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1 Introduction

One of the key dynamical concepts characterizing a quantum many-body system is scram-
bling of quantum information. Suppose we slightly disturb a system by inserting a local
few-body operator. Under time evolution, the operator will grow in physical and internal
spaces (if there is a large number of single-site degrees of freedom), during which quantum
information of the original disturbance is scrambled among more and more degrees of free-
dom. While for a general many-body system such evolutions are extremely complicated,
it has been increasingly recognized during the last decade that there are remarkable uni-
versalities in this process [1–15]. For example, out-of-time-ordered correlators (OTOCs)
have emerged as important probes of scrambling in chaotic systems. In particular, in
chaotic systems with a large number of single-site degrees of freedom, the commutator
squares of generic few-body operators grow exponentially with time at early times (below
N characterizes the number of single-site degrees of freedom)〈

[W (t), V (0)]2
〉
∝ 1
N
eλt (1.1)

with a quantum Lyapunov exponent λ bounded1 by [5]

λ ≤ λmax = 2π
~β0

. (1.2)

The bound, which has no classical analogue, follows from unitarity and analyticity.
1For notational consistency with [21], we denote the inverse temperature by β0. Henceforth we set ~ = 1.
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A variety of systems which saturate the bound have also been found, includ-
ing holographic systems, SYK and its variations, two-dimensional CFTs with a large
central charge (and a gap), CFT correlation functions in the light-cone limit, and
so on [1, 2, 8–10, 14, 16–20]. What are special about these maximally chaotic systems?
One common theme that has emerged in such systems is that finite temperature dynamics
of stress tensor appears to underlie the observed maximally chaotic behavior. In other
words, the chaotic behavior appears to be “hydrodynamic” in nature.

It is tempting to use the hydrodynamic nature of chaos as a defining feature of maxi-
mally chaotic systems. In this paper we would like to present further support for this idea,
and to discuss a few general properties of maximally chaotic systems.

In [21], we proposed an effective field theory for describing chaotic behavior based on
“quantum” hydrodynamics. While the theory was motived by maximally chaotic systems,
at the time it was not completely clear whether it works only for maximally chaotic systems.
In this paper we first present a simple argument which shows that a system described by
such an EFT must be maximally chaotic. We thus find strong support, if not a proof, that
for chaos to be hydrodynamic in nature requires the system to be maximally chaotic. It
also follows that various implications of the EFT discussed in [21] should be considered
as distinctive features of maximally chaotic systems. For instance pole-skipping in the
energy-density two-point function, first discussed in [21, 22], has been argued to be a
‘smoking-gun’ signature of the hydrodynamic nature of chaos and has since been shown to
occur in a wide-variety of maximally chaotic systems [19, 20, 23–27]. See also [28] for a
nice discussion of how pole-skipping generalises to non-maximally chaotic systems.

In this paper we will highlight another implication of the EFT: the exponential growth
in the commutator square (1.1) is suppressed at leading order for maximally chaotic sys-
tems. We also illustrate the suppression of the commutator square in SYK models and
holographic theories.2 In particular we give a general argument showing that in holo-
graphic theories the commutator square is determined at leading order in 1/N by stringy
corrections.3

It has been observed in various examples that even non-maximally chaotic systems
could exhibit maximally chaotic behavior at sufficiently large distances [4, 16, 29, 30]. For
such systems, the chaos EFT can apply at large distances. We discuss a simplest scenario
for such a phenomenon.

The plan of the paper is as follows. In section 2 we give a quick review of key features of
the chaos EFT. In section 3 we show that the EFT describes systems with maximal chaos.
In section 4 we discuss suppression of the commutator square (1.1). In section 5 we discuss
a simplest scenario for the existence of a maximally chaotic regime at sufficiently large
distances for non-maximally chaotic systems. Section 6 concludes with a brief discussion
of future questions. Appendix A contains some technical details for section 4.

2The suppression of exponential growth in commutator squares in these models is implicit in the results
presented in [4, 14, 29, 31].

3The importance of stringy corrections in determining the form of the commutator square in SYK models
is discussed in [29].
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2 A quick review of the EFT for maximal chaos

In this section we present a quick review of the chaos EFT introduced in [21], which is
based on the following elements (to avoid cluttering notations below we first use 0 + 1
dimensional systems as an illustration):

1. One imagines the scrambling of a generic few-body operator V (t) at a finite temper-
ature allows a coarse-grained description in terms of building up a “hydrodynamic
cloud,” i.e. we can write

V (t) = V [V̂ , σ(t)] . (2.1)

Here V̂ (t) is a “bare” operator involving the original degrees of freedom of V , and
σ(t) is a chaos mode which describes the growth of the operator in the space of
degrees of freedom. Bare operators which involve different degrees of freedom have
no correlations, i.e.

〈
V̂ Ŵ

〉
= 0 for generic V 6= W .

