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Abstract

Calibration of Magnetic Flux Leakage (MFL) In-line Inspection (ILI) tools is an
important part of the overall pipeline integrity management process. Over-called or
under-called corrosion features can have significant impacts on safety and resource
management.

This thesis examines methods for improving the Validation and Calibration pro-
cesses using Bayesian Inference. The focus is on improving the tolerance that is
applied to undug features to optimize the execution of risk-based repairs.

A simulated data set was generated, with two separate categories, one which
represents tool performance on basic features and another for challenging features.
The calculated parameters of 𝛼, 𝛽, and 𝜎, were calculated using a Bayesian model
leveraging a Markov Chain Monte Carlo simulator. The 𝜎 parameter is used to
determine the appropriate tolerance to apply and was compared with a 𝜎 calculated
via the method recommended by API 1163. Results from the example data set show
that in challenged situations, the Confidence Level of the tool performance can be
increased from 89% to 95% and the mean average error can be decreased using the
Bayesian Inference model.

Opportunities to use the methods outlined to improve other processes in ILI vali-
dation are discussed. By appropriately updating the likelihood used in the Bayesian
model with dig data, the tolerance can more accurately represent the undug features
and risk management decisions can be conducted accordingly.

Thesis Supervisor: Herbert H. Einstein
Title: Professor, Department of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Problem Statement

Pipelines are a critical part of the world’s energy and petrochemical infrastructure.

Pipelines carrying hazardous liquid and gas in the public domain are regulated in the

United States by the Department of Transportation’s Pipeline and Hazardous Mate-

rials Safety Administration (PHMSA) according to Title 49 of the Code of Federal

Regulations Part 192 (Natural and Other Gas) and Part 195 (Hazardous Liquids).

To manage the potential threats for High Consequence Areas (where the route

may intersect with populated or ecologically sensitive interests), pipeline operators

are required by law to implement integrity inspection programs and assess the lines

periodically. In-line inspection (ILI) tools, i.e. devices equipped with sensor packages

designed to be propelled through a pipeline while in service, have been run since the

1970s and are one of the assessment methods Congress listed in the 2002 Pipeline

Safety Improvement Act. [Ulrich, 1996] Of the three primary candidate inspection

techniques specifically named in the Act, ILI tools can supply the most comprehensive

picture of the condition of a buried pipeline.

The current generation of ILI tools is dominated by two primary sensing tech-

nologies, Magnetic Flux Inspection (MFL) and Ultrasonic (UT). [Caleyo et al., 2007]

The MFL technique, which is the focus of this thesis, is based upon the Hall Effect

principle, whereby magnets on the tool creates a magnetic field that saturates the

13



Figure 1-1: ILI Tool be-
ing loaded into a pipeline
[Offshore Mag., 2012]

ferromagnetic pipe wall (Figure 1-2a). Any surface-breaking defects on the inner or

outer pipe wall present magnetic permeability obstacles to the magnetic field, allow-

ing the flux line to leak around the defect (Figure 1-2b). The dimensions and location

of the defect can then be inferred from the logged changes to the magnetic leakage

field. [Shi et al., 2015]

Figure 1-2: Hall effect principle [Shi et al., 2015]
In (a) the induced magnetic flux is undisturbed. In (b), a defect causes the the flux

to leak from the pipe body, which is detected by the Hall sensor.

As with other sensors that infer physical properties based on the processing of

inverse signal data, MFL tools are subject to uncertainties in their reporting capabil-

ities. These are usually provided by the tool vendor in terms of accuracy associated

with confidence levels, i.e. 80% of the reported features will be within ±10% of wall

thickness of the true feature depth. (See Figure 1-3 for an example.) Pipeline op-

erators must then integrate this specification with the reported data to make risk

justified decisions about where to deploy resources to investigate and repair features.

14



Figure 1-3: Unity Plot Example [Caleyo et al., 2004]
Here, field readings for corrosion depths are plotted against the ILI calls, both as a
percentage of wall thickness (WT). The percentage of points that fall in between the

green error bands, which are offset from the intercept by 10% on either side, is
compared against the stated confidence interval of 80%.

The consequence of having inaccurate tolerances can lead to wasted effort digging

anomalies that pose no integrity threat but were over-called by the tool, or missing

features that were under-reported and thus allowed to reach failure.

Therefore, a critical portion of the in-line inspection process is the validation

process to confirm the accuracy of the inspection tool on a per-run basis. The outcome

of this process, which can range from outright rejecting an ILI inspection dataset in

favor of a re-run to revising the expected depths for a corrosion population, has

immediate effects on the risk management and decision-making processes for pipeline

operators.

1.1.1 Corrosion Mechanism

According to data from PHMSA [PHMSA, 2018], corrosion accounts for 18% of

pipeline incidents between 1998-2017. Corrosion can manifest as several different

morphologies depending on the mechanism that begins it, these include: pitting, uni-
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Figure 1-4: Pitting Corrosion [Baker, 2008]

form, selective seam weld, and electrical interference. (Some of these are illustrated in

1-5 Factors that can accelerate the process of corrosion include anything that exposes

the bare metal in a pipe body to a surrounding moist environment, including air or

soil. Also, corrosion that occurs on the pipe’s internal surface may require different

responses than externally based corrosion. However, MFL and UT tools are both able

to detect both internal and external corrosion anomalies given the proper conditions

such as a clean inner diameter free of obstructions and properly sized sensors capable

of covering the full wall thickness. [Baker, 2008]

For external corrosion, pipeline operators can use a combination of coatings and

cathodic protection to prevent or delay the process of pipe degradation. However,

both coatings and cathodic protection each have specifications and design limitations

and require proper maintenance. Even on a new pipeline system with modern Fusion

Bonded Epoxy coating, the smallest discontinuity in the coating application can serve

as a seed for future corrosion pits, which can quickly grow in a damp soil environment.

Because of this, inspection methods are a key part of a pipeline integrity management

program.

1.1.2 Considerations for MFL Inspections

In recent years, the development of improved processing techniques, higher sam-

pling rates, and novel sensor placement have helped to improve the accuracy of

16



Figure 1-5: Examples of different
forms of corrosion [Dillon, 1982]
Pitting corrosion (c) can be diffi-
cult for MFL tools to detect given
the small surface area out of which
flux can leak out of. Proximity to
dissimilar metals in the Galvanic
corrosion (e) and Weld Decay (i)
can create noise that obscures the
true MFL signal.

MFL-based technologies. [Peng, 2020] However, from a first-principles standpoint,

all MFL tools are governed by the same physical limitations of needing to sample the

Hall sensors at a high enough frequency while the magnets saturate the pipe wall.

