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Abstract 20 

Urban growth comes with significant warming impacts and related increases in air pollution 21 

concentrations, so many cities have implemented growth management to minimize ‘sprawl’ and its 22 

environmental consequences. However, controlling the amount of growth is costly. Therefore, in 23 

this paper, we focus on urban warming and investigate whether climate-conscious urban growth 24 

planning (CUGP), i.e., urban growth with the same magnitude but optimized spatial arrangements, 25 

brings significant mitigation effects. First, the classical spatial multi-objective land-use optimization 26 

(SMOLA) model is improved by integrating the spatially-, diurnally-, and compositionally-varying 27 

associations between land-use and their warming impacts. Then, we solve the improved model using 28 

the non-dominated genetic algorithm (NSGA-II) to generate urban growth plans with minimal 29 

warming impacts and minimal cost of change without reducing the amount of urban growth. Results 30 

show that climate-conscious urban growth brings 33.3±4.6% less warming impacts compared to 31 

unplanned urban growth in Shenzhen, China, and suggest a compact and spatially equalized 32 

development pattern. This study provides evidence that spatial planning tools such as the CUGP 33 

can help mitigate human impacts on the environment. Meanwhile, the improved SMOLA model 34 

could be applied to balance urban development and other environmental consequences such as air 35 

pollution. 36 

 37 
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1. INTRODUCTION 42 

One of the most direct environmental consequences arising from massive global urbanization is 43 

urban warming, which leads to increased cooling energy demand, increased air pollution, and 44 

elevated public health risks associated with human exposure to high ambient temperatures. Urban 45 

heat island (UHI), the long-recognized effect that cities have higher air temperatures than their 46 

surrounding countrysides, is an extreme case of how land-use changes modify regional climate1. 47 

Reported in many global cities, exacerbated UHIs can be as dramatic as 10°C depending on the 48 

local weather conditions2,3. Such intense heat stress brings substantial health risks to urban dwellers, 49 

particularly during excessive heat events (EHEs), i.e., heat waves4. Exposure to extreme heat leaves 50 

the elderly, in particular, at risk of suffering heat cramps, heat exhaustion, and heatstroke. 51 

Temperature is also found to exert the strongest and most stable influence on PM2.5 concentrations 52 

in all seasons amongst meteorological factors5. Researchers have long sought to mitigate urban 53 

warming, and many studies have suggested such promising mitigation measures as green roof, 54 

reflective streets, and increased green space with optimized positioning6–12. However, existing 55 

studies on mitigating urban warming paid insufficient attention to making low-cost improvements 56 

to future urban growth plans. Also, many studies have not considered the extreme case of EHEs 57 

when heat-related deaths are most likely to occur13.  58 

 59 

Urban growth – the expansion of a metropolitan or suburban area into the surrounding environment 60 

–  is an economic phenomenon inextricably linked with the process of urbanization14. Urban lands 61 

– developed, built-up areas with a density of human structures such as houses, buildings, and roads 62 

– are primary heat sources in cities15. Urban growth increases urban temperatures significantly by 63 

reducing green space, altering surface albedo and geometry compared to rural surfaces15. The 64 

associations between urban land-uses and their warming effects have been studied extensively16–18. 65 

Urban growth is found to be consistently associated with a substantial temperature increase11,19,20, 66 

and in newly urbanized areas of the city, such an increase can be comparable to the increase under 67 

the highest greenhouse gas emissions scenario (RCP8.5)21. Such temperature increases vary with 68 

time of day16 and land-use compositions17,22, i.e., the abundance and variety of land cover features. 69 