2. One identifies the chaos mode σ with the collective degrees of freedom associated with
energy conservation, and thus its dynamics is governed by hydrodynamics. However,
in order to capture the growth of V (t), one needs a “quantum hydrodynamics” which
is valid in the regime ∆t ∼ β0, with ∆t typical time scales of interests. This quan-
tum hydrodynamic theory can be considered as a generalization of the conventional
hydrodynamics without doing a derivative expansion,4 and is non-local. Its action,
which also incorporates dissipative effects, can be written using the techniques de-
veloped in [32, 33]. The explicit form of the action SEFT[σ] is not important for
our discussion below (we refer interested readers to [21] for details) except that the
Lagrangian depends on σ only through derivatives and the equilibrium solution is
given by

σeq(t) = t . (2.2)

3. To describe a chaotic system, we still need to impose an additional shift symmetry

e−λσ → e−λσ + c (2.3)

on the action SEFT[σ] and on the coupling (2.1) of σ to general few-body oper-
ators. Here c is an arbitrary positive constant and λ is the quantum Lyapunov
exponent. Near equilibrium we introduce the deviation of σ(t) from the equilibrium
solution (2.2)

ε(t) = σ(t)− t (2.4)

For infinitessimal ε(t) the symmetry (2.3) implies a symmetry under

ε→ ε− ceλt . (2.5)

This shift symmetry results in an exponential growing piece in two-point functions
of σ which is the origin of chaotic behaviour within the EFT. Nevertheless the

4Recall that conventionally hydrodynamics is formulated as a derivative expansion and is valid for
∆t� β0.
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Figure 1. At leading order in large N correlation functions are controlled by exchange of hydro-
dynamic fields σ(t).

EFT description of σ appears to be self-consistent for any value of λ. In particular,
stress-tensor correlation functions do not contain an exponentially growing piece, and
fluctuation-dissipation relations of the stress tensor do not put any constraint on the
value of λ.

We will, however, show in section 3 that when coupled to a generic operator
through (2.1), fluctuation-dissipation relations of the operator require λ to take the
maximal value (1.2).

4. Using SEFT[σ] and the coupling (2.1) one can calculate correlation functions of generic
operators perturbatively in 1/N . To leading order in 1/N it is sufficient to consider
tree-level exchange of σ as in figure 1. We require the coupling (2.1) between σ and a
general operator be also invariant under the shift symmetry (2.3). Near equilibrium,
equation (2.1) can be written using (2.4) in a form

V (t) = V̂ (t) + L(1)[V̂ ε](t) +O(ε2) (2.6)

where L(1) is some differential operator acting on both V̂ and ε. Invariance under
the shift symmetry implies the condition

L
(1)
t1 [gV (t12)eλt1 ] + L

(1)
t2 [gV (t12)eλt2 ] = 0 (2.7)

where subscript t in L
(1)
t refers to the variable of the derivatives and gV (t) is the

two-point function of V̂

gV (t) = 〈V̂ (0)V̂ (t)〉 = GV̂−(t) (2.8)

It was also found in [21] that in order for the exponentially growing behavior to cancel
for all possible configurations of TOC it is also necessary to impose the version of (2.7)
with λ→ −λ, i.e.

L
(1)
t1 [gV (t12)e−λt1 ] + L

(1)
t2 [gV (t12)e−λt2 ] = 0 . (2.9)

The shift symmetry may be considered as an emergent “macroscopic” symmetry.5 It has
many implications: (i) constrains the structure of correlation functions to all derivative

5Here by “macroscopic” we refer to scales of order β0.
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Figure 2. Left: operator insertions for (2.15). Right: operator inserations for (2.16).

orders; (ii) implies existence of an exponentially growing mode the exchange of which leads
to exponential growth of OTOCs; (iii) leads to a connection between energy diffusion and
the butterfly velocity [16, 17, 34–38]. Furthermore, the dual role of σ as the mode for
“propagating chaos” and energy conservation leads to a new phenomenon called “pole-
skipping” [21, 22] in the energy-density two-point function, which has been confirmed in a
variety of maximally chaotic systems including general holographic systems dual to Einstein
gravity and its higher derivative extensions [19, 20, 23, 24].

Let us now elaborate a bit more on (2.6)–(2.9), and how to use the above elements to
compute four-point functions of generic few-body operators. We can expand L(1) as

L(1)[V̂ ε] =
∞∑

n,m=0
cnm∂

n
t V̂ ∂

m
t ε+O(ε2) (2.10)

where cmn are constants. Then equation (2.7) can be written more explicitly as

Feven(λ, t)
Fodd(λ, t) = − tanh λt2 , (2.11)

where we have defined

Feven(λ, t) =
∑
n even

fn(λ)∂nt gV (t), Fodd(λ, t) =
∑
n odd

fn(λ)∂nt gV (t) , (2.12)

with
fn =

∑
m

cnmλ
m . (2.13)

Similarly (2.9) implies
Feven(−λ, t)
Fodd(−λ, t) = tanh λt2 . (2.14)

Four-point functions of generic few-body operators can be computed at leading order
in 1/N expansion by tree-level exchange of σ as indicated in figure 1. For illustration,
consider two explicit examples indicated in figure 2. The first is a TOC6

G4(t1, t2, t3, t4) = 〈V (t2)W (t4)W (t3)V (t1)〉 (2.15)

and the second is an OTOC

H4(t1, t2, t3, t4) = 〈W (t4)V (t2)W (t3)V (t1)〉 (2.16)
6Throughout this paper we use the notation 〈O〉 = Tr(Oρ0) with ρ0 = e−β0H/Z the thermal density

matrix and take V,W to be Hermitian.
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with t3,4 � t1,2. Using (2.6) we find (2.15) can be written as7

G4 − gV (t12)gW (t34) =
(
L

(1)
t1 L

(1)
t3 G+(t31) + L

(1)
t1 L

(1)
t4 G+(t41)+

+L(1)
t2 L

(1)
t3 G−(t32) + L

(1)
t2 L

(1)
t4 G−(t42)

