowing more progressive consumption of the sulfate reservoir that increases the 56 

δ34S of both porewater sulfate and sulfide (Goldhaber and Kaplan, 1975; Wijsman et al., 2001). 57 

Numerous models have been developed to link the coupled δ34S evolution of porewater sulfate and 58 

sulfide, exploring how the connectivity between porewaters and the overlying water-column 59 

affects the isotopic evolution of the pore-fluids (Chernyavsky and Wortmann, 2007; Jørgensen, 60 
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1979). Surprisingly, however, despite its known influence on the efficiency and depth of pyrite 61 

formation (März et al., 2008; Riedinger et al., 2005, 2017; Shawar et al., 2018), to date, there has 62 

been limited work exploring how diagenesis influences the subsurface availability of reactive iron. 63 

Studying pyritization through coupled iron and sulfur diagenesis in dynamic depositional regimes, 64 

therefore, remains an important approach to the successful translation of pyrite-derived δ34S 65 

records into useful information regarding the operation of the ancient sulfur cycle. As a first-step, 66 

here we test a hypothesized positive relationship between sedimentation rates and reactive iron 67 

burial, examining how enhanced subsurface reactive iron availability fuels subsurface pyrite 68 

genesis and the ingrowth of sedimentary pyrite with more positive δ34S values. 69 

 70 

STUDY AREA AND METHODOLOGY 71 

Within the Bornholm Basin, Baltic Sea (Fig. 1), the underlying glaciogenic topography 72 

induces distinct spatial variability in Holocene sedimentation rates (Hilligsøe et al., 2018). 73 

Accordingly, the Bornholm Basin offers the opportunity to explore how spatially variable 74 

sedimentation rates impact reactive iron availability in the subsurface and its knock-on effects on 75 

pyrite genesis and its sulfur isotope systematics. Here, we present a comprehensive dataset 76 

comprising sulfur and iron abundance and multiple sulfur isotope data for marine sediments 77 

collected at site BB03 in the Bornholm Basin. Over the past 8500 years, the sedimentation rate at 78 

site BB03 (113 cm ka−1) has been much higher than neighboring sites (BB02 and BB05; Table S1), 79 

thereby allowing us to evaluate the role of the depositional environment on pyrite-δ34S values 80 

across the basin. 81 
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Porewater and sediments were sampled and analyzed using established procedures (see 82 

Supplemental Material1). Sulfur isotope data are presented in standard δ notation relative to Vienna 83 

Canyon Diablo Troilite (VCDT): 84 

δ3XS (‰) = (3XRSample/
3XRVCDT – 1) × 1000, (1) 85 

where 3XR = 3XS/32S (X = 3 or 4). The minor sulfur isotopic composition is defined as deviation of 86 

δ33S from the ideal mass-dependent relationship and reported in ∆33S notation (Ono et al., 2006): 87 

∆33S = δ33S – 1000 × [(1 + δ34S/1000)0.515 – 1]. (2) 88 

 89 

THE ROLE OF SEDIMENTATION RATE IN PYRITE FORMATION 90 

Early diagenesis of iron and sulfur involves the transformation of highly reactive Fe 91 

minerals (Fe-(oxyhydr)oxides and Fe-carbonates) to Fe-sulfides (Berner, 1984). In core BB03 the 92 

extent of pyritization of the highly reactive Fe pool, expressed as Fepy/FeHR, varies between 0.5 93 

and 0.7 near the sediment–water interface, increasing toward 0.8 downcore, albeit with much 94 

scatter (Fig. 2A). This implies that pyrite precipitation starts soon after deposition and pyrite is 95 

slowly accumulating throughout burial. Importantly, a positive relationship between sedimentation 96 

rate and reactive Fe abundance is seen at the three sites (Figs. 2C, 3C). Under higher sedimentation 97 

rates, the contact time between the sulfidic porewaters and available reactive Fe phases is 98 

minimized, promoting the burial and preservation of reactive Fe (März et al., 2008; Riedinger et 99 

al., 2005, 2017). At depth, these Fe-oxides can enhance sulfide oxidation and deep S0 formation 100 

down to 450 cmbsf (cm below seafloor), thus pyrite formation can be active throughout the four-101 

thousand-years of deposition at site BB03 (Fig. S1). 102 

Microbial sulfate reduction preferentially consumes 32S over 34S by up to 70‰ (Sim et al., 103 

2011), enriching the residual porewater sulfate in 34S, as seen in the subsequently formed H2S (Fig. 104 
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3A; Canfield, 2001; Pellerin et al., 2018). With this in mind, the 34S-enriched pyrite seen at site 105 

BB03 reflects the combined product of early- and late-formed pyrite (Fig. S2), as supported by the 106 

multiple sulfur isotope systematics. Masterson (2016) showed that the δ34S and ∆33S values of 107 

early-formed Baltic Sea pyrite are approximately −30‰ and 0.17‰, respectively, while their late-108 

formed counterparts approximate those of seawater sulfate (δ34S = 21‰, ∆33S = 0.05‰; Liu et al., 109 