The development density of urban lands is a critical compositional factor in the variability of urban 70 

temperatures; higher temperatures often occur in dense urban areas, where the population density is 71 

also higher. However, nearly half of the studies on urban warming impacts of urbanization have 72 

ignored the variability in urban development density23, which may underestimate the magnitude of 73 

the warming impacts of urban lands, especially in the densest areas. Besides the composition, the 74 

spatial configuration17,24,25 of urban lands, that is, their spatial arrangement and distribution, can 75 

affect the magnitude of urban warming. For example, comparison results from regional climate 76 

simulations indicate that a compact mode of urban growth has significant potential in moderating 77 

the mean-areal urban warming26,27. Empirical data analyses also show that sprawling cities are more 78 

vulnerable to heat stress during EHEs compared to their compact counterparts4.  79 

http://dx.doi.org/10.1021/acs.est.9b01645
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Future urban growth with careful spatial arrangements may mitigate its warming impacts without 80 

having to reduce the total amount of the growth, yet we know little about the optimal effectiveness 81 

and efficiency of this approach. Recent developments in spatial optimization methods have made it 82 

possible to formulate the land-use planning problem as a spatial multi-objective land-use allocation 83 

(SMOLA) problem guided by a selected set of objectives about sustainability.  84 

 85 

Land-use optimization problems were first articulated in the 1960s when the linear programming 86 

(LP) model of land-use design was proposed28. Later developments in spatial optimization methods 87 

have introduced the location-allocation model29 and their generalization to multi-objective 88 

optimizations in which the trade-offs among multiple objectives were considered30–34. In early 89 

practices of solving multi-objective problems using LP models35, it was a major issue to quantify 90 

the relative weights of the selected objectives. Then, SMOLA models based on Pareto optimality 91 

were proposed and became popular for land-use problems11,34,36–39, since the objectives were 92 

independent of each other, no weights were needed, and a series of equally good solutions, called 93 

“the Pareto Front”, can be generated simultaneously. Since the environmental impacts of 94 

urbanization are increasingly drawing public attention, there has been growing interest in the use of 95 

SMOLA models to mitigate negative impacts. For instance, Zhang and Huang11 first applied a 96 

spatial multi-objective optimization model to mitigate urban heat island effects. Zhang et al.12 97 

demonstrated that increased greenness with optimized distributions could be a useful urban warming 98 

mitigation measure. However, most existing studies ignored the heterogeneity in the objective 99 

functions, i.e., the empirical models used to assess the environmental impacts of optimized plans, 100 

except for Zhang et al.12, who included different assessment functions for daytime and nighttime 101 

temperatures and enabled identification of trade-off solutions that balance diurnal cooling benefits. 102 

Therefore, the assumption that these objective functions are fixed is not always valid, especially 103 

when dealing with environmental objectives, since such environmental responses as urban warming 104 

could contain substantial spatial, diurnal and compositional variances. Not considering such 105 

heterogeneous associations in environment-related spatial optimization problems may lead to two 106 

main problems: 1) the fixed functions may not provide accurate environmental impact assessments 107 

of the optimized plans, and so the SMOLA model may fail to generate plans with real improvements. 108 

2) the solution space is limited by the fixed functions, leading to limited improvements in 109 

environmental objectives.  110 

 111 

Therefore, this paper has two objectives. First, we investigate the spatially-, diurnally-, and 112 

compositionally-varying temperature-land-use relationships and improve the classical SMOLA 113 

model by integrating such varying relationships. Second, using the improved SMOLA model, we 114 

systematically examine the effectiveness and cost of the so-called climate-conscious urban growth 115 

planning (CUGP) as a possible mitigation measure for urban warming. This investigation is 116 

significant and timely for two main reasons:  117 

http://dx.doi.org/10.1021/acs.est.9b01645
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 118 

1) If planned wisely, the expected urban growth in the next two decades will provide a 119 

significant opportunity for urban warming mitigation.   120 

2) It is now possible to tap the potential climate benefits from spatial urban growth planning 121 

with extensive results on temperature-land-use relationships and recent developments in 122 

spatial optimization.  123 

The remainder of this paper is organized as follows. Section 2 introduces the materials and methods 124 

used in the investigation. Sections 3 and 4 present results and discussions on climate-conscious 125 

urban growth based on our case study in Shenzhen, China. Section 5 present the conclusions. 126 