)
gV (t12)gW (t34) (2.17)

where gV , gW are two point functions of the bare operators V̂ , Ŵ , t12 = t1 − t2, and in the
above equation it should be understood that L(1)’s also act on gV or gW after them. G±
are Wightman functions8 of ε(t),

G+(t) = 〈ε(t)ε(0)〉 = c+e
λt + · · · G−(t) = 〈ε(0)ε(t)〉 = c−e

λt + · · · , (2.18)

∆(t) = 〈[ε(t), ε(0)]〉 = −iceλt + · · · , c = i(c+ − c−) , (2.19)

with c± some constants proportional to 1/N , and c a real constant. Note that in the above
expressions we have only made manifest the exponential terms in t. A similar expression
can be obtained for H4. Note that

H4 −G4 = 〈[W (t4), V (t2)]W (t3)V (t1)〉 = L
(1)
t2 L

(1)
t4 [gV (t12)gW (t34)∆(t42)] (2.20)

One can check that due to (2.7)–(2.9), the exponentially growing terms are canceled
in TOC (2.17). Then due to (2.20) and (2.19) one finds that OTOC H4 must contain an
exponentially growing piece.

3 Consistency of EFT requires maximal chaos

In this section we present a simple argument to show that the consistency of the shift
symmetry of the effective vertex and fluctuation-dissipation relations of general operators
require that the Lyapunov exponent be maximal.

In particular the two-point function gV of V should satisfy the fluctuation-dissipation
theorem (FDT), which can be used to constrain λ through (2.11). Applying FDT to gV
in (2.8) implies that gV (t) = gV (iβ0 − t) (for Im t ∈ [0, β0)) which in turn leads to

Feven(λ, t) = Feven(λ, iβ0 − t), Fodd(λ, t) = −Fodd(λ, iβ0 − t) . (3.1)

Assuming that equation (2.11) can be analytically continued to the range Im t ∈ [0, β0),
we find that it is compatible with (3.1) only if

tanh λt2 = tanh λ(t− iβ0)
2 =⇒ λ = 2π

β0
(3.2)

We therefore conclude that these conditions are only consistent for a maximal Lyapunov
exponent, and that the hydrodynamic theory proposed in [21] is a theory of maximally
chaotic systems.

7Note that our definitions of G4, H4 differ slightly from those in [21] as we are not normalising them by
the bare correlation function.

8For λ = λmax there are also additional exponential terms in G± of the form teλt.
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A further connection to recent discussions of maximal chaos can be seen by noting
that one can use the shift symmetry (2.11) and (2.14) to write the exponentially growing
behaviour in H4 in a particularly simple form

H4 − gV (t12)gW (t34) = ic
Feven(−λ, t12)

sinhλt12
2

F̃even(λ, t34)
sinhλt34

2
eλ(t3+t4−t1−t2)/2 + · · · . (3.3)

Where F̃even(λ, t) is analogous to Feven(λ, t) defined above, but is defined using gW (t). The
expression (3.3) matches an ansatz for the OTOC of 0+1 dimensional systems proposed
in [14, 31] in the case λ = λmax.

4 Suppression of commutator square for maximally chaotic systems

In this section we first present a general argument showing that in the chaos EFT, the
commutator square (1.1) always vanishes at leading order. We then support the conclusion
with another argument, and illustrate it using the examples of SYK model and holographic
systems. In particular we note that in holographic systems the commutator square is always
determined by stringy corrections.

4.1 EFT derivations

Now that we have shown that the shift symmetry requires maximal chaos, here we present
a new prediction of this theory for the commutator square

C4(t1, t2, t3, t4) = 〈[W (t4), V (t2)][W (t3), V (t1)]〉 . (4.1)

We are interested in the regime t3, t4 � t1, t2. The double commutator consists of two time
ordered and two out-of-time ordered correlation functions,

C4(t1, t2, t3, t4) = H4 + H̃4 −G4 − G̃4, (4.2)

with G4, G̃4 time ordered

G4 = 〈V (t2)W (t4)W (t3)V (t1)〉 G̃4 = 〈W (t4)V (t2)V (t1)W (t3)〉 , (4.3)

and H4, H̃4 out-of-time ordered

H4 = 〈W (t4)V (t2)W (t3)V (t1)〉 H̃4 = 〈V (t2)W (t4)V (t1)W (t3)〉 . (4.4)

Using equations (3.3), (3.1), H̃4(t1, t2, t3, t4) = H4(t2 + iβ0, t1, t3, t4) and that λ = λmax
one finds that the exponential pieces in H4 and H̃4 precisely cancel, i.e. C4(t1, t2, t3, t4)
does not have any exponentially growing pieces. In fact, the contribution from tree-level
exchange of σ to the double commutator in (4.1) is identically zero. Recall from (2.20)

H4 −G4 = L
(1)
t2 L

(1)
t4 [gV (t12)gW (t34)∆(t42)], ∆(t42) = 〈[ε(t4), ε(t2)]〉 . (4.5)

Likewise it is straightforward to show that

H̃4 − G̃4 = − L(1)
t2 L

(1)
t4 [gV (t12)gW (t34)∆(t42)] = −(H4 −G4), (4.6)

=⇒ C4(t1, t2, t3, t4) = 0, at leading order in 1
N

. (4.7)

– 7 –
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Figure 3. At leading order in large N OTO four-point functions defined on a four-contour reduce
to a sum of two-point functions of σ(t). They can therefore be calculated from the effective action
of the hydrodynamic field σ on a CTP contour.

