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ABSTRACT

A fast breeder reactor fuel depletion-economics model
was developed and applied to a number of 1000 MWe LMFBR case
studies, involving radial blanket-radial reflector design,
radial blanket fuel management, and sensitivity of energy
costs to changes in the economic environment.

Choice of fuel cost accounting philosophy, e.g. whether
or not to tax plutonium revenue, was found to have significant
effect on absolute values of energy costs, without, however,
distorting design rankings, comparative results, and irradiation
time optimization.

A slngle multigroup physics computation, to obtain the
flux shape and local spectra for depletion calculations, was
found to be sufficient for preliminary design and sensitivity
studies. The major source of error in blanket depletion
results was found to be the assumption of a fixed flux shape
over an 1irradiation cycle; spectrum hardening in the radial
blanket with irradiation is of minor importance.

The simple depletion-economics model was applied to
several 1000 MWe LMFBR case studies. Advantages of a moderating
reflector were found to increase as blanket thickness was re-
duced. For a 45 cm radial blanket, a beryllium metal reflector
offered little improvement, in blanket fuel economics, over
sodium; for a 15 cm blanket, beryllium increased net blanket
revenue by about 60%. An improvement of about 50% in net
blanket revenue resulted when each radial blanket annular
region was assumed to be exposed to its own local optimum
radiation time. Optimum radial blanket irradiation time and
the net blanket revenue (mills/KWHe) at this optimum were
found to be approximately linear in the unit fuel cycle costs,
i.e. fabrication and reprocessing costs ($/kgHM) and fissile
market value ($/kg).
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CHAPTER 1

INTRODUCTION AND SUMMARY
1.1 INTRODUCTION

A Fast Breeder Reactor blanket performs several functions: fertile-
to-fissile converter, reflector, shield, In addition, it produces some
power, tiereby relieving, slightly, the power burden on the core, Of
these functions, the fissile breeding objective is considered paramount.
For current 1000 Mve designs, a fast reactor without blankets is not a
breeder; although most of the conversion is accomplished in the core
(internal breeding ratio ~0.,3), a fertile blanket is required to achieve
overall breeding ratios above unity,

An AEC sponsored program is underway at MIT using the Fast Reactor
Blanket Test Facility (BTF) to investigate blanket neutronics for the
LAFBR effort (60, 61). To guide the selection of blanket wmock-up experi-
ments, conparative studies have been made of the fuel economics of several
MEBR blanket-reflector configurations.,

Objectives of the work reported here were twofold: (1) to develop
a simple depletion-economics calculational tool for survey evaluations of
LMFBR blanket configurations; and (2) to perform several comparative
studies around a 1000 MVe reference LMFBR configuration, The 1000 Mie
case studies involve choice of radial reflector material (Be-metal vs,
sodium), radial blanket thickness, advantages of local fuel management

in the radial blanket, and the sensitivity of LMFBR fuel energy costs to

changes in the economic enviromment,

16
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1.2 OUTLINE OF THE REPORT

Calculational methods for FBR fuel depletion economics are developed
in Chapters 2 and 3. Chapter 2 deals with the accounting details involved
in determining energy costs by reactor region (core, axial blanket, radial
blanket), The depletion method is developed in Chapter 3.

In Chapter 4, the energy cost and depletion methods are combined to
form a computational tool for evaluating the fuel economic performance -
in units of mills/Kitie or $/kg IM/year - of regions under either batch or
scatter fuel management schemes, (Appendix C describes a computer program,
SPPIA, developed to perform the depletion-economics computations,) A
reference LMFBR configuration is selected, and the integrated depletion-
economics model is applied to this reactor, in a reference economic
environment,

In Chapter 5, the fuel depletion-economics model is applied to a series
of case studies in which the radial blanket thickness, radial reflector
material, fuel management scheme, and economic environment are varied
around the reference,

Chapter 6 summarizes major conclusions of the study and lists several
recomendations for future efforts,

Appendix B describes a preliminary scoping study examining the econ-

omic viability of FBR blankets as reactor unit size increases.

1.3 QUALITATIVE DISCUSSION OF FEBR BLANKET DESIGN CONSIDERATIONS AND
LITERATURE SURVEY

The major economic objectivel of FBR blanket design is to maximize the

1 Another objective frequently adoptedis the maximization of blanket breeding
ratio, This objective, which is usually not consistent with the net
revenue (or minimum power cost) objective, is macro-economic in nature,
and is keyed to national fuel resource conservation considerations,
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net blanket fissile revenue, that is, to maximize the fissile credit less
fabrication, reprocessing, and carrying charges. At the same time thermal-
hydraulic engineering design seeks to minimize the effects of the blanket
power swing over a refueling cycle interval and to minimize the power
gradient across the blanket, Other engineering considerations are the
shielding role of the blanket, and possible material constraints on blanket
exposure,

The blanket designer has several design variables and options to
work with in meeting these objectives while satisfying the constraints,
Some of the major variables and options are discussed qualitatively below,

Studies wihich have addressed these considerations are referenced,

Blanket Thickness

Selection of blanket thickness involves a tradeoff between the fis-
sile plutonium production rate and fuel cycle costs - fabrication, re-
processing, and associated carrying charges, An incremental increase in
blanket thickness imposes additional fabrication and reprocessing costs
while providing some additional fissile production, The incremental increase
in fissile production decreases with blanket thickness because of flux
attenuation, An incremental increase in thickness beyond some point is
unprofitable - the added fissile revenue is not sufficient to offset the
added fabrication and reprocessing costs.

Theoptimum" thickness depends on the economic enviromment - fissile
value ($/kg Pug), fabrication cost ($/kg IM) and reprocessing cost ($/kgi).
Thick blankets are indicated when fissile value is high and/or fabrication
and reprocessing costs are low, Thicker blankets may also be in order
when leakage flux to the blanket is increased due to changes in core design,

The Westinghouse LMFER Follow-On Studies (73), Task I, have shown

that the optimum radial blanket thickness is not sharp, that is, the



blanket profit is a weak function of blanket thickness, This conclusion
is borne out in the present study, The Westinghouse optimum thickness
is between 25 and 30 cn, again consistent with the present study,

Blanket Irradiation Time

Below some irradiation time, Ti, the bred fissile inventory in the
blanket is not sufficient to offset the blanket fabrication, reprocessing,
and carrying charges, At Ty, the 'breakeven point", the revenue from bred
fissile is just equal to fabrication, reprocessing, and carrying charges,
Beyond T;, the blanket produces a net profit, As irradiation time, T, is
further inCreased, Pu239 is produced at a decreasing rate, because of the
burnup of both fertile U238 and fissile Pu239, and the fissile credit
averaged over irradiation time, T, decreases, Also, as irradiation time T
increases, carrying charges increase, and direct fabrication and reproces-
sing charges decrease, Taken together, these opposing effects result in
an optimum irradiation tine, Topt, at which the net revenue in $/Aﬁ HM/year
(or in mills/KiHe) is a maximun,

Local optimum irradiation time decreases, and local net revenue at
the optimum increases, with increased 1ocal flux, Thus regions near the
blanket-core interface reach their optima sooner and produce more revenue
than regions deeper in the blanket, TFor pancaked cores, the axial blan-
ket optimum irradiation time is less than that of the radial blanket,
Thimner blankets enjoy shorter optinum irradiation tines,

Several studies have assessed optimum blanket irradiation times for
particular designs , 4, 12, 70). Typical local Optima range from about
two to about eight years across the radial blanket

Engineering considerations such as burnup, power swing, corrosion,

aud irradiation damage of cladding may tend to limit feasible irradiation

time,
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Blanket Fuel Management Scheme

Axial blanket fuel management is constrained to that of the core since
axial blanket fuel assemblies are merely extensions of core assemblies in
present LMFBR designs, The core-axial blanket fuel management scheme
adopted in the 1000 Mie ILMFBR Follow-on Studies (69, 70,71,72,73) can be
described as a region-scatter scheme, In this scheme, the core-axial
blanket is divided into ammular regions, At each refueling event,
fractions 81, 87, +.. of regions 1, 2, .., are discharged and replaced
with fresh fuel, Fuel sees only one position in the reactor, The dis-
charge fractions 81> 2, ... decrease with disténce from the core center-
line, implying that irradiation times increase with distance from the core
centerline, This procedure enhances flux flattening and discharge buriaup
uniformity,

Radial blanket fuel management is independent of that of the core-
axial blanket, with the restriction, of course, that blanket refueling
dates coincide with those of the core-axial blanket, to minimize reactor
shutdowns for refueling, With the exception of Westinghouse (73) the
scheme selected in the 1000 MJe Follow-on Studies is region-scatter,
Again, irradiation time increases and discharge fraction decreases with
distance of the region from the core-blanket interface, thus implementing
flux flattening across the blanket, Batch managenent is the special case
of scatter management in which the discharge fractions are set equal to
unity, i,e, at each refueling event for a given region, 100% of the fuel
1s discharged and replaced with fresh fuel,

Other schemes proposed for the radial blanket are out-in, in-out,
and fuel assembly rotation, The Westinghouse Follow-on design (73) speci-

fies in-out. In this scheme, fresh fuel is loaded in the immermost blanket
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region, and is moved outwamlin subsequent refuelings, remaining in each
annular region for one or more cycles, Tuel is discharged,finally, from
the outermost region, Advantages (10) of the in-out management are power
flattening, reduction of local power swing, and burnup uniformity. An
earlier study (4) argued qualitatively that in-out management would be
uneconomic due to the prolonged holdup of bred fissile, This was not
demonstrated quantitatively,

In the out-in scheme, fresh fuel is loaded in the outermost region,
moved inward, and discharged from the innermost region, The scheme has
the advantage of achieving uniform burnup, and would tend to reduce the
power swing over an irradiation cycle, However, out-in would tend to
aggravate the power tilt across the blanket. Out-in ranagement was com-
pared (ﬁ) to fixed element management (batch or scatter) and was found to
have only a few percent profit advantage,

A recent study (}Z) has investigated the optimum out-in throughput
for a 1000 MWe LMFBR radial blanket. The study determined the effect of
throughput on 10-year fuel cycle costs., lialving of the radial blanket
out-in throughput increased fuel cycle costs (from optimal) by less than
5%. Increasing the throughput by a factor of about 1.5 increased the 10
year fuel cycle cost by about 1%,

The optimum throughput analysis reported in this (17) study was used
as an illustration of a computational method for selecting optimal FBR
fuel management strategies in a changing economic cnviromment, The method
permits changing fuel management during plant life (in response to changes
in the economic environment) in order to minimize fuel costs during the

remainder of plant life, In the radial blanket illustration cited, re-

maining plant life is 10 years,
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Fuel element rotation has been studied by Westinghouse (10).
Rotation may be considered a sub-fuel imanagement scheme in that it nay
be used in conjunction with the other schemes., During a refueling, fuel
assemblies are simply rotated in place, thus moving fuel with high fissile
content deeper into the blanket, Advantages of rotation are power-
flattening and reduction of local power swing over an irradiation cycle,
Westinghouse has shown that the maximum (with time) rod peaking factor
for a radial blanket rod adjacent to the core can be reduced by about
20% by rotation, The reduction in power peaking across the blanket was
not reported. Also, the effect of rotation on breeding economics was
not reported,

Inner Radial Moderator

Insertion of a layer of moderating material between core and blanket
would offer the advantage of softening the leakage flux entering the
blanket, improving the fertile Capture rate per incident neutron, On the
other hand, the incident flux (entering the blanket) would be diminished
due to absorption and reflection by the moderating layer., Thus the net
effect of inner radial moderator configuration on blanket breeding is not
qualitatively clear, Furthermore, one might expect the moderating layer
to return more neutrons to the core and to degrade the returning spectrum,
The net effect (on critical mass and internal breeding ratio) of the im-
proved reflection plus degraded core spectrum is also not intuitively
evident,

Perks and Lord (5) have performed survey calculations on the imner
radial moderator concept, using a variety of moderating materials and
thicknesses, Candidate materials were graphite (82% graphite), graphite-
steel (41% graphite, 51% stainless steel) and sodium (100% sodium),

The inner radial moderator configuration consistently resulted in a small

reduction in critical mass, an increase in internal breeding ratio, a



reduction in blanket breeding ratio,and a net reduction in total breeding
ratio, Their (5) cost results show that the core fissile inventory re-
duction does not offset the breeding revenue reduction; thus, the immer
radial moderator concept does not appear economically attractive,

Moderated Blankets

Replacing some blanket fuel with moderator material would tend to
soften the blanket spectrum, enhancing the conversion rate per unit of
fuel. Opposing this effect is the lessened gross breeding occasioned by
the diminished fuecl content, Some candidate moderating materials are
graphite, Zril,  and BeO,

Two studies (4, 12) have investigated the breeding cconomics of
moderated blankets, lasnain (4) considered graphite in an IMFDBR radial
blanket, while Mayer (12) considered graphite, Zriy, and BeO in a steam-
cooled fast reactor (SCFR) radial blanket, In all cases, the inclusion
of moderating materials (at the expense of fuel volume) led to a re-
duction in breeding ratio, Core parameters (Kegp, critical mass) were
only slightly affected, Both studies concluded that moderated blankets
offered no significant cconomic advantages,

fnother study (17) has shown that seeding a typical LIFER radial
blanket with carbon leads to a slight improvement in the breeding per-
formance of the immer radial blanket: about 10% increase in inner radial
blanket fissile concentration, The outer radial blanket was found to be
practically unaffected,

Radial Reflector

Functions of the radial reflector are: (1) to enhance radial blanket
performance by flattening blanket flux, and, possibly, by softening the
return spectrun; and (2) to provide a neutron shield for structural mater-
ials outside the reactor, Two major design decisions are choice of

radial reflector composition and choice of radial reflector thickness,
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In the Westinghouse LIFBR Follow-On work (73), Fe, C, Ni, and Na
(reference case) reflectors were compared for a 10,5 inch thick radial
blanket, Maximum improvement (over the Na reflected case) in radial
blanket fuel economic performance was only 0,008 mills/KWie (the 12 inch
graphite reflector). A 3 inch Fe reflector provided minimum improvement
(0.002 1nills/KWHe), A 3 inch Ni reflector resulted in 0.007 mills/Kile
savings, Choice of radial reflector material and thickness was found to
have little effect on power ratios across the blanket, Nickel provided
a significant improvement in flux attenuation and was selected as the
preferred reflector material,

Using the BR-1 reactor, Russian experimenters (6) have studied the
effect of reflector composition on radial blanket breeding, Be, C, Ni,
Fe, Cu, 1 Kh 18NOT steel, water, and extended blanket material were com-
pared, The thicknesses of these reflectors were chosen such that any
further increase in thickness resulted in negligible increase in blanket

U238 ( n,y ) captures, "Reflector efficiency' was defined as

where

Aj = additional U238 ( n,Y ) captures resulting from
addition of reflector of material i,

; = additional U238 ( 1,7 ) captures resulting from
extending the blanket,
The base radial blanket thickness was not given, nor could it be inferred,
Two types of blankets - uranium carbide and metallic uranium - were used,
Table 1,1 summarizes the results, The reflector efficiency for the
extended blanket case was unity, by definition. All other efficiencies
were less than unity, indicating that an extended blanket is preferable

if fabrication and reprocessing costs are ignored, The results show that



TABLE 1.1

EFFECT OF RADIAL REFLECTOR ON RADTAL BLANKET BREEDING,

RUSSTAN EXPERTMENTAL RESULTS (.@
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‘Reflector Reflector Uraniwm tetallic
Material Thickness Carbide Uranium
(ci) Blanket Blanket
Be 140 0.54 0.806
C GO0 0,50 -
Hi 162 0,47 0.51
Fe 134 0.42 0.28
Steel 160 0.33 0,40
Cu 184 0,24 0.41
Water 144 0.23 0.4¢
Jc 1,00 -
U-met, - 1.060

moderating reflectors (Be, water) are significantly more effective for
metallic Llankets than for carbide blankets, owing to the harder spectrum
in wetallic blankets and the potential for improved U238 ( n,y ) capture,

For Loth carbide and metallic blankets, Be is the preferred reflector,



The study included 1o analysis of the fissile revenue-fuel cycle
COSt tradeoff in extending the blanket, Tuus from their results,
Table 1.1, it is not possible to reach a firn ccononic judgement vis-a-
Vis replacement of blanket material sig reflector,
In an analytic study at MIT (EE) it was found that for an 13 inch
blanket, no hiproverent in blanlet breeding was accomplished Ly increasing

the reflector (Te) thickness beyond 13 inches, Sinilarly

7
A ]

1o Laprovement
was noted in extending an unreflected 18 inch: Llarket Uy more than an
additional 18 inches, i.e, beyond a total wireflected thickness of 30
inches, Thus an 18 inch iron reflector ad g 36 inch radial blanket are
effectively infinite,

A German study (ié) has evaluated radial reflector materials for

steam cooled FBRs, Candidate materials were stean water, Zrii . BeD
b b 2,

4

graphite, steel, UOZ (extended blanket) | and U metal, The radial blanket
in all cases, was 35 o thick, and composed of 56 v/o U0, and 18 v/o
Structural material, Reflectors, in all cases, were 80 v/o reflector
material, 10 v/o stecl, and 10 v/o coolant,

The reflector materials were first ranked by their effect on "breed-
ing rate" (undefined), Optimum reflector thickness was selected such that
further increase in thickness increased the breeding rate by less than 1%,
Table 1.2 swmarizes the results of the breeding rate ranking,

The moderating reflectors are Zrii,, BeO, and grapiite, Of these,
Zrily has the strongest noderating effect, but it is also the strongest
absorber and thus the weakest net reflector, Tt aas the least beneficial
effect on blanket breeding, The less-thermalizing and less-absorbing Be0
and graphite return more neutrons, albeit at higher énergies, and result

in higher blanket breeding,



TABLE 1.2

EFFECT OF RADIAL REFLECTOR ON RADTAL BLANKET BREEDING,

GERMAN STUDY (12)

Optimum
Reflector Reflector 1
Material Thickness B
(cm)
BeO 12-16 0.023
graphite 12-16 0.021
steel 6-8 0.015
UO2 6-8 0.013
U-metal G-8 0,013
ZrH2 4 0,011

1/ B = radial breeding rate - radial breeding rate with no reflector



The shielding effectiveness of the materials was also considered,

In these studies, reflector thickness was held constant at 8 cm., Flux
values (in arbitrary units) at the outer edge of the reflectors are shown
in Table 1.3. If the objective is to minimize high energy flux, Zril,
would be the preferred reflector, The other moderating reflectors, BeO
and graphite, are somewhat poorer attenuators.