[Dutta and Ghorbel, 2008]

Figure 1-6: The effect of directionality of the MFL signal [Peng, 2020]
The features in shown in green would are detectable by the respective tool. From

left to right; Axial, Circumferential, and Spiral MFL.

The following are some of the considerations that must be considered when ana-

lyzing MFL results:

- Sensor lift-off: Physical obstructions on the interior of the pipe can prevent the

sensor from being within the required proximity

- Nearby magnetic interference: Casings, repairs, or other residual magnetism

17



can create noise which obscures true defects

- Tool speed: A faster tool travel speed reduces the sampling rate over a given

length of pipe and therefore lowers the resolution in that section

- Orientation of the defect’s primary axis: Since the direction of the MFL magnets

are fixed before the run, and since the magnetic field is a directional property,

tools can be "blind" to defects that are oriented parallel to the direction of the

field, as shown in figure 1-6

Corrosion anomalies that have one or more of these considerations in play will be

referred to as "challenged" features since they can present difficulties for conventional

MFL tools.

Finite element modeling and calibration spools (where the performance of the tool

can be trained upon engineered features of known dimensions) have also helped to im-

prove the state of the art. However, the primary mechanism for informing tool verifi-

cation has historically come from in-field excavation and in-the-ditch Non-Destructive

Examination (NDE) using pit gauges, UT measurements, and laser profilometry. In

the case of pit gauges and UT measurements, these are point values which require

the operator to manually select and size the deepest point of a corrosion field and

judge what the center of the abscissa is, as in Figure 1-7. Conducting these verifica-

tion digs can be a substantial undertaking, requiring $20,000 or more per inspection

site, on top of the safety considerations associated with having a crew excavating

near live lines. [Baker, 2008] The Pipeline Operator Forum Guidance on Field Verifi-

cation Procedures for In-Line-Inspection [Pipe Operators Forum, 2012] describes the

procedures for in-field measurements.

1.1.3 Existing Validation Processes

Several existing industry standards that guide the validation process, including the

API (American Petroleum Institute) Standard 1163 In-line Inspection Systems Qual-

ification, CEPA’s (Canadian Energy Pipeline Association) Metal Loss Inline Inspec-

tion Tool Validation Guidance Document, and the Pipeline Operators Forum Proce-

dures for In-Line-Inspection.

18



Figure 1-7: Corrosion Parameters [Amaya-Gómez et al., 2019]
Parameters used to describe corrosion anomalies on a ILI tool report and how they
correspond to location on the pipe body. Of note are the depth of metal loss, pipe

wall thickness, length, and width.

Figure 1-8: Schematic of a micrometer [Pipe Operators Forum, 2012]
A common instrument for manually gauging the depth of corrosion features found in

the field. As the gauge proves a point measurement, the burden is on the field
operator to correctly identify the deepest pit to size.

API 1163 [American Petroleum Institute, 2013] provides for three methodologies

for validation: based on historic data (prior excavations), full-scale testing (running

the ILI tool through test pipe with known defects), and small-scale testing, modeling,

and analysis (Finite Element Analysis). The performance of the ILI tool established

by any of the methods is tied to the essential variables of the tool, which include oper-

ational constraints (e.g. tool velocity), inspection parameters (e.g. magnet strength),

and sizing system components (e.g. sensor type and spacing).

Section 8 of the standard covers three successively higher levels of System Results

Verification:
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- Level 1: Use historical data or vendor-stated tool performance. Unable to reject

run validity. Only to be used for anomaly populations with low levels of risk.

- Level 2: Use field measurements to check stated tool specifications. Allows for

stating whether the tool performance is worse than the specification and there-

fore can be rejected, but unable to state with confidence that tool performance

is within specification.

- Level 3: Extensive measurements available to state as-run tool performance.

Statistical processing available.

These levels, and the actions required to achieve them, are outlined in Figure 1-9

below.

API 1163 lists Performance Specifications that must be provided by the service

provider, which covers anomaly types, detection thresholds, sizing characteristics, lo-

cation accuracy, and other limitations. The standard acknowledges that for corrosion

features, geometry and orientation can be factors that interrelate with probability of

detection and sizing capabilities. The standard requires that the performance spec-

ification indicate, as a function of anomaly type, the tolerance (e.g. ±10% of wall

thickness and a certainty 80% of the time, as shown in Figure 1-3).

1.1.4 Unity Chart

Annex C of API 1163 introduces the concept of a "unity" graph to plot the rela-

tionship between ILI-reported characteristics (including depth) as compared with the

measurements found in the field. A unity line as well as stated confidence bounds

are added to show where ideal measurements should fall if both tools are performing

as expected and in agreement. Evaluating the percentage of paired data points that

fall between the dashed lines provides pipeline operators with data about whether

to accept the ILI run. Specifically, features that fall significantly under the line are

over-called (ILI reported the depths deeper than they were found in the field) while

features that fall above are under-called (field data show the feature to be deeper than

the ILI reported). In either case, the error can be an additive constant (common to
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Figure 1-9: API 1163 Validation process with the corresponding requirements for
data consistency to achieve Levels 1-3

all data points) or multiplicative bias proportional to the depth. These are equivalent

to the parameters of the best-fit line that matches the data points, and for ideal tools

the constant bias is close to zero and the multiplicative bias is one, reflecting a 1:1

match between field observed data and the ILI-reported depths.

CEPA’s Guidance Document [CEPA, 2016] follows the same processes, but Ap-

pendix A includes additional discussion on criteria for handling systemic bias, de-

termining target tolerance, and guidance for sample size. While providing rigorous

definitions of these terms, the ultimate focus of the document is primarily on how to
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Figure 1-10: API 1163 Di-
mensional Classes for Metal
Loss Indications
Features that are narrower in
one dimension (grooving, slot-
ting), or are very small (pin-
hole), can be difficult for ILI
tools to detect and size.

Figure 1-11: Example of
a Unity Chart with dif-
ferent performance specifica-
tions [Li et al., 2016]
Another example of a Unity
Chart, showing different clas-
sification of features per the
API 1163 recommended clas-
sifications shown by Figure 1-
10. As can be seen in the ta-
ble above, sensor lift-off near
welds and narrow features re-
sult in larger tolerance ranges.

accept the parameters provided by the tool vendor instead of a statistical treatment

of determining the data from field verification. Applications of both the API 1163

and CEPA processes have been described in [Salama et al., 2012], [Mora et al., 2004],

and [Li et al., 2016].
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1.2 Problem and Goal

While there are established methods for using distributions to determine whether or

not correlated field data can be used to reject or accept a population of corrosion

anomalies generated by an MFL ILI, individually calibrating the population of ILI

defects based on the performance of a small sample of field verified anomalies remains

an open area of study. However, a more tractable related sub-problem is determining

the worst-case tolerance that should be applied to the ILI-provided population. Due

to the high-risk nature of pipelines, tolerances must be factored in when making

risk-based decisions. Confidently being able to reduce the tolerance applied to select

features can help direct operator resources to address the right features.