The vanishing of (4.1) at leading order can be intuitively understood from figure 3:
four-point functions all reduce to two-point functions of σ, while for (4.1) to be non-
vanishing one needs four-point function of σ, which are higher orders in 1/N .

We can also consider commutators which are separated in imaginary time, such as

Cθ4(t1, t2, t3, t4) = 〈[W (t4 + iθ), V (t2 + iθ)][W (t3), V (t1)]〉 (4.8)

where in order for the double commutator to be defined it is necessary to use a configuration
where imaginary parts of t2, t4 match and likewise for t1, t3. The same arguments as above
show that Cθ4(t1, t2, t3, t4) = 0 at leading order in 1/N .

While we have focused on (0 + 1)-dimensional systems for simplicity, we expect that
in higher dimensional systems, the argument for the exact cancellation of the chaotic
mode contribution to the commutator square 〈[W (t4, ~x4), V (t2, ~x2)][W (t3, ~x3), V (t1, ~x1)]〉
also applies. Explicit examples of higher-dimensional chaos EFT include those for SYK
chains [16] and CFT constructions [19, 20].

Known examples of maximal chaos all happen in some limit, in addition to N → ∞.
For the SYK model this corresponds to the low temperature limit, for holographic systems
it is the classical gravity limit (or infinite coupling), and for CFTs in a Rindler wedge it is the
light-cone limit. In such a limit, the stress tensor exchange gives the dominant contribution
to OTOCs, and is responsible for the appearance of maximal chaos. For convenience of
discussion we will denote the maximal chaos limit in these theories collectively as the
g →∞ limit, with g standing for the corresponding parameter in each system. Given that
the contribution of the stress tensor exchange to the commutator square (4.1) vanishes,
the leading order result is then given by contributions from other modes. We will discuss
in section 4.3 the examples of SYK and holographic systems in detail. In the conclusion
section 6 we also briefly speculate on the physical interpretation of the vanishing of the
commutator square at leading order. Here we will briefly comment on the general features.

Including the contributions from an infinite number of other modes leads to two main
corrections to the behavior of the OTOC. Firstly, the Lyapunov exponent is shifted

λ = 2π
β0
− c1
gα1

, g →∞ (4.9)

where c1 > 0 and α1 > 0 are some constants which depend on specific systems. Secondly,
the prefactor to eλt in the OTOC also receives high order corrections in 1/g. For concrete-
ness consider the configuration t1 = 0, t2 = iε, t3 = t, t4 = t+ iε with ε� β0. Then in the

– 8 –
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examples of SYK and holographic systems [4, 14, 29, 31], the OTOC has the form

H4(t) = iC(g)e−
ic1β0
4gα1 eλt = C(g)eiλβ0/4eλt (4.10)

where C(g) is real. Plugging in the above expression into the commutator square9 we then
find that to leading order in the large g limit,

Cε4(t) = Cc1β0
2gα1

e
2π
β0
t
, g →∞ . (4.11)

The leading order behavior of the prefactor in the above equation depends on how C(g)
behaves as g → ∞. For example, if C is finite as g → ∞ then the prefactor vanishes as
g−α1 in the large g limit.

4.2 Other arguments

Before discussing explicit examples, for completeness we mention some other arguments
which suggest that the commutator square vanishes for maximal chaos at leading order.
Consider first the commutator square C−β0/2

4 (t) corresponding to (4.8) with t1 = t2 = 0
and t3 = t4 = t and θ = −β0/2. This can be written as [5]

C
−β0/2
4 (t) = F (t+ iβ0/4) + F (t− iβ0/4) + · · · (4.12)

with F (t) the thermally regulated OTOC where operators are symmetrically placed around
the unit circle

F (t) = Tr
(
W (t)ρ1/4

0 V (0)ρ1/4
0 W (t)ρ1/4

0 V (0)ρ1/4
0

)
. (4.13)

Assuming F (t) ∼ Ceλt with real10 C ∼ 1/N we then have

C
−β0/2
4 (t) = 2C cos(λβ0/4)eλt + · · · . (4.14)

For maximal chaos we find a suppression as the prefactor factor cos(λβ0/4) vanishes.
More generally, in [14, 31] an ansatz was proposed for the leading order in 1/N expo-

nential growth of the OTOC correlation function

H4(t1, t2, t3, t4) = Ceiλβ0/4eλ(t3+t4−t1−t2)/2ΥR
WW(t34)ΥA

VV(t12) (4.15)

where the overall prefactor C ∼ 1/N is real, and ΥR
WW(t34), ΥA

VV(t12) are advanced and
retarded vertex functions that satisfy fluctuation-dissipation relations. The phase factor
eiλβ0/4 is consistent with (4.13) being real. For λ = 2π/β0, equation (4.15) is also consistent
with the form (3.3) from the effective theory. It then follows from (4.15) that

Cθ4(t1, t2, t3, t4) = 2C cos(λβ0/4)eλ(t3+t4−t1−t2)/2ΥA(t12 − iθ)ΥR(t34 − iθ) . (4.16)

Again for maximal chaos the cos(λβ0/4) factor suppresses the leading contribution to Cθ4 .
9Note for this configuration Cε4(t) = 2 Re(H4(t)) + . . . with the dots indicating non-exponential pieces.

