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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Deep learning model to predict complex stress 
and strain fields in hierarchical composites
Zhenze Yang1,2†, Chi-Hua Yu1,3†, Markus J. Buehler1,4,5*

Materials-by-design is a paradigm to develop previously unknown high-performance materials. However, finding 
materials with superior properties is often computationally or experimentally intractable because of the astronomical 
number of combinations in design space. Here we report an AI-based approach, implemented in a game 
theory–based conditional generative adversarial neural network (cGAN), to bridge the gap between a material’s 
microstructure—the design space—and physical performance. Our end-to-end deep learning model predicts 
physical fields like stress or strain directly from the material microstructure geometry, and reaches an astonishing 
accuracy not only for predicted field data but also for derivative material property predictions. Furthermore, the 
proposed approach offers extensibility by predicting complex materials behavior regardless of component shapes, 
boundary conditions, and geometrical hierarchy, providing perspectives of performing physical modeling and simu-
lations. The method vastly improves the efficiency of evaluating physical properties of hierarchical materials 
directly from the geometry of its structural makeup.

INTRODUCTION
Because of high demand for materials with superior mechanical 
properties and versatile functionalities, tuning composite designs has 
become a crucial part in materials development (1–4). The essence 
of composites lies in introducing heterogeneity through combina-
tions of multiple materials with distinct, often disparate, properties. 
By optimizing the spatial distributions of composite constituents, 
vast enhancements of mechanical performance can be realized such 
as demonstrated in modern ceramics matrix materials (5, 6), fiber- 
reinforced polymers (7), or architected materials including biologically 
evolved and bioinspired (8–11). However, traditional manufacturing 
methods limited tunable composite designs due to the difficulties of 
conjoining different base materials and manipulating complex 
microstructures (12). To address these issues, additive manufacturing 
has recently enabled the production of composites with complex 
geometries (13–15).

To calculate physical properties of composites often relies on 
multiscale modeling approaches such as finite element method (FEM) 
(16) or molecular dynamics (MD) (17, 18) simulations. However, 
the design space of composites usually exists of an intractable num-
ber of combinations that hinders us from searching optimal designs 
either via experimental measurements or computational simula-
tions. In earlier work, enabled by advances in AI methods, instead 
of using a brute-force approach, machine learning (ML) algorithms 
were implemented to optimize composite designs based on the cal-
culation of FEM for various loading conditions, such as tensile or 
shear loading (19, 20). However, these methods do not yet predict 
physical fields and do not directly connect material microstructure 

to performance. For many design applications and engineering analyses, 
we need access to physical fields like strain or stress tensor distribu-
tions. These types of physical data will also improve the physical 
relevance of AI approaches and provide more mechanistic insights.

In recent years, ML methods, especially deep learning (DL), have 
revolutionized our perspective of designing materials, modeling physical 
phenomena, and predicting properties (21–26). DL algorithms de-
veloped for computer vision and natural language processing can 
be used to segment biomedical images (27), design de novo proteins 
(28–30), and generate molecular fingerprints (31, 32). Within the 
field of computational materials science, the abundance of data enables a 
boom of ML applications from quantum scale up to macroscale. By 
incorporating field-based (density function theory), particle- based 
(MD), and continuum-based (FEM) modeling, ML sheds light on 
predictions of quantum interactions (33–35), molecular force fields 
(36–38), and material mechanics (19, 20, 39–41). However, most of 
these models are limited by a minimal level of information included 
in the prediction and difficulty in generalization.

Here, we overcome these challenges and present a general method 
to translate material composition, provided to the model as a simple 
image of the geometry and microstructure that fully encodes mate-
rial composition and boundary conditions, directly to strain or stress 
fields as physical fields containing integral information of material 
behaviors to bridge physics and designs. We show that the physical 
relationship between composite geometries and strain or stress fields 
can be directly established at high levels of accuracy and predictability. 
While some earlier work has used convolutional neural networks to 
predict localization linkages for elastic deformation in composites 
(42), the results reported in this paper offers a method that is capa-
ble to deal with more generalized mechanical problems and can be 
more easily used to incorporate experimental data.

RESULTS
Model development and training
A generative adversarial network (GAN) is a type of deep neural 
network that generates new data based on the data statistics of the 
training set (43). GANs consist of two key components known as 
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the Generator and the Discriminator, which are trained against 
each other based on the game theory. The Generator generates 
candidates that are evaluated by the Discriminator. Although GANs 
were originally proposed as a form of unsupervised learning, labels 
can be incorporated as constrains, which leads to a subtype of GANs 
known as the condition GAN (cGAN). In our work, we develop a 
DL model implemented in a cGAN with a paired image as the con-
straint (44). The cGAN model has two key components, Generator 
U-Net and Discriminator PatchGAN (44). The geometric images 
(labels or constraints) are fed into the Generator to generate field 
images of interest with random noise. The Discriminator evaluates 
these field images generated by the Generator through comparing 
them with real field images obtained from FEM. The training objec-
tive of the Generator is to increase the error rate of the Discriminator, 
while the Discriminator is trained to optimize the capacity of iden-
tifying fake images produced by the Generator. Within the game 
theory framework used here, the GAN model converges when the 
Discriminator and the Generator reach a Nash equilibrium in which 
one component maintains its status regardless of the actions of 
the opponent.

Once the ML model is trained, new field images can be predicted 
bypassing conventional numerical simulations. The field predictions 
can be further used to extract mechanical properties of the compos-
ite given its geometry. As we show in the following sections, not 
only mechanical properties including stiffness and recoverability 
can be obtained but also local features such as stress concentrations 
around cracks or sharp inclusions. More details are provided in the 
Supplementary Materials.