Figure 1-12: Calibration Example [Timashev and Bushinskaya, 2009]
In this case study, the true defect depth (blue) is compared with ILI measurements
(red). The ultimate goal for calibration approach is to allow operators to "scale" the

ILI Data to recover the black line approximation of the true depths.

23



1.3 Thesis Overview and Contribution

The main contribution of the present work is integrating a Bayesian Inference model

into the validation process and examining how the model works on both base data as

well as a data set representing challenging conditions. Chapter 2 presents a review

of existing literature. Chapter 3 discusses the proposed Bayesian Inference method

and the method of generating simulation data. Chapter 4 reviews the results in

comparison to current practices and evaluates how the method can fit into existing

Integrity Management programs. Chapter 5 presents conclusions drawn from the

work and recommendations for future work.
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Chapter 2

Literature Review

This literature review builds upon the context established in the Introduction, focus-

ing on recent efforts to apply statistical techniques to improve the validation process.

2.1 Background

Given the potential benefits that can be realized by accurately calibrating the in-

line inspection results and the advances in readily available computing power, recent

emphasis has been placed on statistical techniques to improve the validation process.

In general, the existing literature can be grouped into concentrated efforts in the

following areas:

1. Identifying when to accept or reject an ILI run

2. Determining the minimum number of excavations required to fully validate a

tool run

3. Improving the Corrosion Growth Rate assumption between runs

4. How to properly attribute measurement errors between field and ILI tools

These are all interrelated efforts towards the ultimate goal of reducing the mea-

surement uncertainty surrounding the tool reported anomalies. Measurement uncer-

tainty can be grouped into epistemic (systemic) and aleatory (random) categories

shown in Figure 2-1. Sources of epistemic uncertainties include model error, human
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Figure 2-1: Distribution of repeated measured observations showing how systematic
and random errors describe the relationship to the true value. [Tomar et al., 2009]

factor application variances, and tool biases. Epistemic uncertainty is not random

and can be reduced with a more complete understanding of the system. By contrast,

aleatory uncertainties may never be eliminated because of their nature, and examples

include "variation in pipe manufacturing processes, signal fluctuations in sensor data

collected... localized pipeline operating pressure variations and precise voltage levels

in cathodic protection (CP) systems." [Cheng et al., 2016] These uncertainties are

limited by the kinds of tools used, and as inspection technologies mature, the errors

associated with these categories are reduced.

Tool calibration is a process to reduce and correct for epistemic uncertainty while

providing bounds on the aleatory uncertainty. However, the process is made complex

by the fact that actual run conditions, flaw morphologies, and sensor performance can

vary from the ideal laboratory conditions under which a tool’s sensors are qualified.

Additionally, the true depth of a feature is never known unless a destructive test is

done as in-field tools introduce uncertainties as well.

Stated mathematically, the following two equations capture the relationship be-

tween the actual feature depths and the depths observed by the field measurement
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and ILI tools for a given anomaly (i):

𝑑𝑚𝑖 = 𝛼 + 𝛽𝑑𝑎𝑖 + 𝜖𝑖

𝑑𝑓𝑖 = 𝑑𝑎𝑖 + 𝜙𝑖

Where:

𝑑𝑚𝑖 is the ILI measured anomaly depth

𝑑𝑎𝑖 is the actual anomaly depth

𝑑𝑓𝑖 is the field reported depth

𝛼 is the constant bias

𝛽 is the non-constant bias

𝜖 is the ILI scattering error

𝜙 is the field scattering error

Given perfect knowledge of all the components of the system, one would expect to

be able to determine the 𝛼 and 𝛽 that describe how a tool trends features, removing all

epistemic uncertainty. And if an ILI tool and in-field NDE were able to get repeated

observations of the same feature under ideal conditions, one would expect 𝜖 and 𝜙

to be driven down to zero. The proposed techniques summarized below attempt to

achieve these aims using statistical techniques.

2.2 Efforts to Improve Calibration

Joshi [Joshi, 2011] claims that a basic assumption in API 1163 is that uncertainties in

the tool measurement error follow a Gaussian distribution and the performance veri-

fication method is based on a theory of binomial distribution for accepting/rejecting

a hypothesis. His work proposes that error distributions may be asymmetric around

a non-zero mean and infers a confidence level by fitting both the ILI and the field

population to two different Gamma Distributions and taking the absolute value of

the difference. While it would seem that this approach trades one set of assumptions

about the measurement error for another, the useful insight is that there needs to be
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flexibility in the assumed population distributions used by the validation model and

that normality cannot be taken for granted.

Desjardins et al. [Desjardins et al., 2007] also present slight modifications to the

standard API 1163 process in which hypothesis testing is used to determine whether

to accept or reject the stated performance of the tool. Their additional contribution

is a proposal to calibrate the result by removing the tool bias, which is determined to

be the average difference between the ILI and field measurements. Their case study

shows that doing so lowers the expected tolerance of the ILI tool from ±10% to ±5%.

Key assumptions made during their analysis was that the distribution error of the ILI

tool is normal (consistent with API 1163 but not with Joshi), there is no bias in the

field measurement, and the field tool’s accuracy is much greater than the ILI tool.

2.3 Attribution of Measurement Error

Another approach to improving the accuracy of the ILI tool performance revisits

the assumptions of the ILI tool error normality and the proper accounting of field

measurement error. The former is important to help identify what may be outlier

data that are included with the general population and can skew the tool performance.

The latter is significant because if field measurement error is large, the ILI can be

unnecessarily penalized for with a higher standard deviation that does not accurately

represent the performance. Both are discussed in detail in the following sections.

2.3.1 ILI Measurement Error

Several works have investigated obstacles to the normality assumption in the measure-

ment error of the ILI tool and the issues fall into two broad categories: depth-based

and classification-based biases.

A case study in applying API 1163 guidance conducted by Smart and Haines

[Smart and Haines, 2014] found that taking the entire corrosion population of an ILI

run into account led to a lack of a normal distribution. Segmenting the corrosion

anomalies into different classifications (slotting, pitting, etc.) did not reveal a dis-
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Figure 2-2: Example of the bias for pit depth [Tomar et al., 2009]
As the corrosion features get deeper along the depth percentiles in the left graph,
the bias trends more negative. This corresponds with the ILI tool underestimating

the size of larger defects.

cernible pattern. Further investigation by plotting the depths by mileage (to isolate

soil conditions or other localized factors) showed that the measurement error gets

larger as the true depth gets deeper. By grouping features into two populations (above

and below 50% wall loss), each population was closer to a normal distribution. For

the 50% and greater depth population, the lowest depth error that was determined

to be ±20%, in contrast with the common vendor provided specification of ±10%.