2020b). The δ34S and ∆33S systematics of pyrite extracted from site BB03 lie on the mixing line 110 

between these two pyrite pools (Fig. 3B), where mixing results in curved trajectories and 111 

progressively lower ∆33S values (Ono et al., 2006). We also find that the organic matter availability 112 

and the connectivity between porewater and overlying water-column do not change with 113 

sedimentation rates (Figs. S3–S4). Precluding these variables, we suggest that the more plentiful 114 

reactive Fe remains in the subsurface, the more 34S-enriched bulk δ34S values can become (Figs. 115 

2B–C, 3C–D), providing an explanation for the elevated pyrite-δ34S values (−5‰) seen below 80 116 

cmbsf at site BB03 (Fig. 2B). Contrastingly, where sedimentation rates are much lower at sites 117 

BB02 and BB05, subsurface reactive Fe availability is limited by consumption via surficial pyrite 118 

genesis. Here, pyrite formation is mostly terminated by ~80 cmbsf, leaving the 32S-enriched signal 119 

inherited from early-formed pyrite to dominate the bulk signal, even at depth (Fig. 2; Liu et al., 120 

2020a). 121 

Interestingly, the δ34S of pore fluid aqueous H2S decreases below the sulfate–methane 122 

transition (SMT) at site BB03 (Fig. 3A). This unexpected inflection within the sulfate-depleted 123 

methanogenic zone (Fig. S4) likely signals the operation of a cryptic, Fe-driven, sulfur cycle 124 

beneath the SMT (Holmkvist et al., 2011; Liu et al., 2020b). The H2S gradient beneath the SMT 125 

(Fig. S1B) drives a downward diffusion of 34S-enriched H2S, which is partially oxidized by deeply 126 

buried Fe-oxides. Manifest as a decrease in H2S-δ34S (Fig. 3A), the production of sulfur 127 
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intermediates fuels successive disproportionation, generating 34S-depleted H2S and 34S-enriched 128 

SO4
2- (Canfield and Thamdrup, 1994). Unfortunately, the concentration of sulfate is maintained 129 

around a background of 10 µM via microbial consumption (Pellerin et al., 2018), which provides 130 

an analytical hurdle that prevents us from tracing the expected 34S enrichment within the sulfate 131 

pool. A similar δ34S profile of H2S might be expected in other marine sediments where reactive 132 

Fe-oxides are abundant below the SMT. 133 

 134 

PYRITE FORMATION UNDER NON-STEADY-STATE CONDITIONS 135 

Besides sediment-hosted diagenetic processes, pyrite formation is influenced by bottom-136 

water chemistry. Accordingly, the abundance of early-formed pyrite formed near the sediment–137 

water interface (i.e., in the upper 10 cm) may have varied over time. Using a two end-member 138 

mixing model (see Supplemental Material) the sediments between 50–200 cmbsf were found to 139 

have much lower contents of early-formed pyrite compared with those found in the upper 50 cm 140 

of core BB03 (Fig. 4A). Furthermore, the downcore profile of pyrite-δ34S values can be broadly 141 

reproduced by changing initial, near-surface pyrite formation (Fig. 4B–C), confirming that 142 

sediments possessing less early-formed pyrite were able to evolve higher pyrite-δ34S values 143 

through the enhanced addition of pyrite at depth because the reactive Fe delivered to the sediment–144 

water interface wasn’t depleted through shallow pyrite formation. 145 

Contemporary deoxygenation of the Baltic Sea is the most likely explanation for the 146 

decreased contents of early-formed pyrite seen during the earlier Holocene relative to the present-147 

day. Although the Bornholm Basin is currently bathed by hypoxic waters with seasonal 148 

development of anoxia, the area and severity of hypoxia have undergone a ten-fold expansion over 149 

the past 115 years, fueled by heightened eutrophication and global warming (Carstensen et al., 150 
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2014). Prior to these anthropogenic changes, pre-industrial bottom-waters were likely to have been 151 

more oxygenated, limiting pyrite formation via more intense bioturbation and heightened re-152 

oxidation of reduced sulfur at the sediment–water interface (Jørgensen and Nelson, 2004). The 153 

bioturbation intensity determined using the ichnofabric index indeed varied significantly between 154 

“bioturbation absent” and “moderate bioturbation” throughout a 10-meter-deep core with weak or 155 

absent lamination at the same site (Andrén et al., 2015). Likewise, changes in bioturbation intensity 156 

are expected to impact the subsurface pyrite-δ34S in other marine settings (cf. Fike et al., 2015). 157 