From geometry to strain or stress field
We focus on two-dimensional (2D) composites with two constitu-
ent materials, defined as soft units (red) and brittle units (white). 
Both units have linear plasticity and strain hardening, which is 
characterized by the “crushable foam” model in Abaqus (see 
Materials and Methods). Brittle units have relatively larger Young’s 
modulus but smaller yield strain comparing with soft units. The ini-
tial composite considered consists of 8 × 8 block units (see Materials 
and Methods) (19, 20), keeping the size small so we can conduct 
a brute-force validation of the ML method against full-physics 
simulations. While the generated patterns are at coarse resolu-
tions (8 × 8 in the first example), the overall image resolution is 
256 pixels × 256 pixels.

The arrangement of block units is generated by a random geometry 
Generator so that we can explore a broad range of arrangement 
combinations (Fig. 1). For different geometries, strain or stress 
fields of composites under mechanical tests such as compression are 
obtained using FEM (see Materials and Methods). The results from 
FEM are regarded as the ground truth in this work. Both geometry 
images and strain or stress field images are collected to compose the 
dataset. The dataset consists of 2000 data in total, which is split into 
a training dataset with 80% of the data and a test dataset with the rest 
20% of the data.

Evaluation of model performance
To evaluate model performance, we consider the mechanical be-
haviors of composites under compressive loading and unloading 
(loading applied in the x direction, or horizontal axis, Fig. 2A) as an 
example (see Materials and Methods and movie S1). The geometry 
image is the input, while the field image of residual stress after 

unloading is the target. This represents a complex physical scenario 
and will serve as a test case to assess the method reported here. Typical 
results of strain or stress field predictions of the test dataset are shown 
in Fig. 2A. Notably, both stress and strain fields as well as displace-
ments (incorporated in the overall deformation of the geometry) 
are captured in our prediction, as shown in Fig.  3A. To further 
quantitatively evaluate the similarity between the ground truth and 
the prediction, the L2 norm (see Materials and Methods) is calculat-
ed for all 400 data in the test dataset, considering von Mises stress 
field prediction.

The distributions of L2 norm of predicted contours are plotted 
against two reference contours, clean contours and random contours 
(Fig. 3A). According to the figure, the mean value of the L2 norm of 
predicted contours is much lower when comparing with random 
contours (~1.8, normalized by predicted contour) and clean con-
tours (~2.9, normalized by predicted contour). Furthermore, a 
narrower peak of predicted contours indicates that the variation is 
smaller as well (random contour ~2.8 and clean contour ~2.7, nor-
malized by predicted contour). The results reveal that our ML model 
features both high accuracy and applicability in predicting strain or 
stress fields directly from the composite geometry.

With predicted fields, we can further derive secondary mechan-
ical properties of the composites. For instance, mechanical recover-
ability of the composite can be computed after subjected to 
compressive loading and unloading. Here, recoverability is defined 
as average residual stress of the composites. Our model is able to 
predict the geometries associated with the top three recoverability 
levels in the test dataset exactly (Fig. 3C), with the information 
obtained from the field images. And more broadly, our ML model 
performed an accurate prediction on the ranks and the values of 
recoverability or residual stress over all 400 composites in the test 
dataset (Fig. 3D).

The R2 value of the linear fitting between ML model prediction 
and the ground truth is 0.96, and the average relative errors of ML 
model prediction of the global property recoverability is 7.5%. It is 
emphasized that the ML model was not trained directly for predict-
ing recoverability, as this measure is a secondary extracted feature. 
However, the model is still able to predict the secondary informa-
tion obtained from field images precisely with only 1600 training 
data. The case of recoverability suggests that our model is not only 
giving field images that look similar to the ground truth but also 
predicting specific pixel values at high accuracy. As a consequence, 
the model can be used to optimize mechanical properties of com-
posites by varying geometries. Furthermore, there is no longer a need 
to develop different ML models for different mechanical properties 
(19, 20) as multiple properties can be derived from predicted fields 
and deformation already included in our model.

In addition to mechanical property predictions, we also check 
the reliability for local, smaller-scale patterns. To assess this capability, 
a ML model trained with 8 × 8 representation is used to study 
high-resolution patterns at an increased 16 × 16 resolution (Fig. 3E). 
Clear boundaries of chessboard pattern are predicted even if the 
16 × 16 representation has never been seen by the model. The con-
sistence across different scales reveals that the GAN has learned a 
physical understanding about mechanical phenomena, in this case, 
stress concentrations and how they emerge from complex micro-
structural patterns. Although the checkerboard-based stress field agrees 
well, it is important to assess the divergence of the stress values or 
high-order information such as the gradient of strain or stress fields 
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across different scales. In terms of reducing the divergence regarding 
different scales in the future work, an alternative model can be trained 
by incorporating multiple representations (e.g., 8 × 8, 16 × 16, and 
32 × 32 resolutions, each with 1000 images) into the dataset. With such 
multiscale information, the model will likely be able to learn how to upscale 
or downscale the strain or stress fields across different hierarchies.

In conclusion, our model’s capacity for recognizing scale-inde-
pendent local patterns can be applied to predict strain or stress field 
of hierarchical structures and is useful for design applications that 
explore a broad range of de novo microstructures.

Nonsquare features
In the earlier examples, the composite was composed of square units. 
Now, we explore whether our model can be extended to investigate 
composites with nonsquare elementary design units. To demonstrate 
such possibility, both hexagonal and triangular tessellations are used 
for designing composite elements. To do this, the same model trained 
on square representation is now trained with a dataset in hexagonal 
and triangular representations, respectively. von Mises stress fields 
calculated by FEM and the trained model show high similarity, as 
visualized in two example cases (Fig. 4A). The results indicate that 
the model can be easily generalized to composites of different shapes.