The breeding rate and shielding effectiveness surveys described
above were based on "snapshot' multigroup physics computations, In a
further study, the same author (12) evaluated the blanket revenues, with
the various reflectors, at optimm irradiation times, Fabrication costs
of the blanket were ignored entirely, Also portions of the blanket which
would not yield a net profit (after reprocessing) were not counted, That
is, these unprofitable regions did not burden the blanket with any cost
whatever; they were simply notconsidered to be reprocessed, Table 1.4
summarizes the percent revenue improvements (over the case with no re-
flector) resulting from the addition of the various reflectors, The
oversimplified economic assumptions apparently account for the incon-
sistency in reflector rankings between Tables 1.2 and 1.4,

Metallic vs, Oxide Blankets

The economics of metallic and oxide blankets have been compared by
Kickman (1), Core design was held fixed, Optimum thickness for the
metallic blanket (~20 cm) was about one half that of the oxide blanket
(~40 @n). For these thicknesses, the two blankets had approximately the
Same breeding ratio, uranium content, and flux attenuation characteristics,
Burnup limitations were assumed to be 5000 IWD/MT for the metallic blanket
and 25,000 MWD/MT for the oxide blanket, The study showed that the low
burnup limitation severely disadvantages the metallic blanket - its regional

optimuwn irradiation times cammot be achieved, The oxide blanket's ir-



Reflector
Material

Be0
graphite
steel
uo,
U-metal

29

TABLE 1.3

SHIELDING PERFORMANCE OF REFLECTORS,
GERVAN STUDIES (12)

Flux at Outer-Edge of an 8 cm Reflector

Fast Flux Total Flux
0,8-10,5 Mev 0-10,5 Mev
(arbitrary units) (arbitrary units)
1,63 49,66

2,08 53,30

2,77 39,14

2,41 33.28

2,00 25,46

1.09 33.24



TABLE 1.4

EFFECT OF RADTAL REFLECTOR ON BLANKET REVENUE,
GERMAN STUDIES (12)

Reflector Blanket Revenue Improvemen
tlaterial with respect to reference
BeO 11.0%

graphite 12,9

steel 6.8

Uuo 4.0

2
U-netal 3.2
ZYH,, 2.8
4

_l[ Reference = no reflector



radiation tiie was not so-limited, Even without the burnup limitations,

the oxide blanket was found to be economically preferable,

1.4 SUMMARY

1.4,1 Objectives

The objectives of this work were twofold:

(1) to develop a simple depletion-economics calculational tool
for survey evaluations of LMFBR blanket configurations; and

(2) to perform several comparative studies around a 1000 e
reference LMFBR configuration,

he 1000 Mée case studies (2), to which model (1) was applied, dealt

with (a) effect of choice of radial reflector material (Be-metal vs, MNa)
and radial blanket thickness on radial blanket fuel econonics, (b) the
advantage of operating each radial blanket region on its own local
optimun irradiation schiedule, and (c) the sensitivity of LIFER fuel energy
costs to the economic enviromment,

A preliminary study examined the economic viability of FBR blankets
as reactor size is increased, The reactor size-blanket economics study
used only the economics equations developed in task (1) above, Depletion
information was obtained from simple, one energy group, spherical geometry
breeding ratio expressions, Three cases were compared over a range of
core sizes: (a) a spherical core surrounded by a breeding blanket, with
no fissile burnup in the blanket; (b) a spherical core surrounded by a
sodiun reflector (no blanket); and (c) a spherical core surrounded by a

breeding blanket, with blanket burnup (power) accounted for.

1.4.2 The Depletion-Economics Model (Chapters 2,3)

The depletion-economics model has two parts: (a) the cost analysis

31
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model which yields the fuel components of energy cost , given unit fabri-

3
cation and reprocessing costs ($/kgill), plutonium market values ($/kgPu f) ,
money costs (discount and tax rates), and the nuclide balance data; and
(b) the physics-depletion model, which yields the nuclide balance data -
load and discharge masses of fertile and fissile materials - used in the
cost analysis model., The depletion economics model is programmed in

the computer code SPPIA, described in Appendix C, Given local physics
data (local flux and flux-averaged cross sections) from a single
multigroup physics computation, and given the econonic paraueters, the
code yields fuel costs locally (or for an amular region) in S/kgHY/year,
and energy costs Ly major region (core, axial blanket, radial blanket)

in nills/Gilie,

1.4.2,1 Cost Analysis lodel

Despite attempts to standardize nuclear fuel cost accounting method-
ology (21,22,23,24), a casual review of methods actually used in design
evaluations and tradeoff studies reveals substantial inconsistencies,
Furthermore, FBR blankets lmpose several unique accounting problems:
blanket fuel appreciates with irradiation, raising certain tax questions;
and the long irradiation times in the radial blanket make the treatment
of blanket carrying charges important, For these reasons, a cash flow
method (CEM) was adopted in the present work,

A general CR{ expression for the levelized cost of electricity
(mills/Kilie) was derived and applied to FBR fuel costs, When applied to
a region (core, axial blanket, or radial blanket) or subregion under fixed-
element (batch or scatter) management, the equations reduce to forms
giving local fuel economic performance, e.g. in an annular zone, or at a

"point", in mills/KWHe or $/kgill/year:
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C e ¥ (T)

1006 ¢ kss g material
T = Mg purciase
T
c. . Ffaa (T)
fab fabrication
-+
T

Cpoyr FFFY (D)
cE reprocessing

T
Criss €M FC (D)
HL5S material

T credit (1-1)

wiere T is tie local levelized fuel component of the energy cost (mills/

]

M), L is the electrical euergy produced vy the reactor in one year
J » &) P J

(wie/yr), T is the local irradiation tiue (yr.), “mu and Co.o.e are
L I S Sl NV R Nk, S | A LN £ € e N R A AR St Ial
Lie ust tdvricallon aud reprocesslug costs (p/kglil), Criss

fissile plutcudum price (o/xg), Eg is tae initial earichucut, €(T) is
the discharge eariciment (kg fissile dischiarged per kg of heavy wetal

loaded), FA(T) is the carrylng cuarge factor for cost component ¢, and
MOM is tiue mass of heavy metal loaded. The term in brackets [ ] may be

regarded as a figure of merit representing local iuel cconomic performance,

daving waits of dollars per year per local Kilogram of heavy metal loaded

The carrying charge factors, FA(T), arc given by
N 1 1 for capitalized
YT = - T COSLS Or Tevenues
1-T | =0T
1 for non-capitalized
= . Tc Costs or revenues
Tw) M (expensed cost or

taxed revenue) (1-2)



where

X = (1-N()rbfb + rsfs = "discount rate" (1-3)

and where T is the income tax rate, fb and fs are the debt and equity
fractions, r, and r_ arc the debt and equity rates of return, and 74
is the time bLetween the cash flow transaction q and the irradiation
midpoint,

The "front end" components, fabrication and material purchase, are
normally capitalized. The "backend' components, reprocessing and material
credit, may be capitalized or not, according to tax interpretation, If
they are not capitalized, then revenue from the sale of plutonium is
taxed as ordinary income, along with electricity revenue, and reprocessing
charges are treated as tax deductible expenses in the year in which they
occur, The two methods, capitalizing and not capitalizing backend
transactions, were compared and were found to lhave a significant effect
on absolute values of energy costs, However, choice of method does not
distort comparative or incremental results, e.g, design rankings, optirum
blanket irradiation time, sensitivity studies, In the case studies to
wiich the depletion-economics model was applied, material credit was con-
sistently taxed and reprocessing charges were consistently expensed,

The CPM treatment of carrying charges is embodied in Equations (1-2)
above, Two approximate methods, here labeled "Simple Interest Method"

(SIM) and "ompound Interest Method (CIM), were identified in the

literature;

Fhl=1+ Yy 7l (ST (1-4)
and

Fl= (1+ yq)Tq (CI:) (1-5)



- where
y =x/1-T for capitalized costs or revenues
q
=X for non-capitalized costs or
revenues (expensed costs or
taxed revenues) (1-6)

The CIM expressions were shown, through series expansions, to reduce to
S gnd CIM for small Tqu. SIM underpredicts,while CIM overpredicts,
the carrying charge factor, Because radial blanket irradiation times are
typically long, the CFM method was selected for use in the case studies

of this report,

1.4.2,2 Physics-Depletion Model

The function of the physics-depletion model is to furnish discharge
fuel composition, € (T), to the cost analysis model for use in conputing

material credit,

In the method developed for this work , the "Semi-Analytic Method" (SAM),
local physics data (fluxes and spectrumn-weighted cross sections) from a
single multigroup calculation are used in the analytic solutions of the

reaction rate equations to obtain discharge fissile content:

Mg + Myq

C =
Mo -
1M 1-7
Y Y
49 Y41
Mg = Nyg V L My =N,V , (1-8)
Yav av

=
|

0 Q
a9 = Noo A exp(- 0200) [1- exp(-( 049- 628) 6 ) ]
28 a a a

0
+ N, exp (- 6490) (1-9)
49 A
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= \YO d28 _ \tO
N =N_AB,C. exp (- q 6) Nog

49
) g 0
i 25" 8164 ABZCZ exp( a )

(1-10)
0
1J49B2C2exp( g 0) + 5 C exp(- 6 6) + ﬁexp( o 6)

28, 49 28
A= /(o - q, )
49, 40 28 49, . 40 49
B = - B = o -
"o /Coy - d) BRI
c - 0;110/( Moy ¢ - o400 M4y ¢- %0/ o1 540y
1 a a 2 ¢ a a 3 ¢ a a
B =N —(N AB-’\TQAB+NOB)
1 40 1 2 2 49 79
0 30 0 0 A
8, = Nyp - (NpgABCy - NjoAB,C) + Nyg ByCo + Blc3) (1-11)
T
8 = [ #(r)ar = local flux time (1-12)

M49 ’M4l = discharge masses of Pu239, Pu241 respectively

=
=
I

= discharge atom density of Pu239, Pu24l

49 7 41 respectively

1‘4'149 , H4 1 atomic masses of Pu239, Pu24l respectively

—r
- <=
!

= Avogadro's Number

<
i

volume of the zone (1-13)

Local flux and local spectrum-weighted cross sections are taken from
a single multigroup physics computation, and are assumed constant over a
fueling cycle,

Several effects complicate the physics-depletion characteristics of
FBR blankets: (1) spectrum softening with distance from the core-blanket

interface; (2) spectrum hardening with irradiation time, due to the
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relatively large buildup of fissile plutoniwm in the blanket; (3) flux
shift, i,e, increase in blanket flux with irradiation time, due to

buildup of fissile plutoniwm in the blanket; and (4) heterogeneity effects
occasioned by the soft blanket spectrum,and aggravated, in the case of
radial blankets, by larger pin diameters.

Effect (1) requires that cross sections be input to the depletion
calculation with sufficient spatial detail, i,e, a separate cross section
set, properly flux weighted, for each of many blanket regions, Since
the accurate spatial description of blanket physics is a prime conceri
in the Blanket Test Facility work, no attenpt was rade to determine
potential savings in computational effort through reduced spatial detail,
Instead, attention was concentrated on effects (2) and (3).

Lffects (2) and (3) suggest that static physics calculations be per-
formed sufficiently often, during a depletion calculation, to correct
the local fluxes and cross sections, Since most of the computational
effort is absorbed by the multigroup calculations, computer expense cail
be significantly reduced by minimizing their frequency, that is Dy maxi-
mizing the irradiation time intervals over which flux shape and local
spectra are assumed constant, For this reason, studies were performed
to assess the effects of item (2), spectrum hardening, and item (3) flux
shift, on depletion calculation results. Qualitatively, the two effects
operate in opposite directions, spectrum hardening tending to decrease
blanket discharge fissile inventory, flux shift tending to increase blan-
ket discharge fissile inventory,

Three parallel depletion calculations were performed for a reference
1000 MWe LMFBR;:

(a) a 26 energy group time step depletion calculation (26G-TSD) ,

which accounted for both spectrum changes and flux shift;



(b) a 1 energy group time step depletion calculation (1G-TsD),
which accounted only for flux shift; and

(c) a "semi-analytic method" (SAM) calculation, which accounts for
neither spectrum change nor flux shift with irradiation,

The two approximate methods, (b) and (c), used local spectrum-weighted

Cross sections from the initial (time zero) method (a) solution. In

addition, method (c) used local fluxes from the initial method (a) solution,
The computer program 2DB (zgg was used for calculations (a) and (b).

Method (a) used the Bondarenko 26 group cross section set (43), heterogeneity -
Corrected by the program 1DX @n.

The calculations assumed batch management of both core (plus axial
blanket) and radial blanket, Core and axial Llanket fuel was assumed
replaced after two years irradiation, corresponding to an average burnup
of 100,000 MWD/IT, Radial blanket fuel was assumed irradiated to four
years, The use of batch management in these calculations lmposes a
severe test of the constant flux, constant spectrum assurptions, For
the same irradiation time, the variations of composition, flux shape, and
spectra over a cycle interval are greater for batch management than for
sCcatter management,

Principal findings of the methods study described above are listed
below,

(1) For the core,the discharge fissile inventories from the

three calculations were practically in exact agreement (errors less than

0.1%) .
1
(2) For the axial blanket, 1G-TSD overpredicted discharge
L 1
fissile inventory by less than 4%, while SAM underpredicted by less than
4 .
1. Compared to the 26G-TSD calculation.

o\
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(3) For the radial blanket, 1G-TSD overpredicteg'discharge
fissile inventory by about 10%, due to its soft cross sections, SAM
underpredictedldischarge fissile inventory by around 10%, in spite of
its soft cross sections, because of its low flux values.

(4) Of the two effects examined in this exercise, spectrum
hiardening and flux shift, the latter was found to be dominant,

The SAM calculation, performed by the program SPPIA, resulted in
computer time savings (over the 26G-TSD, performed by 2DB) of on the
order of 90%, while the 1G-TSD (2DB) led to about 60% time savings, In
addition to depletion results, the SPPIA computation obtained fuel costs
by region, as functions of irradiation time,

The effect of heterogeneity corrections (i.e. U238 Tesonance,
spatial self-shielding) on radial blanket depletion results was examined,
feterogeneity influences blanket fissile production in two opposing ways:
28

’

(a) the lower effective U238 microscopic capture cross section, ©
. c

depresses the conversion rate, tending to decrease bred fissile inventory;
28

(b) viewing blanket neutronics as an attenuation process, the lower i:
results in higher blanket fluxes, tending to increase the conversion rate
and bred fissile inventory, Of these two opposing effects, (a) dominates
and heterogeneity leads to a net adverse effect on blanket breeding.

Two rultigroup physics computations were performed using, respectively,
26 group infinitely dilute cross sections and 26 group heterogeneity -
corrected cross sections in the blanket, Local fluxes and one group Cross
sections from these two computations were then input to SAM to obtain
depletion results with and without heterogeneity corrections. Comparison
of the two SAM results showed that blanket heterogeneity reduced fissile

discharge inventory by about 10% for irradiation times of interest (2-7

years), A similar study (30) showed that heterogeneity corrections for a
l.Compared to the 26G-TSD calculation.
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typical LMFBR axial blanket diminished calculated axial blanket Pu239 dis-

charge mass by as much as 3%,

1.4.3 1000 Mve IMFBR Case Studies (Chapter 5)

The depletion-economics model established above was applied to case
studies involving radial blanket thickness, choice of radial reflector
material, radial blanket fuel management, and the sensitivity of IMFBR

fuel energy costs to the economic enviromment,

1.4.3.1 Radial Blanket Thickness and Radial Reflector Material

Combinations of three radial blanket thicknesses (15, 30, 45 cm) and
two radial reflector materials (sodium, beryllium metal) were evaluated,
The total radial dimension (blanket plus reflector) was held fixed at 95
cim, since even the thimmest (50 cm) reflector is effectively infinite
(§J§1). The core and axial blanket configuration was also held fixed,
Core volume was 4908 liters, core height-to-diameter ratio was 0.4 and
the axial blanket was 40 cm thick, Core and axial blanket fuel economics
were found to be insensitive to radial blanket/reflector design changes,
A solid beryllium metal reflector (no coolant, no structural material) was
selected as a limiting case, i.e, as the reflector apt to provide maxinum
improvement in radial blanket fuel econonics,

Figure 1.1 and Table 1.5 swmarize the results of the blanket thick-
ness-reflector material survey, '"Reference" and "more favorable" economic
envirouments, for radial blankets, are defined in Table 1.6, Principal
findings arc listed below,

1. The relative advantage of the noderating reflector, Be-
letal, increases as the reflector is moved nearer the high flux zones

of the blanket, that is, as the Llanket thickness decreases, For a thick
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FIG, 1.1 EFFECT OF RADIAL BLANKET THICKNESS AND RADIAL REFLECTOR
MATERIAL ON RADIAL BLANKET FUEL ECONOMICS
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TABLE 1.6

RADIAL BLANKET ECONOMIC ENVIRON'ENT

Fabrication, 3/kgll!
Reprocessing, §/kgild
Fissile !lfarket Value, 3/kg

Discount Rate, %

Reference

69

31

10,000

More Favoralble

40

(o)
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(45 cn) blanket, the effect of radial reflector material choice is only
slight,

Z, For either reflector, reducing the blanket thickness always
reduces the bred plutonium inventory of the blanket, that is, the plutonium
forfeited in the region eliminated is greater than the additional plu-
tonium bred in the remaining region as a result of improvement of its
breeding performance ( UCZS;D ).

3. Optimum irradiation time decreases as the radial blanket
thickness decreases and as the economic enviromient improves, The effect
of the choice of radial reflector material on optimun irradiation tim
1s wore pronounced the thinmer the blanket,

4. Radial blanket thickness optimization is weak, that is,
net blanket revenue does not display a sharp peak as radial blanket thick-
ness is reduced from 3 rows to 2 rows to 1 row (15 cm per row), Thick
blankets are indicated when fabrication and reprocessing costs decrease

and/or fissile market value increases,

1.4.3.2 Advantage of Local Fuel Management

Fuel management schemes addressed in this study are characterized

as "fixed fuel" schemes, i.e, fuel sees only one position in the reactor

during a refeling event a fraction, g, of a region's fucl is discharged
and replaced with fresh fuel ("'scatter' management), If all of the
region's fuel (g=1,0) is replaced, the region is said to be "batch"

managed,

The entire radial blanket may be batch or scatter managed, in which

case all fuel experiences the same irradiation time. Alternatively, the
blanket may be divided into annular regions (rows), with each irradiated

to its own local optimumm irradiation time, again in a batch or scatter



45

managenent scheme, The advantage of operating each radial blanket anmular
region on its own local optimum irradiation schedule was estimated for the
reference LMFBR configuration (45 cm blanket ,Na radial reflector)., Net ra-
dial blanket revenue in mills/Kie was found to be about 303 higher when
local management was assuned, The local optimum irradiatiaon time ranged
from 2,5 years (at the core blanket interface) to about 12 years (at the
blanket-reflector interface),while the optinum irradiation time for the
blanket as.a whole was 6,5 years,
Anotier advantage of local fuel management, not quantified in the

present studies, is the power flattening effect,

1.4.3.,3 Sensitivity of LIFBR Fuel Energy Costs to the Lconomic Lnvirorment

Costs generated throughout the fuel cycle are ultimately transferred
to the utility company and Lorne, along with the utility coupany's carrying
Charges, by the electricity consumer via the fucl component of the levelized
cost (price) of electricity in nills/XWHe, Economic enviromment is defined
here as the unit costs for fabrication' and reprocessing (§/kgill) , the
fissile Pu market value ($/kgPu fissile) and the utility company discount
rate(%), The sensitivity of reference LT3R fuel energy costs (mills/Kilie)
to compenents of the economic envircmment was examined by varying each
parameter around the reference values given in parentheses in Table 1.7.
Sensitivity of region "s'" fuel cost (Z5) to cost component ''q", about refer-
énce envirorment "6",15 represented by the "sensitivity coefficient',

(Aq,s) defined by
@ o, =@ /8 (9%, /9eC ) (1-14)

q,s’ o S7o s

0’

1. Carrying charges of the fuel cycle industries are included in their unit
costs (§/kglll) . Carrying charge components oF energy costs refer to util-
ity company carrying charges,
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TABLE 1,7

RANGES OF ECONCMIC ENVIRONMELNT PARAMETERS

Unit Processing Costs [$/kgtl1]

Fabrication
Core 150-(314) -330
Axial Blanket 20-( 80)-314
Radial Blanket 20-( 69)-100
Reprocessing
Core 15-( 31)- 60
Axial Blanket 15-( 31)- 60
Radial Blanket 15-( 31)- 60

Nuclide Market Values ($/kg)

Fertile (ng, Ca0) 0
Fissile [C49, C41) 5000-(10,000) -25,000

Utility Coupany Financial Parameters
Income Tax Rate (T) (0.5

vUiscount Rate (x) 3.06-(6,08)-0.10

( ) indicates reference value
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Table 1.8 swimarizes the sensitivity coefficients for the reference core,
axial blanket, and radial blanket, Fabrication and reprocessing components
include their respective carrying charges, The material component is the
net direct fissile material cost (fissile wmaterial purchase less fissile
material credit) plus the material carrying charges (inventory). For
all three regions, the energy costs for fucl are seen to be most sensitive
to unit fissile value and least sensitive to unit reprocessing cost,

For the core and axial blanket, irradiation time is set by the burnup
limit of the core, Thus, for these regions, Lquation (1-1) reduces to

simple linear relations of the unit costs:

; (1-15)

= C + C a C
s afab,s fab,s © drepr,s repr,s mat,s fiss

where

tipp 8(T) = constant,

tience, for these regions, sensitivity coefficients simply represent the

fractions of the regional cost, €., contributed by the respective components:

©
q,s
A = -1¢6
( Cl,S) o T (1-16)
S 0
where
c = a C

q,s 4,5 4,5

The radial blanket energy cost of interest is the fuel cost at the

optimum irradiation time, (EkB ) Since the optimum irradiation time

Topt*
is an implicit function of the economic enviromment parameters, the
Equation (1-1) for the radial blanket does not reduce exactly to a simple

linear form, However, sensitivity results from the SPPIA program,
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TABLE 1.8

SENSITIVITY COEFFICILNTS, CA s):’ FCR REFERENCE LMFBR
CORE, AXTAL BLAIRET, AMD RADTIAL BLANKET

q S Core Axial Blanket Radial Blanket
Fabrication 0.357 -0,495%% -2,15%%
Reprocessing 0.025 -0,140%% -0,44%%
Material 0.628 1,635 +3,59

1,000 1,000 1.00
. \ ae/(eg ),

Bo,so =
Acq,s/(cq,s)o

e

These terus are negative because the (e ) for the Dlankets
are negative,
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Figures 1.2, 1.3 and 1.4, showed that (EﬁB )Topt is practically linear
in %ab’ Crepr’ and %iss over the expected ranges of these parameters,
Thus, IEquations (1-15) and (1-16) are applicable to the radial blanket
near reference economic conditions,

Figures 1.2, 1,3, and 1.4 also show that Topt is approximately linear
in cfab’ Crepr’ and cfiss’ and that Topt decreases with improvement in
the radial blanket's economic enviromment,

Figure 1.5 shows the regional (core, axial blanket, and radial
blanket) and total fuel costs as functions of fissile plutonium value,
Several features are noted:

(a) Due to the core fissile inventory component, the total

reactor fuel energy cost, @,

cactors increases with Cfiss despite the

fact that the reactor produces more fissile plutonium than it consumes.