 Interestingly, such variation in the early-formed pyrite content is not ubiquitous and is not 158 

observed at site BB02 (Liu et al., 2020a), suggesting that bottom-water oxygen availability was 159 

more spatially variable in the past. Although both sites BB02 (96 m) and BB03 (84 m) reside 160 

below the current halocline (50–80 m), where dissolved oxygen is scarce, the Bornholm Basin was 161 

most likely more weakly stratified in the past, with enhanced vertical mixing and a deeper halocline 162 

(Carstensen et al., 2014; Väli et al., 2013). Consequently, site BB03 would have been more 163 

frequently bathed by oxygenated bottom-waters before the recent expansion of hypoxia, limiting 164 

pyrite formation near the sediment surface. The deepest basin, however, would have remained 165 

hypoxic with transient oxygenation events, sustaining early pyrite formation at site BB02 166 

throughout much of the Holocene. Since coastal hypoxia is a worsening problem observed 167 

worldwide (e.g., Middelburg and Levin, 2009), we anticipate that a similar pyrite-δ34S response to 168 

bottom-water deoxygenation may begin to be recognized on a much greater spatial scale. 169 

 170 

CONCLUSIONS 171 

Local oxygen availability and sedimentation rate combine to regulate near-surface 172 

pyritization and the availability of reactive Fe at depth. A greater survival rate (i.e., enhanced burial) 173 
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of reactive Fe, in turn, sustains sediment-hosted pyrite genesis, driving bulk pyrite δ34S values 174 

more positive via the subsurface addition of 34S-enriched pyrite. Although geological δ34S records 175 

of pyrite are widely used to reconstruct global changes in C-S-Fe cycling, the large spatial 176 

differences identified in our pyrite-δ34S records, spanning some 10 km within the Bornholm Basin, 177 

demonstrate that the δ34S signal is heavily influenced by the prevailing localized geochemical and 178 

depositional conditions. Such a diagenetic influence is not expected to be constrained to Baltic 179 

post-glacial successions, but is anticipated to be relevant to dynamic settings that feature non-180 

steady-state sedimentation. Consistent with this prediction, the ever-growing δ34S database has 181 

revealed significant heterogeneities in supposedly time-equivalent modern and ancient pyrite-δ34S 182 

records alike (e.g., Hammarlund et al., 2012). In light of our findings, this variability can be readily 183 

explained by site-specific depositional and diagenetic processes. While serving as a note of caution, 184 

these findings expose δ34S systematics as a valuable proxy capable of decoding localized 185 

sedimentological and environmental changes throughout Earth history.  186 
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FIGURES 315 

 316 

Figure 1. Bathymetric maps locating site BB03 and its neighboring sites within the Bornholm 317 

Basin contextualized within the wider Southwestern Baltic Sea (insert). Maps were generated via 318 

GeoMapApp. 319 

  320 
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 321 

Figure 2. Comparison of geochemical data for sites BB05, BB02 and BB03. (A) The extent of 322 

pyritization (Fepy/FeHR). (B) The δ34S of chromium reducible sulfur (CRS, predominantly pyrite). 323 

(C) The average reactive iron contents (± 1σ) of Holocene-aged sediments in the Bornholm Basin. 324 

The horizontal bars in (B) show the depth of the SMT. The raw data in (C) are shown in Fig. 3C. 325 

Data from cores BB02 and BB05 are from Liu et al. (2020a). 326 
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 327 

Figure 3. Sulfur and iron geochemistry from the Bornholm Basin. (A) Fraction-specific δ34S values 328 

from the upper 100 cm of site BB03. (B) CRS-derived multiple sulfur isotope data from site BB03. 329 

(C–D) Reactive iron content (C) and reactive-iron-normalized pyrite content (Fepy/FeHR; D) versus 330 

CRS-derived δ34S values from sites BB05, BB02 and BB03. The green and black dotted curves in 331 

(B) depict the trajectory of H2S (cf. Masterson, 2016) and the mixing line, respectively. The end-332 
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members defining the mixing lines are based on measured and literature data (cf. Liu et al. 2020b). 333 

Data from cores BB02 and BB05 are from Liu et al. (2020a). 334 

 335 

 336 

 337 

 338 

Figure 4. CRS data and model outputs describing pyrite growth at site BB03. (A) Early-formed 339 

pyrite contents. The measured CRS contents in the upper 10 cm are shown for comparison. (B) 340 

Measured CRS content and the variable rates of pyrite formation used within the model. (C) 341 

Downcore measured and modeled δ34SCRS. The solid lines describe high pyrite formation at the 342 

sediment–water interface (standard scenario), while the dashed lines depict an alternative scenario 343 

where pyrite formation starts only below the sediment–water interface.  344 
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1GSA Data Repository item 20XXxxx, supplemental methods, diagenetic model, Table S1 and 345 

Figures S1–5, is available online at www.geosociety.org/pubs/ft20XX.htm, or on request from 346 

editing@geosociety.org. 347 