Multiple loading conditions
The input geometry images we used above do not yet include any 
information about loading conditions, which were encoded in the 
training set used. Now, we extend the model to learn variations in 

boundary conditions, which are embedded directly in the images. 
The loading conditions are specified by adding green lines to our 
geometry images and field images (Fig. 4A). These green lines are 
representative of rigid bodies that exert loads during simulations of 
FEM. The straight green lines are two rigid lines used to compress 
the composites along the x direction. The circular green line is a 
spherical (2D) rigid indenter used for nanoindentation. Hence, now 
the dataset consists of two sets of data: One set of images contains 
two straight green lines showing the results of compression, and the 
other set includes one circular line exhibiting the results of nano-
indentation. The geometries of composites in the two sets are the same.

After being trained with the mixed dataset, the model is able to 
recognize different loading conditions and make relevant predictions 
(Fig. 4A). More specifically, the model transfers loading conditions 
from input geometry images to the prediction and predicts von Mises 
stress field according to the specified loading conditions. More 
unexpectedly, when two loading conditions are combined in the 
geometry image that is not included in our training dataset, the ML 
model is still able to predict the stress field accurately. As is shown 
in Fig.  4A, both stress fields caused by compression (the general 
stress pattern similar to single compression) and nanoindentation 
(stress concentration on the top) are predicted by our model.

The ability of our model to read two distinct loading conditions 
from images and predict fields accordingly shows the potential of 
applying one model to predict multiple mechanical tests and offers 
evidence for transferability. In addition, in principle, the model is 
also able to predict strain or stress fields for multistage mechanical tests 

Fig. 1. Depiction of the workflow of the method reported here. Starting from a random Generator, geometry images (8 × 8) of composites are created. A FEM analysis 
is performed to obtain real field information of composites under mechanical tests. To predict strain and stress fields from geometry images, we train a ML model known 
as GAN (red window) which consists of two components, Generator U-Net (blue window) and Discriminator PatchGAN (green window). The Generator takes geometry 
images as input to generate fake images with wrong fields. Discriminator compares fake images from Generator with real images from FEM. Once the model is trained, 
accurate field predictions are made that are validated against high-fidelity FEM models, as well as composites with new geometries. In addition, predicted field images 
can be postprocessed to extract global or local mechanical features.
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such as multiple loading cycles. One straightforward way to achieve 
that within the framework reported here is by leveraging different 
color codes for different loading stages. For instance, as the loading 
cycles increase, we can vary the colors of the green lines in Fig. 4B 
from light green to dark green to encode the loading stages for training. 
With our well-trained model, FEM simulations that are usually carried 
out by conventional codes can be performed at much higher speed 
and lower computational costs. Last, our model can also be used for 
complex loading conditions due to its capacity of predicting fields 
with mixed loading conditions.

High-resolution geometry
For real-world composites, their geometries can be quite complicated 
(45, 46). As a consequence, a relatively simple 8 × 8 representation 
may not be sufficient for practical applications. To study complex 

geometries, we trained an even deeper model (see Materials and Methods) 
with 32 × 32 representation (Fig. 4C). Similarly, as before, the loading 
condition is a one-cycle compressive loading and unloading with 
von Mises stress field images being the target outputs. To show an ex-
ample of a more complicated composition and the associated pre-
diction, a geometry image in the shape of the MIT dome is used as the 
input. Both the ground truth and the field image predicted by the 
model exhibit a similar stress pattern (Fig. 4C). In other words, a deeper 
model trained with 32 × 32 representation is more powerful than that 
in 8 × 8 representation because it can better present nonsquare pat-
terns such as the sector in Fig. 4C and cover more situations when a 
desired resolution is requested. The example reveals the potential of 
the model to predict high-resolution fields for general inputs.

To quantitatively investigate the accuracy of high-resolution pre-
diction, we calculated the L2 norm as we did for 8 × 8 representation. 

Fig. 2. Strain or stress field predictions along with displacement fields, depicting a comparison the FEM based ground truth with the prediction from the ML model. (A) Sche-
matic of loading conditions in  FEM. The outputs of the end frame after compressive loading and unloading are collected to build the dataset (see Materials and Methods). (B) Three 
examples of strain and stress fields predictions, shown for illustration. In geometry images, red represents soft units, and white represents brittle units. The stress field is von Mises 
stress field, and the strain refers to plastic strain PE11 (“1” refers to the x direction). The solid black background is plotted to show the reference frame, to visualize the predicted 
deformation of the specimen. Note that while the patterns are at coarse resolutions (8 × 8 in the example shown here), the overall image resolution is 256 pixels × 256 pixels.
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However, when using a 32  ×  32 representation, there are much 
more local patterns than in the 8 × 8 representation. As a result, a 
comprehensive comparison of differences across the whole image is 
more suitable than a single value. Hence, we use an L2 norm map 
instead of the L2 norm. The L2 norm map is obtained by calculating 
local L2 norm region by region when comparing two images (see 
Materials and Methods). We randomly generated a 32 × 32 geome-
try image to check the similarity between the ground truth and pre-
diction using L2 norm map.

Two reference contour images, known as clean contour and ran-
dom contour, are selected in the same way as we did for the 8 × 8 
representation (Fig.  3A). The L2 norm map of the clean contour 
exhibits the positions of stress concentration, while for the random 
contour, the map includes mixed information of two fields. Accord-
ing to the L2 norm map, the predicted contour is globally accurate 
with low values of L2 norm across the map. We find that for those 
points with large stress concentration in the image, the model shows 
less accuracy. The reason is that the ML model is inclined to 
smoothing the sharp peaks—stress concentrations—to achieve an 
overall low loss. However, the tendency of displaying large stress in 
those points is clearly predicted by our model, as is evidenced by 
comparing with the L2 norm map of the clean contour. With the 
capacity of predicting fields for high-resolution geometries, the 
model can be used to investigate composites with complex patterns 
as is necessary in design applications.