(b) The axial blanket is more profitable than the radial
blanket, because the axial blanket sees more neutron: in this particular,
but typical, design (H/D = 0.4).

(¢) The axial blanket breakeven point occurs at about 3,9 $/am,

(d) The radial blanket breakeven point occurs at about 7.25 §/an,

(e) As fissile price increases, the blankets become more viable,
substantially offsetting the higher core inventory costs,

It is unlikely that the disparity between axial blanket profit and
radial blanket profit would be diminished significantly by reasocnable
Changes in the thickness or composition of either blanket. The axial blan-
ket advantage is largely inherent: the axial blanket enjoys a higher flux,
and higher fissile generation rate per unit of heavy metal loaded, and a
short optimum irradiation time close to that set by the core burnup limit,
(2 years), llence axial blanket fissile credit is not threatened by over-

whelning processing and material carrying charges,
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1.4.4 Reactor Size and Blanket Fuel Economics

A semiquantitative scoping study was performed to examine the effect
of reactor unit rating on the econonic viability of Llankets, As core
size increases (holding core shape fixed), core fuel economics improve
due to the decreased critical enriciment and increased internal breeding
ratio, At the same time, core surface-to-volume ratio and external
breeding ratio diminisi:, and blanket fuel economics degenerate,

All of the wajor assumptions in this preliminary study penalized the
blanket. A splerical core was assuned throughout the range of core size,
that is, core geometry spoiling to maintain negative sodium void co-
efficients was not accounted for, A one-zone core was assumed, whereas
a graded enriclment scheme would have enhanced blanket economics, The
increased control requirements, and associated costs, involved in
increasing the internal breeding ratio ruch ahbove unity were ignored,

Figure 1.0 shows that in spite of thiese (and other) penalties, the
blanket concept is economically preferable to a non-breeding reflector
(Na) for reactor ratings well over 1000 if%e, Beyond the "indifference
point", the advantage of the 'mo-blanket' configuration is only very slight,
Tiws, it is likely that blanketswill remain an important part of LMFBR

L

design for the foreseeable future.

1.5 CONCLUSIONS AND RECOMMENDATIONS

The nost significant findings and recomendations are summarized in
the following paragraphs,

Choice of fuel cost accounting method has a significant effect on
absolute values of energy costs (mills/KiWle), but does not distort com-
parative and incremental results, design rankings, optimization of fuel

residence times, etc, Choice of taxing method can, however, affect the
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optimized thickness of blankets,

A sipgle multigroup physics computation, to obtain the flux shape
and local spectra for depletion calculations, is sufficient for evaluating
blanket/reflector design changes and for scoping and sensitivity studies,
The major source of error in depletion results is the assumption of con-
stant local flux over an irradiation cycle,

Chqice of radial reflector material is important for radial blankets
of one or two rows of subassemblies (15-30 cm), The relative advantage
of a moderating reflector increases as the reflector is moved nearer the
high flux zones of the blanket, that is, as the blanket thickness
decreases from three (45 cm) tows to two (30 cm) fows to one (15 cm) row
of subassemblies,

Radial blanket thickness optimization is weak, i.e, net blanket
revenue does not display a sharp peak as radial blanket thickness is
reduced from three rows to two rows to one row, Significant improvement
(~30% increase in net blanket revenue) results from irradiating each
radial blanket region to its own, local optimun irradiation time,

Both the optimum radial blanket irradiation time and the corres-
ponding radial blanket net revenue are approximately linear functions of
the unit costs in dollars per kilogram for fabrication, reprocessing, and
fissile material, ‘For increased fissile costs, both blankets (axial
and radial) become more important in offsetting the increased core fissile
inventory costs,

Based on a simple examination of reactor size versus blanket fuel
¢conomics, blankets are expected to remain an important part of LMFER

design for the foreseeable future,

56
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Fast breeder reactor blanket design and fuel management has not
received attention, in the open literature, commensurate with its
importance, Design and fuel management study results tend to be highly
specialized and fragmentary, making normalizations and comparisons difficult,
A comparative evaluation of scatter, batch, out-in, and in-out equili-
brium radial blanket fuel management schemes, for a fixed reactor config-
uration, is recomnended,

The flexibility of radial blanket fuel nanagenent, after thc reactor
is in operation, presents the opportunity of optimizing reload strategies
in accordance with the current and projected economic environments. Further
effort in this area is recommended,

Interactions between engineering design and fuel management parameters
should be examined with the aim of better understanding and characterizing
the blanket, Radial blanket fuel management directly influences the de-
gree of power flattening across the blanket, the power swing over an
irradiation cycle, and the core-blanket power split, The associated
economic trade offs are not well understood, In particular, an analysis
of the benefits and penalties of blanket fissile seeding is rccommended.

In brief, the most important reconmendation is that, whatever
aspects of blanket fuel management are subjected to further scrutiny,
this be done on a more global basis, at the minimun taking into con-
sideration the strong interaction of nmanagement schemes and the flow
orificing pattern adopted,

Since unit sizes are projected to increase to 2000 MWe and beyond after

the year 2000, a more thorough parametric study of blanket performance

versus reactor rating is recommended,
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. CHAPTER 2
FUEL COST ANALYSIS METHOD

2.1 INTRODUCTION
2.1.,1 Objectives of the Chapter

The purpose of this chapter is to establish a fuel cost analysis method,

for fast breeder reactors, capable of

(a) ranking major technological alternatives, e.g, choice of
blanket and reflector materials,

(b) optimizing certain design and fuel management variables, e,g,
optimum blanket thickness, optimum blanket irradiation time(s), and

(c) determining the sensitivity of fuel cost to changes in the
economic environment, e.g. changes in unit fabrication and reprocessing
Costs, sale value of fissile nuclides, and cost of money parameters,

A secondary purpose of the chapter is to compare alternative fuel cost
accounting methods, While alternative methods frequently yield signifi-
cantly different absolute values of power costs in mills/KWHe, choice of
accounting method should not distort the ranking of design alternatives, the

values of optimized parameters nor the results of the sensitivity studies,

2.1.2 Background: Utility Company Economics

In non-regulated industries, the objective function used in measuring
performance is profit (to be maximized), i.e. the stockholders' return on
investment. By contrast, the objective function in utility company economics
is usually the cost of electricity to the customer (to be minimized), or

price, since a ceiling is imposed on investors' rate of return by regulatory
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agencies, Hence, in utility economic analyses, investors' rate of return

is treated as an expense to the customer, is fixed in the calculations,

and the cost (price) of electricity to the customer must be such that the
company's revenue from the sale of electricity balances all of its costs

in generating and delivering that electricity, including payment of investors'
principal and return, taxes,and direct expenses.

For purposes of selecting generating plant type, design studies, etc.,
the electricity generated by a given plant is normally burdened with the
Costs associated with that plant alone, For purposes of preparing financial
statements and setting electricity rates, however, the costs of different
plants are, of course, mixed, |

Generation costs are normally divided into three categories: plant
Capitalization, fuel, and operating and maintenance costs, Only LMFBR fuel
Costs are considered in this report, Costs generated throughout the nuclear
fuel cycle are ultimately transferred to the utility company, burdened to
the production of electricity, and borne by the customer, along with'the
company's costs of capital associated with the fuel, in the form of a

levelized price (cost) of electricity (mills/KWHe) .

2.1,3 Scope of the Cost Analysis Model

Figure 2.1 illustrates the scope of the cost analysis model established
for the present work. The model has the features and restrictions listed
below,

1. The model is restricted to fuel costs, It excludes the other
major cost categories:plant Capitalization, and operating and maintenance,

2. The model treats costs associated with an individual plant or
Class of plant, i,e. LMFBR, in a given economic environment, Other concerns

such as the mix of plant types (capacity planning),ccipling effects,
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generating schedules (dispatching) are not treated,

3. The "economic enviromment' is set, in parametric fashion, out-
side the cost analysis, and is assumed to be constant throughout plant life,
The''economic envirorment" is defined here as the market value of fuel
materials, prices of fuel cycle processing services, and the utility
Company's cost of money parameters, Such macroeconomic concerns as supply-
demand effects in the market place (value of fissile isotopes), allocation
of national resources, and effects of total processing industry throughput
on processing prices, are not treated by the model.

4. As shown in Figure 2.1, the cost analysis model requires ir-
radiation-depletion data from a fuel depletion model. (Fuel depletion models
for IMFBR's are discussed in Chapter 3.) Output of the cost analysis model
includes the following:

* fuel component of electricity costs, in mills per kilowatt
hour (electric), by major region, i.e, core, axial blanket, radial blanket;
and

* local annual fuel costs, in units of dollars per year per
kilogram of heavy metal loaded, by major region, subregion (an annulus of

fuel), or at a point,

2.1.4 OQutline of the Chapter

A general expression for the levelized cost of electricity is derived
in Section 2,2, This formulation, labeled here as the "cash flow method"
(CEM), is applicable to all categories of costs: plant capitalization, fuel,
and operating and maintenance costs, The derivation presented in Section
2.2 follows that of Vondy ({2}, with the following exception: an option
is included for taxing revenue from sources other than the sale of

electricity_
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The CFM expression is applied to fast breeder reactor fuel costs in
Section 2.4, Two methods for the tax treatment of post-irradiation trans-
actions are derived,

In Section 2.4, the CFM expressions are specialized for fixed-fuel
management schemes, in which fuel assumblies ''see' only one irradiation
position, A figure of merit representiﬁg local fuel economic performance
(§/year/local kg heavy metal) is derived.

In Section 2,5, several fuel cost accounting methods are compared,

The effect of post-irradiation tax assumptions is shown, The cash flow method
(CRM) is related to‘and numerically compared with two other methods: the
simple-interest method (SIM) and the compound interest method (CIM).

A sample CFM calculation is present in Section 2,6, Major features of
the blanket fuel cost vs, irradiation time characteristic are shown, i.e,

the brealeven point and the optimum irradiation time,

2.2 DERIVATION OF A GENERAL EXPRESSION FOR THE LEVELIZED COST OF ELECTRI -
CITY (CASH FLOW METHOD)

A general expression for the levelized cost of electricity, e(mills/Kile) -
applicable to plant capitalization costs, fuel costs and operating and

maintenance costs - is derived in this section, The general expression is

applied to FBR fuel costs in Section 2.3.

An electric utility Company interacts financially with

* customers (electricity revenue, E‘Ej);

* capital equipnent suppliers (capitalized costs, Zj);

* fuel suppliers, fabricators, reprocessors (capitalized costs

Zj , expensed costs, CB)

* federal, state and local governments (income tax, Tj , property

tax, 7rJ)



* investors, including stockholders (owners)and bondholders(Yj)
* and others,
Nomenclature is given in Appendix A,

Figure 2.2 illustrates the detailed accounting treatment of utility
company cash flows in year j.

Book value (liability to investors) at the end of year j is the book
value, Yj, in effect during year j plus any new capitalization which
occured during year j. Residual revenue for year j (revenue after taxes,
current expenses, and return to investors have been subtracted), Rj, is
applied against end-of-year book value to obtain the book value in effect

for the following year, j + 1, i.e.

.. = Y. -R, 2.

Residual revenue, Rj’ is a function of the levelized price (cost) of

electricity, e, Application of the boundary conditions

Y1 = Z0 (2-2)
and
YN+1 =0 (2-3)

to equation (2-1) yields an expression for e, as is shown below,

Residual revenue, R., is given by

Rj = (taxable revenue + non-taxable revenue)
- (current expenses)
- (investors return)

- (income tax)

- SE: '
IU%U' + V. + V.
J J

- 05 - (mpfpYj + rsfYy) - Ty (2-4)

03
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Income tax, Tj, is computed by applying an income tax rate (T) to the

net taxable revenues, i.e,

-3
1]

7 [net taxable revenues, j]

r [ (taxable revenue)j - (tax deductions)j] (2-5)

Taxable revenue is given by

(taxable revenue); = l sy, (2-6)
7 1000 ]
The second term V& (taxable revenue from sources other than the sale of
electricity) is included for flexibility and generality,
Allowed tax deductions are:
current (non-capitalized) costs, O; ;
return on debt capital (bonds), ry fB Yj ; and

depreciation of capitalized costs, Dj :

tax deductable expenses). = 0. + r,f,Y. + D . 2-7
( © expenses); = 0; + ryfiY; + D (2-7)
Thus income tax for year j is given by
Ty = 7| %5
+V. -0. -1 f,Y. - D: 2-8
00 J 3 " by Y (2-8)
Substituting Equation (2-8) into Equation (2-4) for Tj,one obtains
E'Ej .
R. = + V. + V. -0; - r.f1.Y. - r_f Y-
] 1000 jo T T stsTy
[EEJ.
-7 +V, -0, -nfiY. - D: (2-9)
1000 § 3 BB
€ E.
= (1-7) J +V; -0, | + 7D,
1000 J J

- [(Q-7)1pfp + rfg] YJ. + vj'
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The residual revenue R.j is available to pay back the bondholders' and
stockholders' principal, as shown in (2-1), and may be thought of as a

book depreciation payment, Substituting Equation (2-9) into Equation (2-1)

for R.
7’ gEj
Y. . =Y. +2Z. - (1-T +v-o.]
oSS T T )[1000 i d
]
+ 7[3 + Vj - [a-7 Jrpfy, + P | Yj (2-10)
Defining
€ ,
A =zJ. - Q-7) [ + V. -o.] -TDj +Vj (2-11)
1000 J

and collecting terms on Yj’ one obtains

Yj+l = [l + (1-7) rbfb + rsfs] Yj + Aj (2-12)
Defining
X = 1-1) rbfb + rfs (2-13

Equation (2-12) becomes

Y = (1+x) Yj + A, (2-14)

j*l j
The quantity x defined in Equation (2-13) will presently be identified as
the appropriate discount rate for present value calculations,

The recursive relation (2-14), together with the boundary conditions
(2-2), (2-3) and the definition of Aj, Equation (2-11) ,leads to a closed form
expression for levelized price of electricity, E, Equation (2-14) is applied

repeatedly, as follows, subject to the boundary conditions:

Y = Z = A (2-2)



Y, = (1+x)Y1 + A1 = (1+x) Ay + A1

Y; = (L+x)2A) + (1+X)A] + A,
) i-1 L
Y. = Y (1+x)i-l-da,
1 j= J
) N N
Nw1s 2 @A = 0 (2-3)
7=0 J
N
= @+l Z AT A, =0 (2-15)
j=0 ’

Substituting Equation (2-11) for Aj into Equation (2-15), and solving

for € N
’ N V! T
Z(lﬂ() = -5 CTTED -Vt 0
=0
e = 1000 .

N .
2 (1+x)J E. (2-16)
j=0 J

The factor (1+x)7J is seen to be the ""discount factor', or "present

value factor",

w(j) = (1+x)"] (2-17)
and x, defined by

x= (1-T)rbfb + rfg (2-13)

is identified as the '"discount rate',

67
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The derivation above assumes that the capital structure (fb, fg) and
rates of return (rb, r.) are fixed,

The cash flow approach used in deriving Equation (2-16) has many ad-
vantages, First, Equation (2-16) is exact; that is, it avoids the tax
iteration of methods which treat income taxes as costs to be present-valued
separately, In the cash flow method derived above, allowance for income
taxes is implicit in the coefficients of the present values 1/1-r, 7/1-7
1) and in the discount rate,

Another advantage is that vagaries in the interpretation of the dis-
count rate are circumvented, The discount rate is defined within the cash
flow derivation above., It may be calculated once the tax rate (=),
capital structure (fb, fs) , and debt and equity rates of return (ry, rg) are
set,

Further, the cash flow method (CFM) is flexible. A broad range of
financial conventions may be accommodated within the CEM structure, Whether
to '"'capitalize" (Z, V') or "expense" (0, V) a given transaction is the user's
decision, subject to IRS and state regulations, Equation (2-16) specifies
how these transactions are treated, Different classes of transactions
must be treated in different ways, when taxes are present, and the CFM
specifies how,

Finally, in other methods (20) two depreciation schedules sometimes ap-
pear (depreciation for tax purposes, and depreciation for computing investors'
return), leading to confusion, In the CFM described above, depreciation
enters the calculation only in the tax computation. The depreciation of
investors principal is set by the assumption that residual revenue Rj is
applied toward paying back this principal, This restriction imposes a
standard convention, of sorts, but permits alternative designs to be

evaluated on a standard basis, free of accounting artifices.
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2,3 APPLICATION TO FBR FUEL COSTS
A general expression for the levelized cost of electricity, Equation
(2-16), was developed in Section 2,3, In the present section, that

formulation is specialized to treat FBR fuel costs,

2.3.1 Separation of Costs

For convenience and flexibility, one wishes the costs to be as separ-
able and additive as possible, They are made additive, in this report, by
burdening the total reactor emergy with each cost item individually, as
opposed to charging ;he energy released by a single fuel stream with costs
associated with that stream,

The reactor fuel costs are separated, or classified, as follows:

(a) by fuel stream, A fuel stream is a distinct sequence of fuel
lots which sees one (batch or scatter management) or more (e.g. in-out,
out-in management, etc,) positions in the reactor., A fuel stream can
normally be identified with a major region (core, axial blanket, or radial
blanket), and may be characterized by features such as pin diameter, ini-
tial isotope composition, etc,

(b) by component , for each stream, Each fuel lot of each stream
incurs certain '‘component' costs as it proceeds through the fuel cycle,
i.e, material purchase, fabrication, reprocessing, and material credit.