 127 

2. MATERIAL AND METHODS 128 

The study was conducted in two steps. First, we modeled the temperature-land-use relationship to 129 

allow the warming effects of urban growth to be estimated empirically. Then, we measured the 130 

effectiveness of the CUGP for urban warming mitigation by estimating the warming impacts of 131 

urban growth with (Experimental Scenario) and without (Baseline Scenario) optimized spatial 132 

arrangements and comparing them with each other (Figure S1).  133 

 134 

Notations 135 

i  𝑖𝑖 ∈ {1, 2, … ,𝑁𝑁}; cell locations, where N is the total number of cells in the study area. 136 

𝐿𝐿𝑖𝑖 land-use at location i in the status quo. 137 

𝐿𝐿𝑖𝑖′  land-use at location i in the optimized plan.  138 

𝐼𝐼𝑖𝑖 land-use intensity index at location i in the status quo. 139 

𝐼𝐼𝑖𝑖′ land-use intensity index at location i in the optimized plan. 140 

𝑒𝑒𝑖𝑖 elevation at location i. 141 

𝑠𝑠𝑖𝑖 slope at location i. 142 

𝑃𝑃𝑙𝑙𝑙𝑙 the probability that land-use l is an immediate neighbor of land-use m in the status quo. 143 

𝑃𝑃𝑙𝑙𝑙𝑙′  the probability that land-use l is an immediate neighbor of land-use m in the optimized plan. 144 

U set of urban lands, including high-, mid-, and low-density urban lands.  145 

 146 

2.1 Site description. Shenzhen (east longitude: 113°46′ to 114°37′, north latitude: 22°27′ to 22°52′) 147 

is a fast-developing post-reform city in south China (Figure 1). As a sub-tropical city with a warm, 148 

monsoon-influenced, humid climate, Shenzhen has an average annual temperature of 23°C, and the 149 

local summer lasts as long as six months. Luo and Lau38 observed a significant increase in 150 

frequency, duration, and intensity of heatwaves in Southern China in the past 40 years; over 50% 151 

of the increase was contributed by urbanization. Within territory of 2050 km2, the population in 152 

Shenzhen has exploded from 2.39 million in 1995 to 10.22 million in 2010 and is projected to reach 153 

12.67 million by 2030.  154 

 155 

http://dx.doi.org/10.1021/acs.est.9b01645
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 156 
Figure 1 Land-use map of Shenzhen, a sub-tropical city in south China, in 2010. The used urban subset represents 157 
sub-districts in Shenzhen44.  158 

2.2 Data. We focused on the strongest EHE identified in the year of 2010, which lasted 15 days 159 

from June 30th to July 15th. The EHE was identified by Luo and Lau38 using observations from 86 160 

national ground monitoring stations in Guangdong Province over a 40-year period from 1970 to 161 

2010. Satellite-retrieved LST maps and land-use maps were mainly used for the empirical modeling 162 

of temperature-land-use relationships. The Land Surface Temperature (LST) was obtained from 163 

EOS-Aqua-MODIS C6 composite products (MYD11A2) with a spatial resolution of 30 arc-second 164 

(~1 km). The LST map was retrieved from clear-sky (99% confidence) observations at 1:30 165 

(nighttime) and 13:30 (daytime) local solar time by using a refined generalized split-window 166 

algorithm 41. We resampled the spatial resolution of LST maps to 500m to overlay with the land-167 

use map. Besides, the urban land-use map was retrieved from the official land-use map of Shenzhen 168 

in 2010, which is a product of field survey and systematic quality control. We reclassified the urban 169 

land category into three subcategories based on their varying development density (please refer to 170 