DISCUSSION
We proposed a DL-based approach to provide a direct translation 
of the composite geometry to strain or stress fields, realized using a 
game-theoretic approach implemented as a GAN. The neural net-
works are trained with a relatively small amount of data but reach 
astonishing accuracy, transferability, and, hence, broad applica-
bility. Multiple mechanical fields are predicted with the same trained 
model covering multiple aspects of materials’ behaviors (Fig. 2 and 
fig. S3). By extracting information from the field predictions, the 
model can identify top designs of recoverability exactly and capture 
scale-consistent local patterns. In terms of the acceleration of the 
computation speed gained by our method, the predictions of pre-
trained model take less than a second on a Intel i7-9800X (3.80 GHz) 
CPU core, whereas the standard FEM simulations usually last minutes, 
hours, or even days. Therefore, the approach is a promising tool to 
accelerate discovery of optimal geometric designs for materials such 
as metamaterials and hierarchical materials.

By using soft materials, the model can predict analogous stress 
fields around cracks (see Materials and Methods). The results agree 
with the knowledge of the patterns of stress fields around cracks 
even if the ratio of soft materials for these cases is extremely skewed 
in the data distribution (fig. S4). The predictions are consistent re-
gardless of shapes and positions of cracks or sharp inclusions and 
could even be used to describe the evolution of fields as cracks prop-
agate (movie S1). As a result, the model could also be used for 

Fig. 3. Model performance. (A) Direct comparison of both deformation (green line) and stress field (yellow line) between the ground truth and the prediction of ML 
model. (B) Quantitative comparison of image difference between the ground truth and the prediction of ML model. The L2 norm indicates the image difference. “Random 
contour” and “clean contour” are two reference frames (see Materials and Methods). (C) Geometry images of top three mechanical recoverability in the test dataset. The 
results from FEM and ML models are consistent, showing excellent predictive power. (D) Rank of recoverability given by FEM and ML considering all 400 data in the test 
dataset. The inset displays the relative errors of ML predictions of the residual stress/recoverability for all 400 data in the test dataset. (E) The ML model trained with 8 × 8 
geometry images accurately predicts a downscaled pattern of 16 × 16, providing evidence that the model can predict features at multiple length scales. (Note that the 
physical dimensions of the composites are fixed.) The chessboard geometry is used for clarifying resolution.
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crack-related design problems such as crack-resistant materials 
(47), providing added evidence for the transferability of the method.

Our model can capture mechanical behaviors of composites 
with various shapes, different loading conditions, and complicated 
geometries. It can predict mechanical behaviors from random ge-
ometries and open the gate to accelerate searching optimal designs 
of composites with multiple mechanical functionalities from the 
bottom up. In that context, one of the extraordinary advantages of 
using predicted stress and strain fields is that fields contain compre-
hensive information for various design purposes. Thus, the approach 
offers a high level of efficiency of predicting physical properties and 
accelerate the design process based on a transferrable ML method. 
Furthermore, we extended our model to incorporate nonsquare repre-
sentations, multiple loading conditions, cracks, and high-resolution 
geometries. These extensions enabled us to cover tremendous ap-
plications of FEM with lower computational costs and investigate 

complex systems of interest. Moreover, the approach reported here 
can also be directly applied to experimental images for training of 
the model, which underscores the transferability of the approach, 
and provides a previously unidentified way to combine bottom-up 
modeling with experimental data sources for predictive methods. 
Future work could also focus more on global mechanical properties 
derived from local stress and strain fields, as opposed to local fields 
as focused on in this study. Although we covered a detailed analysis 
of one global property—recoverability—some global properties may 
possibly be more sensitive to divergence within the predicted maps. 
For instance, the fracture toughness is strongly correlated with local 
predictions of stress fields around a crack tip. In the case, the train-
ing data may need to be modified accordingly, such as incorporating 
sharp edges and dynamic effects.

Moreover, combined with optimization algorithms (20), the model 
can speed up the discovery of optimal designs without heavy 

Fig. 4. Extension of model to include multiple loading conditions, as well as image-based coding of boundary conditions. (A) von Mises stress field prediction on 
nonsquare representation. Composites with hexagonal and triangular units are presented. (B) ML model trained for composites under various loading conditions. In this 
part, loading conditions are embedded in images by using green lines (straight/semicircular). Straight line indicates that the loading condition is compression, while 
semicircular line is used for nanoindentation. The training dataset contains images each with one loading condition, either compression or nanoindentation. von Mises 
stress field is the target output. The ML model trained on the dataset is able to recognize different loading conditions and even predict the stress field with both loading 
conditions exerted (Combination). (C) ML model trained for composites with high-resolution geometry. The geometry image is 32 × 32 with a ratio of soft/brittle units 
unfixed. von Mises stress field is the target output. A logo of MIT dome is used as an example of complicated geometry, which can only be presented with high resolution. 
The overall image resolution for high-resolution geometry is 512 pixels × 512 pixels. (D) Evaluation of ML model performance on predicting high-resolution field [ML 
model from (C)]. Image difference is calculated by using L2 norm map, which can display local differences of two images (see Materials and Methods). L2 norm maps of 
comparing the ground truth with “clean contour,” “predicted contour,” and “random contour” (see Materials and Methods) are generated.
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computational loads. Moreover, the proposed approach is a general 
method for geometry-to-field translation. A similar protocol as de-
veloped here could be applied to other areas in the sciences, such as 
density functional theory fields, fluid mechanical fields, or electro-
magnetism.

MATERIALS AND METHODS
Graphical representation of composites
We use 8 × 8 graphical representation for composite profile, which 
is shown in fig. S1A. For any composite with the given geometry, it 
consists of two different block units, labeled as brittle unit and soft 
unit. Brittle unit and soft unit are mechanically distinct in elasticity 
and plasticity. A brutal force algorithm is executed to generate all 
possible  combinations of two different units without fixing the 
composition. To simplify the geometry and shorten the calculation 
time in Abaqus, all composites created by the algorithm are sym-
metric about Y axis.