A 2012 study by Salama et al. [Salama et al., 2012] also notes that MFL tools over-

estimated small defects and underestimated large defects, but concluded that MFL

performance was between 12-21%wt. Dann and Huyse [Dann and Huyse, 2018] also

provide evidence to support this depth-bias, noting that for errors in the top per-

centiles of measured features are highly affected by an over-sizing bias in a manner

similar to Figure 2-2. They also note the effect such errors can have when propagated

through to corrosion growth rates.

As discussed in Section 1.1.4, API 1163 provides a graphical tool for catego-

rizing corrosion anomalies into various classifications that accounts for the physical

limitations of the MFL tool in sensing anomalies that are oriented perpendicular

to the sensor. (Figure 1-10) Ludlow [Ludlow, 2012] notes that when considering

classification-based biases, sampling theory plays a significant role. This is because

the Field verification program can only address a small percentage of the total popu-

lation of ILI features. If each classification population must be treated differently, as
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Table 2.1: Case Study using API 1163 Classifications

The tolerance is wider for challenging classifications like Circumferential Grooving
features than the base tolerance established for General Corrosion. Reproduced

from [Haines and Tomar, 2013]

shown by Haines and Tomar [Haines and Tomar, 2013] in Table 2.1, then it is likely

that classification with a smaller number of constituent anomalies may not have a

statistically significant amount of field verifications to allow conclusions to be drawn.

2.3.2 Field Measurement Error

McNealy et al. [McNealy et al., 2010] surveyed the state of the art of common field

measurement tools, which are shown in Table 2.2. Of note, both the measurement

error and tool bias of the pit gauge are much more dependent on operator training

and application, hence the large range in variability. In the process used by Enbridge,

Li et al. [Li et al., 2016] noted that ultrasonic thickness gauges have expected tool

tolerances of ±0.31mm and pit gauges have tool tolerances of ±0.50mm.

Table 2.2: Performance ranges of Field Measurement tools
Tool Error Certainty

Pit Gauge ±1.3% − 10% 80%
Ultrasonic Pen Probe ±2% 80%

Laser profilometry ±1.5% 80%
Summarized from [McNealy et al., 2010]
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Ellinger et al. [Ellinger et al., 2016] used 3,009 matched pairs of ILI and field

depth measurement and noted that as actual field depth increases, MFL ILI tool

accuracy decreases. This occurred in both the ILI reported measurements as well

as the field-called depths. Anomaly length was not found to have a meaningful

correlation between reported and field-measured, but very short or very long features

were reported to have lower performance.

2.3.3 Statistical Tools to Improve Error Attribution

Two established statistical tools for decomposing the scatter between two measure-

ment systems with non-zero measurement errors looking at the same feature include

the Grubbs method, developed in 1948 [Grubbs, 1948], and the more recent Jaech

method developed in 1981. The Grubbs method assigns components of constant bi-

ases and measurement errors to both tools. Then, using the variances and covariances

of the individual tools, the variance of the measurement error estimator �̂�2
𝑗 assigned

to the j-th tool is given by:

𝑉 (�̂�2
𝑗 ) =

2𝜎4
𝑗

𝑛− 1
+

𝜎2
𝜑𝜎

2
1 + 𝜎2

𝜑𝜎
2
2 + 𝜎2

1𝜎
2
2

𝑛− 1

Where:

V(�̂�2
𝑗 ) is the measurement error estimator of the j-th tool

𝜎𝑗 is the standard deviation of the j-th tool
𝜎1 is the standard deviation of the 1st tool
𝜎2 is the standard deviation of the 2nd tool
𝜎𝜑 is the covariance between the two tools

The Grubbs estimator provides no value in the case of a "negative measurement

error," which can occur when the ratio between the variances of the two tools becomes

larger than three. To correct for this, the Jaech approach provides an alternative by

using a constrained expected likelihood formulation that integrates a sharing function

and the total scatter. [Morrison et al., 2000] However, the Jaech formulation becomes

complicated in the three tool case and is largely intractable for the four or more tool

case.
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Figure 2-3: Illustra-
tion of relative scat-
ter between two tools
[Worthingham et al., 2002]
The correlation signal can be
lost in the noise as the scat-
ter on tool one (X axis, left
to right) or tool two (Y axis,
increasing top to bottom) in-
creases.

2.4 Models for Improving Validation

A Bayesian approach is proposed by Worthingham et al. [Worthingham et al., 2002],

in which the measurement error for the two tools can be described using a multivariate

normal distribution and the attribution of the error between tools is sampled from a

posterior variance-covariance Inverse-Wishart matrix. This Bayesian approach is one

of two broad approaches to stepping beyond simply deciding whether or not to accept

the vendor-stated ILI performance specification and towards a statistical calibration

of the ILI data. The other approach falls under the umbrella of the Error-in-Variables

Model proposed by Caleyo et al. [Caleyo et al., 2004] and subsequently refined and

reused by multiple works.

2.4.1 Error-in-Variables Model

The classical Error-in-Variables (EIV) procedure shown in Figure 2-4 can be used to

determine the slope of the best-fit line when both the ILI and field instruments have
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Figure 2-4: Calibration of
ILI data using the Errors-
in-Variables Model
[Caleyo et al., 2004]

known errors. What complicates the application of the procedure is when the errors

(especially systemic) are still unknown, which can be the case when the first batch

of field verifications for an unproven ILI run are received. In this case, the fit of an

Ordinary Least Squares model may or may not warrant introducing a constant bias

to the ILI tool.

Caleyo et al. [Caleyo et al., 2005] address the uncertainty in the parameters of

the calibration model line by using a variation of the Wald grouping method, where

the independent variable is partitioned into two groups and a straight line is passed

through the mean points of the groups. From this, values of 𝛽 and 𝛼 (which describe

the linear correlation between field and ILI measurements, i.e. the Unity Plot line

from API 1163) can be calculated. In comparing the Wald method to the traditional

EIV model, an alternative formulation of 𝛽 was proposed to address the case where

measurement errors for both tools were large and similar.
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2.4.2 Bayesian Efforts

Worthingham et al.’s initial use of the Bayesian estimator was primarily to compare

the Grubbs and Jaech estimators for multiple tool cases. While they identified that

confidence intervals for measurement errors using the Bayesian method may be tighter

than a frequentist methodology, that question was outside the scope of their study.

Subsequent works in applying the Bayesian method in both the Al-Amin et al.