Section S1.2 for more details). The spatial resolution of the land-use map is 500m. A digital 171 

elevation map (DEM) of Shenzhen in 2010 with the spatial resolution of 30m was utilized to 172 

quantify terrain limits for urban developments. The land-use map and the DEM data are all products 173 

of field surveys with systematic quality assurance and control. 174 

 175 

2.3 The temperature-land-use relationship. Since the assumption of the existence of a spatially 176 

fixed relationship is not always true, especially when dealing with geographical data and such 177 

phenomena as urban warming, we applied both global and local modeling methods to estimate the 178 

temperature-land-use relationship to find the better-performing model. Urban temperatures can be 179 

characterized using air temperature or LST15,19. We used LST as the indicator of urban warming 180 

because it is more directly linked to the land-use changes induced by urban growth via the alteration 181 

of the physical and biophysical processes19.   182 

 183 

http://dx.doi.org/10.1021/acs.est.9b01645
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We took LST as the response variable and calculated 13 land-use indices (Table S1) as predictor 184 

variables using the Inversed-Distance-Weighted (IDW) sum to consider not only the local land-use 185 

but also its immediate neighbors. We first applied stepwise ordinary least squared regression (OLS) 186 

(Eq. 1), one of the most commonly used global modeling approaches, to estimate the temperature-187 

land-use relationship, assuming the existence of a spatially fixed relationship: 188 

 189 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = ∑ 𝛾𝛾𝑙𝑙𝐼𝐼𝑙𝑙,𝑖𝑖𝑙𝑙    (Eq. 1) 190 

 191 

where i indicates spatial locations within the study area and 𝐼𝐼𝑙𝑙,𝑖𝑖 is the land-use intensity for the lth land-192 

use type and 𝛾𝛾𝑙𝑙 is its spatially fixed coefficient.𝐼𝐼𝑙𝑙,𝑖𝑖 is the land-use intensity for the lth land-use type 193 

and 𝛾𝛾𝑙𝑙 is its spatially fixed coefficient. The estimated temperature-land-use relationship was self-194 

validated using 10-fold cross-validation (CV). A Python tool was programed for the stepwise OLS 195 

estimations equipped with 10-fold CV. 196 

 197 

Then, we applied semi-parametric geographically weighted regression (sGWR)42 as the local 198 

modeling approach to estimate the temperature-land-use relationship. GWR expands the traditional 199 

cross-sectional regression model (Eq. 1) to allow for local variations in the estimated parameters 200 

and is found to be a more appropriate analytical framework in conducting research involving 201 

multiple spatial data with autocorrelated structures 16. Unlike regular GWR, sGWR allows the 202 

simultaneous fitting of mixed spatially varying and fixed coefficients in the same model (Eq. 2), as 203 

follows, 204 

 205 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = ∑ 𝛽𝛽𝑘𝑘(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖)𝐼𝐼𝑘𝑘,𝑖𝑖𝑘𝑘 + ∑ 𝛾𝛾𝑙𝑙𝐼𝐼𝑙𝑙,𝑖𝑖𝑙𝑙    (Eq. 2) 206 

 207 

where 𝐼𝐼𝑘𝑘,𝑖𝑖  and 𝛽𝛽𝑘𝑘  are the kth local explanatory variable and its coefficient. The coefficients vary 208 

depending on the geographical location, (𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖). The GWR estimations were implemented using 209 

the GWR4 package (version 4.0.90, http://gwr.maynoothuniversity.ie/gwr4-software/). 210 