FEM
The dataset is generated by FEM, using a commercial Abaqus/
Explicit code (Dassault Systemes Simulia Corp., 2010). In our work, 
strain or stress fields calculated by FEM are considered as the ground 
truth when comparing with ML results. All simulations are carried 
out in 2D. To include plastic deformation, crushable foam model 
with volumetric hardening embedded in Abaqus is implemented 
for composites (48, 49). Detailed material properties of two differ-
ent units in composites are exhibited (tables S1 and S2). Table S1 
displays overall mechanical behavior of materials, while the specific 
hardening curve is defined by table S2. To briefly summarize the 
difference of two materials shown by the data, the brittle unit has 
relatively larger Young’s modulus but a smaller yield strain com-
pared with the soft unit.

Once the material properties and geometry are defined, the 
composite is put under compressive loading and unloading for one 
cycle in Abaqus (movie S2). Element “CPE4R” with the global size 
of 6 is used for composites during the calculation. In terms of 
boundary conditions, the middle line of the composite is set immo-
bile along the x direction due to the symmetry. The loading and 
unloading are realized by moving two symmetric analytical rigid 
shells. During the loading process, the magnitude of compressive 
strain is 10%. The contact type between composite and 2D shell is 
surface-to-surface contact using kinetic contact method. For either 
loading or unloading, 2D shell is moving in a time period of 500 
(unit consistent with table S1). Within the time period, the ampli-
tude of displacement of the rigid shell follows “Smooth step” type 
embedded in Abaqus. After loading and unloading, images of strain 
or stress fields are postprocessed and collected for the dataset.

Data distribution
According to our graphical representation, there are 232 possible 
combinations in total. Among all potential geometries, we randomly 
select 2000 data to constitute the dataset. The distribution of all 
2000 data is plotted over the ratio of soft units (fig. S1A). As the 
figure indicates, the distribution generally fits a Gaussian curve with 
the mean value lying at approximately 0.5. The curve reveals a uni-
formly distributed dataset without skewed features. As a consequence, 
we suggest that our dataset is representative of all possible data in 
the search space. With 2000 data randomly generated, we further 

split them into training dataset with 80% data and test dataset with 
the rest 20% data. The split is also stochastic, thus the distribution is 
being conserved.

Image processing
The images of mechanical fields are generated first in Abaqus Visu-
alization and then postprocessed by Python code. As for the gener-
ation, the images are plotted with both deformation (to capture the 
displacement field in the geometry change) and strain or stress field 
contours. The color spectrum for field contours is realized using “white” 
[RGB = (216, 216, 216)] for lower bound and “red” [RGB = (216, 7, 0)] 
for the upper bound. The lower and upper bounds vary from cases 
to cases but are consistent within one dataset. The same spectrum is 
also used for geometry input with white [RGB = (216, 216, 216)] for 
brittle units and red [RGB = (216, 7, 0)] for soft units. The contour 
style used is “DISCRETE,” and the number of intervals is set to 24. 
As for options for edges, “FEATURE” is used for visible edges, and 
“THICK” is used specifically for green lines, which represent ana-
lytical rigid bodies. Any triad, legend, title, state, annotation, com-
pass, and reference point are turned off to exclude useless information 
in the images. In addition, the background of the image is set to 
solid black [RGB = (0, 0, 0)]. After all settings are applied, an image 
is generated with the “print” command in Abaqus.

On the basis of the images created by Abaqus, a Python code is 
executed to cut, resize, and stitch images. Input image (geometry 
images) and target image (field images) are cut to keep the propor-
tion of black background similar vertically and horizontally. The 
purpose of cutting operation is to make sure that the composites 
in input image and target image are generally matching in shape to 
be read by the GAN model. Once the images are cut, they are 
all resized to images with a size of 512 × 512. After resizing, two 
images are stitched in accordance with the format of model input. 
OpenCV (50) is used for reading, cutting, plotting, and stitch-
ing images.

Image comparison
To compare filed images, L2 norm is calculated to determine the 
difference between two images. Given two images P1 and P2, L2 
norm between these two images are defined as

  Norm _ L2 =  ∑ i,j      ∣ P1(i, j ) ‐P2(i, j ) ∣   2   (1)

In Fig. 4D, the L2 norm map is used instead of the L2 norm for 
comparing high-resolution field image. To derive a L2 norm map, 
we first slice images of 512 × 512 into 128 × 128 patches each with a 
size of 4 × 4. Second, for each pair of corresponding patches in two 
images, L2 norm is calculated. As a result, we end up with a matrix 
of 128 × 128 with each element corresponding to the difference be-
tween a pair of patches in two images. The matrix is named as L2 
norm map.

When evaluating the performance of ML models, we calculate 
the L2 norm or the L2 norm map between the ground truth and 
prediction (“predicted contour”). The ground truth is also com-
pared with two field images for direct reference. These two field im-
ages are labeled as “random contour” and “clean contour” (fig. S2). 
“Random contour” is a contour image randomly selected from test 
dataset. “Clean contour” is a contour image without any deforma-
tion and field (all values across the image is 0).
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In addition, the relative errors comparing the residual stress values 
of ML predictions and the FEM results are computed simply follow-
ing the expression

   RE =  |      S  ML   −  S  FEM   ─  S  FEM     |   × 100%   (2)

where SML is the average von Mises stress from ML predictions, 
and SFEM is the average von Mises stress from FEM simulation results.