10Note F (t) is real.
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4.3 Examples

We now use the examples of SYK model and holographic systems to illustrate the somewhat
abstract discussion above. A suppression of exponential growth in the commutator square
of various maximally chaotic systems has previously been observed in [4, 14, 29, 31].

4.3.1 SYK model

The ansatz (4.15) for a general system was in fact motivated in large part by the form of
the OTOC in soluble (i.e. strong coupling or large-q) limits of the SYK model. For the
SYK model, the parameter g in (1.1) can be identified as g = β0J and g →∞ corresponds
to the low temperature limit. In this case [8, 29]

λ = 2π
β0

(
1− c

β0J

)
(4.17)

i.e. α1 = 1 in (4.9) and C ∼ β0J
N . We thus find

C cos(λβ0/4) ∼ O((β0J)0) 1
N

(4.18)

which is suppressed by a factor 1/(β0J) compared with OTOC. These features can be
illustrated explicitly in the large-q limit, for which a closed form expression of H4 for all
β0J was obtained in [29]. The exponential growing part of H4 can be written as

H4 ≈
1

N cos(νπ/2)
e
πν
β0

(t3+t4−t1−t2+iβ0/2)(
2cosh

(
πν
β0

(
t12 − iβ0

2

))) (
2cosh

(
πν
β0

(
t34 − iβ0

2

))) (4.19)

where v ∈ (0, 1) parametrises the strength of the coupling β0J through

πν

cos(πν/2) = β0J . (4.20)

In the large β0J limit, ν ≈ 1 and the prefactor of H4 is proportional to β0J
N . In contrast,

the commutator OTOC is given by

C4 ≈
2
N

e
πν
β0

(t3+t4−t1−t2)(
2cosh

(
πν
β0

(
t12 − iβ0

2

))) (
2cosh

(
πν
β0

(
t34 − iβ0

2

))) (4.21)

As indicated above the prefactor of the exponential growth is suppressed relative to H4 by
a factor 2 cos(πν/2) = 2 cos(λβ0/4), and is finite in the strong coupling limit β0J →∞.

Note that the leading order result for H4 in the large β0J limit can also be ob-
tained from the Schwarzian theory, which provides a specific example of the hydrody-
namic effective theory discussed in section 2. From the argument in (4.7) we expect that
the non-exponential parts of the commutator square should also cancel identically in the
Schwarzian theory. This can indeed be confirmed explicitly from analytically continuing
the results in [10].
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4.3.2 Holographic systems
As another example, let us consider the behavior of the commutator square in higher
dimensional holographic theories, both in classical gravity and in string theory. Earlier
discussion includes [4, 30]. For concreteness we consider the out-of-time-ordered correlator

H4(t, ~x) = 〈W (t+ iε, ~x)V (iε, 0)W (t, ~x)V (0, 0)〉 (4.22)

where ε� β0, and the corresponding commutator square

C4(t, ~x) = 〈[W (t+ iε, ~x), V (iε, 0)][W (t, ~x), V (0, 0)]〉 . (4.23)

At the level of the gravity approximation, which corresponds to N →∞ and λh →∞
in the boundary theory,11 the exponential growth of H4 has the form [2, 4]

H4(t, ~x) = i
c

N
e2π/β0(t−|~x|/vB) (4.24)

where c ∼ O(1) is real. The expression (4.24) comes from graviton exchanges which
translates into the boundary theory from exchanges of the stress tensor. Such exchanges
are fully captured by our EFT and we thus expect that in the classical gravity

C4 = 0, N →∞, λh →∞ (4.25)

including the non-exponential parts.
In appendix A we show that within the eikonal approximation the sum of H4 and H̃4

vanishes identically in any theory dual to classical gravity. As such, there is no exponential
growth in C4 to leading order in 1/N in classical gravity. In particular, we find that this
cancellation is a direct consequence of the fact the phase-shift for the bulk gravitational
scattering process is real. The suppression of the commutator OTOC in gravitational
systems can therefore be seen to be a consequence of bulk scattering being elastic.

The above considerations hold for any system dual to a classical gravity theory, even
if the bulk theory contains higher derivative terms reflecting certain finite coupling cor-
rections. In order to find a non-vanishing expression for C4 at leading order in 1/N , it is
necessary to include not just the effects of gravitational scattering but also the exchange
of stringy modes at finite string coupling α′. This translates into the boundary theory as
exchanges of an infinite number of other intermediate operators (including in particular
high-spin operators) in addition to the stress tensor.

The effect of such stringy corrections on the OTOC has been discussed in detail in [4].
The discussion is a bit technical, however the qualitative features of these results are illumi-
nating. The important result is that H4 is controlled by the phase shift of a bulk scattering
process. In particular, the functional form of the OTOC shows a sharp crossover between
a stringy regime for which |~x|/t < v∗ and a graviton dominated regime for |~x|/t > v∗ where
for the black hole background studied in [4, 30] we have

v∗ = d2α′

4vBR2 , vB =
√

d

2(d− 1) (4.26)

11For example, when the boundary theory is the N = 4 Super-Yang-Mills theory, λh is the ’t Hooft
coupling.
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with R the AdS curvature radius and d the number of spacetime dimensions in the bound-
ary theory.

