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Abstract

Cultured cell lines are the workhorse of cancer research, but it is unclear to what extent they 

recapitulate the cellular heterogeneity observed among malignant cells in tumors. To address this, 

we used multiplexed single cell RNA-seq to profile ~200 cancer cell lines from 22 cancer types. 

We uncovered 12 expression programs that are recurrently heterogeneous within many cancer cell 

lines. These programs are associated with diverse biological processes including cell cycle, 

senescence, stress and interferon responses, epithelial-mesenchymal transition, and protein 

maturation and degradation. Notably, most of these recurrent programs of heterogeneity 

recapitulate those recently observed within human tumors. The similarity to tumors allowed us to 

prioritize specific cell lines as model systems of cellular heterogeneity. We used two such models 
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to demonstrate the regulation and dynamics of an epithelial senescence-related program that is 

observed in subpopulations of cells within cell lines and tumors. We further demonstrate unique 

drug responses of these subpopulations, highlighting their potential clinical significance. Our work 

describes the landscape of cellular heterogeneity within diverse cancer cell lines, and identifies 

recurrent patterns of heterogeneity that are shared between tumors and specific cell lines.

Cellular plasticity and heterogeneity are fundamental features of human tumors that play a 

major role in disease progression and treatment failure1,2. For example, rare subpopulations 

of tumor cells may underlie resistance to treatments or facilitate metastasis. Single-cell RNA 

sequencing (scRNA-seq) has emerged as a valuable tool to study the heterogeneity within 

tumors3–12. Initial scRNA-seq studies defined the expression patterns of intra-tumoral 

heterogeneity (ITH), yet their mechanisms and functional implications were difficult to 

resolve, calling for extensive follow up studies in model systems.

In principle, genetic diversity, epigenetic plasticity, and interactions within the tumor 

microenvironment all contribute to the heterogeneity observed across malignant cells. 

However, we hypothesize that a considerable fraction of the ITH expression patterns reflect 

intrinsic cellular plasticity that exists even in the absence of genetic diversity and a native 

microenvironment. For example, we previously reported an epithelial-to-mesenchymal 

transition (EMT)-like program in head and neck squamous cell carcinoma (HNSCC) that 

was partially preserved in one of a few tested cell lines5. Similarly, drug resistance programs 

identified in tumors were recapitulated and studied in melanoma cell lines6,13,14. 

Additionally, the existence of phenotypic diversity within cancer cell lines has been 

established for many years, but often in a highly context-specific manner and without a 

direct link back to in vivo patterns of diversity15–18. To further examine the ability of cancer 

cell lines to recapitulate ITH programs, we sought to define the landscape of cellular 

diversity within a large number of cell lines from the Cancer Cell Line Encyclopedia 

(CCLE) collection19,20.

Pan-cancer scRNA-seq of human cell lines

We developed and applied a multiplexing strategy where cells from different cell lines are 

profiled in pools by scRNA-seq and then computationally assigned to the corresponding cell 

line (Fig. 1A). We utilized existing pools that were previously generated from the CCLE 

collection19,21. Each pool consisted of 24-27 cell lines from diverse lineages but with 

comparable proliferation rates, and was profiled by scRNA-seq with the 10x Genomics 

Chromium system, for an average of 280 cells per cell line (Methods). We profiled eight 

CCLE pools, along with one smaller custom pool that included HNSCC cell lines.

We assigned profiled cells to cell lines based on consensus between two complementary 

approaches, using genetic and expression profiles (Fig. 1A). First, cells were clustered by 

their global expression profile, and each cluster was mapped to the cell line with the most 

similar bulk RNA-seq profile20. Second, by detection of single nucleotide polymorphisms 

(SNPs) in the scRNA-seq reads, we assigned cells to the cell line with highest similarity by 

SNP profiles derived from bulk RNA-seq20,22. Cell line assignments based on gene 

expression and SNPs were consistent for 98% of the cells, which were retained for further 

Kinker et al. Page 2

Nat Genet. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis (e.g. Fig. 1B). The few inconsistent assignments were observed primarily in cells 

with low data quality, resulting in low SNP coverage, which were therefore excluded. Cell 

lines with less than 50 assigned cells were also excluded from further analyses, as were low-

quality cells and suspected doublets. Overall, following assignment and quality control 

filters, we studied the expression profiles of 53,513 cells, from 198 cell lines (56-1,990 cells 

per cell line; fig. S1A), reflecting 22 cancer types (Fig. 1C; Table S1). We detected an 

average of 19,264 UMIs and 3,802 genes per cell, underscoring the high quality of our 

dataset (fig. S1A).

A potential caveat of our multiplexing approach is that in the previously generated CCLE 

pools, but not in the custom HNSCC pool, cell lines were co-cultured for 3 days prior to 

profiling by scRNA-seq and hence their expression patterns may have been affected. 

However, our analyses suggest a limited effect of co-culturing, particularly when 

considering the heterogeneity within each cell line, which is our focus in this work. First, the 

patterns of heterogeneity were as similar between cell lines from the same pool as between 

cell lines of different pools (fig. S1B). Second, we performed a control experiment in which 

six cell lines were profiled with and without co-culturing for 3 days. Co-culturing had a 

modest effect on average gene expression in each cell line, while patterns of heterogeneity 

were highly consistent between the two conditions (fig. S1C–F).

Discrete and continuous patterns of expression heterogeneity within cell 

lines

Extensive variability of gene expression was identified across cells within individual cell 

lines, including discrete subpopulations of cells, as well as continuous patterns that reflect 

spectra of cellular states (Fig. 2A). To identify discrete subpopulations we used 

dimensionality reduction with t-Distributed Stochastic Neighbor Embedding (t-SNE) 

followed by density-based clustering (DBSCAN; fig. S2A; Methods). Discrete clusters of 

cells within a cell line were found only for a minority (11%) of the cell lines: three cell lines 

had three or more clusters, three had two clusters of comparable sizes, and 16 had one major 

and one minor cluster (Fig. 2B and S2B). For each such cluster, we identified the top 50 

upregulated genes compared to all other cells from the same cell line (Table S2). These 

expression programs showed limited similarities to one another, both within cell lines of the 

same cancer type and across different cancer types, indicating that discrete subpopulations 

are typically unique and cell line-specific (Fig. 2C). The main exceptions were seven 

subpopulations that commonly upregulated cell cycle-related genes, and six subpopulations 

that commonly upregulated stress response genes. Similar results were obtained using 

DBSCAN with different parameters (fig. S2C–D).