[Al-Amin et al., 2012] and Dann and Huyse papers focus on improving the under-

standing of the relationship between in-line inspection years. Dann and Huyse in-

troduce a combination of deterministic and probabilistic models to account for sizing

bias in the corrosion growth process, but the application of the Bayesian model was

focused on estimating the corrosion growth rate, not on the error sizing process.

The Al-Amin et al. work aimed calibrate the parameter of multiple ILI tools

simultaneously and then compare the tool performance in relation to one another.

The improvements over the Grubbs and Jaech estimators it the ability to account

for systematic bias in one or both tools. In contrast with the EIV model, the bias

parameters 𝛼 and 𝛽 are sampled from the product of the observations and prior

distributions informed by previous experience using a Markov Chain Monte Carlo

method. Like Worthingham et al., the Wishart distribution is used as a prior for the

multivariate generalization of the variance-covariance matrix. Stated succinctly:

𝑑𝑚𝑖𝑗
𝑖𝑛𝑑∼ 𝑀𝑉𝑁(𝜇𝑖,Σ𝜖) i=1,2,..,m

𝜇𝑖 = 𝛼 + 𝛽𝑑𝑓𝑖

34



Where:

𝑑𝑚𝑖𝑗 is a m x n matrix of the i-th defect inspected in the j-th year
𝑖𝑛𝑑∼ 𝑀𝑉𝑁 indicates the assignment of a multivariate normal probability distri-

bution to a random variable, with independency
𝜇𝑖 is the mean matrix of estimated calibrated field data for the j-th year
Σ𝜖 is a n x n covariance matrix of scattering error between paired years
𝛼 is a n x 1 vector of constant biases determine for each j-th inspection year
𝛽 is a n x 1 vector of non-constant biases determined for each j-th inspection

year
𝑑𝑓𝑖 is a m x 1 vector of field data for the i-th defect

By applying this Bayesian model to a case study for a single pipeline with multiple

successive inspections, the authors were able to make relative statements about the

performance of the ILI tool based on the expected parameters. The parameters were

used as the foundation for a hierarchical Bayesian corrosion growth model.

Table 2.3: Calibration line parameters results from Bayesian model proposed by
[Al-Amin et al., 2012]

In this case study, the Bayesian approach was simultaneously applied to four tools
run on the same line to determine the Unity plot parameters. The first table

indicates that the 2004 run is the most accurate as 𝛼1 and 𝛽1 are close to zero and
unity respectively and 𝜎1 is lower in comparison to 2007 and 2009. The table below
also shows the correlation coefficients 𝜌𝑘𝑙 between all four of the tools. In this case

study, the correlation coefficients between the 2004 and 2011 tools and the 2007 and
2009 tools were higher, which is representative of the fact that they were from the

same tool vendor.

The present work intends to explore a similar model to the one developed by Al-
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Amin et al. However, instead of comparing across multiple years of ILI data, the focus

will be on refining the tolerance used within a single campaign while field verifications

are on-going in comparison with the API 1163 procedure. Additionally, the effect of

anomalies subject to a degraded (wider) tolerance will be explored.
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Chapter 3

Bayesian Modeling Approach

In this chapter, the proposed Bayesian Inference model is described, including a brief

background into the statistical techniques for handling the stochastic variables that

describe the uncertainty. The priors for the model are discussed, as well as the

relevant assumptions required by the model. Additionally, the process of creating the

two simulated data sets is detailed.

3.1 Motivating Question

The Bayesian Inference model proposed below seeks to examine whether or not the

tool tolerance (represented by the standard deviation) can be lowered after performing

several field trials. The associated parameters that define the Unity Plot can also

provide further insight into the tool’s bias. Proper use of these data can have wide-

ranging effects since, as discussed in Section 1.2, tolerance can have significant effects

on the execution of an integrity management program.

Consistent with API 1163, the underlying data required for this process are still

the same: historical dig documentation, calibration test piece, or a subset of features

from the current ILI population that are field-verified. The paired ILI-to-verified data

will then be used to establish the performance for the rest of the population.

Additionally, the same concerns outlined in Section 2.3 around feature classifi-

cation and measurement error as a function of depth are still relevant and do not
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invalidate this process. For example in Table 2.1, the ILI identified a majority of

features with "Pinhole" geometry, for which the tool has a stated tolerance of ±10%

but the model has established a tolerance of ±5.55% from 86 data points. The same

ILI has identified a smaller amount of "Axial Grooving" features for which the tool

vendor has a stated tolerance of ±15% but no verification digs have been performed

yet. The pipeline operators can continue to use the vendor stated tolerance as a

prior and update their predicted tolerance as more data become available, or they

can try to establish another prior either by leveraging a covariance assumption for

tool performance on pitting and slotting features established on a prior run.

3.2 Bayes Rule

The Bayesian approach to inference is a method of formally updating a prior knowl-

edge (expressed as a probability) based on observed evidence. In contrast with a

frequentist perspective, it allows for unknown parameters of a physical process to be

treated as distributed variables rather than deterministic values.

Stated mathematically, the Theorem states:

𝑝(𝜃|𝑋) =
𝑝(𝜃) × 𝑝(𝑋|𝜃)

𝑝(𝑋)

In the context of the present work:

p(𝜃|𝑋) represents the posterior, or the final conditional distribution of the ran-

dom value of interest (𝛼, 𝛽, 𝜎, etc...) given the observed data
p(𝜃) represents the prior distribution of a variable, based on tool vendor speci-

fications or knowledge of past runs in the line
p(𝑋|𝜃) is the likelihood, or the conditional distribution of the observed data

given the influence of the random value in question
p(𝑋) is the marginal likelihood in the denominator that serves as a normalizing

constant to ensure the final result satisfies the probability theorem

When applied to the validation problem, this process is used to determine the
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variables that describe the unity plot line. As discussed in Section 2.1, of interest

is the estimated value of sigma, which is used in the calculation for the amount of

tool tolerance to add on to the depths of undug features as a conservative estimate

of the aleatory uncertainties that exist around the measurement error. For example,

a corrosion pit called as 60% deep by a standard MFL tool may be treated as a 70%

deep when making decisions about where to excavate unless a smaller tolerance can

be justified.

3.3 Markov Chain Monte Carlo

Given the complexity of many applications, the computation of the components of

the Bayes Rules may not be readily achievable. Techniques to overcome the lack of

closed-form solutions evolved as computational power became more readily available,

and the Markov Chain Monte Carlo (MCMC) method is one simulation technique. In

this technique, random samples of the uncertain parameters can be generated to form

a Markov process whose stationary distribution is the joint posterior distribution of

the parameters.