 211 
2.4 The SMOLA model improved for environmental objectives. The SMOLA model was 212 

improved for considering urban warming or other related environmental objectives by capturing 213 

and integrating the spatially-, diurnally-, and compositionally varying environmental responses to 214 

land-use changes. In doing so, urban growth plans were optimized based on more reliable 215 

environmental impact assessments; the solution space was also enlarged with more combinatorial 216 

possibilities. The integration of varying environmental responses into the improved SMOLA model 217 

may lead to very different optimization results and larger objective improvements compared to the 218 

classical SMOLA model. We solved the SMOLA model using the non-dominated sorting genetic 219 

algorithm (NSGA-II), introduced for this purpose by Cao et al.34. Unlike classical multi-objective 220 

optimization methods, the NSGA-II algorithm generates a diverse population of equally optimal 221 

http://dx.doi.org/10.1021/acs.est.9b01645
http://gwr.maynoothuniversity.ie/gwr4-software/
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solutions instead of a single optimal solution, leaving human decision-makers to make the final 222 

decision. For details of the NSGA-II-based SMOLA model, please refer to the Supplementary 223 

Material. 224 

 225 

2.5 Warming impacts of unplanned urban growth. In the baseline scenario, we first simulated 226 

urban land-use plans with 10% more unplanned urban land area. The new urban lands were 227 

iteratively added to the status quo of Shenzhen, 2010 (Figure 1), using a random boundary-based 228 

urban growth operator, where all new urban lands were restricted to the boundary area of existing 229 

urban lands. The unplanned urban growth was also subject to the three feasibility constraints in 230 

Section 2.6. Then, the new urban lands were randomly assigned as high-density, mid-density or 231 

low-density urban lands, while the average development density of the entire land-use plan was 232 

constrained to be at least equal to or higher than that of the status quo. The process was repeated to 233 

generate N different plans with unplanned urban growth, where N is the fine-tuned population size 234 

in each generation of the spatial optimization model explained in Section 2.4.  235 

 236 

The warming impacts of unplanned urban growth were evaluated empirically using the temperature-237 

land-use relationship estimated in the previous section.  238 

 239 

2.6 Warming impacts of climate-conscious urban growth. In the experimental scenario, using an 240 

improved SMOLA model, the spatial arrangements of the unplanned urban growth simulated in the 241 

previous section were optimized under four objectives: to minimize daytime LST (𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 ), to 242 

minimize nighttime LST (𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛), to maximize land-use compatibility, and to minimize changing 243 

cost. Both daytime and nighttime LST were minimized simultaneously to consider the diurnal 244 

temperature trade-off12. Besides the climate objectives, the number of land-use changes was also 245 

minimized to maximize the efficiency of optimized changes. In addition, the compatibility between 246 

adjacent land-uses was maximized, since there are land-use types that should not exist next to each 247 

other (e.g., industrial and residential). Rather than arbitrarily assigning the compatibility weights for 248 

each land-use pair (𝑃𝑃𝑙𝑙𝑙𝑙), the weights were learned by summarizing their corresponding appearance 249 

probability in the status quo.  250 

 251 

Three feasibility constraints proposed to limit the solution space of land-use plans: 252 

1. The land demand of Shenzhen shall be satisfied. The increase of urban land area compared 253 

to the status quo should be equal to or larger than the required urban growth rate (𝑟𝑟𝑔𝑔) of 10%. 254 

The average development density cannot be lower than that of the status quo. 255 

2. Urban development cannot occur on rough terrain. Highlands, i.e., land units higher than 256 

80m in elevation, and hilly terrain, i.e., larger than 25 degrees in slope, were considered not 257 

suitable for urban developments. The 80m was selected as the 95 percentiles of the 258 

elevation values of existing urban lands. The 25 degrees was set according to local 259 

http://dx.doi.org/10.1021/acs.est.9b01645
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government regulations. 260 

3. Waterbody and croplands are preserved. No changes were allowed to existing water body 261 

due to their essential ecological benefits. Croplands are also preserved to secure urban food 262 

supply.  263 

 264 

The objectives and constraints can be denoted as follows: 265 

  Minimize 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 = ∑ 𝑓𝑓𝑑𝑑�𝐼𝐼1,𝑖𝑖, 𝐼𝐼2,𝑖𝑖, … , 𝐼𝐼𝑘𝑘,𝑖𝑖�𝑁𝑁
𝑖𝑖=1  266 