To also identify continuous variability of cellular states, we applied non-negative matrix 

factorization (NMF) to each cancer cell line5. We repeated the NMF analysis with distinct 

parameters, to identify robust expression programs (i.e. consistently observed as variable 

using different parameters), each defined by the top 50 genes based on NMF scores (e.g., 
Fig. 2D; Methods). This procedure captures both continuous and discrete programs. Overall, 

we detected 1,445 robust expression programs across all cell lines, with 4-9 such programs 
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in individual cell lines (fig. S2E; Table S3). To identify common expression programs 

varying within multiple cell lines, we first excluded those with limited similarity to all other 

programs as well as those associated with the technical confounder of low data quality (fig. 

S2F), retaining 800 programs (0-8 per cell line, fig. S2E). Of these programs, only 4.75% 

corresponded to the discrete subpopulations above (Fig. 2E).

Hierarchical clustering of the NMF programs based on their shared genes emphasized 

multiple recurrent heterogeneous programs (RHPs) of gene expression, which are present in 

multiple cell lines. As expected, the two most prominent RHPs reflected the cell cycle, and 

10 additional RHPs were associated with other cellular processes but were not positively 

associated with the cell cycle (Fig. 2E; Table S4). The cell cycle RHPs corresponded to the 

G1/S and the G2/M phases (Fig. 2E), as was also observed in clinical tumor samples (fig. 

S3A). G2/M programs were highly similar across cell lines, as well as between cell lines and 

tumors, thus defining a generic mitotic program (fig. S3B). In contrast, G1/S programs 

differed more both across cell lines and between cell lines and tumors (fig. S3B), indicating 

that expression programs associated with genome replication are more context-dependent. A 

central difference in G1/S programs involved the MCM complex genes (MCM2-7) and the 

linker histone H1 family genes (HIST1H1B-E), which were robustly upregulated only in 

tumors or cell lines, respectively (fig. S3B,D). This may reflect an in vitro adaptation to 

rapid growth and loss of the G1 checkpoint in cell lines. Consistent with this possibility, 

while tumors have a high percentage of apparent G0 cells (i.e., lacking both G1/S and G2/M 

expression programs), such cells are much less prevalent in cell lines (fig. S3E).

RHPs reflect distinct biological processes and mirror in vivo states

The ten additional RHPs reflect diverse biological processes, and are each described in detail 

in the next sections (Fig. 3 and Table S4). These RHPs were either largely independent of 

cell cycle status or preferentially expressed by non-cycling cells (fig S4A,B). Importantly, 

each of the RHPs were detected across at least 8 different cell lines and from at least four 

different pools, highlighting their robustness (fig. S4C). We characterized these 10 RHPs by 

functional enrichment of their signature genes (Fig. 3D), by the cell lines in which they are 

observed (fig. S4D,E), and by their potential regulators23 (Table S5–6).

In addition, we examined the similarity of these in vitro RHPs with recurrent in vivo 
expression programs that vary across cells within patient tumor samples. In vivo RHPs were 

defined previously in HNSCC5, melanoma6, glioblastoma24, and ovarian cancer25, and we 

defined additional RHPs by NMF analysis of scRNA-seq datasets in HNSCC5, melanoma6, 

breast cancer9 and lung cancer12 samples (fig. S3A and Table S7). Strikingly, 7 out of the 10 

cell line RHPs are highly similar to the in vivo RHPs, as defined by highly significant 

overlap of signature genes (Fig. 4A, FDR-adjusted p<10−9 by hypergeometric test), as well 

as by high correlation of cell scores (Fig. 4B). The in vivo relevance of cell line RHPs was 

further demonstrated in melanoma and in HNSCC by a combined analysis of cells from cell 

lines and tumors, demonstrating their common patterns of variation as described below (Fig. 

4C–F and S5).
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RHPs are associated with multiple types of stress responses

One of the RHPs (#8) reflected a stress response, including DNA damage-induced and 

immediate early genes (e.g. DDIT3-4 and ATF3). This RHP resembles programs of 

heterogeneity previously observed in melanoma and HNSCC tumors5,6 (Fig. 4A,B), and 

may reflect the response to various cellular insults. Another RHP (#4) contained interferon 

(IFN) response genes (e.g., IFT1-3 and ISG15,20), highly resembling a program of 

heterogeneity observed within ascites samples of ovarian cancer patients25. Recent studies 

revealed that IFN response may be triggered by genomic instability through the cGAS-

STING pathway26. Accordingly, the IFN-response program was depleted in cell lines with 

mutations in MRE11A (fig. S6A), which recognizes cytosolic dsDNA and activates 

STING27.

Two other RHPs (#9 and #10) consisted of genes related to protein folding and maturation 

(e.g. HSPA1A, RPN2) and to proteasomal degradation (e.g. PSMA3-4), respectively. These 

RHPs were the only ones that did not seem to resemble any of the in vivo programs of 

heterogeneity observed previously among tumor cells. However, it is possible that such 

programs exist in vivo and have not been detected yet due to the limited scRNA-seq data in 

tumors.

RHPs recapitulate in vivo EMT programs, and are associated with specific 

cancer types and NOTCH mutations

Three distinct RHPs were related to EMT: two shared across cancer types, and one unique to 

melanoma cell lines (fig. S4D). The melanoma-specific EMT (RHP #2; EMT-I) was 

negatively correlated with another melanoma-specific RHP (#1) that was enriched with skin 

pigmentation genes (e.g., MITF and PMEL). Both of these melanoma-specific RHPs, and 

their negative correlation, recapitulated the patterns of variability previously observed in 

melanoma tumors (Fig. 4A,B), in which they were linked to drug resistance6,13. 

Accordingly, these two RHPs were associated with three of the top five principle 

components, and with a range of cellular states, in a combined analysis of in vitro and in 
vivo melanoma cells (Figs. 4C,E, S5A,B,E). Notably, as observed in patient samples, many 

of the melanoma cell lines (50%; Table S3) harbored cells in both of these alternate cellular 

states, yet our data highlight certain melanoma cell lines as more faithful model systems for 

these in vivo-related RHPs (fig. S5E).

Two other RHPs, EMT-II (#3) and EMT-III (#5), also reflected EMT-like processes in 

distinct cell lines. EMT-II was mainly observed in HNSCC cell lines, although across 7 

distinct pools (fig. S4C,D). It included vimentin (VIM), fibronectin (FN1), the AXL receptor 

tyrosine kinase, and other genes, closely mirroring the partial EMT state we previously 

observed in HNSCC tumors (Figs. 4A,B,D,F, S5) , where it was linked to metastasis5. Cell 

lines harboring EMT-II were depleted of NOTCH4 mutations (fig. S6A) and were more 

sensitive to inhibitors of NOTCH signaling (fig. S6B), suggesting a potential role of the 

NOTCH pathway in enabling EMT-II variability. This is similar to the association we found 

in glioblastoma between specific mutations and patterns of intra-tumoral heterogeneity24. In 

contrast, EMT-III was enriched among non-cycling cells (fig. S4A,B) and contained genes 
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involved in cell junction organization such as laminin A3, B3 and C3, and plakoglobin 

(JUP). Interestingly, JUP was shown to promote collective migration of circulating tumor 

cells with increased metastatic potential28. The identification of three distinct EMT 

programs, two of which are enriched in specific cancer types, highlights EMT as a common, 

yet context-specific, pattern of cellular heterogeneity, which may have important 

implications for metastasis and drug responses.