DL approach
The ML calculations are performed using TensorFlow (51), a general 
purpose ML framework. A GAN is implemented for translating 
composite geometries to mechanical fields (44). GAN is a type of 
deep neural network consisting of a Generator and a Discriminator 
based on game theory (43). Particularly in our model, U-Net is the 
Generator and PatchGAN is the Discriminator (44). U-Net is a deep 
neural network model that has been used for biomedical image seg-
mentation in earlier work (27). Here, we use U-Net to generate fake 
field images based on composite geometries. PatchGAN evaluates 
the generated field images from U-Net by comparing with real field 
images. The model was trained using a single NVIDIA Quadro RTX 
4000 with 8-gigabyte memory. The numbers of training epochs range 
from 150 to 400 in different cases to achieve convergence, and the 
batch size of the training is 1. Although GANs are notorious for the 
training instability, cGANs are relatively more stable with the con-
strain of the input labels (52). The numbers of training epochs were 
carefully tuned so that the training process is not too short for the 
generator to learn enough information and also not too long that 
the discriminator always evaluates the generated images to be fake 
(52). We checked the predictions of our ML model on the test set to 
determine appropriate training epochs. To show the stability of our 
training process, we provided two datasets (datasets S1 and S2), 
each containing predicted images over 400 geometries of the test set 
for multiple fields.

The Generator U-Net consists of two components encoder and 
decoder with skip connections between mirrored layers (27). Both 
encoder and decoder contain eight layers including input and out-
put layers. The complete architecture is shown in table S4. The 
trainable number of parameters in total is approximately 5,000,000. 
The Generator loss function is defined as

  gen _ loss = gan _ loss + LAMBDA × L1 _ loss   (3)

Here, gan_loss is a sigmoid cross-entropy loss of the generated 
images and an array of ones, and L1_loss is the mean absolute error 
between the generated image and the target image. LAMBDA is 
proportion coefficient that is equal to 100.

The Discriminator PatchGAN consists of eight layers with ap-
proximately 3,000,000 trainable weights. The complete architecture 
is shown in table S3. PatchGAN evaluates the generated field imag-
es by classifying individual patches (slice the image into 30  ×  30 
patches in our case) in the image as “real” or “fake.” The Discrimi-
nator loss function is defined as

  gen _ loss = real _ loss + generated _ loss   (4)

Here, real_loss is a sigmoid cross-entropy loss of real images and 
an array of ones, and generated_loss is a sigmoid cross-entropy loss 
of the generated images and an array of zeros.

Nonsquare features
Hexagonal and triangular representations are used to testify wheth-
er our model can be applied to composites with different shapes. 
The sizes of composites in hexagonal and triangular representations 
are 312 × 315 and 320 × 332 (x × y). At the boundaries of composite, 
both hexagonal and triangular units are cut half. The field images 
for both cases were generated after one-cycle compressive loading 
and unloading. The magnitude of compressive strain is 10% for the 
hexagonal representation and 5% for the triangular representation. 
The reason why a smaller strain is used for triangular cases is to 
avoid singularity at the edges of triangles when FEM simulations 
are carried out.

Distinct loading conditions
To explore the capacity of our ML model to predict strain or stress 
fields under various loads, we use two mechanical tests, nanoinden-
tation and compression. The general setup of those mechanical tests 
using FEM is the same as the setup mentioned above (see the 
“FEM” section). However, we do not unload the composite after 
loading. The reason is that the field image after unloading in 
nanoindentation contains very little information as the composite 
has most of its region stress free. A compressive strain with magni-
tude of 5% is used again to again avoid singularity during the 
nanoindentation simulation. To include loading condition in images, 
green lines are used to represent analytical rigid bodies, which 
induce deformation (Fig. 4D).

As for the nanoindentation test, rather than a straight-line rigid 
body, a spherical indenter is used to implement loading (movie S3). 
The indenter is laid at the top center of the composite with radius of 
40 (unit consistent with table S1). In addition to the boundary con-
dition mentioned in the “FEM” section, the motion at the bottom of 
the composite is disabled along y direction for both compression 
and nanoindentation. With consistent boundary conditions, we are 
able to combine more than one loads in one mechanical test.

Composite with high-resolution geometry
To capture more complex patterns, additional composite designs 
with high-resolution geometry (32 × 32) are generated and added to 
the dataset. Keeping the length of composites consistent, smaller 
square units with lengths of 10 are used. All settings for FEM are the 
same as those considering low-resolution geometry (8 × 8), except 
for two minor differences. First, the element size decreases from 6 
to 2 for calculation accuracy and convergence. Second, the magni-
tude of compressive strain is set to 5% instead of 10%. The reason to 
use a smaller strain is to avoid singularity when running FEM as the 
size of soft/brittle units is smaller.

For the GAN model, we use original images with a size of 
512 × 512 as the input as the geometries are more complicated with 
smaller block units. As a consequence, one extra convolutional layer 
is added ahead of all layers in Generator to “downsample” images 
from 512 × 512 to 256 × 256. Similarly, there is one more layer after 
all layers in Discriminator to “upsample” images from 256 × 256 to 
512 × 512.

Analogous stress fields prediction around cracks
Soft materials act like cracks when being surrounded by brittle ma-
terials as they create large stress concentration and take majority of 
deformations. On the basis of this idea, we generate composites 
with soft materials in narrow shapes and sharp edges embedded in 
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brittle materials. We use the model that is trained for high-resolution 
geometry to predict the stress field around soft materials. Two types 
of cracks with different shapes and positions are investigated (fig. S4).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/15/eabd7416/DC1

REFERENCES AND NOTES
 1. K. K. Chawla, Composite Materials: Science and Engineering (Springer Science & Business 

Media, 2012).
 2. A. R. Studart, Biological and bioinspired composites with spatially tunable heterogeneous 

architectures. Adv. Funct. Mater. 23, 4423–4436 (2013).
 3. C. T. Chen, F. J. Martin-Martinez, S. Ling, Z. Qin, M. J. Buehler, Nacre-inspired design 

of graphene oxide–polydopamine nanocomposites for enhanced mechanical properties 
and multi-functionalities. Nano Futur. 1, 011003 (2017).