(c) as direct costs or carrying charges. Each component of each

Stream includes direct and carrying charge subcomponents, Thus there are
eight (8) cost items per fuel stream.

If S is the number of fuel streams, there are SX8 separate cost items
in mills/KWHe which may be added directly to obtain total reactor fuel
cost, These cost items may be regrouped as desired to assist technological

economic insight, to make results comparable with other studies, etc.
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For example, direct material purchase and direct material credit may be
combined to form "burnup" cost. Their carrying charges may be combined to

form "inventory'" cost,

2.,3.2 Application to FBR Fuel Costs

The cost expressions associated with an arbitrary fuel stream are
developed below, ‘Total reactor fuel cost may be found by summing the costs
of the individual streams, provided the denominator of Equation (2-16),
discounted total plant electricity, is retained in each of the stream
equations, For the moment, attention is focused on the numerator;

For an arbitrary fuel stream, the numerator of Equation (2-16) may be

expressed as a sum over the fuel lots (m) rather than over years (j):

N |
Z \Y
(numerator) = E w(j) i .3 7
N D -V -0
j=0 1-7 1 -7 l-7 ] J J
Z

n
n 4 A4
- > T -y
m=1

T -

[

~

A ¢ RIS
k

1-+

.

- VoWt + o w(td) (2-18)

where the t's are the times, in years, from beginning of plant life to the

indicated transactions,
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For each fuel lot m, four direct cash flows are identified, as shown
in Figure 2,3:

material purchase, zIP;

fabrication cost, zﬁ?b ; [$/1ot]
reprocessing cost, z;épr ; and

material credit, -ZEF .

Each of these transactions is to be assigned to one of the classes of
transactions appearing in Equation (2-16) and Equation (2-18),

These classes of transactions and two methods of assigning the lot's
costs to them are summarized in Table 2,1. In both methods, the pre-
irradiation transactions (material purchase and fabrication) are capitalized,
Method A treats post-irradiation transactions as non-capitalized; that is,
revenue from the sale of valuable isotopes is taxed as ordinary income,
along with revenue from the sale of electricity, and reprocessing cost is
written off as a tax deductable expense in the year that it occurs,

Method B capitalizes the post-irradiation transactions,

Method B is strictly applicable, or at least conceptually correct, in

cases of depreciating fuel, such as thermal reactor fuel, which experiences

no net»fissile gain during irradiation., For depreciating fuel,

- fab mc
D= (z= +7P) - (zp~ - z5PT) > 0 (2-19)

and the interpretation of the tax depreciation credit, TD/(1-7), is
clear and correct, On the other hand, if fuel appreciates, as in a fast
breeder reactor blanket,

D <0 (2-20)
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TAZLE 2,1 - TAX TIEAT BENT OF FUEL TRAIGACTIONG

Trans-
action Tax
Type Description Factor
Z capitalized cost 1/1-T
¢ expensed cost 1
| . .
V capitalized (mon-tax- 1/1-T
able) reveaus frou
sources otier than
sale of electricity
V4 noli-Capitalized 1
taxable) revenue
irom sources other
than sale of clec-
tricity
i depreciation for T/1-T

tax purposes; ficti-
tious; for cach Z-
type cost, thefe
st appear a de-
preciation term

Viethod Jiethod
g ha
it §5)
material rnaterial pur-

purciase; chase; fabri-
favrication cation; re-
processing
TEpIeCessing
material
credit
material
credit
material (material
purchase purciiase and
aml fabrication)
fabrica- - (material
tion credit -re-

processing)
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and the tax depreciation credit reverses sign, This would imply a ''tax
appreciation debit", an entity not recognized in accounting nor allowed
by taxing authorities, There is no symmetry with regard to tax deprecia-
tion: appreciation is not the opposite, or mirror image, of depreciation,
for tax purposes,

Tax regulations require that ordinary income - that from the sale
of the firm's ordinary product - be taxed at the corporate rate, =, at the
time that the income is realized (product exchanged for cash). Other
regulations and rates cover extraordinary income, capital gains, losses,
etc, The "ordinary" product of dectric utility companies is electricity,
It is conceivable that fissile material could become another ordinary
product for utilities operating breeders, and that this new income will be
taxed in the same manner as that from the sale of electricity,

How or whether this income is to be taxed, and the details of the fuel
account structure, are beyond the scope of this report, and must await
resolution by tax and regulatory agencies, or by common usage, Methods
A and B are compared in Section 2.5, Choice of method has a significant
effect on absolute values of levelized fuel cost, particularly in the radial
blanket, but does not distort the economic ranking of design alternatives,
nor does it significantly affect optimized parameters such as exposure,

Method A was selected and used consistently in the case studies of Chapter 5,

2,3,2,1 Method A

Under Method A, Equation (2-18) becomes



mp fab

n z. z

(numerator) = E w(tﬂp) + w(trﬁab)

1-T 1-T

n

repr repr me mc

oz w(tm Py . Z0 w(tm )
K

T |
e Co 22y E g WDl (2-21)

k

where the inner summation is taken over the tax depreciation credits, k,
for lot m, and the 8, are fractional coefficients determined by the tax
depreciation schedule used,

Capitalized costs associated with the fuel lot m are amortized (de-
preciated for tax purposes) over the time the lot is in productive use,
i.e. the time it spends in the reactor. Except for tax purposes, the
depreciation schedule is immaterial; only the initial and discharge values
of the fuel are relevant, Tax depreciation need not be consistent with |

the actual change of fuel value during irradiation since the IRS permits
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certain fictitious tax depreciation schedules., For consistency, simplicity,

and because actual fuel value changes are practically linear, straight

line depreciation of fuel is frequently used in utility accounting(80).

With straight line tax depreciation, the tax depreciation term for lot

m becomes

- T

K
—_— mp fab k
-1 (z + 2 ) Zk g Wity )

= T (Zﬂ}p + Zlﬁab) K g K
1-T K ; w(t’“ )

K
T_ (g7 + 2t k
S w(ty) E w(T ), (2-22)
k

1-T K
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where
t = time from beginning of plant life to midpoint of
™ irradiation of lot m,
Tk = tk -t

m m m

tm = time of depreciation credit k,

Little accuracy is lost if only one tax depreciation credit is assumed

and it occurs at the irradiation midpoint, Table 2.2 illustrates the effect

of this assumption for an irradiation time of five years, With this as-

sumption, Equation (2-21) becomes

n (2P zfab
m
(numerator) = Z — w(tmp) + w(tfab)
m |1-7 m 1-7 m

repr TepT _ mc mc
+ zm w(tm ) z w(tm )

T

O

+ zfab) Wt )
l1-r W m m

(2-23)

Grouping the terms by component (mp, fab, repr, mc) and recalling
Equation (2-16), the contribution of the fuel stream (&) to the total

reactor fuel cost is given by

e = + €, + g + e
e emp €fab erep T e

n o w(tgllp)
Zn




TABLE 2.2 EFFECT OF ASSUMING A SINGLE TAX DEPRECIATION CREDIT

K=5 K=1
"'exact" "approx."
KT W k ™ om  wirh
m m m m
1 -2 1.1664
2 -1 1.08000
3 0  1.00000 1 0 1.00000
4 +1  0,92593
5 +2  0.85754
K
1 K
— Lw(TY = 1.00594 1.00000
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n
fab
fab [w(tm ) i r ]
—_ _ m — T
& p = 1000_m 1-7 1-7 w(t)
i:w(j) E,.
J J
n
E ZTEPT  y(¢T€PT )
G = 1000 “m< ™ m
Tepr
N
Z w(j) E.
j ]
n
_ 2 :zﬁé w(tgc )
emC = -1000 m
N
Z: w(j) Ej (2-24)
J
Defining
T = t -t®= 7MW 1/27T
m m m m m
fab_ fab_ o'fab
Tm = 1:m-tm = Tmfﬂ1 +1/2Tm

TOPT =t - 1P = (T 'TPT 4 1/2 T )

TC = t -t = ST+ 12T (2-25)

observing that

w(a) w(b) = w(a+b), (2-26)

one obtains, for the fuel stream in question,
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n w(-TMP)
%: w(ty) zn’ S
€ =1000 1- T 1-T
n
2. w(jIE,
j J

I
T w(t) zIPT [w(-TTepT )]
z =1000 m m=m m

TepT

N
2 w(j) E.
j J

I me c
_ o ow(t) z, [W('Tm )]
Sy = 1000 m m

N
L w(j) E (2-27)
J

2.3,2,2 Direct and Carrying Charge Contributions

Each fuel stream component can further be separated into direct and
carrying charge subcomponents. For component q(mp, fab, repr, or mc), of
lot m, the direct dollar cost is z% . Let (z%)** be the carrying charge

component, Then the total dollar cost, (zl%)* , is given by
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(zh* = (direc:t)r?1 + (Ca.Chg,,)Ic:*1
= z4 qy %=
A (zm)*
T
= Zq Fq (2-28)
m m
where
Fl=1+ £
m m

The carrying charge factors (FI(I‘»I) are readily identified as the brack-
eted [ ] temms in Equation (2-27), and are summarized in Table 2.3,

Levelized cost of electricity associated with the fuel stream's
Component q is therefore

n
£ w(t) z§ Fd
'e‘q = (¥) 1000 m m m

N
Z w(j) E;
j J
n q {1 q
Z w(t) z w(t) z!fd
=1000m ™ ™ 4+ 1000 m W Mmm
N N
zw(j) Ej Z w(j) Ej
J

. =
®q,direct ©q,CaChg (2-29)
2.3.2,3 Method B

In Method B, the reprocessing and material credit transactions are

capitalized. Only the reprocessing and material credit carrying charge

factors differ between Methods A and B.
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Following a derivation parallel to Equation (2-21) thrqugh Equation

(2-29), the Method B carrying charge factors shown in Table 2,3 are found.

Equations (2-29) are common to both methods,

2.,3,2.4 Direct Dollar Costs Per Lot

A fuel lot's direct costs are given in terms of unit costs (§/kg) as

follows:

S _
Zn = Cpgflg + Cugllg + CyoMy + Cyrr* C42MO
Zm " Ceab M

,TEPT -30
m Crepr Ml‘lM (2 )

mc
Zn = Coghhg(T) + Cugy (1) + Cyily (1) + Caqlyy (T) + Cy M, (D)

where
0 0

0 0 0 0
L&m& = M28 + hhg + MﬁO + Mﬁl Myo
The M's are masses of the isotopes U238, Pu239, Pu240, Pu241, Pu242 con-
tained in the lot m in kilograms, Isotope values (C28> C495 +..) have
units of dollars per kilogram of the isotope in question, Processing unit

costs (C ) have units of dollars per kilogram of heavy metal

fab’ rep
(U, Pu) loaded, and depend,of course,on the region for which the lot is
intended (core, axial blanket, radial blanket),

The unit costs (C C28’ C49, . . . ) together with the cost

fab» Crepr’
of money parameters (T, f » T, fg, Tg) are regarded in this report as
forming the "economic environment!/ and are set parametrically, external
to the present fuel costing model, Economic environment is varied in the

sensitivity studies of Chapter 5.
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2.4 SIMPLIFICATIONS FOR BATCH AND SCATTER FUEL MANAGEMENT SCHEMES,; LOCAL
FUEL ECONOMIC PERFORMANCE

2,4,1 Batch Fuel Management

""Batch' fuel management of a region (core, axial blanket or radial
blanket) is defined here as a scheme in which the region's fuel is dischargel
and replaced as a whole, and the fuel associated with the region or fuel
stream sees only one position in the reactor,

If plant load factor remains approximately constant throughout plant
life, and if physics-depletion characteristics of the stream are insensitive
to the fuel management ¢ the remainder of the reactor, then the fuel lots
in the stream are identical: the load and discharge compositions of all
lots are the same, the irradiation times for the lots are the same, and
for the fuel stream in question, there are no beginning-of-plant-life
and end-of-plant-life transients, For such a fuel stream, Equation (2-29)

becomes

n
241z w(ty
m

€ =
q 1000

B () (2-31)
J
where éﬁ is the levelized energy cost (mills/KWir) for cost component q,
Fl is the carrying charge factor for component q, E is the annual electri-
City produced in KWHr, n is the number of fuel lots in the fuel stream
throughout plant life, N is the number of years of plant life, and z4 is

the direct cost in dollars for component q associated with a fuel lot,

that is, associated with the total fuel volume of the batch-managed

region,

The expression may be further simplified by noting that
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L ow(t)

m 1l n _ 1

N N T (2-32)
z w(j)

J

where T is the irradiation time of a fuel lot in years,

Equation (2-32) is exact for n = N (T = 1 year). CError in the
approximation (2-32) increases with decrease in n (increase in T).
Irradiation times of interest are about six years (radial blanket fuel)
or less, Table 2.4 shows that the error, for a six year irradiation time
and an 8% discount rate, is less than 1%,

The factor 1/T may be thought of as the fuel througlput in lots per
year, for the fuel stream in question,

Equation (2-31) becomes

_ 1000 z4 4
e = " '
q BT (2-33)
and the total cost associated with the stream is
e = 1000
— r z9H (2-34)
ET q

2,4.2 Scatter Fuel Management

"Scatter" fuel management of a region or subregion is a scheme in
which a fraction g of the region's fuel is discharged and replaced during
a refueling event. As in batch management, the fuel sees only one position
in the reactor.

Because a fraction 1-g of the initial load is incompletely irradiated,

the region experiences a beginning of plant life fuel transient, Once in



TABLE 2.4 EFFECT OF THE APPROXIMATION

T(yr)

n

m

Z w(tm )

30

N

30

30

1,00000

0.1653066

N

R

ZW(:})

1,00000

0.,166666

=3
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Error

less than
1%



equilibrium, the fuel lots' irradiation times and load and discharge
compositions are identical, and assuming plant load factor remains

constant, Equation (2-31) modified for equilibrium scatter fueling is:

n
_ q £ z w(tm)
(Eq)EQ = 1000 gz m ,
N
E % w(j) (2-31A)
J

where the fuel lot size is one-gth of the total fuel volume of the regionm,
The expression corresponding to Equation (2-32) for equilibrium scatter

management is:

R
= |=
1

gT (2-32A)

Thus,
). = 1000 z9F4
R T —
ET (2-33A)
and the total equilibrium fuel cost associated with the stream is
) 1000 q
. = 2-3
EQ BT i z . (2-34A)
Comparison of Equations (2-33), (2-34), (2-33A) and (2-34A) shows that
the functional forms of the batch and equilibrium scatter cost equations

are identical, Indeed, the processing costs - fabrication, reprocessing -

are numerically equal as well, for the same irradiation time. Only the

material costs

np
2 CogMls * CogMig + - - .

2 = CogMyo (T) + Cyglyg(T) + . . . (2-30)
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may differ, owing to the possibly-differng physics-depletion character-
istics of the two management schemes,

For the same irradiation time (T), the time averaged composition,
e.g. fissile plutonium content, of a region managed by scatter refueling
is qualitatively the same as if it were batch managed. In scatter
management, however, the composition varies within a smaller range, since

its cycle time is shorter - one gth that of the batch managed region,

2.4,3 Local Fuel Economic Performance

It is useful to displar the fuel economic performance as a function of
position in one of the major regions (core, axial blanket, radial blanket),
under batch or scatter management, For example, one may wish to know the
performance of the third row of fuel assemblies in the radial blanket, and
how it compares to that of the second row, etc, For purposes of comparing
these subregions, a figure of merit independent of their volumes is de-
sired,

From Equation (2-34), the fuel costs associated with a stream (region

or subregion) is

=% +¢ + €. + €
mp ©fab repr © “mc

= 1000 |ZPEP(T) zfabpfab Ty

E T T

)

+ z TEPTRTePT 1y 211y (T

T T (2-35)

where the carrying charge factors and direct material credit have been

expressed as functions of irradiation time, T,
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Using Equations (2-30) to expres. the direct dollar costs in terms of

unit costs, one obtains

0 | p
1000 | (Cpilyy + c491\129 + ... ) FP (M

T =
E
T
0 ab
c M, b
+ fabI[_M ()
T
. Crepr My PP @
T

CM (M+C, M (T)+...)FCm
( 28 28( ) 49 49( ) ) (T)

T (2-36)

The contribution of fertile material (U238, Pu240) to the value of fuel

is insignificant, For core fuel

0 0
CfertM%ert K< CfissMgiss’ CeabMy » Crepgqﬂﬂ

N 0 0
CrertMeere (< < CrissMeiss(Ms CopMay » Crop My (2-37)

For blanket fuel,

0
C v ‘
fertMgert < Cfisstiss(T)’ CfabMHM ’ qﬁPrLégd

Corteore ™ ¢ ¢ Criss Mriss @ (2-38)

In either case, the assumption
~ 0 2'3
2) Cfert (2-39)
has a negigible effect on results, In addition, the following assumption

is made:



®) Ceiss = Cpg = Cqy

With assumptions a) and b), Equation (2 -36) reduces to

O

Criss(Myg * Ix141) FP (1)

1000

0 _rrepr
, Crepr M Forr (D

T

CeiosMyg(D + My, (T) ) F (T)

T
Multiplying and dividing by MgM’

NhM

of
[

fab
+ Cfab Fm

C FYePT ()
+ Trepr

- C.. €M F*M

fiss

where 0
€ = v '\

€M) = (M P
(M = Myg(T) + Nhl(T))ﬂ&ﬂw

(2-40)

(2-41)

(2-42)

(2-43)
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The term in brackets may be regarded as a figure of merit representing
local fuel performance, having units of dollars per year per local kilogram
of heavy metal. Normalizing to kilograms of initial heavy metal in this
manner removes the volume effect in comparing regions or subregions,

Except through the discharge composition, ¢(T), in the material credit

term, the local performance is independent of reactor power level, or load

factor.