In contrast with conventional memory-less Monte Carlo simulation methods, sam-

ple states (which can represent a system with multiple stochastic parameters) gener-

ated by each sequence of a Markov Chain are dependent on the results of the prior

sequence. More specifically, if a randomly generated sample state has a higher prob-

ability than the last, it is added to the chain to be evaluated next. If it does not have

a higher probability, it can still be accepted based on the selection of an Acceptance-

Rejection algorithm. This process is repeated until the sample states converge.

The present work uses the PyMC3 implementation of the MCMC method. The de-

fault acceptance-rejection sampler selected is the No-U-Turn Sampler (NUTS), which

is an extension of the Hamiltonian Monte Carlo algorithm.
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Figure 3-1: Markov Chain Monte Carlo Illustration [Hoffman and Gelman, 2014]
NUTS MCMC state evaluation during one iteration. The blue ellipse is a contour of
the target distribution, the black solid circle is the starting position, the black open

circles are the potential next states, the red solid circles are positions associated
with states that must be excluded from the set of possible next samples because

their joint probability is below acceptance criteria, and the positions with a red “x”
through them correspond to additional states that must be excluded per the NUTS

algorithm.

3.4 Model Description

Recall from the discussion in Chapter 2 that the ILI-measured and field verified re-

ported depths can be defined as follows, incorporating various biases and measurement

errors:

𝑑𝑚𝑖 = 𝛼 + 𝛽𝑑𝑎𝑖 + 𝜖𝑖 (3.1)

𝑑𝑓𝑖 = 𝑑𝑎𝑖 (3.2)

Where:

𝑑𝑚𝑖 is the ILI measured anomaly depth

𝑑𝑎𝑖 is the actual anomaly depth

𝑑𝑓𝑖 is the field reported depth

𝛼 is the constant bias
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𝛽 is the non-constant bias

𝜖 is the ILI scattering error

𝜖𝑖 < 2𝜎 to be within conventional ILI tolerance intervals of two standard devi-

ations to represent the equivalent of 95% of a normally distributed population

Provided a set of 𝑑𝑚𝑖 and 𝑑𝑓𝑖, the goal is to determine the best fitting parameters

for 𝛼, 𝛽 that minimize 𝜖 and 𝜙. Below is a directed acyclic graph which summarizes

the outline of the proposed model.

1. A subset of the ILI tool population is matched with field data

2. If warranted, populations are segmented according to depth or classification if

varying tool performance is expected
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3. Priors for the Unity plot line parameters 𝛼, 𝛽, and 𝜎 are established for each

population

4. An MCMC is run to determine the posterior distributions for each parameter

of the Unity plot line

5. Using the Unity plot described by 𝛼, 𝛽, and 𝜎, identify the confidence interval

that can be ascribed to the tolerance interval of two standard deviations (per-

centage of data points that fall within the bounds)... i.e. "80% of observed data

points fall within ±6.5% of the Calibration line"

6. If satisfactory, use this tolerance for the rest of the undug features in making

repair decisions, or identify outliers and re-segment

3.4.1 Assumptions in Model

For this model, field random error was modeled with a much smaller scatter than

the ILI tool. The Bayesian model does not attempt to remove the scatter (as in the

Grubbs or Jaech method) and instead uses the field depth as an approximation of the

true feature depth (i.e. 𝑑𝑓𝑖 = 𝑑𝑎𝑖).

In actual scenario with field provided data, the ratio between field and ILI mea-

surement error can be determined against the true value of a manufactured defect

in a test spool to establish the appropriate values or a segment that is destructively

tested to confirm the true depth. However, on many pipeline projects, true depth

data are not available and the field data are established using past metrics of operator

qualifications using a particular tool.

3.4.2 Selection of Priors

Recalling Equation 2.1, the Bayesian model requires that priors be specified for each

of the stochastic variables. Initial proposals for prior distributions are as follows:

The prior for 𝛼 is Gaussian distribution with a mean of 0 and a standard deviation

of 0.1. This is informed by industry data that the constant bias is often minimized
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Figure 3-2: Prior Distribution for 𝛼

to zero but there may be minor positive or negative deviations. Large values are

possible, hence there is no hard limit, but large biases would provide support for

rejecting the tool run.

Figure 3-3: Prior Distribution for 𝛽

𝛽 follows a Beta distribution with shape parameters a=7 and b=2. This leads to

a left-skewed distribution weighted closer to values around 1. Ideal ILI performance

would lead to a 1:1 bias. From the discussion in Section 2.3.1, literature has shown

a strong tendency for ILI tools to undercall deeper features, which are captured by a

value of 𝛽 under 1. Values much smaller than 1 are unlikely.

Figure 3-4: Prior Distribution for 𝜎

𝜎 is a Half-Normal Distribution with a standard deviation of 10. This results in
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a wide, positively constrained distribution that reflects the uncertainty in the tool

tolerance, which can vary from 5-20% depending on the tool vendor specification.

3.5 Generating Test Data

Data are randomly generated according to the following rules: 1000 sample features

are generated with actual depth following an Inverse Gamma Distribution. Consistent

with the literature review, this reflects that most corrosion features are relatively low-

grade, but a small portion can quickly grow due to external factors. [Joshi, 2011] The

upper range of features was cut off at 75% to capture the fact that features deeper

than 75% are likely already repaired or will have reached actionable criteria to make

them eligible for repair regardless of any further analysis.

Figure 3-5: Generated population distribution for the corrosion depths

For Base features, a normally distributed scatter with 10% tolerance was used to

introduce ILI scatter. This is consistent with the average of current ILI tool per-

formance surveyed in literature. [Salama et al., 2012] For Challenging that represent
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sub-optimal MFL conditions, the normally distributed scatter was increased to 20%

to reflect the challenging conditions for the operation of the MFL sensor as covered by

Section 1.1.2, including small or narrow features or areas where there is sensor lift-off.

These features will be referred to as the "Challenged" set. The resulting generated

data are shown below.

Figure 3-6: Example of selective tool performance [Rosen Group, 2013]
In this example, Axial Grooving would be treated as the Challenged feature set

while General, Pitting, and Circumferential Grooving would all be included in the
Base feature set.

Figure 3-7: Base tolerance with approximately ±10% scatter
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Figure 3-8: Challenged tolerance distribution with approximately ±20% scatter

Figure 3-9: First 5 rows of the simulated data
dtrue on the right side is the original dataset generated according to the Inverse

Gamma distribution. df represents the field measurement of the true depth with a
small amount of scatter added (±3%). df is the reference value used in the Unity
Plot. To represent ILI relative performance, scatter was added to the elements of
dtrue with the respective tolerance: dm reflects the Base data with ±10% scatter

added and dm2 captures the Challenged data with ±20% scatter added.
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Chapter 4

Results and Discussion

This chapter discusses the results of the Bayesian approach and compares it to the

standard practices outlined in API 1163, namely the Unity Plot. As introduced in

Chapter 3, the model was run on two different data sets, one representing features

subject to a standard level of scatter representative of Base ILI performance while

another represents Challenging features with a larger amount of scatter. The benefits

and trade-offs of the model are reviewed against performance specifications. Finally,

potential changes required for further applications are discussed.