 4. M. J. Buehler, H. Gao, Dynamical fracture instabilities due to local hyperelasticity at crack 
tips. Nature 439, 307–310 (2006).

 5. K. K. Chawla, Ceramic Matrix Composites (Springer Science & Business Media, 2013).
 6. C. H. Yu, M. W. Bird, C. W. Huang, C. S. Chen, Y. F. Gao, K. W. White, C. H. Hsueh, 

Micromechanics modeling of creep fracture of zirconium diboride-silicon carbide 
composites at 1400-1700°C. J. Eur. Ceram. Soc. 34, 4145–4155 (2014).

 7. Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by 
electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 
2223–2253 (2003).

 8. X. Xia, A. Afshar, H. Yang, C. M. Portela, D. M. Kochmann, C. V. Di Leo, J. R. Greer, 
Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019).

 9. M. S. Pham, C. Liu, I. Todd, J. Lertthanasarn, Damage-tolerant architected materials 
inspired by crystal microstructure. Nature 565, 305–311 (2019).

 10. F. Barthelat, Z. Yin, M. J. Buehler, Structure and mechanics of interfaces in biological 
materials. Nat. Rev. Mater. 1, 16007 (2016).

 11. H. Gao, B. Ji, I. L. Jäger, E. Arzt, P. Fratzl, Materials become insensitive to flaws at 
nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. U.S.A. 100, 5597–5600 (2003).

 12. P. K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing, and Design (CRC press, 
2007).

 13. G. X. Gu, M. Takaffoli, A. J. Hsieh, M. J. Buehler, Biomimetic additive manufactured 
polymer composites for improved impact resistance. Extrem. Mech. Lett. 9, 317–323 
(2016).

 14. Z. Quan, A. Wu, M. Keefe, X. Qin, J. Yu, J. Suhr, J. H. Byun, B. S. Kim, T. W. Chou, Additive 
manufacturing of multi-directional preforms for composites: Opportunities 
and challenges. Mater. Today 18, 503–512 (2015).

 15. P. Parandoush, D. Lin, A review on additive manufacturing of polymer-fiber composites. 
Compos. Struct. 182, 36–53 (2017).

 16. G. X. Gu, L. Dimas, Z. Qin, M. J. Buehler, Optimization of composite fracture properties: 
Method, validation, and applications. ASME J. Appl. Mech. Trans. 83, 071006 (2016).

 17. R. Chawla, S. Sharma, A molecular dynamics study on efficient nanocomposite formation 
of styrene–butadiene rubber by incorporation of graphene. Graphene Technol. 3, 25–33 
(2018).

 18. T. Kairn, P. J. Daivis, I. Ivanov, S. N. Bhattacharya, Molecular-dynamics simulation of model 
polymer nanocomposite rheology and comparison with experiment. J. Chem. Phys. 123, 
194905 (2005).

 19. G. X. Gu, C. Chen, M. J. Buehler, De novo composite design based on machine learning 
algorithm. Extrem. Mech. Lett. 18, 19–28 (2018).

 20. C.-H. Yu, Z. Qin, M. J. Buehler, Artificial intelligence design algorithm for nanocomposites 
optimized for shear crack resistance. Nano Futur. 3, 035001 (2019).

 21. K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning 
for molecular and materials science. Nature 559, 547–555 (2018).

 22. Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015).
 23. T. W. Hughes, I. A. D. Williamson, M. Minkov, S. Fan, Wave physics as an analog recurrent 

neural network. Sci. Adv. 5, eaay6946 (2019).
 24. Z. Qin, Q. Yu, M. J. Buehler, Machine learning model for fast prediction of the natural 

frequencies of protein molecules. RSC Adv. 10, 16607–16615 (2020).
 25. Z. Jensen, E. Kim, S. Kwon, T. Z. H. Gani, Y. Román-Leshkov, M. Moliner, A. Corma, 

E. Olivetti, A machine learning approach to zeolite synthesis enabled by automatic 
literature data extraction. ACS Cent. Sci. 5, 892–899 (2019).

 26. M. Aykol, V. I. Hegde, L. Hung, S. Suram, P. Herring, C. Wolverton, J. S. Hummelshøj, 
Network analysis of synthesizable materials discovery. Nat. Commun. 10, 2018 
(2019).

 27. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image 
segmentation. Lect. Notes Comput. Sci. 9351, 234–241 (2015).

 28. S. L. Franjou, M. Milazzo, C.-H. Yu, M. J. Buehler, Sounds interesting: Can sonification help 
us design new proteins? Expert Rev. Proteomics 16, 875–879 (2019).

 29. C.-H. Yu, M. J. Buehler, Sonification based de novo protein design using artificial 
intelligence, structure prediction, and analysis using molecular modeling. APL Bioeng. 4, 
016108 (2020).

 30. C. H. Yu, Z. Qin, F. J. Martin-Martinez, M. J. Buehler, A self-consistent sonification method 
to translate amino acid sequences into musical compositions and application in protein 
design using artificial intelligence. ACS Nano 13, 7471–7482 (2019).

 31. R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-
Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, A. Aspuru-Guzik, 
Automatic chemical design using a data-driven continuous representation of molecules. 
ACS Cent. Sci. 4, 268–276 (2018).

 32. D. K. Johnson, J. Karanicolas, Ultra-high-throughput structure-based virtual screening 
for small-molecule inhibitors of protein-protein interactions. J. Chem. Inf. Model. 56, 
399–411 (2016).

 33. K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, A. Tkatchenko, Quantum-chemical 
insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017).

 34. G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa, A. Fazzio, From DFT to machine 
learning: Recent approaches to materials science–A review. J. Phys. Mater. 2, 032001 
(2019).

 35. K. T. Schütt, P. J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, K. R. Müller, 
SchNet: A continuous-filter convolutional neural network for modeling quantum 
interactions. Adv. Neural Inf. Process. Syst. 2017, 992–1002 (2017).