2.5 COMPARISON OF FUEL COST ACCOUNTING METHODS

2.5.1 Effect of Tax Assumptions in the Cash Flow Method

In Section 2.3, two tax interpretations were applied to the treatment
of post-irradiation transactions:
Method A: The post-irradiation transactions are not capitalized
i.e. reprocessing cost is written off as a tax deductableexpense in the
year that it occurs,and material credit is taxed as ordinary income, along
with the sale of electricity,.
Method B: The post-irradiation transactions are capitalized.
Choice of Method A or B affects only the carrying charges associated with
reprocessing and material credit, All direct costs and the carrying charges
on pre-irradiation costs remain the same,
For a tax rate of 50%, the carrying charges on material credit and

reprocessing under Method B are double those from Method A, i. e,

(grepr) E* (Frepr) B - 1

T (TP, -1

1
[W(_Trepr) -‘t] -1
1-T

w(-TFPTy .1 (2-44)



91

and similarly,

(&me yxe

(&, = (2-45)
Thus,

T MCy®% 4 T TepTy#x
(Fmeyre + (7 TEPD)

= ICy%x T repry#x
(e )A (e )A

= 2 (2-46)

The carrying charges on reprocessing and material credit are but two
of the eight subcomponents making up the total cost of the fuel lot. Also,
the carrying charges on reprocessing and material credit are of opposite
sign, tending to cancel,

The discrepancy between total costs of the lot,as calculated by
Methods A and B, increases with irradiation time as carrying charges in
general become more important, and as the material credit (plutonium
buildup) from blanket fuel further overshadows blanket reprocessing costs,

Figures 2.4, 2.5 and 2,6 compare the two methods as applied to core,
axial blanket and radial blanket fuel costs, respectively, of the reference
LMFBR (Chapter 4). Method A is seen to result in lower total fuel costs
in all three regions. The discrepancy in core fuel costs is about 10%
at the design residence time of two years, In the axial blanket, the
discrepancy is about 20% at two years. For the radial blanket, the dis-
CrepanCy is quite severe, although the two methods yield comparable

optimum residence times - 6 years in Method B , 0.5 years in Method A,

2,5,2 Relationship of the Cash Flow Method to Two Other Accounting Methods

For cost commonent q, lot m, the carrying charge in dollars, (zn?)**,

and the total cost in dollars, (zD* , are given by
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(2 ** = 24 £4
m m m
and
(zh* = 4 [
m m m
where
F]‘Il1 =1+ f% . | (2-28)

2,5.2.1 Cash Flow Method (CFM)

The cash flow method (CFM) of Sections 2,2 and 2.3 showed that for
Capitalized costs or capitalized revenues the carrying charge factor Fl?
L

takes the form

1

(F9) T W (-TH -7 ] (capitalized) (2-47)
1-T m

" CFM

while for expensed costs and taxed revenues the factor is

(FICTII)CFM = w(-TIcrll) (expensed costs; taxed revenues) (2-48)
where
q 1 s
w(-TY = = (I+x)'m = discount factor (2-49)

q
o (14x) T
x = (1-7T) Ty fp + 1y fs = discount rate (2-50)

Two other methods of treating nuclear fuel carrying charges are
commonly used:
(a) Simple Interest Method (SIM), (20, 22, 23)
(b) Compount Interest Method (CIM) , (83)

The cash flow method (CFM) is related to these "approximate' methods below,

Ha
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2,5,2,2 Simple Interest Method (SIM)

The SIM associates carrying charges with areas under a fuel lot's
value histogram, Figure 2,7 shows the general appearance of such histo-
grams for (a) depreciating core fuel and (b) appreciating blanket fuel, and
how they may be constructed from the cash flows, Figures 2,8 and 2,9 are
value histograms for the reference reactor core and radial blanket, re-
spectively, defined in Chapter 4, Pre-irradiation transactions (material
purchase and fabrication are assumed to occur simultaneously, as are the
post-irradiation transactions (reprocessing and material credit),

In the SIM, the carrying charge and total dollar costs for component

q of lot m are given by

zqy %% = -4 q -
(s (z) Ty ¥, (2-51)
and
Gyx = q q -
(elpy = @D @+ Ty (2-52)
respectively, where
T! = Tr;q +1/2 T (pre-irradiation cash flows) (Z-53)
= -(Tg + 1/2 Thg (post-irradiation cash flows)
Yq = carrying charge rate applicable to component q,

Thus the carrying charge factors F% for the SIM are given by

F4 = 1 4 2-54
( sy * g (2-54)

The factors (FICIll)CPM’ given by Equations (2-47) and (2-48), reduce to

q
(ﬁQSHi

in a binomial series, one finds, for capitalized costs or capitalized revenues,

for small Tg yq. Expanding the discount factor in Equation (2-47)



£ab.

material
purchase
material credit

| M

Ll !

l<—Irradiation Time —

(a) TFBR CORE FUEL

repr,

=
=
=]
o]
1
O
-
«
[
. ~
= e
& =
i el
WGUJ) =
o v
~ 3
3¢ — - |
® 3 lec—————— Irradiation Time >
=

(b) FBR BLANKET FUCL

FIG, 2.7 CONSTRUCTION OF VALUE-TIMG PLOTS FROM FUEL LOT CASH FLOWS



Ex 7
N
o -~
= —
e ke
~ 2
— =
o -
" i
[
= 29
& 3
g 5
Ca
= U
o V SN
j 0.5 T=2 years 0.5
S| 05 | T2y o8 |
L 28 v
o O
= =
r—i
9] 4
~ _
™ I
! =
‘ ™
=
S

£
o
o
—
I
K za
a)
o
& o
=
N <
&
=)
il
o
e —— e ' ] 8"
-
N

FIG, 2.8 VALUE-TIME PLOTS FOR A CORE FUEI BATCH

TOTAL

INVENTORY

FABRICATION

REPROCESSING



(o)
w

7>
O
(an]
{
el
|
o o
° . TOTAL
<= S
i [a P
L;;'N el v
[} - l;):
2’ ¥ £
N 0.5[ T = 6 years 9lO,S
T3
O
<
~  TINVENTORY
4
[#2}
o~
~
1}
v o
N
e
D
<
~—
I
~
=
Ha FABRICATION
Ty
OO
—{
<
o~
<
e T
4g REPROCESSTNG
O
=~
[N

FIG. 2.9 VALUE-TIME PLOTS FOR A RADIAL BLANKET FUEL BATCH



100

1

q = — - -
(Fd cmm LT w(-T) - T ]
1 a
= [T, -T]
1-T
| T4 (19 -1)x2
1 mo-m
= T [1-T+ qu+ + ...]
1-T z!
Q19 . 2
- X Tm (Tm 1) x
= 1+m 1. + + ...
21 1-T
(2-55)

For small T% x/ 1-T Equacion (2-55) reduces to the approximate form

X

q q — _ q | _
(F}QCFM 1+ Tm T = 1+ Tm yq (F )SIM (2-56)

Thus for capitalized costs and capitalized revenues (not taxed), the correct

carrying charge rate Yq for the SIM is

X

(capitalized costs or
1-T capitalized revenues) (2-57)

<
n

i

where the discount rate (x) is given by (2-50).

Similarly, for expensed costs and taxed revenues,

q
q - oy - T
(F )CFM = w( Tm) (1+x) 'm
q _ 2
(14 - 1) x
= 1 +'ﬂ% X + N ., (2-58)

For small Tg_x,

9y =~ 1419 % =1 + T1 rd
(Fm )CFM 1+Tm X =1+ Tm y. = (F )

. (2-59)

SIM*

Thus for expensed costs and taxed revenues the correct carrying charge
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rate yq in the SIM is
Yy, = X (expensed costs or
9 taxed revenues) (2-60)

where, as before, the discount rate (x) is given by Equation (2-50),

2.5.2.3 Compound Interest Method (CIM)

The restriction on SIM Equations (2-56) and (2-57) that Tg yq be small

suggests that SIM may be improved by continuing (2-56) in a series of powers

of :
yq
q q T:x (T;ll R
(Fm )CIM =l Tm yq ¥ yq e
21
q
=@ +y)n
q (2-61)
Thus for the compound interest method (CIM),
()% = 1) [awyTh - 1] (2-62)
m CIM m q
and
q
@) = @) a+y)n
n q (2-63)
where, again,
X (capitalized costs or
y = capitalized revenues) (2-57)
q 1-T
= X (expensed costs or
taxed revenues) (2-60)
q q .
The (Fm )SIM factors reduce, of course, to the (Fm )CIM' Comparing

Equations (2-61) and (2-60) with Equation (2-48), one observes that the

q q : ;
(Fm )CIM and (Fm )CFM are identical for expensed costs and taxed revenues.
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q
However, the (Fm)CIM CEM

and capitalized revenues, as can be seen by comparing the expansions (2-61)

and (F; ) are not identical for capitalized costs

and (2-55): their first order terms are identical, but a CIM term of order
k>1 is in error by a factor of (1 -t‘)k_l. The CIM overpredicts the true

(CFM) factor F%, for capitalized transactions,

2.5.2.4 Summary

Table 2,5 sunmarizes the distinction between the three methods of
computing carrying charge factors, F% .

Figure 2.10 illustrates the discrepancies between the three methods of
computing F% for a capitalized transaction, A discount rate of 8% and a
tax rate of 50% are assumed in Figure 2,10, The SIM underpredicts F%, while

CIM overpredicts F%. In both cases, errors are significant only for large

T% , Or large yq, or both, Since radial blanket fuel may be irradiated

as long as ten years, the CFM derived in Sections 2.2 and 2.3 was selected,

2.6 SAMPLE CALCULATION: BEHAVIOR OF BLANKET FUEL COSTS WITH IRRADIATION TIME

Results using the fuel cost model derived in this Chapter exhibif
features one would expect qualitatively, Figures 2.5 and 2.6 show the
levelized fuel costs of the reference reactor's axial and radial blankets,
respectively, as functions of irradiation time, Two major characteristics
are noted,

(1) A "breakeven' exposure point exists, at which material
credit just balances the material purchase, fabrication, and reprocessing
costs:

m.c, = m,p, + fab, + repr, (2-64)

For blanket irradiation times below this point, fissile material produced
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is not sufficient to yield a net revenue,
(2) An optimum exposure point exists, at which the cost is a
minimum (most negative),

Figures 2,11 and 2,12 display radial blanket cost components as func-
tions of irradiation time, under Method A, Material purchase (U238) has
been ignored in both plots since its contribution is an order of magnitude
below other components, Direct material credit is the only negative
component; positive costs are shown netted against material credit in both
figures, Carrying charges on fabrication and reprocessing components have
been combined in "processing carrying charges",

In Figure 2,11 levelized costs are in units of dollars per kilogram
of heavy metal (U + Pu) loaded, Total reactor energy released during
irradiation of the radial blanket, is shown at the top of the figure,
Criss €(T)

negative) as irradiation time increases, but at a decreasing rate, (The

Direct material credit, , 1s seen to increase (become more

depletion model used in generating €(T) is described in Chapter 3,) In-
ventory cost, Cfiss €(T) [ch(T) - 1], is seen to increase with irradiation

time, Direct processing costs, Ceaps C are, of course, constant, while

Te
Pt rep

[Fm-1] + ¢ [F P (T)-1] increases

their carrying charge, Ceab Tepr

with irradiation time,

‘The costs of Figure 2.11, in dollars per kilogram of heavy metal, are
to be assigned to the total reactor energy released during radal blanket
irradiation, E(KWHg/year)T(year). Since E is constant, one may divide
the costs of Figure 2,11 by blanket irradiation time T to obtain the
radial blanket fuel costs in units of dollars per year per kilogram of
heavy metal, Figure 2,12, This is the term in brackets in Equation (242),
applied to the entire radial blanket, Figure 2,12 also includes a scale

indicating the radial blanket levelized power costs in mills/KWHr.
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From Figure 2,12, jan optimum radial blanket irradiation time is seen to
exist because of the opposing behavior of material credit and processing
costs with irradiation time, Material credit decreases (becomes less

negative) while processing cost decreases(become less positive),

2,7 SUMMARY

A general expression for levelized cost (price) of electricity is
derived in Section 2,2, This formulation, labeled the ''Cash Flow Method"
(CEM) is applied to FBR fuel costs in Section 2.3, When applied to a
region (core, axial blanket, or radial blanket) under batch or scatter
fuel management, Section 2.4, the equations reduce to forms giving local
fuel economic performance, e.g. in an anmular fuel region or at a point,
Table 7.6 below swimarizes the CFM fuel cost equations,

Effects of the choice of accounting methods are examined in Section
2.5, Within the CFM, two options for treating post-irradiation transactions
are identified:

Method A, Tax revenue from the sale of fissile material (material
credit) as ordinary income, along with electricity revenue; treat repro-
cessing costs as tax deductable expenses,

Method B, Capitalize the revenue from the sale of fissile
materiél; capitalize the reprocessing cost,

Choice between these two tax interpretations has a significant effect on
absolute values of power costs (mills/KwHr), but does not distort com-
parative and incremental results, e.g. design rankings, optimization of
radial blanket residence time, sensitivity studies,

The CPM is related to and compared with two approximate methods of
treating carrying charges in Section 2.5: The'Compound Interest Method"

(CIM); and the "Simple IL.aterest Method"(SIM). For both capitalized and
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noncapitalized costs, the carrying charge factors of CIM and CFM are
identical. Errors in carrying charge factors, introduced by use of CIM or
SIM , are slight for typical core and axizl blanket irradiation times -
about one percent for an irradiation time of two years, At six years,
representative of radial blanket batch irradiation, the errors are about
+10% for the CIM, and -10% for the SIM,

The CFM with tax treatment method A is used consistently in the case

studies of Chapter 5,
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Chapter 3

PHYSICS - DEPLETICN MODEL

3.1 INTRODUCTION

Fuel cost analysis requires that fuel discharge composition be known
as a function of irradiation time, The objective of the present chapter
is to establish a fast breeder reactor fuel depletion model suitable for
fuel economic scoping, survey, ranking and sensitivity studies, but suf-
ficiently simple to permit its use, in the form of a computer code, without
incurring excessive computer time or capacity requirements.

Effects of spectral, spatial and time detail on FBR physics-depletion
calculations have been the subject of several recent studies (28), (29),
(30),(39, (44). In particular, Little et.al. (28) have found that little
detail is required for accurate core depletion calculations, This is due
to the spatial uniformity of spectrum in the core, and the slow variations
of flux magnitude and spectrum with irradiation time,

Blanket physics-depletion is considerably more complex, due to the
following:

(1) spectrum softening with distance from the core-blanket inter-
fact;

(2) spectrum hardening with irradiation time due to the relatively
large buildup of fissile plutonium in the blanket;

(3) flux shift, i,e, increase in blanket flux with irradiation
time, due to the buildup of fissile plutonium in the blanket; and

(4) spatial self-shielding (heterogeneity) effects occasioned

by the softer blanket spectrum,mnd aggravated,in the case of radial
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blankets, by larger fuel pin diameters.

Effect (1) requires that cross-sections be input to the calculation
with sufficient spatial detail, i.e, a separate cross-section set, properly
flux weighted, for each of many blanket regions, Effects (2) and (3)
suggest that physics calculations be performed sufficiently often, during
a time step depletion calculation, to correct the local cross-sections and
fluxes.

Parametric and survey studies commonly require the evaluation of nu-
merous cases involving different configurations and compositions, and if
models are unnecessarily complex, the computation costs may be prohibitive,
In physics-depletion calculations, practically all of the computer time is
absorbed by the static physics computations (neutron balances) which yield
flux magnitudes and spectra at discrete points in irradiation time and
space, The calculations of composition changes between these points in
tine, using the nuclide depletion equations, require negligible effort in
terms of computer time, Hence, computer expense can be significantly
reduced by decreasing the number of static physics calculations, i.e.
maximizing the length of the irradiation time intervals over which flux
magnitudes and spectra are treated as being constant, For this reason,
studies were performed, Section 3.4, to assess the effects of item (2),
spectrum hardening, and item (3), flux shift, on depletion calculation
results,

Conventional imultigroup time step depletion (MG-TSD) methods (29),
against which simpler methods are to be judged, permit local fluxes and
spectra to vary with irradiation, One group time step depletion calcu-
lations (1G-TSD) permit local fluxes (flux shape) but not spectra, to
vary with irradiation. Both MG-TSD and 1G-TSD models yield reactivity

behavior with irradiation, or, alternatively, may involve performing
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criticality searches on control poison concentrations, Time step depletion
methods are described in Section 3,2,

A simpler (and less expensive) depletion model, the ""Semi-Analytic
Depletion Method"(SAM), has been developed in this study, and is intro-
duced in éé;£ion 3.3, This method is based on the assumptions that both
flux (local) and spectrum (local) are constant with irradiation time (or
exposure), thus requirirgonly one nultigroup neutron balance for a given
reactor configuration, The assumptions of constant local flux and local
spectrum, while suitable for the core, may be questionable for the blankets,
due to the rapid buildup of fissile plutonium in the blankets, Effects of
these assumptions on core, axial blanket, and radial blanket depletion re-
sults are evaluated in Section 3.4 by comparing results of three parallel
depletion calculations (26G-TSD, 1G-TSD, and SAM),
| In SAM, only one multigroup physics calculation is performed, Thus
SAM does not provide the keff behavior with irradiation, This limitation
is discussed in Section 3.5,

Effects of spatial self-shielding on blanket depletion rcsults are

estimated in Section 3.7,

3.2, DESCRIPTION OF TIME STEP DEPLETION (TSD) CALCULATIONS

Depletion calculations are central to several reactor design functions,
yielding space-time-dependent power densities for thermal design, reactivity
and criticality information for control system design and absorber manage-
ment, and fuel discharge compositions for fuel management,

Conventional time step depletion (TSD) calculations may be characterized
as one or more neutron balance (in space and energy) computations (''plysics"),

separated in the irradiation time domain by depletion (''burnup') computations
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describing the changes in nuclide populations at each point or region, This
process is shown schematically in Figure 3,1, Preparation for the TSD
calculation includes the selection of a standard multigroup cross-section
set, e,g. the Russian Set (48), the Yiftah-Okrent-Moldauer Set (49), the
Hansen-Roach Set (50), or cross-section file, e.g. ENDF/B, Mbre refined
calculations may require corrections to tunis parent cross-section data.
Such corrections may be performed by a "cross-section generating program',
such as 1DX (27), ic? (39), or TDOWN (40). For example, given a reactor
configuration (geometry, composition) and the parent cross-section data,
1JX performs resonance and spatial shielding corrections by region, and
collapses to regional few group sets if desired. The resulting multigroup
set 1s then used as input to the TSD calculation, which may be performed

by a computer program suéh as 2DB (26), PHENIX (31), PYRE (34), or CITATION
@n.

With reactor geometry and initial compositions, ;Ni (f‘,O)z , as input,
the TSD begins with a physics calculation at time zero. This calculation
yields initial flux shapes and position-dependent spectra, ¢(r, E, 0), and
the initial effective multiplication constant keff(O). (Some programs
provide the option of performing a ""eriticality search' on compositions or
dimensions to obtain keff = 1 at each physics calculation,) The flux pro-
file is normalized to the reactor power specified.

Flux shape and spectrum, ¢ (T, E,0), serve as input to the depletion
Calculation and are assumed constant over the next time interval, that is,
until the next physics calculation, Depletion calculations are performed
individually for each specified zone, Each zone normally consists of several
spatial mesh points; zone fluxes are obtained by appropriate spatial aver-
aging, and nuclide composition is assumed uniform over the zone, The zone

depletion equation for nuclide j is
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where

n
+ IN < ¢
m M k=1 K
n
+ T N T

j= nuclide index

k= energy group index

T

capture parent index

i= decay parent index

g= fission parent index

j
¢ =
Kk
a%,e =
e = a, absorption
= C, Capture
= f, fission
Aj = decay constant, nuclide j
t = time (sec)
y =

(sec-l)

(decay loss)

(absorption loss)

(decay source)

(capture source)

(fission source)

(3-1)

atom density, nuclide j, in the zone (atoms/cm’)
group K neutron flux in the zone (n/cmzsec)

microscopic cross-section for event e, group k, nuclide j(cmz)

yield of nuclide j per fission of nuclide q
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Rates of neutron-induced reactions may be expressed in terms of spec-
trum-weighted cross sections (collapsed to one group) by noting that, in

the zone in question,

51 n S
n ¢ DI
T ¢gY -\k=1 K =1 Kk k)x
k1 kKX
. (3-2)
k=1 K
= 907
where
L o¢
¢ = total flux = ! (3-3)
k=1 K
n
Y
y ) z ¢k c’k,x
0" = spectrum averaged one = k=1
X group cross-section,
nuclide y, event x n
DI (3-4)
=1 K

Coefficients of the nuclide depletion equation are thus seen to be one
group microscopic cross-sections, collapsed in the zone spectrum, and

Equation (3-1) takes the form

J
N ¢+ N g ImeME“‘ + quyq,i s 91 (3-5)
The collapsing implied in going from Equation (3-2) to Equation (3-5) does
not represent any further approximation or loss of generality,
With the flux information ¢ (r, E, 0) from the initial physics cal-

culations, zone fluxes and cross-sections are computed with Equations (3-3),

(3-4) and used in equations of the form of Equation (3-5) to determine zone
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compositions at the end of the time interval At, assumingthe ¢ and g
are constant over At, Equations (3-5) may be solved analytically, if the
iiportant nuclide chains are simple and known, or in a finite difference
fashion, if more flexibility in programming is desired,

The reactor composition thus computed, {Nﬁ(f,t)} at t= At, is used in

the next physics calculation to obtain ¢ (T, t, E) and ke at t= At,

ff
Again, the flux is normalized to the specified constant reactor power.
Zone fluxes and cross-sections collapsed in zone spectra are then used in
the depletion calculation for the second time step, yielding {Nj(f,t)} at
t= 2At, This cycle of "physics-collapse-deplete" is repeated until the
specified end of the calculation is reached,

The procedure just described accounts for variations in flux shape with
irradiation since physics calculations are performed periodically, If
these physics calculations are of two or more energy groups, variations in
spectra (with irradiation) are alsc account for. The TSD computation may
be made more refined by decreésing the irradiation time interval between
physics calculations and increasing the number of energy groups. One group

TSD calculations will assess the flux shape variation, but not spectrum

variations.