4.1 Simulation Results

Base Features

Table 4.1: Bayesian Results for Base Tolerance
Variable Mean Std Dev

alpha (%WT) 0.241 0.088
beta 0.878 0.010

sigma (%WT) 3.613 0.080

Figure 4.1 shows the posterior distributions for the variables of interest and the

trace plots for the MCMC runs for the population representing the population subject

to base scattering errors of ±10%. The estimated values for the parameters are
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Figure 4-1: Posterior results for the three stochastic variables in the Unity Plot line
for the Base case
The left column consists of a smoothed histogram of the marginal posteriors of each

stochastic random variable while the right column contains the samples of the
Markov chain plotted in sequential order.

summarized in Table 4.1. As expected for a nominally performing tool, there is little

systematic bias (𝛼 is close to zero) and the non-constant bias 𝛽 is closer to one.

Implementing the common practice of using two standard deviations as tolerance

bands to describe 95% of a normally distributed population results in an equivalent

tool performance of 7.2%.

Challenging Features

Table 4.2: Bayesian Results for Challenging Tolerance
Variable Mean Std Dev

alpha (%WT) 0.338 0.093
beta 0.729 0.012

sigma (%WT) 4.963 0.110

For the population representing challenging features with an expected tool toler-

ance of ±15%, the equivalent results are summarized in Figure 4.1 and Table 4.1.

Note that 𝛽 has a lower value as compared with the base population performance,

indicative of some over-calling of features by the ILI tool (reported to be larger than
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Figure 4-2: Posterior results for the three stochastic variables in the Unity Plot line
for the Challenging case

found in the field). Additionally, twice the standard deviation provides for an equiv-

alent tool performance of 9.8%.

4.2 Unity Plot of Base Features

To better visualize the results of the model, the equivalent line determined by the

simulated parameters was plotted against a traditional Unity Plot (Figure 4.2). For

the Base scenario, the Bayesian model shows slight deviation from the Unity Plot only

for larger features, reflecting the weighting that the over-called 70% anomaly at the

upper-right corner had on the trend. Interestingly, the tighter tolerance suggested by

the Bayesian model does aggressively cull out some lower grade features as potential

outliers.

Figures 4.2 and 4.2 show the residual error plots for both the traditional Unity

Plot and the Bayesian model, respectively.
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Figure 4-3: Unity Plot for Base Features

The Unity Plot showing the 1:1 line (red) with standard tolerance offsets in black.
The Bayesian calibration process was run on the plotted features which results in

the green calibration line with a tighter tolerance in the dashed cyan lines. A
majority of features fall within the tolerance bands of both methods, but there are
more over-called (ILI reports the depths greater than they are) features that land
outside of the Bayesian calibration line, shown as points plotted in red. This is a

conservative result since it results in the ILI overestimating features that may
trigger excavations, but an excessive tendency towards overcalling can lead to

unnecessary field work.
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Figure 4-4: Plot of Residuals for Base Case: Traditional

Figure 4-5: Plot of Residuals for Base Case: Bayes

Residual error plots for both the traditional and Bayesian methods. The y-axis
shows the error between the actual feature depth versus the expected value from the
calibration line. Features that fall outside of the tolerance are colored red. As seen

on the Unity Plot, the tighter tolerance on the Bayesian residuals does result in
more features being over-called (more observations fall below the -6% tolerance
band). However, the number of features above the upper tolerance band is only

slightly larger than the traditional method.
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4.3 Unity Plot Challenged Features

The more interesting scenario is the representation of the challenging population.

Here we see the tendencies observed in the base case magnified (Figure 4.3). The

value of the model is still showing that the expected tool tolerance of ±15% can still

be tightened with little loss in confidence of that the tool tolerance will encompass

the measurement errors around deeper features. (Figures 4.3 and 4.3).
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Figure 4-6: Unity Plot for the Challenged Features

Similar to Figure 4.2, the red 1:1 line and corresponding black tolerance bands of
±15% (vendor specification) are shown. The Bayesian calibration line (green)

deviates from this line more than in the Base feature-set, conservatively reflecting
the trend observed in the literature that ILI-measured features have increased

measurement errors as the feature depth increases. While there are a small portion
of features (colored red) that appear to fall outside of the corresponding Bayesian
tolerance bands (dashed cyan), these are mostly lower depth pits that do not pose
as much of a risk. The following residual plots show a clearer comparison when the

scaling is accounted for.
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Figure 4-7: Plot of Residuals for Challenged Case: Traditional

Figure 4-8: Plot of Residuals for Challenged Case: Bayes

Residual error plots for both the traditional and Bayesian methods. The y-axis
shows the error between the actual feature depth versus the expected value from the

calibration line. As was seen in the Base case, the Bayesian model allows for a
tighter tolerance band while limiting the number of features that are over-called

(errors greater than +10%).
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4.4 Performance Metrics

To summarize the performance of the tools, the Mean Absolute Error, Mean Square

Error, and Root Mean Square Error are reported below for the two approaches. The

Mean Absolute Error corresponds well to the information that was conveyed in the

Residual Plot. However, because of the safety-based nature of pipeline integrity means

that larger errors carry more weight, the Root Mean Square error may prove more

indicative of the actual economic value of the relative performance improvements.

For reference, an Ordinary Least Squares model was included as well. The confidence

levels of anomalies within vendor reported specifications and two standard deviations

of the model calibrated line are also reported below in Tables 4.4 and 4.4).

Table 4.3: Comparison of Unity and Bayesian: Base
Technique MAE MSE RMSE Conf Level

Unity 13.7479 2.8734 1.6951 0.991
OLS 21.8284 3.3244 1.8233 NA

Bayesian 11.6901 2.6466 1.6268 0.991

Table 4.4: Comparison of Unity and Bayesian: Challenged
Technique MAE MSE RMSE Conf Level

Unity 38.4370 4.3893 2.0951 0.892
OLS 21.8284 3.3244 1.8233 NA

Bayesian 24.2332 3.6868 1.9201 0.953

Here we can see that the Bayesian approach does perform well when compared

against the traditional Unity plot for thee Base features (both have a 99% confidence

level) and is superior in the Challenged set (95% as compared with 89% provided by

the traditional method).