RHPs related to classical and epithelial senescence programs

RHPs #6 and #7 were preferentially observed in G0 cells (fig. S4A,B) and seem to reflect 

different expression programs related to cellular senescence. RHP #6 was enriched in p53-

wild type cell lines and in those sensitive to the pharmacological activation of p53 by the 

MDM2 inhibitor Nutlin-3a (fig. S6). Moreover, it included the senescence mediator p21 

(CDKN1A) and other p53-target genes. Thus, we annotated it as “classical” p53-dependent 

senescence. In contrast, RHP #7 was not enriched in p53-wild type cell lines, but was 

enriched in HNSCC cell lines (fig. S4D,E).

RHP #7 was highly similar to the senescence program of keratinocytes and had similarity to 

other published senescence programs29–32 (Figs. 5A, S7A,B,Table S8). To further examine 

the similarity of RHP #7 with senescence-related programs of epithelial cells, we profiled 

primary lung bronchial cells by bulk RNA-seq after induction of senescence by etoposide. 

The etoposide-treated cells stained for the senescence marker SA-β-GAL and strongly 

downregulated the expression of cell cycle genes, indicating a bona fide senescence 

phenotype (Fig. 5B). Both of the senescence-associated RHPs (#6 and #7) were upregulated, 

although the effect was stronger for RHP #7 genes, which were among the top upregulated 

genes (Fig. 5B, S7C). RHP #7 also contained many secreted factors, consistent with a 

Senescence-Associated Secretory Phenotype (SASP). These include S100A8, S100A9, 

SAA1, SAA2, LCN2, CXCL1 and SLPI, which are involved in inflammatory responses and 

may influence cancer, stromal and immune cells in the tumor microenvironment. While most 

of these factors are not traditionally considered as classical SASP genes33, we found a 

significant overlap (P<0.01, hypergeometric test) with secreted factors from multiple other 

senescence-related programs, including from the in vivo counterpart in HNSCC tumors (fig. 

S7D,E).

Taken together, RHP #7 is associated with low proliferation and a secretory phenotype, and 

highly resembles the senescence response of keratinocytes, lung bronchial cells, and other 

epithelial cells. It lacks classical senescence markers (e.g., p16 and p21) and differs from 

published senescence signatures of fibroblasts and melanocytes29, underscoring the context-

specificity of senescence expression programs. We therefore denote it as an epithelial 

senescence-associated (EpiSen) program. We note that although the EpiSen program is 

induced in senescent cells, its expression does not necessarily imply a complete senescent 

phenotype.

Notably, EpiSen recapitulates a program we previously observed in HNSCC tumors, “Epi-

Difl” (Figs. 4A,B, 5A), which was negatively associated with the cell cycle and spatially 

restricted to the hypoxic tumor core5. This program was negatively correlated with the EMT-
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II program, defining a spectrum of cellular states that is shared by multiple HNSCC cell 

lines and tumors. Accordingly, the two RHPs were associated with three of the top five 

principle components, and with a range of cellular states, in a combined analysis of in vitro 
and in vivo HNSCC cells (Fig. 4D,F, S5C–E).

Proliferation and dynamics of EpiSen subpopulations in HNSCC

We selected two HNSCC cell lines (JHU006 and SCC47) with high variability of the EpiSen 

and EMT-II RHPs for further analysis. EpiSen-high and EpiSen-low subpopulations of cells 

could be prospectively isolated by FACS (as AXL−/CLDN4+ and AXL+/CLDN4−, 

respectively, fig. S8A), with ~12-fold difference in the expression of the EpiSen program 

(Fig. 5C). We note that EpiSen-low cells are only minimally enriched for the EMT-II RHP, 

and are used here as a negative control for the EpiSen RHP. The EpiSen-high subpopulation 

was enriched for G0/G1 phases, consistent with lower proliferation (Fig. 5D, S8B). 

Nevertheless, it still contained cells in the S and G2/M phases, similar to its in vivo 
counterpart (fig. S8C) and did not stain for the classical senescence marker SA-β-gal (data 

not shown). These results suggest that the EpiSen program represent an incomplete or 

reversible cell cycle arrest, consistent with previous studies in cancer cells34.

Interestingly, the EpiSen-high and EpiSen-low sorted subpopulations began to shift by one 

week in culture and each of them returned to the pre-sorting distribution of cellular states by 

four weeks, suggesting cellular transitions (Figs. 5E, S8D). This distribution of cellular 

states was stably maintained in culture, suggesting a steady-state which is maintained 

through a balance between proliferation (favoring EpiSen-low cells) and cellular transitions 

(favoring EpiSen-high cells). These results indicate that the EpiSen program is dynamically 

regulated, although we cannot determine if cellular transitions occur only from EpiSen-low 

to EpiSen-high or in both directions.

RHP regulation by genetics and tumor microenvironment

Expression heterogeneity could be driven by either genetic or non-genetic mechanisms. To 

search for the contribution of genetic heterogeneity, we identified large-scale copy number 

aberrations (CNAs) in each cell, based on average expression levels in windows of 100 

genes around each locus3–8 (fig. S9). CNA patterns allowed the robust identification of 

multiple genetic subclones in 26% (58/198) of the cell lines, based on the gain or loss of 

chromosomes (or chromosome arms) that was restricted to subsets of cells (Methods). Co-

existence of genetic subclones is consistent with ongoing evolutionary dynamics within cell 

lines, as demonstrated recently15. Next, we compared the assignment of cells to CNA-based 

genetic subclones with their patterns of expression heterogeneity. Among the discrete 

expression-based clusters, 39% were significantly associated with specific genetic 

subclones, suggesting a genetic basis for these cases of expression heterogeneity (Fig. 6A–

B; P<0.001, Fisher’s exact test). In contrast, only 8% of the continuous NMF programs were 

significantly associated with genetic subclones (Fig. 6B, P<0.001, t-test). This analysis 

likely underestimates the contribution of genetic heterogeneity, as it relies on CNAs for 

subclone identification. However, it suggests that genetic heterogeneity contributes primarily 

to discrete clusters, while the continuous programs of heterogeneity may primarily reflect 
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cellular plasticity, consistent with the established plasticity of EMT and the dynamics of the 

EpiSen program described above.