3.3 SEMI-ANALYTIC DEPLLTION METHOD (SAM)

3.3.1 Introduction

If local flux and local spectrum are assumed constant over the entire
irradiation time, then only one multigroup physics calculation is necessary,
The local ¢'s and d's from this '"snapshot' may be used in the analytic solu-
tions of the coupled depletion equations of the form (3-5) to obtain the
local fuel composition as a function of irradiation time, Such a procedure

will be labeled the '"Semi-Analytic Depletion Method (SAM)",
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3.3.2 Analytic Solution of Depletion Equations

For a uranium-plutonium fueled FBR, the important nuclides (for fuel
economics) are U238, Pu239, Pu240, Pu24l, Pu242, Their coupled depletion

equations are:

dN
] 28
U238: N $028 “
dt 28 a a
dN49
Pu239:
. _ -~ 28 49
o Npg 9 - Nyg?%a (b)
N,
Pu240:
- 49 40
. = N4g¢oc -N40¢ o, ()
(3-6)
dN
Pu241: A 20 no,
g gt %e Ny ®0a =My Ny ()
dN
puz42;: 12 . a1 .2
g - ¢ g
dt Ngp ¥ % Ny, ¢ 9 ©
where
a3 ay
n z
s 6V = T & . =1 %k kX
X k=1 K I
Z ¢
k=1 X

Without decay terms, nuclide depletion equations and their solutions

may be expressed in more convenient form with flux time (9),

Jli;(t') dt"

¢ (t) dt (3-7)

9(t)

de(t)

as the independent variable., Of the nuclides involved, only Pu24l suffers
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a significant decg loss (half life 14 years). Assuming for the moment

that PuZ4l decay may be neglected, Equations (3-6) take the following form:

dNZB 28
U238: 10 + ‘F‘a N28 =
dN
49 g 28
. - = [v)
Pu2sy: T+ % Ny o Nog
dN
40
pu2s0: —— + o0y o %
—_— do a 40 c 49
(3-8)
dN41
Pu24l: + élN = 040N
— de a 41 c 40
dN42
_— 42 41
Pu242. + o N = g N4
== 1 a 42 c 41

Assuming the cross-sections {U} are independent of flux time (O),
the solutions of the set (3-8), to be applied locally, are

e

0 . 40
. (-0
U238: Ny = N ep(- 9 9) (a)

. = 0 28 . .49 28 9 o
Pu239:  Nyg = N, A exp(-&° ) [l-exp(-(d”- cé )a)]J,N%GW(_a:«g)

: -y 28,0y 0 pn oo 49 (b
Puz40: N40 NngBeXP('aa 0) -1J28Aozcxp(-oa 9
0 . g & 4
+ N49Bzexp(-ofi 9 + Ble}qa(-aaogj ©)
: -0 28 w0 in 49
Pu241: N41 = N28AB1C18Xp[-Ga 8) HZBADZCZexp(-ca 9)
0. N 49 J 40 _
+ N49 Bzczexp(-cfa 9 + 61C3exp(<qa 9) (@

+ ﬂzeX‘p ( ‘Oélg)
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) 490 0 L9
. - i }C" _0 ’ -
Pu242: N,, = NpghBiC D exp( a,g)4N28ABZCZ?2eXP( 9 ©
0 49 40
o -
+ Ng B)CDexp(-09) + 31C3D36xp( g, 9)
41 - 42
- ﬁ -\G 3-9
+ BZD4exp( g 8) + ) exp ( A 8) (3-9)
G 28
C
A=
gd9 28
a a
g 49 g49
Bl:—: C BZ = C
P ) QS 4+
ol0 . g8 o, _ o
40 40 40
Cl = Gc Cz = c"c C3 = 0c
1 .
oj - 528 gil - 449 G 40
a a a a - a
41 41 41 41
D = - C D = ac D, = Oc D = ac
1 2 3 4
c42 428 H2 49 42 40 42 g4l
a - a a - a a - 4a a - ’'a
0 0 0 0
B = -(N_. AB_-N +N B
1 = Ny ~WNpghBy N, AB*N, B))

In

0 0 0 0 :
BZ = N41- (NZSAB1C1-N28ABZC2+N49B2C2+blC3)

B _ .0 0 9 0, ~ o LB '
3 = Ngp-(N AB;C D, -N ABZCD+N9BCD+ C.D+F.D

- B
28 1 28 2727249727272 17373 2 4)

In expressing Equation (3-6d) in terms of flux time, Equation (3-8d) , Pu2dl

decay was neglected. Without this assumption, the details of the flux

history and out of pile processing and cooling schedules would be required
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for estimates of PuZ4l and Pu242 populations,
Using the representative FBR blanket reaction rate

41 )
% ¢ ~1.8x108 sec! | (3-11)

the Pu 241 decay rate is seen to be about 10% of its absorption loss rate:

Ag1 1,57 X 1072 sec™!
= 3 7 = 0.087 = 10% (3-12)
g4ly 1.8 X 10 sec
a
The solution of Equation (3-6d) assuming constant N40, ¢, andd's is
0 4 .
J = N @ 0 A4-].
N 40 c 41
41 [ 1-exp(=a "¢ (1+ 27 ) )]
X a gt ¢
g4l 41 a
A
0 i M (3-13)
L g ¢
a

Letting N}; denote the Pu24l concentration calculated by ignoring decdy,
and assuming no initial Pu24l, one finds that for an irradiation time of
10 years,

N
41

* ~ 0,97 (3-14)
N
41

Under these conditions, the assumption of no PuZ4l decay results in an over-

prediction of about 3% in N 11

3.3.3 Summag

The semi-analytic depletion method (SAM) assumes that local spectra

and local flux magnitudes do not change with irradiation time. The assump-



125

tion of constant local fluxes contains another assumption: that the reactor
flux shape does not change with irradiation time,

SAM differs from the time step depletion method in that only one multi-
group physics computation is performed. Local fluxes and local spectrum-
weighted cross-sections from this single physics computation are used as
input to Equation (3-7) and Equations (3-9) to obtain local fuel composi-

tions as functions of irradiation time,

3.4 EFFECTS OF THE ASSUMPTIONS OF CONSTANT LOCAL FLUX AND SPECTRUM
3.4.1 Description

The semi-analytic method (SAM) uses neutronic data (locaJ.a's and ¢ 's)
from a single multigroup neutron balance to obtain local fuel composition
as a function of irradiation time, These local ¢ 's and ¢ 's are assumed
constant throughout the irradiation life of the fuel. The constant ¢ and
constant O assumptions produce opposing errors in calculations of blanket
discharge fissile inventory,

The effects of these assumptions were estimated by comparing results
of three parallel depletion calculations (Methods a, b and c) described in
Table 3.1 and Figure 3.2, Two sets of comparisons were made:

(1) Reactor #1: Reference Reactor (sodium radial reflector);
no fission products included in the TSD methods; comparison of methods a,
b, and c.

(2) Reactor #2: Identical in all respects to reactor #1, except
that Be metal is used as the radial reflector; fission products included
in the TSD method; comparison of methods a and c.

The reference reactor (#1) configuration is described in Figure 3.3,
Selection of this reactor as a reference is discussed in Chapter 4, The

Be-reflected reactor (#2) is obtained by replacing the Na of zone 24 with
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FIG. 3.3 REFERENCE LMFBR CONFIGURATION (REACTOR #1).
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Be metal.

Zone definitions are also shown in Figure 3,3, In all three methods,
eaci burnable zone (1, 2, ..., 23) was depleted individually, that is, a
zone was the basic volunie unit over which number densities were "smeared"
at cach time step, The same zone definitions were used for inputting the
space-dependent one group cross-sections for methods b(1G-TSD) and c(SAM)
and the flux shape for method c (SAM).

For purposes of displaying results, and for use in fuel economic anal-
ysis (but not in the physics-depletion calculations) zone compositions
were combined to form ''region'" compositions, For example, the inner-most
radial blanket region ('V") is the sum of zones 5, 6 and 7, and

W= a0l (@ e )
Yo (8 = Mg () + 1 (8 + Mg ’

\% Y

v
4o (O = M (D) / Mo (O (3-15)

The TSD calculations (a, b) allowed ke £ to vary with burnup; that
is, criticality searches were not performed, Effects of this simplifi-
cation (neglect of flux shape and spectral perturbations introduced by con-
trol poison) are considered negligible (29).

In the TSD runs (a, b), physics computations were performed at 150
equivalent full power day (EFPD) intervals, Each of these physics compu-
tations yielded the current keff’ the current flux shape, and in the case
of the multigroup run (a),the local spectra. After each physics computation,
the flux was normalized to a total reactor power of 2576 MW . corresponding
to 1000 Mwe and a plant thermal efficiency of 39%,

In the TSD calculations, the core and axial blanket were assumed

discharged at 600 EFPD, corresponding to an average core burnup of 100,000
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MWDt/MT. At a plant load factor of 82%, this is consistent with a core
residence time of two years, The radial blanket remained in situ until
the end of the depletion calculation at 1200 EFPD (4 years). Batch fuel
management of the radial blanket and the core-axial blanket combination
was assumed, which imposes a more severe test of constant flux, constant

spectrum assumptions than scatter management,

3.4.2 Results (with Time as the Independent Variable)

The results of the methods-comparisons are reported below by major
region (core, axial blanket, radial blanket),

Core

Tables 3,2 and 3,3 show the core depletion results (fissile plutonium
population) for reactors #1 and #2 respectively, Excellent agreement bet-
ween methods a, b and ¢ is noted: at two years irradiation (100000 MWDt/hﬂj,
discrepancies in fissile masses are about 0,03% for Pu239 and about 1% for
Puzd4l, Zone spectra remain practically constant, accounting for the success
of method b, This, together with the result that zone fluxes were fairly
constant, explains the close agreement of method ¢ with the other two
methods,

The second core load (600 to 1200 EFPD) shows a very slight increase
in discharge Pu239 and decrease in discharge PuZ41l, compared to the first
core load, This results from the flux shift to the radial blanket, which
is not replaced at two years, As fissile Pu builds up in the radial
blanket, the radial blanket provides a greater fraction of total reactor
power, decreasing somewhat the powerload, and flux, in the core,

Axial Blanket

Axial blanket depletion results for reactors #1 and #2 are shown in
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TABLE 3.2

COMPARISON OF CORE DEPLETION RESULTS FOR

REACTOR #1 (REFERENCE REACTOR)

Equiv,

Reactor Core Method Method Method

Full Power Res, (a) (b) (©)

Time Time

D) (Yr.) 26G-TSD 1G-TSD SAM

0 0 €49 14.05 14.05 14.05
€41 0 0 0

300 1 €49 12.89 12.89 12.89
€4 0.062 0.062 0,062

600 2 €40 11.90 11.90 11,90
€n 0.175 0.174 0.175

600+ 0 €49 14.05 14,05 1405
€n 0 0 0

900 1 €49 12.93 12.93 12.89
€11 0.058 0.058 0.062

1200 2 €49 11.97 11.98 11.90
€ 0.168 0.165 0.175

€45 = 100 X 1o/t (%) Mig = Pu239 niass

sz 11-0 0 >z -
641 = 100 X “”'41/“1'3"1 (%) My = Pu241 mass

nmass of heavy metal loaded (kg) = 12623 kg

g
TS
=3
P
1]



COMPARISON OF CORE DEPLETION RESULTS FOR

TABLE 3.3

REACTOR. #2 (Be-RADIAL REFLECTOR)
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Equiv,

Reactor Core Method Method

Full Power Res, (a) ()

Time Time

(D) (Yr.) 26G-TSD SAM

0 0 €49 14,05 14.05
€41 0 0

300 1 €19 12.89 12.90
€41 0.062 0.062

600 2 €49 11.94 11,91
€n 0.168 0.175

600+ 0 €49 14.05 14.05
€41 0 0

900 1 €9 12.93 12.90
€41 0.058 0.062

1200 2 €49 12.02 11.91
€41 0.159 0.175

1% AV » 0 o "7 o
€49 =100 X 1,..{49/1‘%,5_1 (%) g = PuZ39 mass
= (I Gt 3’0 o AT — .
641 - 100 A 1441/4’11;]}4 (0] I 41 = PU241 Iass
0

1 = mass of heavy metal loaded (kg) = 12623 Xg
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Tables 3.4 and 3.5 respectively,

The 1G-TSD method b, which assumes constant spectra but accounts for
flux shape changes, overpredicts the discharge Pu239 content at two years
by about 4%, relative to method a. This occurs because the cross-sections
input to method b, obtained by collapsing the spectra from method a's
solution at time zero, are too soft, (Blanket spectra harden with irradia-
tion due to the fissile buildup,) Method ¢, SAM, underpredicts Pu239 con-
tent by about 4%, in spite of its soft cross-section set, because its input
zone fluxes, from the method a time zero solution, are too low, (Blanket
flux increases with irradiation due to fissile buildup in the blanket,)

The second axial blanket batch (600 + to 1200 EFPD) suffers a sligit
decrease (~3%)in discharge fissile content, compared to the first batch,
The second axial blanket batch experiences a lower flux than the first,
owing to the buildup of flux and power in the radial blanket,

Fission product buildup in the blanket tends to diminish plutonium
breeding, by competing with U238 resonance Capture and by generally hard-
ening the spectrum, Comparison of 26G-TSD axial blanket results for
Reactor #1 (no fission products) and Reactor #2 (with fission products)
shows that th.s is not a discernable effect,

Radial Blanket

Figures 3.4 and 3.5 display the radial blanket depletion method com-
parisons for reactors #1 and #2 respectively, Results for the innermost
amular region (zones 5,6,7) and outermost annular region (zones 17,18,19),
as well as for the entire radial blanket, are shown,

As in the axial blanket, the 1G-TSD method consistently overpredicts
Puz39 content, while SAM consistently underpredicts Pu239 content, The

Cross-sections input to 1G-TSD and SAM were obtained by collapsing in the



TABLE 3.4

COMPARISON OF AXIAL BLANKET DEPLETION RESULTS

FOR REACTOR #1 (REFERENCE LMFBR)

Equiv,

Reactor Axial Method Method Method

Full Power Blanket (a) (b) (c)

Time Res.Time

(D) 0r.) 26G-TSD 1G-TSD SAM

0 0 €49 0 0 0
€41 0 0 0

300 1 €49 2.09 2.15 2.08
S 0.0019 0.0019 0.0019

600 2 €49 3.85 4.00 3.71
€1 0.0113 0.0148 0.0119

600+ 0 €49 0 0 0
€41 0 0 0

900 1 €49 2.03 2.08 2.08
€11 0.0017 0.0018 0.0019

1200 2 €49 3.74 3.89 3.71
€ 0.01006 0.01312 0.0119

= i 0. ¢ = Pu239 o

649 = 100 X 11149/1'%}}1 (%) I»e.49 Pu239 mass

€,; = 100 X My ity () M,y = PuZdl nass

;

nass of heavy metal loaded (kg) = 10093 i

-
N
L

]

d
)
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COMPARISON OF AXIAL BLANKET DEPLETION RESULTS

TABLE 3,5

FOR REACTOR #2(Be-RADIAL REFLECTOR)

Equiv, Axial Method Method
Reactor Blanket (a) (<)
Full Power Res,
Time (D) Time (yr) 26G-TSD SAM
0 0 €49 0 0
€41 0 0
300 1 €49 2.0884 2.0794
€41 0.0019 0.0019
600 2 €49 38836 36887
€11 0.0112 0.0121
600+ 0 €49 0 0
€1 0 0
900 1 €49 2.0278 2.0794
S 0.00167 0.0019
1200 2 €49 3.7702 3.6887
€41 0.0098 0.0121
0
€45 = 100 X Moty ) Y9 = Pu239 mass

— o % O 0
€41 = 100 X “141/ Mg (&)

fl

It

Pu241 mass

mass of heavy metal loaded (kg) = 10093 kg
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26G-TSD time zero local spectra, Blanket spectra harden with irradiation
due to fissile buildup. This accounts for the 1G-TSD overprediction, The
zone fluxes input to SAM were taken from the 26G-TSD time zero solution,
Blanket flux increaseé with irradiation, also because of fissile buildup,
This explains SAM's underprediction, despite its soft cross-sections,
Evidently the flux shift effect overrides the spectrum hardening effect.

At four years (1200 EFPD), SAM underpredicts the Pu239 content in the
innermost region by about 5%, and that in the outermost region by about
D%5. Since regions deep in the blanket produce relatively little plutonium,
the relatively large error there has little effect on overall radial
blanket Pu239 content, which SAM underpredicts by about 10% at 4 years,

The core's nearly constant flux and spectra has greatest influence
on blanket fuel near the core-blanket interface, tending to validate SAM's
assumptions there, SAM's error increases with distance from the core.

Fission product buildup in the blanket tends to diminish plutonium
breeding rate, by competing with U238 resonance capture and by hardening
the spectrum, Comparison of 26G-TSD radial blanket results for Reactor #1
(no fission products) and Reactor #2 (with fission products) shows that
this is not a discernable effect,

Use of initial fluxes and spectrum-weighted cross-sections as input
to SAM resulted in SAM's underprediction of blanket Pu239 inventories,
Better agreement between SAM and 26G-TSD results would be expected if the
fluxes and cross-sections for SAM were generated by a multigroup physics
calculation in which a "representative" amount of fissile material were
included in the blanket, Choice of the ""representative' amount of fissile
material would involve a guess, and perhaps an iteration, for each irrad-
iation time to be evaluated. For example, for a 4 year irradiation, the

"'representative" amount might be the fissile inventory at 2 years; for an



139

8 year irradiation, it might be the fissile inventory at 4 years, etc,

To test these ideas, a SAM calculation (SA&%) was performed using
radial blanket fluxes and cross-sections from the 26G physics solution
at 4 years, Results of the SAM# calculation were compared to those of
SAM, and the 26G-TSD "truth calculation, as shown schematically in
Figure 3,6, Figure 3,7 displays this comparison,

As expected, SAM4 overpredicts €a8(T) while SA&% underpredicts 629(T)'
Table 3,6 shows that the discrepancy between SAM# and SAM0 is about 24%
(of SAM4), independent of irradiation time, Comparing the two SAM calcu-
lations with the 26G-TSD 'truth', one notes that SAM, error increase with
irradiation time, while SAM4 error decreases, Although the two SAM calcu-

lations disagreed in and therefore radial blanket material credit

€
49°
(mills/KWHr) by about 24%, they both yielded an optimum blanket irradia-
tion time of about 6 years,

In the case studies of Chapter 5, clean (initial) conditions are used
consistently in SAM,tending to underestimate the economic value of all

blanket cases considered,.