 36. J. Wang, S. Olsson, C. Wehmeyer, A. Pérez, N. E. Charron, G. De Fabritiis, F. Noé, 
C. Clementi, Machine learning of coarse-grained molecular dynamics force fields. ACS 
Cent. Sci. 5, 755–767 (2019).

 37. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional 
potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

 38. F. Noé, A. Tkatchenko, K.-R. Müller, C. Clementi, Machine learning for molecular 
simulation. Annu. Rev. Phys. Chem. 71, 361–390 (2020).

 39. G. X. Gu, C. T. Chen, D. J. Richmond, M. J. Buehler, Bioinspired hierarchical composite 
design using machine learning: Simulation, additive manufacturing, and experiment. 
Mater. Horizons. 5, 939–945 (2018).

 40. F. Martínez-Martínez, M. J. Rupérez-Moreno, M. Martínez-Sober, J. A. Solves-Llorens, 
D. Lorente, A. J. Serrano-López, S. Martínez-Sanchis, C. Monserrat, J. D. Martín-Guerrero, A 
finite element-based machine learning approach for modeling the mechanical behavior 
of the breast tissues under compression in real-time. Comput. Biol. Med. 90, 116–124 (2017).

 41. F. E. Bock, R. C. Aydin, C. J. Cyron, N. Huber, S. R. Kalidindi, B. Klusemann, A review 
of the application of machine learning and data mining approaches in continuum 
materials mechanics. Front. Mater. 6, 110 (2019).

 42. Z. Yang, Y. C. Yabansu, D. Jha, W. K. Liao, A. N. Choudhary, S. R. Kalidindi, A. Agrawal, 
Establishing structure-property localization linkages for elastic deformation of three-
dimensional high contrast composites using deep learning approaches. Acta Mater. 166, 
335–345 (2019).

 43. S. Mahdizadehaghdam, A. Panahi, H. Krim, Sparse generative adversarial network, in 
Proceedings of 2019 International Conference on Computer Vision Workshop (ICCVW) (Seoul, 
Korea, 27 to 28 October 2019), pp. 3063–3071.

 44. P. Isola, J. Y. Zhu, T. Zhou, A. A. Efros, Image-to-image translation with conditional 
adversarial networks, in Proceedings of the 30th IEEE Conference on Computer Vision 
Pattern Recognition, (CVPR 2017) (Honolulu, USA, 21 TO 26 July 2017), pp. 5967–5976.

 45. L. S. Dimas, M. J. Buehler, Modeling and additive manufacturing of bio-inspired 
composites with tunable fracture mechanical properties. Soft Matter 10, 4436–4442 
(2014).

 46. G. X. Gu, I. Su, S. Sharma, J. L. Voros, Z. Qin, M. J. Buehler, Three-dimensional-printing 
of bio-inspired composites. J. Biomech. Eng. 138, 021006 (2016).

 47. G. X. Gu, S. Wettermark, M. J. Buehler, Algorithm-driven design of fracture resistant 
composite materials realized through additive manufacturing. Addit. Manuf. 17, 47–54 
(2017).

 48. Y. Masso-Moreu, N. J. Mills, Impact compression of polystyrene foam pyramids. Int. 
J. Impact Eng. 28, 653–676 (2003).

 49. V. S. Deshpande, N. A. Fleck, Isotropic constitutive models for metallic foams. J. Mech. 
Phys. Solids 48, 1253–1283 (2000).

 50. G. Bradski, The OpenCV Library. Dr. Dobb’s J. Softw. Tools 120, 122–125 (2000).
 51. J. J. Weinman, A. Lidaka, S. Aggarwal, TensorFlow: Large-scale machine learning. GPU 

Comput. Gems Emerald Ed. 2011, 277–291 (2011).
 52. I. Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks (2016); http://arxiv.org/

abs/1701.00160.

Acknowledgments: We acknowledge support from the Google Cloud platform and MIT 
Quest for providing computational resources. Funding: We acknowledge support by the 
Army Research Office (W911NF1920098), the Office of Naval Research (N000141612333), and 
AFOSR-MURI (FA9550-15-1-0514). Author contributions: M.J.B., Z.Y., and C.-H.Y. conceived 

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 05, 2021

http://advances.sciencemag.org/cgi/content/full/7/15/eabd7416/DC1
http://advances.sciencemag.org/cgi/content/full/7/15/eabd7416/DC1
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160


Yang et al., Sci. Adv. 2021; 7 : eabd7416     9 April 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 10

the idea. Z.Y., C.-H.Y., and M.J.B. developed the model and carried out the simulations. Z.Y. and 
C.-H.Y. curated the training and testing data. M.J.B. supervised the project, analyzed the 
results, and interpreted it with Z.Y. and C.-H.Y. Z.Y., C.-H.Y., and M.J.B. wrote the manuscript. 
Competing interests: The authors declare that they have no competing interests. Data and 
materials availability: All data needed to evaluate the conclusions in the paper are present in 
the paper and/or the Supplementary Materials. Additional data related to this paper may be 
requested from the corresponding author.

Submitted 9 July 2020
Accepted 24 February 2021
Published 9 April 2021
10.1126/sciadv.abd7416

Citation: Z. Yang, C.-H. Yu, M. J. Buehler, Deep learning model to predict complex stress and 
strain fields in hierarchical composites. Sci. Adv. 7, eabd7416 (2021).

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 05, 2021



Use of think article is subject to the Terms of service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Deep learning model to predict complex stress and strain fields in hierarchical
composites
Zhenze YangChi-Hua YuMarkus J. Buehler

Sci. Adv., 7 (15), eabd7416.

View the article online
https://www.science.org/doi/10.1126/sciadv.abd7416
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 05, 2021

https://www.science.org/about/terms-service