Next, we examined the induction of these programs by soluble factors that are secreted by 

components of the tumor microenvironment and by related perturbations. The most dynamic 

programs were EMT-II and EpiSen, which responded in opposite ways to several of the 

perturbations (Fig. 6C, fig. S10A). As expected, TGF-β1 and TGF-β3 upregulated the 

expression of the EMT-II genes and increased migration in a wound healing assay (fig. 

S10B–C). Interestingly, TGF-β treatments also downregulated the expression of EpiSen 

genes, underscoring the potential interplay between EpiSen and EMT. A negative 

association between these two programs was further supported by the single cell profiles of 

HNSCC cell lines and tumors (Fig. 4D,F, S5E) and by our prior findings that EMT-high cells 

were enriched at the invasive edge, while EpiSen-high cells were enriched at the core of 

tumors5. Tumor cores are often associated with increased hypoxia, suggesting a potential 

mechanism for the spatial enrichment of senescent cells. In accordance with this possibility, 

the hypoxia mimetic desferrioxamine (DFO) induced the expression of the EpiSen program. 

A similar effect was observed upon hydrogen peroxide treatment, consistent with oxidative 

stress as a potent inducer of senescence35 (Fig. 6C). Taken together, the EpiSen and EMT-II 

programs reflect cellular plasticity that exists in certain cell lines even in the absence of 

perturbations and the native tumor microenvironment, but they are further induced by 

stresses (e.g. hypoxia and oxidative stress) and by secreted factors (e.g. TGF-β).

Co-existing subpopulations differ in drug sensitivity

An important implication of cellular diversity in cancer is the possibility that distinct 

subpopulations of cells respond differently to treatments and thereby facilitate treatment 

failure and recurrence. Thus, we compared the sensitivities of EpiSen-high and EpiSen-low 

subpopulations sorted from each of the two model cell lines selected (Fig. 7A). We initially 

screened 2,198 bioactive compounds using a CTG-based viability assay (fig. S11A–C). 

Putative hits (n=248) defined based on differential sensitivity or the ability to kill both 

subpopulations (≤10% viability) were selected for a secondary screen performed in 

duplicates in each cell line (Fig. 7B). Compounds that killed both subpopulations in the 

primary screen were tested at reduced concentration in the secondary screen. The secondary 

screen identified 113 compounds with differential killing of the subpopulations in at least 

one cell line (Table S9).

Of the hits with preferential sensitivity of EpiSen-high cells, >40% were shared between 

both cell lines. This fraction of shared hits further increases to 71.4% (for both cell lines) 

when considering the targets of compounds rather than the exact compounds, highlighting 

consistent vulnerabilities of EpiSen-high cells. Fourteen compounds with differential 

sensitivities, including five shared hits and nine that were specific to one cell line, were 

analyzed by a full dose response (Figs. 7C, S11D, Table S10). All five of the shared 

compounds, and five of the nine cell line-specific compounds (56%), displayed significant 

differential sensitivity as in the secondary screen (P<0,05, paired t-test).
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As expected, EpiSen-high cells were more sensitive to the senolytic compound ABT-73736 

while EpiSen-low cells were preferentially sensitive to inhibitors of cell cycle regulators 

(CDKs, CHK1 and topoisomerase), consistent with their increased proliferation. Additional 

EpiSen-high sensitivities included multiple inhibitors of EGFR, AKT, PI3K, DNA-PK, 

IGF1R, and JAK (Fig. 7B). Several of these targets (DNA-PK, IGF1R and AKT) converge 

on repair of double-strand breaks as part of the DNA repair machinery37,38. Together with 

the observation that hydrogen peroxide induces the expression of EpiSen genes (Fig. 6C), 

these results reinforce the role of DNA damage as a potential inducer of this RHP. The 

PI3K/AKT axis is hyper-activated in HNSCC, and resistance to PI3K inhibition in HNSCC 

is AXL-dependent39. Accordingly, EpiSen-high cells (which are defined by low AXL 

expression) were more sensitive to inhibitors of PI3K and AKT, as well as those of EGFR 

and IGF1R that signal via the PI3K/AKT axis.

Apart from cell cycle inhibitors, EpiSen-low cells in SCC47 (HPV+, p53 WT) also had 

increased sensitivity to multiple proteasome inhibitors. In contrast, all subpopulations of 

JHU006 (HPV−) were sensitive to proteasomal inhibition. The differential sensitivity to 

proteasomal inhibitors between different HNSCC cell lines is consistent with previous 

studies, which ascribed those differences to HPV and p53 status40 and to activation of 

NFkB41. Our analysis further highlights differential sensitivity to such inhibitors within the 

same cell line (SCC47) and a connection to the EpiSen program. EpiSen-low cells in SCC47 

also had increased sensitivity to drugs that induce cell death by sensitizing cells to 

ferroptosis (the GPX4 inhibitor RSL3, Erastin, and the SLC7A11 inhibitor Sorafenib) (Fig. 

7B). Recent work demonstrated that mesenchymal cells are particularly sensitive to 

ferroptosis-inducing compounds42,43. Thus, sensitivity to ferroptosis-inducing compounds 

may be increased in cells with mesenchymal features, consistent with previous work, and 

decreased in cells with features of senescence.

Taken together, EpiSen-high and EpiSen-low cells are associated with differential 

vulnerabilities that are largely consistent across two model cell lines and potentially across 

human tumors. In addition to these differential sensitivities, we also observed consistent 

sensitivities between EpiSen-high and EpiSen-low cells that were shared between cell lines. 

Nine compounds killed both subpopulations (viability ≥ 10%) in both of the cell lines (Table 

S9), including disulfiram (Antabuse), which was proposed recently as a potential HNSCC 

therapy44,45.

EpiSen subpopulations are predictive of clinical drug response

Of the multiple differential vulnerabilities described above, the increased sensitivity of 

EpiSen-high cells to multiple EGFR inhibitors captured our interest due to its potential 

clinical relevance. Cetuximab is an EGFR inhibitor routinely used for the treatment of 

HNSCC patients46. Most patients with recurrent or metastatic HNSCC progress shortly after 

Cetuximab treatment, combined with platinum-based chemotherapy, but a minority of 

patients have long progression-free survival (PFS). To examine the potential relevance of 

EpiSen in clinical response to Cetuximab, we examined bulk pre-treatment transcriptome 

data of 40 recurrent or metastatic HNSCC patients, stratified by PFS following Cetuximab 
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treatment46. Twenty six patients had short PFS (PFS<5.6 months) while fourteen patients 

had long PFS (PFS>12 months).