3.4.3 Results (With Burnup as the Independent Variable)

Depletion method comparisors in Section 3.4.2 were presented with time
as the independent variable. With time as the independent variable, SAM
requires that one assume constant local flux (and therefore flux shape)
throughout the fuel irradiation, or that one use a time-averaged local
flux. Table 3.4 and Figure 3,4 of Section 3.4.2 show that the constant

flux assumption is the dominant source of error in SAM blanket depletion
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FIG, 3.7 COMPARISON OF SAM RADIAL BLANKET RESULTS USING CLEAN AND
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TABLE 3.6

COMPARISON OF SAM , SAM4, and 26G-TSD
0

RADIAL BLANKET DEPLETION RESULTS

Irradiation Time (years)

2 4 8
0.975 1.764 2,942
1.295 2,329 3,838
1.030 1.972 -
0.05 0.10 -
0.25 0.18 -
0.24 0.24 0.24
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calculations . This assumption may be relaxed if, instead of time, a time
integral property at a point or zone is selected as the independent vari-

able representing degree of exposure, eg. flux-time (8),

9 Ef¢ dt (3-16)
or burnup (B),
cv
B- — 4%(9') o} aor (317)

Yt

where the brackets { } represent a summation over fissionable materials,

. . . 0o .
V is the zone volume, C is energy released per fission, and Mn, is the mass

of heavy metals (U + Pu) loaded in the zone,

This section presents a comparison of 26G-TSD and SAM results for

reactor #2 (Be-reflected), with burnup as the independent variable., Having

"mormalized out" the local flux variation, any discrepancy between 26G-TSD
and SAM results should be attributable to SAM's assumption of constant
local spectra, Further, part of the spectral variation is ameliorated
since burnup ( ~ % fdG NL(8) ), as well as composition N(8), is
affected by the spectrum, and in the same direction,

Zone burnup in the 26G-TSD was calculated from fission product inven-
tories, In SAM, the N(8} equations (3-9) were integrated and solved
directly for burnup.

Figures 3.4 and 3,5 showed the largest discrepancy between 26G-TSD

and SAM depletion results (vs, time) to be in the outermost region of the

-1, The constant flux and constant spectrum assumptions produce opposing
errors in € . Refer to Table 3.4 and Figure 3,4, The effect of

143

the constanfigﬁéafrum assumption is seen by comparing the 1G-TSD and 26G-TSD

results, while comparison of 1G-TSD and SAM results shows the influence
of the constant flux assumption,
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radial blanket, This comparison, together with the burnup-normalized
results are shown in Figure 3.8, With burnup as the indep«ndent variable,
the two methods yield practically identical results, Similar agreement
was found in all radial blanket, axial blanket, and core regions and zones,
Figure 3.9 displays overall radial blanket depletion results by the
two methods, with both time and overall radial blanket burnup as independent
variables, Again, excellent agreement is noted when burnup is the indepen-
dent variable.
The excellent agreement in depletion results, when burnup is the
independent variable, reinforces the conclusion of Section 3.2.2 that
flux shift is more important than spectral variations with irradiation
time, Unfortunately,fuel economic analysis requires time as the independent
variable in order to assess carrying charges. With time as the independent
variable, SAM requires that constant local fluxes and fixed flux shape be
assumed, Future work in developing FBR blanket calculational tools should
be aimed at predicting the flux shift to the radial blanket, by simple,
inexpensive methods,

Composition - Burnup Characteristics

Figure 3,10 shows the 629 - burnup characteristics for the innermost
and outermost annular regions of the radial blanket, Characteristic curves *
for the interior regions lie in the shaded area. The curve for the outer-
most region lies above the others because this region enjoys the softest
Spectrum in the radial blanket, Data for Figure 3,10 was generated by SAM,
Figure 3,11 compares the depletion characteristics of radial blanket
axial blanket, and core, The axial blanket curve lies above that of the
radial blanket because of its softer spectrum (more Na)., Core Pu239
fraction decreases with burnup, e.g. the internal breeding ratio is less

than unity,
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FIG. 3,10 DURNUP-FISSILE CONCENTRATION CHARACTERISTICS FOR INNER-MOST AND
OUTER-MOST RADIAL BLANKET REGIONS
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3.5 CRITICALITY AND REACTIVITY

In fuel economic analysis, two major functions of a physics-depletion
model are (1) to provide fuel composition as a function of irradiation
exposure, and (2) to provide criticality and reactivity information. The
first is required for computing direct material costs (“burnup costs') ,
for core and blanket fuel. The second is closely related to core material
carrying charges ('inventory cost'), i,e. carrying charges associated with
the excess fissile material required to maintain Criticality throughout
fuel life,

Effects of simplifying assumptions (constant local fluxes and constant
local spectra) on irradiated fuel composition results were estimated in
Section 3.4 by comparing results of three depletion methods (26G-TsD,
1G-TSD and SAM). The present section concerns criticality and reactivity

information (or lack of it) from the two simplified methods (1G-TSD, SAM).

3.5.1 SsAM
The SAM procedure as outlined in Section 3,3 includes only one neutron
balance computation — to obtain the flux shape, spectra and ke ££ Thus

the lifetime behavior of ke is not determined in SAM, However, this is

ff
not considered a serious restriction in economic sensitivity and scoping

studies,

A rigorous model would include the constraint that enough excess re-
activity be loaded to ensure criticality at the desired discharge burnup,
Computationally, this may require several complete depletion iterations
(at various load enrichments, €0), as suggested in Figure 3,12, to deter-

nine the correct g
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Load enrichment CO affects FBR fuel costs through the material com-

ponents: direct material purchase, direct material credit, and their

associated carrying charges (inventory charges).

Effect of €O_on Direct Material Costs (Core)

Direct material cost ('burnup cost') represents the difference between
direct material purchase costs and direct material credits. The direct
material purchase component of FBR core fuel cost is directly proportional
to load enrichment, CO' (By contrast, the same component in light water
reactors increases in a parabolic fashion with CO’ because of the separative
work cost.) With flux and cross-sections held constant, Lquation (3-9)
shows that material credit is also proportional to CO’ though with a lower
constant of proportionality than direct material purchase because higher
CO implies less fertile material available for breéding., Thus changes in
direct material purchase cost and material credit, due to adjustments in
CO’ tend to cancel.

Effect of EO on Material Inventory Costs (Core)

The effect of &, on core inventory costs is illustrated in Fig, 3.13,
Two cases are shown: (1) reactor critical at begiming of fuel life; and
(2) reactor critical at end of fuel life, Assuming simple interest , inven-
tory cost is proportional to the area under the fissile fraction (g) plot.
The difference in inventory costs between the two cases is represented by
the shaded area, iT A€, Both plots are practically linear, and have
approximately the same slope, i.c. about 2% in two years, representative
of 100,000 MWD./MI' core burnup, The discrepancy in inventory costs for
this simple example is thus
(inv)2 - (imr)1 .
iTAe

| = ~  12% (3-18)
(inv)2 iTe_ +1/2 iTAe

The discussion above ignores the slight perturbation of core spectrum
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and flux level (for the same power) due to the changes in &,, Results of
26G-TSD calculations, Section 3,4, show that core spectrum and flux were
practically constant over a two year irradiation which resulted in a fissile
fraction decrease of A€ =2%, This suggests that = adjustments near
criticality, to obtain the desired BOL excess reactivity, would have little
effect on core spectrum, flux, and therefore, on diséharge compositions,

The discussion above also ignores the perturbation of core spectrum and
flux shape due to control poisons, Other studies (29) have concluded that
the inclusion of control poisons in TSD calculations (criticality search
option) has little effect on depletion results,

The SAM procedure is used in Chapter 5 to compare the fuel economics of
various radial blanket sizes (45,30,and 15 cm) and radial reflector mater-
ials, Tt was found that changing the radial blanket-radial reflector con-
figuration had negligible effect on critical enrichment.

To summarize, the inability of SAM to provide the lifetime behavior
of reactivity is not a serious limitation for survéy-type, comparative
econoniic studies, provided, of course, that the one snapshot physics

calculation is performed at conditions near criticality,

3,5.2 1G-TSD

Comparison of 1G-TSD versus 2060-TSD reactivity information is shown in

v ires .1
Table 3,7, Using tie expression

0K o€

X
the 1G-TSD method would result in an "errcr' of about 15% in critical mass
(or inventory cost), The discrepaicy in reactivity swing over one core

lifetive is negligible,

1. From the 2006-TSD calculation for Reactor #1 (no fission products).
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TABLE 3.7

COMPARISON OF MULTIPLICATION CONSTANT VALUES

FROM 26G-TSD AND 1G-TSD CALCULATIONS

Method k Ak ..(per core
eff eff 1ife)
(a) 26G-TSD 1.0004 0.0245
(b) 1G-TsD 0.9631 0.0248
0 - r
8KY =0,0363 A =-
s .036 8( I\eff) 0,0003

8= (a) - (b)



The 1G-TSD method requires one multigroup physics computation, anyway,

to generate its position-dependent cross-sections, and the ke £ from this

£
Computation is presumably available, This, together with the AK-lifetime
data from the 1G-TSD calculation, may be used to obtain excess reactivity

requirements, fissile loading, and inventory costs,

3.6 COMPARISON OF COMPUTER TIME REQUIREMENTS FOR 26G-TSD, 1G-TSD AND SAM

Table 3.8 compares the MIT IBM 360/65 computer time requirements for
the 20G-TSD, 1G-TSD, and SAM calculations discussed in Sections 3,4 and
3.5, All physics and TSD calculations were performed by 2DB,

The reactor configuration was the reference LMFBR described in Figure

3.3, with 1232 mesu points (44 x 28) and 23 active burnup zones, Depletion

155

Calculations spanned 1200 EFPD with 150 EFPD time steps for the TSD methods,

3.7 EFFECT OF HETEROGENEITY ON BLANKET DEPLETION RESULTS

Among the effects making irradiated blanket compositions difficult
to predict is spatial self-shielding of resonance capture (heterogeneity
effects) resulting from the relatively soft blanket spectrum and, for
radial blankets, aggravated by the large pin diameters (30).

Figure 3,14 shows the heterogeneity-corrected core and blanket U238
absorption cross-sections as functions of energy group index, These
cross-sections were generated by the 1UX code (27) using the Russian 26
group set (48) as input. The 1DX run (a) changed the cross-section format
from Russian format to DTF format, (b) corrected group definitions (leth-
argy interval) from the Russian definitions to uniform lethargy widths of
0.5, commencing with the upper boundary of group 1 at 10,5 Mev, and (c)
performed heterogeneity corrections for a typical FBR composition and

geometry,



TABLE 3.8

COMPARISON OF COMPUTER TIME* REQUIREMENTS

FOR 26G-TSD, 1G-TSD, and SAM

26G-TSD Method

ten 206G static physics calculations
(@ 30 min,per)

eight depletion step calculations

Total 26G-TSD method

1 G-TSD Method

one 260G static physics calculation

ten 1G static physics calculations
(@ 25 min,per)

eight depletion step calculations

Total, attributable to 1G-TSD method

one 26G static physics calculation
one depletion step calculation

Total attributable to SAM

* IBM 360/65

300 min,

negligible

300 min,

30 min,

25 min,

negligible

55 min,

30 min,

negligible

30 min,
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Because of tie relatively hard core spectrum, the core heterogeneity
corrections are slight, and the ''core" cross-section sets are not greatly
different from the infinitely-dilute Russian set, In this section, the
blanket heterogeneity effects will be measured relative to core condi-
tions, i.,e. the core cross-sections are considered as infinitely dilute,
To avoid confusion, the following notation is used in this section:

o,k . a local cross-section found by collapsing the
nultigroup parent set j over the local spectrum
from a multigroup physics computation in which

multigroup set k was used as input for the
blanket cross-sections,

j or k He . . . heterogeneity-corrected blanket parent

multigroup set

= Ho . , . homogeneous (infinitely dilute) core
parent multigroup set

¢ (k) local neutron flux, from a multigroup physics
computation in which multigroup cross-section
set k was used as input for the blanket
cross-sections,
Fi 1 g8 g 28 . .
igure 3,15 displays s (Ho, He) and o (He, He) as functions
of radial position along the midplane of the reference reactor(#1) at
. 3 28 28 ,
time zero. The blanket heterogeneity effect, Ua (Ho, He) - Ua (e ,He)
is seen to increase with depth into the blanket, due to spectrum softening
with depth,
Heterogeneity affects blanket fissile production in two opposing ways:
(a) the lower effective U238 microscopic capture cross-section,

28

G-, depresses the U238 to Pu239 conversion rate, leading to lower bred

fissile Pu inventories;

(b) viewing blanket neutronics as an attenuation process, in a
macroscopic sense, the lower effective microscopic absorption cross-sections
(the most significant being U238) results in higher blanket macroscopic

fluxes, tending to increase the U238 capture rate and bred fissile inventories.
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Of the two opposing effects, (a) dominates and heterogeneity influences
blanket breeding adversely,
To separate and quantify these effects, three parallel SAM radial

blanket calculations were performed, using as local input

(1) 9 (Ho, He) , ¢ (He)
(2) o (He, He) , ¢ (He)
(3) o (Ho, Ho), ¢ (Ho) .

Comparison of (1) and (2) provides a measure of effect (a), the
depressed U238 capture cross-section, The overall net effect, on fissile
breeding, is shown by comparing (2) and (3)., Two separate multigroup
physics computations, with the 2DB program, generated the local{U’ ¢}
data - one using "He" in the radial blanket, and the other using "Ho" in
the radial blanket. The reference reactor configuration, Figure 3.3, was
‘assumed in both computations, Spatial detail for depletion purposes and
for purposes of inputting cross-sections and fluxes to SAM, was the same
as in the studies of Section 3,4, Table 3,9 shows the local U238 capture
rate data in zone #8 (see Figure 3.3) for the three SAM calculations.

The overall radial blanket depletion results, by the three SAM cal-
culations, are compared in Figure 3,16, Comparing (1) and (2) isolates
effect (a),that of the depressed GLZS. The discrepancy in discharge Pu239
inventory is about 20%, resulting in a discrepancy of about 20% in material
credit. Effect (a) is offset significantly by effect (b), as can be seen
by comparing (1) and (3). The overall self-shielding effect on Pu239
discharge - the combined effects (a) and (b) - is seen by comparing (2)

and (3)., Self-shielding reduces discharge Pu239 content by about 10%,



U238 CAPTURE

TABLE 3.9

DATA ILLUSTRATING RADIAL BLANKET HETEROGENEITY EFFECT

m g 28 (Ho, He)
¢ (He)

(2) 0C28 (He,He)
@ (He)

3) oCZS (Ho, Ho)
¢ (Ho)

o 28

0.447

0,374

0.4168

1,879

1.879

1.778

a28 ¢

0.840

0.703

0.740

101
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3.8 SUMMARY

A fast breeder reactor fuel depletion method, suitable for survey,
ranking, and sensitivity studies, is established and tested in this Chapter.
This method, labeled the Semi-Analytic Method (SAM), assumes that local
spectra and fluxes do not vary with irradiation time., These assumptions
are tested by comparing SAM results with those of multigroup (26 group) and
one group time step depletion calculations, These assumptions are found
to have negligible effect on core depletion results (error in discharge
compdsition is less than 0,1%). Error in blanket depletion results is
tolerable for purposes of comparative studies: less than 4% in axial blanket
results, and about 10% in radial blanket results, Batch fuel management
is assumed in the test calculations,thus placing maximum strain on the
constant flux, constant spectrum assumptions, Of these two assumption g
(which result in opposing errors), the constant flux assumption is found
to be the most significant,

SAM results in a computer time savings of about 90%, and is selected
for application to the case studies of Chapter 5, As applied in this
report, SAM is restricted to fixed fuel schemes, i,e. batch or scatter
fuel management,

A further limitation of SAM is that it does not yield reactivity
history, since only one physics (multigroup) computation is performed per
configuration per fuel lifetime,., This is not considered a serious restric-
tion in the sensitjvity and comparative studies for which it is intended,

Effects of heterogeneity corrections on blanket depletion results are
also examined.in this chapter, Blanket heterogeneity is found to reduce
fissile discharge inventory by about 10% for irradiation times of interest

(2-7 years).
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CHAPTER 4

INTEGRATED DEPLETION-ECONOMICS MODEL, SELECTION OF REFERENCE IMFBR,
REFERENCE LMFBR FUEL ECONGHICS

4.1 INTRODUCTION

Fast breeder reactor fuel cost analysis and fuel depletion methods
were discussed separately in Chapters 2 and 3, respectively, The''cash flow
lethod (CFM)" was selected for cost amalysis; the "semi-analytic method
(SAM)" using neutronic data from a single multigroup calculation (per re-
actor configuration) was selected for the depletion model.

The purposes of the present chapter are:

1. to combine these two models into a procedure (Section 4.2)
useful for scoping, survey, and sensitivity studies;

2., to compare the selected LMFBR reference configuration to other
1000 Mwe LMFBR reference designs (Section 4,3); and

3. to apply the integrated depletion-economicsmodel to the ref-
erence economic enviromment (Section 4,4),

Section 4,2 summarizes the calculational procedure used in the remainder
of the report, Section 4.4 serves as an illustration of the procedure, while
establishing the base case around which the case studies and sensitivity
Studies of Chapter 5 are performed, Also, the effect of core enrichment

zoning on blanket fuel economics is estimated in Section 4.4,

4.2 INTEGRATED DEPLETION-ECONOMICS MODEL
Figure 4.1 is a schematic of the integrated depletion-economics model,
The ,step-by—step procedure is described below,

1. The reactor configuration is set in accordance with normal
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design procedures which need not be the subject of detailed discussion here,

(a) Geometry (shape) and dimensions are established,

(b) Initial compositions of the major regions - core, axial
blanket, radial blanket, reflectors - are selected., Reactor geometry and
composition are of course chosen to be compatible in terms of achieving
Criticality, and beginning-of-life (BOL) excess reactivity needed to achieve
the rated burnup,

(c) Reactor power rating is specified, satisfying maximum
local power density constraints and the desired power shape criteria at
the point in life considered, typically BOL.

Depletion Calculation

2. Each major fuel-bearing region is subdivided into depletion
zones, Depletion zones should be sufficiently numerous to give the detailed
space-dependent depletion information desired and to account for large flux
gradients and spectrum variations.

, 3. A single "snapshot" physics computation is performed to obtain
(b(r, E). A standard multigroup program such as ANISN (46) or 2DB (26) may
be usgd for this purpose, The program 2DB was used throughout the present
study, In the present study, BOL nuclide inventories are used in the ""snap-
shot' calculation, Flux shape and local spectra are used to obtain zone

P ad
flux magnitudes, <p ,normalized to rated reactor power, and zone one-group

Cross sections:

z (v ¢ ) = Rated Reactor Power
zones f “zone
g = Z $' g/ ¢
g g g
$ = 1 & (4-1)
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where & is the zone flux (total, integrated over energy and zone volume)
at rated reactor power, V is the zone volume, Z% is the total macroscopic
fission cross section for the zone, $é is the zone flux in energy group g.

Inmput to the multigroup physics computation includes, in addition to
reactor configuration information, a multigroup cross section set, This
nultigroup set could be obtained from a cross section processing program
such as 1DX (27) or MC? (39), making appropriate corrections, regionally,
on a standard set or file, for self-shielding, Multigroup cross section
data used in this report consisted of the 26 group Russian set (48), 1DX-
corrected (27, 81) for the core and blanket,

4, Zone fluxes and zone cross sections, found in step 3, and plant load
factor (L) are input to the "semi-analytic depletion method (SAM)" calcu-
lation, Equations (3-9), to obtain zone compositions as a function of flux
time, burnup, and irradiation time., The load factor is used to scale the

fluxes for Equations (3-7)and (3-9):
=1 ¢ (4-2)

Equations (3-9) yield the zone number densities at irradiation time T:

NZS(T)’ N49(T), cees N42(T). The nuclide number densities are converted

to masses by equations of the form

g
=2

1

N (4-3)

where

Mi(T) = mass of nuclide i in the depletion zone at irradiation
time T, kg;

V = zone volume, liters;

~

Mi = atomic mass of nuclide i;
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N = Avogadro 's number
av

Since many economics parameters are normalized to mass of heavy metals

(U, Pu) loaded, it is convenient to define the nuclide fractions

_— 0
Gi(T) = M.(T) / My (4-4)
where
0
Mp = mass of heavy metals (U, Pu) loaded in zone
0 0
Mg+ Mg+ e o M,

5. Zone masses may be summed over an annular region which is
batch or scatter-managed to obtain the masses discharged from fuel lots

irradiated in that region:

(1) % [Mi (T)]
1 annular B zone k

region
(4-5)
[Mi (T) ]
annular region
€.(M = 0
1 annular [D&ﬁl ]
Tegion ' annular region

Cost Calculations

6. The following economics parameters are set:

Unit fuel processing costs, dollars per kg of heavy metal ,

C § /Ko
Cfab’ repr [ 5/kg H1 ]

Isotope market values | dollars per kg of isotope,

Cpgr Cpgr +vvs C [ $/kg]

T 42
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Financial parameters
Tax rate (T)
Capital structure (f, £)
Utility rates of return (rb, r.)
7. Using the economics parameters of step 6 and the nuclide
masses from step 4 (local, depletion zone) or step 5 (annular region),
fuel costs are calculated from the CFM cost equations developed in Chapter 2,
The levelized cost of electricity (mills/KWH ) associated with a deple-

tion zone or annular region is given by

0 0 .
(CZSGZS + C49€49 +...) (material
1000 0 X purchase)
T = Mo FP (T)
- R
B T
¢ o
+ fab (fabri-
cation)
T
(4-6)
prePt (T) (re?ro -
+ TepT cessing)
T
C,Le M+C, €E.(M+...)
28 28 49 749 e (material
- F (T credit)
T

20 0 0 .
where Mar, €5, 649, cees €28 M, 649[T) , ... are either de-
pletion zone quantities (step 4) or annular region quantities (step 5).