Minimize 𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 = ∑ 𝑓𝑓𝑛𝑛�𝐼𝐼1,𝑖𝑖, 𝐼𝐼2,𝑖𝑖, … , 𝐼𝐼𝑘𝑘,𝑖𝑖�𝑁𝑁
𝑖𝑖=1   267 

Minimize numChanges = ∑ [𝐿𝐿𝑖𝑖
′ ≠ 𝐿𝐿𝑖𝑖]𝑁𝑁

𝑖𝑖=1  268 

Maximize landUseCompatibility = ∑ (𝑃𝑃𝑙𝑙𝑙𝑙 ∙ 𝑃𝑃𝑙𝑙𝑙𝑙
′ )𝑙𝑙𝑙𝑙   269 

 270 

Subject to, 271 

�[𝐿𝐿𝑖𝑖
′ ∈ 𝑼𝑼]

𝑁𝑁

𝑖𝑖=1

≥�[𝐿𝐿𝑖𝑖 ∈ 𝑼𝑼]
𝑁𝑁

𝑖𝑖=1

× (1 + 𝑟𝑟𝑔𝑔)  272 

1
𝑁𝑁
∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖

′𝑁𝑁
𝑖𝑖=1 ≥  1

𝑁𝑁
∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑁𝑁
𝑖𝑖=1   273 

∀𝐿𝐿𝑖𝑖 ∈ 𝑼𝑼 ∶  𝑒𝑒𝑖𝑖 < 80𝑚𝑚;  𝑠𝑠𝑖𝑖 < 25° 274 

 275 

The warming impacts of optimized climate-conscious urban growth plans were evaluated using the 276 

same temperature-land-use relationship for evaluating unplanned urban growth plans. The 277 

differences between the warming impacts of the unplanned urban growth and climate-conscious 278 

urban growth were extracted to demonstrate the effectiveness of the CUGP as an urban warming 279 

mitigation measure. The efficiency of the optimized changes is also measured using an indicator 280 

that measures the LST change per proposed land-use change (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥�������),  281 

 282 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥������� =  
∑ (𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖′ − 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖)𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
     (𝐸𝐸𝐸𝐸. 3) 283 

 284 

where i indicates cell locations within the study area.  285 

 286 

3. RESULTS  287 

3.1 The estimated LST-land-use relationships. By considering the spatially varying effects, the 288 

spatially explicit models for both 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 and 𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 fit the observations significantly better than their 289 

corresponding spatially fixed models and therefore provide more accurate predictions of LSTs 290 

(Section S2.1 for detailed results). The spatially explicit models provide good model fittings for 291 

both 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑  (R2 = 0.810) and 𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 (R2 = 0.725), while the spatially fixed model has a fair model 292 

fitting for 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 (R2 = 0.537) and a poor model fitting for 𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 (R2 = 0.275). Since the spatially 293 

http://dx.doi.org/10.1021/acs.est.9b01645
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explicit models significantly outperform the spatially fixed models, they are selected as the objective 294 

functions for assessing the warming impacts of urban land-use changes in the following SMOLA 295 

model. 296 

 297 

3.2 Cost-Effectiveness of the CUGP. Our evidence in Shenzhen, China shows that the CUGP can 298 

be an effective urban climate mitigation measure. Both with 10% more urban lands, the unplanned 299 

urban growth in the baseline scenario increased the average 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 in Shenzhen by 0.21°C, while in 300 

the experiment scenario, climate-conscious urban growth increased the average 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 by 0.14°C, 301 

which is 0.07±0.01°C (33.8±4.6%) less warming impacts. Results from the t-test showed that the 302 