Consistent with our in vitro observations, patients with long PFS had significantly higher 

EpiSen scores compared to those with short PFS (Fig. 7D–E, fig. S12). Accordingly, bulk 

EpiSen scores, a proxy for the abundance of EpiSen cells, were predictive of patients’ 

responses, with an area under curve (AUC) of 0.86. For example, a potential EpiSen 

threshold identifies 79% (11/14) of the long PFS but only 23% (6/26) of the short PFS 

patients, corresponding to sensitivity of 79% and specificity of 77%. While this predictive 

power may not be sufficient for clinical use, future work and larger cohorts may consider a 

combination of EpiSen with other features for improved prediction. Notably, the predictive 

power of EpiSen was comparable between the HNSCC in vitro RHP defined in this work 

and the in vivo program defined previously, and was slightly higher for the shared genes 

among the two programs (Fig. 7E).

Discussion

Our analysis of cell lines identified 12 RHPs (2 cell cycle and 10 others), 9 of which were 

highly similar to programs of heterogeneity observed within tumors, indicating that they are 

retained in the absence of a native microenvironment. The continuous pattern of such RHPs 

contrasts with the discrete nature of genetic heterogeneity. Accordingly, we observed 

dynamic plasticity of the EpiSen program and found only limited associations with genetic 

subclones (albeit only by inferred CNAs). Thus, cancer cells may harbor variability through 

two largely distinct processes of genetic and nongenetic mechanisms, both of which may 

contribute to drug resistance and tumor progression. We speculate that by focusing on 

recurrent patterns of heterogeneity our analysis highlights nongenetic plasticity, as this form 

of variability tends to be shared across cell lines, while genetic forms of variability may be 

more unique to each cell line.

We suggest that the significance of RHPs is derived directly from their definition as 

recurrent. A central observation from scRNA-seq studies of tumors is that although each 

tumor is unique, the diversity of cancer cells within individual tumors highlights few 

programs that recur as heterogeneous across many tumors47. Here we show that some of 

these programs also recur as heterogeneous in specific cell lines, sometimes across multiple 

cancer types, paving the way for mechanistic and functional studies. Just as cancer genetics 

has focused on recurrent mutations, based on the premise that they are drivers of 

tumorigenesis, we propose that cancer transcriptomics should focus on recurrent programs, 

as they may drive important cancer phenotypes, such as drug resistance and metastasis. 

Extending the analogy to therapeutics, we envisage that while current targeted therapies 

attempt to reverse the action of recurrent oncogenic mutations, future targeted therapies may 

also be targeted at recurrent programs associated with proliferation, drug resistance or 

metastasis.

Careful examination of the recurrent in vitro programs highlights their consistency with in 
vivo tumor programs, but also the divergence from their developmental “normal” 

counterparts. During development and wound healing, both EMT and senescence are 
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associated with precise phenotypes and well-defined regulators. Yet in the context of tumors 

and cancer cell lines, we observe only partial phenotypes and limited dependence on these 

regulators. The EMT-like profiles we observe include many EMT-related genes and are 

associated with increased migration, but do not involve other EMT hallmarks such as the 

loss of epithelial markers, a drastic change in morphology, and high expression of EMT 

transcription factors. Similarly, EpiSen-high cells resemble the senescence response of 

keratinocytes and lung bronchial cells, are associated with reduced proliferation, and possess 

markers of SASP, yet they retain some proliferative capacity, do not express high levels of 

p16 and p21, and do not stain with SA-β-GAL. This is consistent with studies showing 

evidence for incomplete and reversible senescence programs in cancer: Low levels of p16 at 

induction of senescence may confer cell cycle re-entry upon p53 inactivation or RAS 

expression48, a program coined “light senescence”34 and likewise, loss of Rb in senescent 

cells may lead to renewed proliferation49. We hypothesize that cancer cells often activate 

partial or distorted programs, possibly not through the canonical developmental 

mechanisms, and in a context-dependent manner. This could contribute to the difficulties in 

resolving long-standing debates in the cancer field about the role of EMT and senescence, 

which are often evaluated through the activity of developmental regulators and markers that 

may fail to detect certain partial programs. Comprehensive single cell profiling helps to 

detect such partial programs that vary in their magnitude across the cells.

Multiple RHPs are of potential clinical relevance. First, the EpiSen program, which mirrors 

subpopulations of cells detected in HNSCC tumors, is associated with distinct responses to 

several drugs. Notably, the sensitivity of EpiSen-high cells to EGFR inhibitors appears to 

extend from cell lines to patients, underscoring its significance. These results provide a 

rationale for the combination of EpiSen-killing drugs (e.g. Cetuximab) with chemotherapies 

that target the more proliferative subpopulations. Second, for two EMT-like RHPs (EMT-I 

and EMT-II), clinical relevance is strongly supported by previous studies of tumor samples. 

EMT-II is highly consistent with a heterogeneity program we previously described in 

HNSCC tumors5, where it was shown to be localized to the invasive edge of the tumor and 

predictive of nodal metastasis. Recent work further evaluated the quantification of this 

program as a tool for clinical decision making50.

Similarly, EMT-I, seen only in melanoma cell lines, is highly consistent with a heterogeneity 

program we previously described in melanoma tumors6. Moreover, other studies defined 

different versions of this program, both in tumors and in cell lines, variably naming it as an 

‘invasive’51,52, ‘AXL-high’/‘MITF-low’53,54, or ’resistance’13 program, but invariably 

involving upregulation of EMT-related genes, downregulation of skin pigmentation genes 

(e.g. MITF) and resistance to targeted therapies. While the specific definition of this 

program varies between studies, this overall convergence indicates a robust phenomenon in 

melanoma whereby tumors often consist of drug-sensitive and drug-resistant subpopulations 

that differ in levels of pigmentation and EMT-related genes, which are recapitulated here by 

the Skin pigmentation and EMT-I RHPs.

For two other RHPs, our observations in cell lines suggest a potential for clinical relevance, 

although further studies would be needed to evaluate this. The p53-dependent senescence 

program (RHP #6) is significantly correlated with response to the p53 activating drug, 
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Nutlin-3a. Notably, in Nutlin-sensitive cell lines, only a minority of cells express this 

program before treatment, while most or all cells appear to express it after treatment55, 

suggesting that rare senescent cells may serve as a biomarker for p53 activity that implies 

sensitivity to Nutlin-3a or similar treatments. Although p53 mutations are routinely tested, 

the multitude of functionally distinct p53 mutations and of other mechanisms that influence 

p53 activity warrant a direct functional readout in case p53-based treatments will be 

incorporated in clinical practice. Third, expression of the IFN response program (RHP #4) 

by subpopulations of cancer cells, as recently described in ovarian cancer25, may influence 

immune cells in the tumor microenvironment and the response to immunotherapies. For 

example, recent work demonstrated opposing functions of the IFN response by cancer and 

immune cells through complex cancer-immune crosstalk56.