4.5 Thoughts on Application

The main benefit of employing the Bayesian model is that with enough samples,

the pipeline operator can confidently use a more accurate alternative to the vendor
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provided tolerance. This process can be done iteratively such that the parameters can

be recalculated quickly based on successive measurements. In contrast to traditional

methods in which operator judgment is required to select the specific level of tolerance

to apply, this elegantly captures the process of updating knowledge based on observed

performance. At the end of a repair campaign, the calibrated parameters can serve

as priors for the next round of inspections.

However, this does not completely remove the need for engineering judgement.

There are two areas where operator experience and pattern recognition can greatly

influence the results. The first is in the selection of the distribution of the priors:

the nature of a Bayesian process is that when there are fewer observed samples,

more weight is placed on the knowledge represented by the priors. If this is not

representative of reality, the output is of little value.

Figure 4-9: Unity Plot with Different Classification Groups [Li et al., 2016]
Mixing features types can unnecessarily penalize the tolerance for the entire

population based on the performance of a few outliers.

A corollary to this, and a result of sampling theory, is that judicious selection

of the appropriate segmentation of the populations can also have a large effect. For

example, mixing the two (base and challenged) populations would result in applying

a lower tolerance to features we do not have as much confidence in while penalizing

the performance of the tool on base features. For example, the plot in Figure 4-9

shows features (circled) that could be excluded in a separate Unity Plot to improve

the tolerance applied to the remaining general population.

Additionally, as seen in works like Worthingham et al. covered in Section 2.4.2,
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the Bayesian Inference framework is flexible enough to assign measurement errors

between the ILI tool and the field tool through the use of a covariance matrix and as-

sociated prior distribution. Evaluation of such a model’s performance in the base and

challenged scenarios is outside the scope of the present work but may be considered

in the future.

Finally, it should be noted that the ideal process is for the operator to work closely

with the tool vendor to provide the dig results for re-calibration based on the raw

MFL signals. This, however, does not minimize the results here since the pipeline

operator is ultimately responsible for stewarding the integrity of the line based on

their understanding of the tool tolerance. Additionally, building a model of the field

measurement error rests largely on the operator, with the tool vendor providing only

a minor support role in that decision-making process.
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Chapter 5

Conclusions and Future Work

Although MFL-based ILI tools have become more accurate at detecting and sizing

corrosion features in pipelines, any integrity management program must take into

consideration the potential for measurement errors to effect reported results. Since

this information is the basis for risk reduction decision making about where to pri-

oritize repairs, it is vitally important that pipeline operators apply the appropriate

tolerance level on the ILI-reported features.

5.1 Summary of Results

The Bayesian model proposed in this work was found to be a capable alternative to the

primary API 1163 validation process, with lower mean average error and higher tol-

erance. It allows the pipeline operator to move beyond simply accepting or rejecting

the tool vendor’s performance specification and instead allows for an alternative toler-

ance to be stated with the appropriate confidence interval. Like the more recent works

identified in the current literature, it offers the flexibility of assigning measurement

errors between the field and ILI tools and for incorporating prior knowledge about

constant and non-constant biases in the selection of the priors. Another strength of

the Bayesian model is that it allows the prior to dominate when there is a lack of

information about the performance for a particular feature classification until more

information is provided to sufficiently overrule the prior.
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The main limitation of the Bayesian model is that it has yet to be applied to actual

inspection data. Further testing and implementation would allow for identification of

any discrepancies. Additionally, pipeline operators will need properly document the

assumptions behind taking a less conservative approach to applying the tool tolerance

compared with the specifications provided by the vendor in accordance with API

1163. Ultimately, the greatest value of the Bayesian model may be as a supplemental

approach for working with the ILI tool vendor for noting when tolerances can be

adjusted.

5.2 Recommendations for Future Work

Several works have begun discussing using Hierarchical Bayesian models to incor-

porate the stochastic representation of measurement errors into a larger model that

incorporates physical parameters like coating condition or soil acidity to describe the

overall temporal degradation of the pipeline. Hierarchical models may also prove

valuable in describing the physical parameters that influence the MFL signal before

the anomalies are reported and can capture the constituent uncertainties that result

in the final tolerance. Examples of such factors are the tool speed or sensor stand-off.

By dissecting the contributing factors, vendors and pipeline operators can determine

what inspection variables need to be modified to improve tool accuracy.

While outliers are partially mitigated in a Bayesian model with a proper selection

of the prior, spurious data can still influence the results. The art of outlier detection

and segmentation of the anomaly population (i.e. deep versus shallow feature perfor-

mance) still requires engineering judgment, but methods of intelligently identifying

potential outliers can aid in this decision making.

Likewise, concepts from the transfer learning class of problems can assist with the

sampling of classification problems. If a pipeline operator has many features that fall

under the "pitting corrosion" category that are field verified, how much confidence

should they have in features that fall under the "slotting" category that have not been

field verified yet? A modification of the variance-covariance priors may be applied
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where the same MFL tool is treated as multiple tools with some level of correlation.
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Appendix A

PyMC3 Code

import pymc3 as pm

import pandas as pd

import math as math

# use pandas to load genera ted DataFrame

count_data = pd . read_excel ( " i l i d a t a g e n e r a t e d . x l sx " )

n_count_data = len ( count_data . index )

X = count_data [ "dm2" ]

y = count_data [ " df " ]

# va r i a b l e s f o r pymc inpu t s

basic_model = pm. Model ( )

with basic_model :

# Priors f o r unknown model parameters

alpha = pm. Normal ( ’ alpha ’ , mu=0, sigma =.1)

beta = pm. Normal ( ’ beta ’ , mu=1, sigma =.1)

sigma = pm. HalfNormal ( ’ sigma ’ , sigma=10)
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# Expected va lue o f outcome

mu = alpha + beta*X

# Like l i hood ( sampling d i s t r i b u t i o n ) o f o b s e r va t i on s

#Y_obs = pm.MvNormal ( ’Y_obs ’ , mu=mu, cho l=chol , observed=y )

Y_obs = pm. Normal ( ’Y_obs ’ , mu=mu, sigma=sigma , observed=y)

map_estimate = pm. find_MAP( model=basic_model )

map_estimate

with basic_model :

# draw 500 po s t e r i o r samples

t r a c e = pm. sample (500)

t r a c e [ ’ alpha ’ ] [ −5 : ]

with basic_model :

# in s t a n t i a t e sampler

s tep = pm. S l i c e ( )

# draw 5000 po s t e r i o r samples

t r a c e = pm. sample (5000 , s tep=step )

pm. t r a c e p l o t ( t r a c e ) ;

pm. summary( t r a c e ) . round (4 )

pm. p l o t_pos t e r i o r ( t r a c e ) ;
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