0.07°C difference was statistically significant (p<0.005).  303 

 304 

The 0.07°C difference is not the cooling benefit on a single land unit; rather, it is the average cooling 305 

benefit averaged over all land units in Shenzhen. The cooling efficiency of each optimized land-use 306 

change is much more significant. The daytime 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥������� (𝐸𝐸𝐸𝐸. 3) is -1.24 oC/change, and the nighttime 307 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥������� is -0.52 oC/change. The CUGP is more effective during the daytime, since the 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 is more 308 

variable and sensitive to land-use changes. Despite the diurnal trade-offs between 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 and 𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛, 309 

such decrease in 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 was not achieved at the sacrifice of 𝐿𝐿𝐿𝐿𝑇𝑇𝑛𝑛, in fact, 𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 also decreased an 310 

average of 0.03°C after the optimization. Figure 2 maps daytime and nighttime LST changes caused 311 

by the CUGP.  312 
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 313 

 314 
Figure 2 Changes in daytime LST (𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑) and nighttime LST (𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛) introduced by the CUGP, compared with 315 
warming impacts of unplanned urban growth.    316 

 317 

In addition, we examined the cost-effectiveness of the CUGP (Figure 3). The effectiveness of the 318 

CUGP grows non-linearly as the number of changes increases. We took the lowest average 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 319 

and 𝐿𝐿𝐿𝐿𝐿𝐿n among all optimized urban growth plans as the optimal mitigation performance that can 320 

be achieved with the CUGP regardless of the number of land-use changes. To achieve 80% of the 321 

optimal effectiveness in both 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 and 𝐿𝐿𝐿𝐿𝐿𝐿n requires at least 56% of land-use changes. To achieve 322 

50% of the optimal effectiveness in both 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 and 𝐿𝐿𝐿𝐿𝐿𝐿n requires at least 25% of land-use changes.  323 

 324 
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 325 
Figure 3 Cost-effectiveness of the CUGP for mitigating 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 (left) and 𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 (right). Both two-dimentional Pareto 326 
fronts can be fitted almost perfectly with a Pareto curve (R2>0.95).  Minimum changes required to achieve 50% and 327 
80% of the optimal effectiveness for both 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 and 𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 are also marked.  328 

 329 

4. Discussions 330 

4.1 Variances in the LST-land-use relationship. The estimated LST-land-use relationships 331 

substantially vary spatially, diurnally and compositionally. Our findings in the context of EHEs 332 

agree with existing studies on regular hot days18,43 that substantial spatial variances exist in the LST-333 

land-use relationships, especially for such high-impact land-use types as high-density urban lands. 334 

The responses of both daytime and nighttime LSTs can be profoundly affected by compositions of 335 

the urban lands, such as the development densities19,44, due to the so-called “canyon effect”15. The 336 

reduced air ventilation determined by local energy balance and stability prevents the heat from 337 

leaving the urban canopy layer trapping heat even after sunset.  338 

 339 

However, this effect is not always true. For some areas in Shenzhen on the southeast coast, high-340 

density urban lands are found to contribute negatively to the nighttime LST. High-rise structures in 341 

densely built-up areas could reduce the amount of insolation from getting into the urban canopy. 342 

Also, the most important meteorological variable that alters the urban heat island effect is wind 343 

speed 15. The identified areas in Shenzhen are located on the seaside, where the local thermal 344 

environment could benefit largely from the good air ventilation driven by sea and land breezes 345 

allowing urban areas to cool down swiftly after sunset. Such ‘unexpected’ phenomena further 346 

demonstrate the necessity of considering the varying effects, especially when dealing with spatial 347 

data and environmental phenomena such as urban warming.  348 

 349 

4.2 Policy Implications of climate-conscious urban growth. Our results agree with Stone et al.4 350 

that cities with a greater urban sprawl would be more vulnerable to EHEs. However, beyond that, 351 

our evidence suggests that not only the magnitude but also the spatial arrangement of urban growth 352 

matters to the associated warming impacts. We further summarize the dominant (P.≥0.5) change 353 
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for each spatial location from the Pareto-optimal solutions and analyzed their structural (Figure 4) 354 

and spatial (Figure 5) patterns to provide suggestions for urban planners and researchers.  355 