With the advent of single cell genomics, cellular heterogeneity is now being characterized in 

various clinical contexts. However, the ability to model ITH is a prerequisite for deeper 

understanding of the mechanisms that govern such heterogeneity. Here we described the 

landscape of cellular diversity across ~200 cell lines, highlighting particular models that 

recapitulate programs of heterogeneity observed in human tumors. Further studies of these 

programs and model systems will provide a better understanding of ITH, and may help to 

transform this understanding to novel treatment strategies that exploit ITH.
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Acknowledgements

This work was supported by funding from the Israel Science Foundation (I.T.), the Zuckerman STEM leadership 
program (I.T.), the Mexican Friends New Generation grant (I.T.), the Rising Tide Foundation (I.T.), the A.M.N. 
Fund for the Promotion of Science, Culture and Arts in Israel (I.T.), the Estate of Dr. David Levinson, the Dr. Celia 
Zwillenberg-Fridman and Dr. Lutz Zwillenberg Career Development Chair (I.T.), the Sao Paulo Research 
Foundation (FAPESP) Fellowship 2014/27287-0 and 2017/24287-8 (G.S.K.), the Clore Foundation Postdoctoral 
Fellowship (A.C.G.), the Klarman Cell Observatory (A.R.) and HHMI (A.R.).

Data availability

Raw and processed scRNA-seq data is available through the Broad Institute’s single cell 

portal (SCP542).

References

1. McGranahan N & Swanton C Biological and therapeutic impact of intratumor heterogeneity in 
cancer evolution. Cancer Cell 27, 15–26 (2015). [PubMed: 25584892] 

2. Chaffer CL, San Juan BP, Lim E & Weinberg RA EMT, cell plasticity and metastasis. Cancer 
Metastasis Rev 35, 645–654 (2016). [PubMed: 27878502] 

3. Filbin MG et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-
cell RNA-seq. Science 360, 331–335 (2018). [PubMed: 29674595] 

4. Patel AP et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. 
Science 344, 1396–401 (2014). [PubMed: 24925914] 

5. Puram S et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in 
head and neck cancer. Cell (2017).

Kinker et al. Page 12

Nat Genet. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Tirosh I et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-
seq. Science 352, 189–96 (2016). [PubMed: 27124452] 

7. Tirosh I et al. Single-cell RNA-seq supports a developmental hierarchy in human 
oligodendroglioma. Nature 539, 309–313 (2016). [PubMed: 27806376] 

8. Venteicher AS et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas 
by single-cell RNA-seq. Science 355(2017).

9. Chung W et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in 
primary breast cancer. Nat Commun 8, 15081 (2017). [PubMed: 28474673] 

10. Kim KT et al. Application of single-cell RNA sequencing in optimizing a combinatorial 
therapeutic strategy in metastatic renal cell carcinoma. Genome Biol 17, 80 (2016). [PubMed: 
27139883] 

11. Li H et al. Reference component analysis of single-cell transcriptomes elucidates cellular 
heterogeneity in human colorectal tumors. Nat Genet 49, 708–718 (2017). [PubMed: 28319088] 

12. Lambrechts D et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat 
Med 24, 1277–1289 (2018). [PubMed: 29988129] 

13. Shaffer SM et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug 
resistance. Nature 546, 431–435 (2017). [PubMed: 28607484] 

14. Jerby-Arnon L et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to 
Checkpoint Blockade. Cell 175, 984–997 e24 (2018). [PubMed: 30388455] 

15. Ben-David U et al. Genetic and transcriptional evolution alters cancer cell line drug response. 
Nature 560, 325–330 (2018). [PubMed: 30089904] 

16. Fillmore CM & Kuperwasser C Human breast cancer cell lines contain stem-like cells that self-
renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 
10, R25 (2008). [PubMed: 18366788] 

17. Gupta PB et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of 
cancer cells. Cell 146, 633–44 (2011). [PubMed: 21854987] 

18. Stackpole CW Generation of phenotypic diversity in the B16 mouse melanoma relative to 
spontaneous metastasis. Cancer Res 43, 3057–65 (1983). [PubMed: 6850615] 

19. Barretina J et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer 
drug sensitivity. Nature 483, 603–7 (2012). [PubMed: 22460905] 

20. Ghandi M et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 
569, 503–508 (2019). [PubMed: 31068700] 

21. Yu C et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures 
of barcoded tumor cell lines. Nat Biotechnol 34, 419–23 (2016). [PubMed: 26928769] 

22. Kang HM et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. 
Nat Biotechnol 36, 89–94 (2018). [PubMed: 29227470] 

23. Aibar S et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14, 
1083–1086 (2017). [PubMed: 28991892] 

24. Neftel C et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. 
Cell 178, 835–849 e21 (2019). [PubMed: 31327527] 

25. Izar B et al. A single-cell landscape of high-grade serous ovarian cancer. Nature Medicine (2020).

26. Chen Q, Sun L & Chen ZJ Regulation and function of the cGAS-STING pathway of cytosolic 
DNA sensing. Nat Immunol 17, 1142–9 (2016). [PubMed: 27648547] 

27. Kondo T et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and 
induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci U S A 110, 2969–74 
(2013). [PubMed: 23388631] 

28. Aceto N et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. 
Cell 158, 1110–1122 (2014). [PubMed: 25171411] 

29. Hernandez-Segura A et al. Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr Biol 
27, 2652–2660 e4 (2017). [PubMed: 28844647] 

30. Jang DH et al. A transcriptional roadmap to the senescence and differentiation of human oral 
keratinocytes. J Gerontol A Biol Sci Med Sci 70, 20–32 (2015). [PubMed: 24398559] 

Kinker et al. Page 13

Nat Genet. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



31. Musiani D et al. PRMT1 Is Recruited via DNA-PK to Chromatin Where It Sustains the 
Senescence-Associated Secretory Phenotype in Response to Cisplatin. Cell Rep 30, 1208–1222 e9 
(2020). [PubMed: 31995759] 

32. Yang L, Fang J & Chen J Tumor cell senescence response produces aggressive variants. Cell Death 
Discov 3, 17049 (2017). [PubMed: 28845296] 

33. Coppe JP, Desprez PY, Krtolica A & Campisi J The senescence-associated secretory phenotype: 
the dark side of tumor suppression. Annu Rev Pathol 5, 99–118 (2010). [PubMed: 20078217] 