To elaborate, for short distances |~x| < t/v∗, where v∗ is some specific velocity, H4 can
be computed from an integral representation by a saddle point approximation and stringy
corrections are important. In this regime it takes the form

H4(t, ~x) = c

N t(d−1)/2 f1(|~x|/t)eλte−
|~x|2
4Dt , (4.27)

where f1(|~x|/t) is complex, the string corrected Lyapunov exponent λ is given by

λ = 2π
β0

(
1− d(d− 1)α′

4R2

)
, (4.28)

and the constant D is given by

D = d2α′β0
16πR2 (4.29)

In the regime |~x| > t/v∗ even at finite α′, the integral for H4 is dominated by a
graviton pole. As a result the contribution from graviton exchange dominates, and H4 is
given simply by the classical gravity result (4.24).

Here we point out that, for C4 (4.23), such a crossover does not exist, and its behavior
is controlled by stringy exchanges for all t and ~x. This can be intuitively expected from
that the gravitational contribution to C4 vanishes identically to leading order in 1/N . We
give technical details in appendix A. There we show that the form of C4 at large N is
controlled by the imaginary part of the phase shift for a bulk scattering, which is zero for
graviton exchange, but non-zero due to the effects of stringy modes. As a result, there is
no graviton pole in the integral expression for C4 and there is no cross-over in its behavior.
More explicitly, as shown in appendix A, for all |~x|/t, C4 has the form

C4(t, ~x) = c

N t(d−1)/2 f2(|~x|/t)eλte−
|~x|2
4Dt . (4.30)

For |~x|/t < v∗, there is a suppression in the prefactor compared with (4.27)∣∣∣∣f2(|~x|/t)
f1(|~x|/t)

∣∣∣∣ = 2 sin
(
πd(d− 1)α′(1− v2/v2

∗)
8R2

)
, v = |~x|/t (4.31)

which can be through of as a higher dimensional counterpart of the cos(λβ0/4) factor seen
0 + 1 dimensional systems.12

5 A simple argument for the crossover velocity

As we have just discussed, in addition to the above example of holographic systems at finite
α′, it has been observed in various other systems that there can exist a crossover velocity v∗
beyond which maximally chaotic behavior is found even if theory is non-maximally chaotic
for small v [16, 29]. A more elaborate discussion of this crossover, and further examples of

12Note cos(λβ0/4) = sin(πd(d− 1)α′/8R2) and hence (4.31) reduces to 2 cos(λβ0/4) fior v = 0.

– 12 –



J
H
E
P
0
5
(
2
0
2
1
)
2
2
9

such systems, can be found in [30]. In this section we consider a simplest scenario for the
existence of such a crossover velocity.13

Consider higher spin exchange contribution to H4 defined in (4.22). At distances
|~x| � β0 we expect the OTOC should decay exponentially with |~x|. In other words, the
time ordering should not affect the validity of cluster decomposition principle at large
distances. Denoting the contribution of a spin-s operator to H4 as As, we then expect

As ∝ e
2π
β0

(s−1)t
e−M(s,β0)|~x| (5.1)

where M(s, β0) is a function of spin s and the inverse temperature β0. M(s, β0) will also
depend on any coupling constants in theory (e.g. α′ in string theory) and may also depend
on other quantum numbers of the exchange operator. For example, for a two-dimensional
CFT in the large central charge limit, one finds that [3]

M(s, β0) = 2π
β0

(∆− 1) (5.2)

where ∆ is the conformal dimension of the operator.
Recall that the contribution of the stress tensor can be written as

AT ∝ e
2π
β0

(
t− |~x|

ṽB

)
(5.3)

where ṽB is not necessarily the butterfly velocity of the full system. Comparing (5.1)
with (5.3) we see that As dominates over that from the stress tensor for a given |~x| = vt if

2π
β0

(s− 1)−M(s, β0)v ≥ 2π
β0

(
1− v

ṽB

)
. (5.4)

If (5.4) is satisfied for one s > 2 it must be satisfied for an infinite number of them,
otherwise the chaos bound will be violated. Notice that the above equation is always
satisfied for all s > 2 for v = 0, which is consistent with the fact that upon including finite-
coupling corrections SYK models and holographic systems will be non-maximally chaotic
at v = 0 [4, 16].

A simplest scenario for the existence a crossover velocity v∗ is the existence of a critical
velocity vc such that for v > vc, equation (5.4) is not satisfied for any s > 2, while for v < vc
it is satisfied for an infinite number of them. Then vc should provide an upper bound for v∗.
Among all spin-s operators, let us denote M0(s, β0) as the smallest value for M . M0(s, β0)
can be considered as defining a finite temperature version of the “leading Regge trajectory.”
Then existence of such a vc then implies that

2π
β0

(s− 2)
M0(s, β0)− 2π

β0
1
ṽB

≤ vc, ∀s > 2 . (5.5)

In particular, the left hand side must have a finite limit as s→∞

lim
s→∞

2π
β0

(s− 2)
M0(s, β0)− 2π

β0
1
ṽB

≡ v∞ ≤ vc (5.6)

13We thank discussion with Gabor Sarosi and Mark Mezei for the content of this section.
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v∞ can of course be larger or smaller than v∗. The above equation implies that M0(s, β0)
should increase with s at least as fast as linear dependence. In the case that v∞ is nonzero,
M0 must also be linear in s

lim
s→∞

M0(s, β0) = κ(β0)s, v∞ = 2π
β0

1
κ(β0) . (5.7)

We stress that the above discussion is only a simplest scenario. It can happen that v∗ exists
without existence of vc or v∞.