 356 

Structurally, climate-conscious urban growth in Shenzhen emphasizes compact urban development 357 

for minimal warming impacts (Figure 4). The CUGP introduces substantially more high-density 358 

(44.8%) and low-density (35.7%) urban lands than mid-density urban land (19.5%).  359 

 360 

 361 
Figure 4 The structure of dominant land-use changes (P.≥0.5) optimized by the CUGP, visualized as incoming and 362 
outgoing flows among the urban and non-urban land-use types using a circular plot 43. Numbers on the inner circle 363 
indicate numbers of land parcels, while numbers on the outer circle are percentages of changed land parcels out of 364 
all land parcels in each land-use category.   365 

Climate-conscious urban growth in Shenzhen also suggests a spatially equalized distribution of 366 

urban growth by locating more urban developments in the less-developed east half of Shenzhen 367 

(Figure 5). The centers of the optimized urban growth move eastward by an average of 19.1km 368 

compared to the random urban growth (Figure S5). By optimizing the spatial positioning of urban 369 

lands, the CUGP also maximizes the mitigation effects of existing cooling sources in the city, 370 
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including green space and water bodies. The percentages of cooling sources surrounding high-371 

density and mid-density urban lands are increased by the CUGP (Table S5, SI). Clusters of new 372 

urban lands (A, B, and C in Figure 5) are located adjacent to vast green spaces or water bodies. Such 373 

a spatial pattern suggests that “cooling sources” should be established and preserved even in 374 

compact cities. With sufficient “cooling sources”, the CUGP could efficiently mitigate urban 375 

climate impacts of urban growth by locating compact urban development in places with sizeable 376 

biological capacity, ideal weather conditions, and room for urban growth.  377 

 378 

 379 
Figure 5. The spatial distribution of dominant urban changes (P.≥0.5) optimized by the CUGP. The changes are 380 
classified as the urban expansion, i.e., urban development on newly acquired urban land, and urban redevelopment 381 
on existing urban land. Both categories are reclassified into several levels of urban intensification and urban 382 
deintensification to reflect the changes in urban densities (Table S4). 383 

 384 
4.3 Model Sensitivity. We further examined the sensitivity of the mitigation effect using different 385 

combinations of model parameters. We repeated the analysis using three urban growth rates (10%, 386 

20%, and 30%) and two elevation thresholds (80m and 120m). Results from the sensitivity analysis 387 

(Table S3) show that the mitigation effects were statistically significant (p<0.005) using all the 12 388 

parameter combinations. Please refer to Section S2.2.2 for more details. 389 

 390 

4.4 Future Perspectives and Limitations 391 

Unlike the simple and universal rules in the game of Go, real-world environmental problems are far 392 

more complex and include substantial spatio-temporal heterogeneities. Our results also show that 393 

artificial intelligence algorithms are highly sensitive to model specifications and need to work in a 394 

better-represented real-world settings.  395 

 396 

For future directions, more evidence on the effectiveness of CUGP as an urban warming mitigation 397 

measure may still be needed, especially from cities of the developing world where massive urban 398 

growth is expected to occur, and local people are particularly vulnerable to extreme heat exposures. 399 
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Moreover, since our objective is to investigate the optimal effectiveness of the CUGP, the effects 400 

of property rights, land markets, local land policies such as the Basic Ecological Control Line, and 401 

community benefits are not considered. Integrating the afore-mentioned factors in the investigation 402 

would provide more feasible land-use plans.  403 

 404 

 405 

Supporting Information 406 

• Supporting details about the experimental design, land-use map pre-processing, and the 407 

NSGA-II based SMOLA model. 408 

• Detailed results from the LST-land-use relationship estimation, land-use optimization, and 409 

parameter sensitivity analysis.              410 

 411 
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