34. Lee S & Schmitt CA The dynamic nature of senescence in cancer. Nat Cell Biol 21, 94–101 
(2019). [PubMed: 30602768] 

35. te Poele RH, Okorokov AL, Jardine L, Cummings J & Joel SP DNA damage is able to induce 
senescence in tumor cells in vitro and in vivo. Cancer Res 62, 1876–83 (2002). [PubMed: 
11912168] 

36. Yosef R et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat 
Commun 7, 11190 (2016). [PubMed: 27048913] 

37. Bozulic L, Surucu B, Hynx D & Hemmings BA PKBalpha/Aktl acts downstream of DNA-PK in 
the DNA double-strand break response and promotes survival. Mol Cell 30, 203–13 (2008). 
[PubMed: 18439899] 

38. Wong RH et al. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 
136, 1056–72 (2009). [PubMed: 19303849] 

39. Elkabets M et al. AXL mediates resistance to PI3Kalpha inhibition by activating the EGFR/PKC/
mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell 27, 533–46 
(2015). [PubMed: 25873175] 

40. Li C & Johnson DE Liberation of functional p53 by proteasome inhibition in human papilloma 
virus-positive head and neck squamous cell carcinoma cells promotes apoptosis and cell cycle 
arrest. Cell Cycle 12, 923–34 (2013). [PubMed: 23421999] 

41. Chen Z et al. Differential bortezomib sensitivity in head and neck cancer lines corresponds to 
proteasome, nuclear factor-kappaB and activator protein-1 related mechanisms. Mol Cancer Ther 
7, 1949–60 (2008). [PubMed: 18645005] 

42. Hangauer MJ et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 
551, 247–250 (2017). [PubMed: 29088702] 

43. Viswanathan VS et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase 
pathway. Nature 547, 453–457 (2017). [PubMed: 28678785] 

44. Park YM et al. Anti-cancer effects of disulfiram in head and neck squamous cell carcinoma via 
autophagic cell death. PLoS One 13, e0203069 (2018). [PubMed: 30212479] 

45. Shah O’Brien P et al. Disulfiram (Antabuse) Activates ROS-Dependent ER Stress and Apoptosis in 
Oral Cavity Squamous Cell Carcinoma. J Clin Med 8(2019).

46. Bossi P et al. Functional Genomics Uncover the Biology behind the Responsiveness of Head and 
Neck Squamous Cell Cancer Patients to Cetuximab. Clin Cancer Res 22, 3961–70 (2016). 
[PubMed: 26920888] 

47. Suva ML & Tirosh I Single-Cell RNA Sequencing in Cancer: Lessons Learned and Emerging 
Challenges. Mol Cell 75, 7–12 (2019). [PubMed: 31299208] 

48. Beausejour CM et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. 
EMBO J 22, 4212–22 (2003). [PubMed: 12912919] 

49. Sage J, Miller AL, Perez-Mancera PA, Wysocki JM & Jacks T Acute mutation of retinoblastoma 
gene function is sufficient for cell cycle re-entry. Nature 424, 223–8 (2003). [PubMed: 12853964] 

50. Parikh AS et al. Immunohistochemical quantification of partial-EMT in oral cavity squamous cell 
carcinoma primary tumors is associated with nodal metastasis. Oral Oncol 99, 104458 (2019). 
[PubMed: 31704557] 

51. Hoek KS et al. Metastatic potential of melanomas defined by specific gene expression profiles with 
no BRAF signature. Pigment Cell Res 19, 290–302 (2006). [PubMed: 16827748] 

52. Verfaillie A et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of 
the invasive cell state. Nat Commun 6, 6683 (2015). [PubMed: 25865119] 

Kinker et al. Page 14

Nat Genet. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Konieczkowski DJ et al. A melanoma cell state distinction influences sensitivity to MAPK 
pathway inhibitors. Cancer Discov 4, 816–27 (2014). [PubMed: 24771846] 

54. Muller J et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in 
melanoma. Nat Commun 5, 5712 (2014). [PubMed: 25502142] 

55. McFarland JM et al. Multiplexed single-cell profiling of post-perturbation transcriptional responses 
to define cancer vulnerabilities and therapeutic mechanism of action. bioRxiv, 868752 (2019).

56. Benci JL et al. Opposing Functions of Interferon Coordinate Adaptive and Innate Immune 
Responses to Cancer Immune Checkpoint Blockade. Cell 178, 933–948 e14 (2019). [PubMed: 
31398344] 

Kinker et al. Page 15

Nat Genet. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Characterizing intra-cell line expression heterogeneity by multiplexed scRNA-seq.
(A) Workflow of the multiplexing strategy used to profile multiple cell lines simultaneously. 

Cell lines were pooled and profiled by droplet-based scRNA-seq. We used reference CCLE 

data to assign cells to the most similar cell line based on their overall gene expression and 

SNP pattern. (B) t-SNE plot of a representative pool demonstrating the robustness of cells’ 

assignments to cell lines. Cells with inconsistent assignments (by gene expression and 

SNPs) are denoted and these were excluded from further analyses. (C) Distribution of cancer 

types profiled.
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Figure 2. Discrete and continuous patterns of heterogeneity within cell lines.
(A) Illustration of the two types of expression variability investigated. (B) t-SNE plots show 

exemplary cell lines for the four classes defined by the presence and number of discrete 

subpopulations identified using DBSCAN. The description of each class and number of cell 

lines is indicated above the t-SNE plots. (C) Heatmap depicts pairwise similarities between 

gene expression programs defined for each of the cell clusters derived from the 22 cell lines 

identified as having one or more discrete subpopulations. Hierarchical clustering identifies 

only two groups of similar programs (metaprograms). Top panel shows assignment to cancer 

types. (D) Continuous programs of heterogeneity identified using NMF in a representative 

cell line that lacks discrete subpopulations (JHU006; see B). Heatmap shows relative 

expression of genes from four programs, across all cells ordered by hierarchical clustering. 

NMF programs are annotated (right) and selected genes are indicated (left). (E) Pairwise 

similarities between NMF programs identified across all the cell lines analyzed and ordered 

by hierarchical clustering. Programs with limited similarity to all other programs as well as 

those associated with technical confounders were excluded. Top panel indicates the 4% of 

NMF programs that were consistent with discrete subpopulations identified by DBSCAN 

(P<0.001, Fisher’s exact test).