6 Discussion

In this paper we have discussed various features of a maximally chaotic system, motivated
by the chaos effective field theory introduced in [21]. Clearly an important future question
is whether it is possible to write down an effective field theory for non-maximally chaotic
systems. Away from maximal chaos, an infinite number of operators contribute to OTOCs.
Thus the key is whether there exists a finite number of effective fields which can capture
collective effects of the infinite number of operators. Right now there appears no obvious
general guiding principle which enables us to identify these effective degrees of freedom or
what should govern their dynamics. Important clues may come from Rindler OTOCs in a
conformal field theory where non-maximal chaotic behavior arises in the Regge limit from
resummation of contributions from infinite number of higher spin operators (see e.g. [30]
and references therein).

It is also of interest to better understand the physical interpretation of the vanishing
of the leading order contribution to the commutator square for maximally chaotic systems.
It seems likely this vanishing indicates a sharp distinction between the nature of operator
scrambling in maximally and non-maximally chaotic systems. One natural interpretation is
that this vanishing suggests an extra “unitarity” constraint on the scrambling processes of
maximally chaotic systems. Heuristically, if we view an OTOC as a scattering amplitude,
the vanishing of the commutator square can be interpreted as the absence of “particle”
production for the scattering process, i.e. the scattering is elastic. This can be made
precise in various contexts. In the gravity description given in appendix A, the phase shift
for the corresponding string scattering is real in the maximally chaotic regime. Similarly,
for Rindler OTOC, the vanishing of the commutator square means the vanishing of the
imaginary part of the CFT scattering amplitude corresponding to the correlator [40]. These
precise statements resonate with the discussion of scrambling in generic 0+1 dimensional
systems in [14, 31], which used a restricted Hilbert space to define a scattering matrix that
becomes unitary in the case of maximal chaos.14 Further, the existence of an enhanced
“unitarity” for maximal chaos is related to the discussion of [29], where the coefficient of
exponential growth in commutator OTOCs is inversely proportional to the branching time.
As such this suggests that branching processes are absent in systems for which commutator
squares vanish.

14In [14, 31] this type of scrambling for maximal chaos has been referred to as being “coherent”.
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A Formula for commutator square in holographic systems

In this appendix we present an expression for the commutator square in holographic sys-
tems which is a simple generalization of the formula for OTOC in terms of the eikonal
approximation to the bulk scattering process presented in [4]. We will only briefly explain
various notations below, and refer the reader to [4] for further details. We will consider a
slightly more general set of correlation functions than discussed in section 4.3.2,

H4({t1,~x1},{t2+iθ,~x2},{t3,~x3},{t4+iθ,~x4}) = 〈W~x4(t4+iθ)V~x2(t2+iθ)W~x3(t3)V~x1(t1)〉

H̃4({t1,~x1},{t2+iθ,~x2},{t3,~x3},{t4+iθ,~x4}) = 〈W~x4(t4+iθ)V~x2(t2+iθ)W~x3(t3)V~x1(t1)〉

Cθ4({t1,~x1},{t2,~x2},{t3,~x3},{t4,~x4}) = 〈[W~x4(t4+iθ),V~x2(t2+iθ)][W~x3(t3),V~x1(t1)]〉

Recall that H4 defined above can be expressed as [4]

H4({ti, ~xi}) = a4
0

(4π)2

∫
eiδ(s,b)

[
pu1ψ

∗
4(pu1 , ~x)ψ3(pu1 , ~x)

][
pv2ψ

∗
2(pv2, ~x′)ψ1(pv2, ~x′)

]
(A.1)

where the integral runs over ~x, ~x′, pu1 , pv2 and the parameter a0 is simply a constant. Further,
δ(s, b) is the phase shift of a bulk two-to-two scattering process and is expressed as a
function of the centre of mass energy s = a0p

u
1p
v
2 and transverse separation b = |~x− ~x′| of

the scatterred quanta. The various ψi in (A.1) are Fourier transforms of bulk-to-boundary
propagators15

ψ1(pv, ~x) =
∫
dueia0pvu/2〈φV (u, v, ~x)V~x1(t1)〉

∣∣∣∣
v=0

ψ2(pv, ~x) =
∫
dueia0pvu/2〈φV (u, v, ~x)V~x2(t2 − iθ)〉

∣∣∣∣
v=0

ψ3(pu, ~x) =
∫
dveia0puv/2〈φW (u, v, ~x)W~x3(t3)〉

∣∣∣∣
u=0

ψ4(pu, ~x) =
∫
dveia0puv/2〈φW (u, v, ~x)W~x4(t4 − iθ)〉

∣∣∣∣
u=0

(A.2)

with φV , φW the dual bulk fields dual to Hermitian boundary operators V,W . Using the
identity

H̃4({t1,~x1},{t2+iθ,~x2},{t3,~x3},{t4+iθ,~x4})∗=H4({t2−iθ,~x2},{t1,~x1},{t4−iθ,~x4},{t3,~x3})

15Note that the labelling of fields and operators in (A.1) is slightly different to the corresponding formula
in [4] as we are considering a slightly different arrangement of operators.
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to compute H̃4 we find that the commutator Cθ4 = H4 + H̃4 + . . . can be written as16

Cθ4({ti, ~xi}) = a4
0

(4π)2

∫
(eiδ(s,b) + e−iδ

∗(s,b))
[
pu1ψ

∗
4(pu1 , ~x)ψ3(pu1 , ~x)

][
pv2ψ

∗
2(pv2, ~x′)ψ1(pv2, ~x′)