Kinker et al. Page 17

Nat Genet. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Functional annotation of RHPs.
(A) The main heatmap depicts pairwise similarities between all NMF programs (except for 

those linked to the cell cycle, see Fig. 2E), ordered by hierarchical clustering. Ten clusters 

(RHPs) are indicated by squares and numbers. Top panel shows assignment to cancer types, 

highlighting significant enrichment (P<0.05, hypergeometric test) of melanoma and HNSCC 

cell lines. (B) NMF scores of signature genes of each RHP (rows), with selected genes 

labeled. Cells (columns) are ordered as in (A). (C) Annotation and selected top genes for 

each of the 10 RHPs. (D) Functional enrichment (−log10 of FDR-adjusted p-value, 

hypergeometric test) of RHP genes with eight annotated gene-sets.
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Figure 4. In vitro RHPs recapitulate in vivo programs of heterogeneity.
(A) Significance of the overlap (−log10(P) for FDR-adjusted hypergeometric test), between 

RHP gene-sets defined in cell lines (in vitro, X-axis) and in tumors (in vivo, Y-axis). In vivo 
RHPs are named by a cancer type abbreviation (MEL: melanoma, HNS: HNSCC, GBM: 

glioblastoma, OVA: ovarian cancer), followed by an associated functional annotation, and 

whether it was defined by the original study (Orig.) or the current study (Curr., see Fig. S3). 

(B) Each panel shows the mean Jaccard index (Y-axis) and mean correlation of single cell 

scores (X-axis) between the NMF programs constituting a specific In vitro RHP (as noted at 

the top) and all In vivo RHPs. The most similar In vivo RHPs are labeled as in (A). Dashed 

lines indicate a 99.9% confidence threshold determined by permutations of NMF programs. 

(C) Scatterplots of melanoma cells based on PC2+PC3 (X-axis) and PC4 (Y-axis). Cells are 

colored by the relative score for EMT-I and SkinPig genes shared between cell lines and 

tumors RHPs (left panel) and by whether the cells are from tumors or cell lines (right panel). 

(D) Scatterplots of HNSCC cells based on PC2 (X-axis) and PC4+PC5 (Y-axis). Cells are 
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colored by the relative score for EMT-II and EpiSen genes shared between cell lines and 

tumors RHPs (left panel) and by whether the cells are from tumors or cell lines (right panel). 

(E) Heatmap showing the relative expression of shared EMT-I and SkinPig RHP genes 

(rows) across melanoma cells (columns), sorted by the relative RHP scores. The cells’ origin 

from tumors or cell lines is shown by the top panel. (F) Heatmap showing the relative 

expression of shared EMT-II and EpiSen RHP genes (rows) across HNSCC cells (columns), 

sorted by the relative RHP scores. The cells’ origin from tumors or cell lines is shown by the 

top panel.
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Figure 5. Interrogating the EpiSen RHP in primary cells and model cell lines.
(A) Significance of the overlap (−log10(P), hypergeometric test) between the EpiSen RHP 

and eight previously reported senescence programs. (B) Left: induction of senescence by 

etoposide in primary lung bronchial cells confirmed by SA-β-gal staining. Right: heatmap 

depicts the relative expression of 6,000 genes (rows) in primary lung bronchial cells, 9 days 

after induction of senescence by etoposide treatment for 48h at two concentrations with 2 

biological replicates. EpiSen and cell cycle programs were the most upregulated and 

downregulated programs, respectively (see fig. S5D); selected genes from these programs 
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are labeled. (C) Isolation of the EpiSen-high (AXL+ CLDN4−) and EpiSen-low (AXL
+CLDN4−) populations by FACS in JHU006. Heatmap shows relative expression of the 

EpiSen program genes in three sorted subpopulations: two as shown at the right panel and a 

third control population. (D) FACS analysis of cell cycle by the DNA binding dye propidium 

iodide (PI) on sorted EpiSen-high and EpiSen-low cells in JHU006. (E) Pie charts depict 

relative proportions of the EpiSen-high and EpiSen-low subpopulations in SCC47, for an 

unsorted sample (left, initial distribution), and for sorted subpopulations that were analyzed 

immediately after sorting (day 0) and at three additional time points (at days 7, 14 and 28 in 

culture).
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Figure 6. Genetic and microenvironmental factors partially explain expression heterogeneity.
(A) Representative cell lines showing the association (top panel) or lack thereof (bottom 

panel) between discrete subpopulations and CNA-based subclones. t-SNE plots on the left 

show discrete subpopulations identified using DBSCAN (as in Fig. 2B and S1C). Heatmaps 

on the right depict inferred CNAs ordered according to the expression-based clusters. (B) 
Percentage of discrete (left) and continuous (right) heterogeneity programs that are 

associated with genetic subclones. For discrete programs, associations were assessed by 

comparing the assignment of cells to CNA subclones and to expression-based 

subpopulations (P<0.001, Fisher’s exact test); for continuous programs, we compared NMF 

cell scores between different clones (P<0,001, t-test). (C) Main heatmap depicts relative 

expression of EpiSen program genes and EMT-II program genes following multiple 

perturbations in SCC47 and JHU006. Smaller heatmap at the bottom shows the average 

values for the EMT-II genes and EpiSen genes, and asterisks denote significant up or down-

regulation (by t-test, P value indicated in figure).
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Figure 7. Co-existing cellular states differ in drug sensitivity.
(A) Experimental scheme for drug screening: three subpopulations were isolated by FACS 

and subjected to primary screen, secondary screen and dose response analysis of selected 

hits. (B) Viability of the reference population (X-axis) and differential viability of the 

EpiSen-high vs. EpiSen-low populations (Y-axis) upon treatment with 248 compounds 

tested in the secondary screen, in JHU006 (left) and SCC47 (right), averaged over 2 

replicates. Dotted lines represent thresholds for differential sensitivity (as described in 

Methods). Selected hits and controls are colored by target as specified in the top legends. (C) 
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Dose response curves of three selected compounds in SCC47 measured in duplicate at each 

concentration, presented by the change in viability relative to vehicle controls. Error bars 

represent standard deviation. (D) Heatmap showing the expression of EpiSen genes shared 

between the HNSCC cell lines (in vitro) and tumors (in vivo) programs (see fig. S12) in bulk 

pre-treatment samples of 40 recurrent or metastatic HNSCC patients, stratified into short and 

long PFS following treatment with Cetuximab plus platinum-based chemotherapy. Top panel 

shows the corresponding EpiSen scores. Genes are ordered by differential expression 

(log2(fold change)) comparing short and long PFS patients, and tumors are ordered within 

each group according to the EpiSen score. Selected genes are labeled. (E) Receiver 

operating characteristic (ROC) curves for prediction of long vs. short PFS patients following 

Cetuximab treatment. Curves depict the predictive power of three potential HNSCC EpiSen 

signatures (in vitro, in vivo and shared). P values were calculated for each signature 

separately using multivariate logistic regression correcting for relevant clinicopathological 

features.
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