]
(A.3)

with the bulk to boundary propagators again given by the formulae in (A.2). In both string
theory and classical gravity δ ∼ GN ∼ 1/N , and hence an expansion in 1/N amounts to
expanding the exponentials in (A.1) and (A.3). To leading order 1/N we therefore find

H4({ti, xi}) = ia4
0

(2π)4

∫
δ(s, b)

[
pu1ψ

∗
1(pu1 , x)ψ3(pu1 , x)

][
pv2ψ

∗
2(pv2, x′)ψ4(pv2, x′)

]
Cθ4({ti, ~xi}) = − 2a4

0
(2π)4

∫
Imδ(s, b)

[
pu1ψ

∗
1(pu1 , ~x)ψ3(pu1 , ~x)

][
pv2ψ

∗
2(pv2, ~x′)ψ4(pv2, ~x′)

]
. (A.4)

For theories dual to classical gravity δ(s, b) is always purely real and can be computed by
evaluating the on-shell gravitational action of a pair of gravitational shock waves [2, 4]. It
is immediately clear from (A.4) that all Cθ vanish identically to leading order in 1/N in
such theories within the eikonal approximation.

In string theory the phase shift δ(s, b) obtains an imaginary part. For the black-hole
background discussed in [4] the phase shift δ(s, b) was found to take the form

δ(s, b) ∼ GNs
∫

dd−1k

(2π)d−1
ei
~k·~y

~k2 + µ2
(e−iπ/2α′s/4)−α′(~k2+µ2)/2r2

0 , s = c1e
2πt/β0 (A.5)

where b = |~y|, d−1 is the number of boundary space dimensions, µ is a constant parameter
related to the butterfly velocity, r0 is the horizon radius and α′ = l2s (with ls the string
length). We thus find

Im(δ(s, b)) ∼ GNs
∫

dd−1k

(2π)d−1
ei
~k·~y

~k2 + µ2
sin
(
πα′(~k2 + µ2)/4r2

0

)
(α′s/4)−α′(~k2+µ2)/2r2

0 . (A.6)

To see the behavior of (A.6) let us first recall the evaluation of (A.5) [4]. With ~y ≡ ~vt and
the explicit form of s plugged in, equation (A.5) can be written as

δ(t,v)∼GNc1

∫
dd−1k

(2π)d−1
e
i~k·~vt+ 2πt

β0
(1−B(~k))

~k2+µ2
(c1e

−iπ/2α′/4)−B(~k), B(~k) =α′(~k2+µ2)/2r2
0,

(A.7)
where v = |~v|. At large t the integral in (A.7) has a saddle-point at ~k∗ where

i~v = 2π
β0

∂B

∂~k

∣∣∣∣
~k∗

=⇒ ~k∗ = i~vµ

v∗
, v∗ ≡

2πα′µ
β0r2

0
. (A.8)

The integrand in (A.7) also has a pole at

~k2 + µ2 = 0, µ = 2π
β0vB

(A.9)

16Here we are only interested in the exponential growth of Cθ4 , so are ignoring the time-ordered pieces.
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with vB the butterfly velocity. For v < v∗ the integral can be computed using the saddle-
point approximation. The resulting expression for the phase-shift δ(t, v) evaluates to

δ(t, v) ∼ 1
(4πDt)(d−1)/2 f̃1(v)eλ(v)t (A.10)

where λ(v) is the velocity dependent Lyapunov exponent [29, 39]

λ(v) = 2π
β0

(
1− d(d− 1)α′

4R2

)
− v2

4D, D = d2α′β0
16πR2 (A.11)

and
f̃1(v) = GNc1β

2
0d

8π2(d− 1)
1

(1− v2/v2
∗)

(c1e
−iπ/2α′/4)−

d(d−1)α′

4R2 (1−v2/v2
∗) (A.12)

where in obtaining these expressions we have eliminated µ and r0 using that for the black
hole background studied in [4] we have vB =

√
d/2(d− 1)) and r0 = 4πRβ−1

0 d−1 with R
the AdS radius. Recalling that the bulk to boundary wavefunctions in (A.1) are spatially
peaked around the positions of the external operators we have from (A.4) that the func-
tional dependence of (4.22) is given at leading order in 1/N by iδ(t, v) with v = |~x|/t. This
gives rise to the functional form of (4.27) discussed in the main text.

Note that the expression (A.10) diverges at v = v∗, which can be attributed to the
existence of a graviton pole at ~k2 + µ2 = 0 in the integrand of (A.7). For v > v∗ the
contribution from the graviton pole dominates and leads to the behavior of maximal chaos.

In contrast, there is no graviton pole in (A.6) due to the factor of sin(πα′(~k2 + µ2)/4r2
0)

in the numerator. So in this case, the saddle-point approximation is valid for all ~x and t.
We find

Im(δ(t, v)) = 1
(4πDt)(d−1)/2 f̃2(v)eλ(v)t (A.13)

where now

f̃2(v) = GNc1β
2
0d

8π2(d− 1)
1

(1− v2/v2
∗)

(c1α
′/4)−

d(d−1)α′

4R2 (1−v2/v2
∗) sin

(
πd(d− 1)α′

8R2 (1− v2/v2
∗)
)

(A.14)
Again from (A.4) the functional dependence of the commutator square in (4.23) is given
by 2 Im(δ(t, v)) with v = |~x|/t, thus giving rise to (4.30) and (4.31).
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