Other terms in Equation (4-6) are defined below:

E = electrical energy produced by the plant per year, kwhe
yT
1006 = conversion factor, mills/dollar
FU(T) = carrying charge factor for cost component q, defined such

that

Total cost (q) = direct cost (q) X Fq(T
carrying charge (q) = direct cost (q) x [FUT)-1].
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The cost components of Equation (4-6) above correspond to chronologi-
cal events in the fuel cycle, e,g. material purchase - fabrication-» (ir-
radiation) > reprocessing-» material credit, Costs may be restructured as
desired, e.g.

material costs = material, direct + material, carrying charge

=""burnup cost' + "inventory cost"
processing costs = fabrication + reprocessing
= processing, direct + processing, carrying charge
The bracketed term in Equation (4-6) may be regarded as a figure of
merit representing local fuel economic performance, having units of dollars
per year per local kilogram of heavy metal loaded,

8. Steps 4 through 7 generate local (by depletion zone), annular
region, and major regional (core, axial blanket, radial blanket) depletion
and economics results as a function of irradiation time.

The process may be repeated for different economic environments (step
6), using a single set of neutronics data from step 3, that is, the multi-
- group physics computation need be performed only once per reactor config-
uration,

A computer program, SPPTA, was developed to perform steps 4, 5, and 7,
€.g. to perform SAM depletion calculations and CRM cost calculations, usiing,
as input, the zone neutronic information from step 3 and the economic

parameters set in step 6, This program is described in Appendix C,

4,3 REFERENCE LMFBR CONFIGURATION
In order to select a representative LMFBR configuration for blanket

case studies, a brief survey was made of .S, reactor manufacturers' 1000

designs, the Karlsruhe (77, 78) designs, the reference reactors used in
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design calculations for the MIT Blanket Test Facility (60), and reference
reactors used in other blanket analytical studies (1, 4, 5). Only uranium-
plutonium ceramic fueled reactors were considered, Modular and annular
geometries were excluded, Key variables surveyed were those base design
parameters which affect blanket fuel economics directly and prominently:
core height-to-diameter ratio, core power density, blanket size, and core
and blanket compositions, Table 4,1 summarizes this data for the reactors
considered, together with the LMFBR reference design adopted for the |
present studies, The reference LMFBR arrangement is shown in Figure4,2,

The reference LMFBR adopted is identical to that used in the depletion
method studies of Chapter 3. It closely resembles the Karlsruhe designs,
and the reference IMFBR used for the MIT Blanket Test Facility design
calculations. The two subcases (1, 1') of the reference IMFBR are identi-
cal except that 1' has two core enrichment zones while 1 has a single

uniform load enrichment.

4.4 REFERENCE LMFBR FUEL ECONOMICS

One-Zone Core

In this section, the procedure outlined in Section 4.2 is applied to
the reference IMFBR described in Section 4.3,

The reference economic environment assumed for these calculations is
sumiarized in Table 4.2, This data is representative of base data used
within ranges projected for the mature U.S, nuclear fuel cycle economy (18).
Unit fuel cycle costs are sensitive to national nuclear fuel cycle through-
put and capacity, and ae closely couplea to reactor design and operation
(fuel pin design, discharge enrichment). Since these concerns lie beyond

the purvue of this study, the economic environment is treated parametrically
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TABLE 4.2

REFERENCE ECONOMIC ENVIRONMENT

Unit Fuel Processing Costs $/kg MM
Core Axial Blanket Radial Blanket
Fabrication,(Cfab) 314 30 69
Reprocessing (Crepr) 31.5 31.5 31.5
Isotope Market Values $/kg
L 8
U238 (Cyg) 0
Pu239  (C,,) 10,000
Pu240 (C
( 40) 0
Pu241 (C41) 10,000
Pu242 (C
( 42) 0

Financial Parameters

Income Tax Rate (T) 0.5

Capital Structure

Bond (Debt) Fraction (fy) 0.5

Stock (Equity) Fraction (fS) 0.5
Rates of Return

Bonds (rb) 0,07

Stocks [rs) 0,125
Discount Rate ¥ x) 0.08

* x = (l-T)rbfb+rSfS



179
in Chapter 5, where the sensitivity of LITFBR fuel costs (mills/KilHe) to
gcononilc environment is estimated,

Table 4.3 lists pre-irradiation, irradiation, and post-irradiation
times assumed for these reference calculations, Table 4,4 swamarizes the
reference plant power data,

Figures 4.3, 4.4, and 4,5 show fuel costs (nills/Killke) versus
irradiation time for the reference LFBR (#1) core, axial blanket, and
radial blanket, Batch fuel management of cach of these regions is
assuned, The reference one-zone core irradiation time of two years cor-
responds to an gverage core burnup of 162,000 MWDt/?ﬁﬂ Core fuel cost
at this exposure is scen to be 0,97 mills/Kite. It is assuned, for
practical reasons, that the axial blanket must be operated on the same
fueliny scliedule as the core, i,e, two year irradiation time, The opti-
mum irradiation time for the axial blanket, under the reference economic
enviromaent, is about two years (Figure 4.4), At two years, the axial
blanket fuel cost is -0.141 mills/KWle, a net revenue,

Unlike the axial blanket, the irradiation time for the radial blanket
may be fixed independently of the core, Tigure 4.5 shows its "breakeven'
irradiation time to be about three years, Its optimuwn irradiation time
is about six years, corresponding to a fuel cost of -0,036 mills/KiHe,
(-8.1 §/yr./kg i1, a net revenue,

Comparing the fuel economics of the axial and radial blankets,
one notes: (a) the relatively low net revenue provided by the radial
blanket at its optimum irradiation time, i.e. 8.1 5/yr./kgl! for
the radial blanket vs, 100 $/yr./kgll! for the axial blanket; and
(b)  the relatively "sluggish' behavior of the radial blanket, i.e,
the radial blanket is slow in reaching its maximum net revenue. The com-

paratively poor radial blanket performance is the result of its relatively
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TABLE 4.4

REFERENCE PLANT POWER PARAMETERS

Plant Rated Power, electrical 1000 Mie

o

Plant Thermal Efficiency (7 ) 39

Plant Load Factor (L) 83%
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low average neutron flux (axial leakage predominates) and its somewhat
harder spectrum (the radial blanket contains less sodium per unit volume),

Figures 4.6, 4,7 and 4,8 display the reference L}MFBR (#1) radial
blanket neutronic and fuel economic spatial characteristics, Figure 4.6
shows ¢ , g (%8, and ¢0 (2:8 as functions of radial position along the mid-
plane (Z=0) determined by the 2DB computation, step 3, Section 4,2, Figure
4.7 shows the resulting local fuel economic performance (8/yr/kg)
versus irradiation time, for the annular regions labeled V, VIII, XI, XIV,
and XVIT in Figure 4,2, Breakeven and optimun irradiation times increase
with distance from the core-blanket interfact because the fissile plutonium
buildup is most rapid in the high flux regions near the core, Regions near
the core show relatively sharp optima, compared to tle regions XIV, XVII
deep in the blanket, The optimum irradiation time (6, 5years) for the
batch-managed radial blanket is indicated by the dotted line, At the opti-
mum, amular region XVII (outermost) incurs a net cost, rather than a net
revenue, indicating that the radial blanket ,under the economic environment
assumed, is too thick,

Figure 4.8 displays the variation of local fuel performance ($/yr/kgil)
with distance from the core, at irradiation times of 2, 4, 0, and 8 years,
Net revenue from the entire radial blanket may be identified with the net
area under ( + ) and above (-) the curve, For aitwo year irradiation, about
two-thirds of the 45 cm radial blanket incurs a net cost, i,e, the fissile
produced is not enough to offset fabrication, reprocessing, and carrying
charges, At ¢.5 years, the optimum, the outer one-third (outer row of
fuel assemblies) is unprofitable, The slope of the plot ($/yr -kgiM-cm)
decreases with irradiation time, as the inner regions pass their optimum

irradiation times,
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One Versus Two Core Enrichment Zones

In addition to its advantages to core economics (53), core enrichment
zoning enhances blanket breeding by increasing blanket flux. In order to

estimate the effect of core enrichment zoning on blanket depletion economics,

a two.zone core reactor (Reactor #1') was compared to the one-zone core
reactor (Reactor #1) evaluated above, In this comparison, core fissile
inventory loaded, rated reactor power, and core size were fixed,

Since both rated power and core size are held fixed, the effect of
power flattening on core fuel depletion economics (either more allowable
power, or a smaller core and lower critical mass are possible) are not
accounted for. Also unaccounted for is the inventory cost of the addi-
tional fissile mass required for keff-equivalence with the one zone core
reactor. These two unaccounted for effects tend to cancel. Since pri-
mary interest here is the blanket fuel economics, the adjustments in core
conditions are not deemed necessary, although the net improvement in core
fuel economics may, because core fuel costs (mills/Kile) dominate, be
more significant than the increased blanket revenue.

The comparison is shown in Table 4.5, When the core is zoned as pre-
scribed, radial blanket revenue increases by about 150%, the axial blanket
revenue by about 6%, Taken together, the incremental improvement in
blanket revenue is about.0,07 mills/KWHe, a savings of the order of 5 to

10% in tbtal reactor fuel cost,

4.5 SUMMARY

The fuel economics and depletion methods established in Chapters 2
and 3, respectively, are combined in this Chapter to form a
simple step-by-step procedure, (Appendix C describes the computer program,

SPPIA, developed to perform the fuel economics-depletion computations:)
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TABLE 4.5

EFFECT OF CORE ENRICHMENT ZONING ON BLANKET FUEL ECONOMICS

Reactor #1 Reactor #2
(1-zone core) (2-zone core)

Core
Enrichment Zone # - I II
Zone Enrichment, % 14 11 17
Zone Vblume, 11ters 4906 2540 2366
Average Enriclment, % 14 14

Radial Blanket

Fuel Cost, mills/KWHe -0.036 -0,093
Optimum Irradiation Time, yearS 0.5 4.5
q;(o 0)/ ¢(125,0) 6,294 2.831
Axial Blanket
Fuel Cost, mills/Kile -0.141 -0,150
chO 03/ EO 50) 2,526 2,507
@ (0,0)/ ¢ (110,50) 7.297 3.759
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A reference 1000 Mie LMFBR configuration, representative of those used in
current design studies, is specified; the depletion-economics model is

applied to this reference design., Major characteristics of FER depletion-

economics are noted, The beneficial effect of core enrichment zoning on

blanket fuel economics is demonstrated,
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CHAPTER 5

1000 Iwve LMFBR CASE STUDIES

5,1 INTRCDUCTION
In this chapter, the calculational procedure outlined in Section 4.1
is applied to a number of case studies, Objectives of these case studies
are:
(1) to determine the effects, on reactor fuel economic
performance, of radial blanket thickness and radial reflector material;
(2) to determine the economic advantage of operating each radial
blanket region (annular) on its own local optimum irradiation schedule; and
(3) to examine the sensitivity of core, axial blanket, and
radial blanket fuel energy costs (mills/Kilie) to the economic environment,
Radial blanket thickness and radial reflector are varied, as shown
in Table 5.1. All other design parameters - core and axial blanket
geometry and compositions, and radial blanket composition - are held
fixed at reference reactor values given in Section 4,3, i,e, Reactor #1,
Core and axial blanket fuel power costs (mills/KWHe) are found to be
quite insensitive to radial blanket thickness and choice of radial
reflector material (Section 5,2), and are thus ignored in evaluating the
radial blanket configurations, Results of the radial blanket thickness -
radial reflector material case studies are presented in Section 5.3,
The assumption of a one-zone core in these studies penalizes radial
blanket economics in all cases considered, Thus, the absolute values of
net radial blanket revenue (in mills/KWHe) of individual configurations

should not be taken as representative or typical, iowever, comparative
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TABLE 5,1 CASE DEFINITIONS

Reactor Configuration # Radial Blanket Radial Reflector
Thickness (cm) Material

1 (reference) 45 Na

1A 30 Na

1B 15 Na

2 45 Be metal

2A 30 Be metal

2B 15 Be metal
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conclusions and trends demonstrated by these studies are unaffected by
the one-zone assumption,

Two radial blanket fuel management schemes are compared in Section
5.4: (a) "whole blanket" management, in which all Llanket fuel sees the
same irradiation time, the optimum for the blanket as a whole; and (b)
"regional'management, in which each annular region is exposed to its own
local optimum irradiation time, In either case, fuel sees only one posi-
tion in the reactor,

The sensitivity of core, axial blanket, and radial blanket fuel power
Costs to changes in the economic enviromment is evaluated in Section 5.5.
Also, simple linear forms of the ccst equations are obtained in Section 5.5

5.2 EFFECTS OF RADIAL BLANKET THICKNESS AND RADIAL REFLECTOR MATERIAL ON
CORE AND AXIAL BLANKET FUEL DEPLETION ECONOMICS

Assessment of the economic (energy costs) effects of radial config-
uration design changes may be simplified considerably by ignoring their
influence on core and axial blanket fuel depletion economics, that is hy
cqnsidering only the radial blanket depletion economics, For the refer-
ence geometry selected (ii/D = 0.4), one would expect such changes in core
and axial blanket fuel economic performance to be small because of the
relatively small radial leakage from the core, That these changes are
smaller, by orders of magnitude, than the sirultaneous changes in radial
blanket fuel depletion economics, is demonstrated in this section,

Changes in radial blanket thickness and/or radial reflector material
can affect core and axial blanket fuel economics in two ways: (1) by
affecting the core fissile inventory required for criticality, and
thereby affecting core inventory cost; and (2) by perturbing the flux

magnitude and spectra in the core and axial blanket, causing changes in
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depletion and material credit results,
(1) Core inventory cost is closely proportional to yT€ , where y is
the carrying charge rate (per anmum), T is the time the fissile material
" is in the possession of the utility company, and € is the critical en-
richment. Thus the fractional change in core inventory cost, Inv.(mills/KiHe),

caused by a change in critical enrichment is given by

Alnvv, _ A€
Inv, €
or
Alnv, AK
P
Inv, K
where the ekpressionl
K A€
« = 0.2 €

has been used,

To illustrate the insensitivity of core inventory cost to radial con-
figuration changes, Cases 1 (45 cm radial blanket with Na radial reflector)
and 2B (15 cm radial blanket with Be radial reflector) are compared. From
a reactivity point of view, these are the two most disparate cases, The
nultigroup physics computations for the two cases showed that for the same

core fissile content, their values of Keff differ by less than 0,0002,

Thus
AInv, = 5x 0,0002
|11V. I.H = 0.001,

The core inventory cost (Inv.) for Case 1 is 0.4147 mills/KWHe. Thus

1. From the 26G-TSD calculation for Reactor #1 (no fission products).
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alnv,
cInv, = Inv, x = 0.4147 x 0,001
Inv,

= 0,00042 mills/KWHe
The difference in optimum radial blanket fuel costs between the two cases
is 0,05 mills/KI‘,’I-Iel, which dwarfs the difference in core inventory costs,
Of the six Na and Be reflected cases considered (Table 5.1), the minimum
difference between radial blanket fuel costs is found to be 0,004
mills/Kwlie (Cases 1 and 2)1, which is an order of magnitude greater than
the maximum difference in core inventory costs.

(2) To illustrate the insensitivity of core and axial blanket fuel
Costs to the changes in flux shape and spectra occasioned by a radial
configuration change, Table 5,2 shows the fuel costs of core, axial blanket
and radial blanket for Cases 1 and 2B, The core results do not include
the core inventory correction (0,0004mills/KWHe) estimated above,

To summarize, core and axial blanket fuel depletion-economics is
quite insensitive to choice of radial reflector material and radial blanket
thickness:

1 Ton D>
(1) s Cpp AInV'Core

A — -
(2) E-RB >> AeC:ore ’ AeAB

For this reason, only the radial blanket fuel economic performance was

considered in ranking the reactor configurations of Table 5.1.

5.3 RADIAL BLANKET THICKIESS AND RADIAL REFLECTOR MATERTAL
Reducing the radial blanket thickness has several effects on the radial

blanket fuel economic performance:

1. Section 5.3.
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(a) fabrication and reprocessing costs for the region eliminated
are saved;

(b) the plutonium which would have been bred in the region elinm-
inated is forfeited;

(c) the breeding performance ( 6C28¢) of the remaining radial
blanket is improved, by bringing the high-albedo and moderating reflector
nearer to the high flux regions of the blanket; and

(d) coolant pumping power requirements for the radial blanket
are reduced, These effects suggest that an economic optimum thickness
may exist.

Radial reflector composition influences radial blanket fuel economic
performance through

(e) improved albedo, i.e, a beneficial effect on neutron
econony through flux enhancement in the blanket, as well as overall flux
flattening; and

(f) improved moderating ratio, softening radial blanket spectra
and enhancing capture by U238,

Other economic considerations associated with choice of reflector
material and reflector design are:

(g) radial reflector coolant pumping requirements;

(h) radial reflector material purchase and fabrication costs
and exposure limits; and

(i) shielding performance of the radial reflector.

The economic consequences of changes in (d) radial blanket coolant
puiping requirements, (g) radial reflector coolant pumping requirements,
(h) radial reflector material and fabrication costs, and exposure limits,
and (i) radial reflector shielding performance, are currently being in-

vestigated by others at MIT (13). The studies reported here embrace only
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the depletion-economics considerations listed above, (a), (b) , (e, (e,
and (£). FPurtier, the depletion-ecconomics compariscons arc biased toward
the exotic moderating reflector: a solid reflector (100 V/o Be metal) is
assumed. A real reflector would provably consist of clad BeO, with as
much as 20 V/o required for coolant, Also, the costs of the Be reflector
are not included in the tradeoff study,

Figure 5.1 shows the radial blanket fuel costs (mills/Kille) as func-
tions of irradiation time for the cases 1, 2, 1A, 2A, 13, and 23 defined X
in Table 5.1. The reference economic enviromment, Tables 4.2 and 5.4, was
assumed. Table 5.3 sumiarizes the optiium irradiation times, fuel costs,
fissile plutonium breeding rates, and discharge fissile plutonium inven-
tories in both reference and more favorable economic enviromments defined
in Table 5.4, Tigure 5.2 summarizes the radial blanket fuel costs (at
optimun irradiation time) for the six combinations of radial blanket
thickness and radial reflector material, under the two economic enviromments.,

several features are noted in the results presented in Figure 5.1 and
Table 5.3,

(1) The importance of reflector material choice, with respect
to blanket fucl economics, decreases witl increased blanket thiickness.
Choice of beryllium results in an improvement in blanket revenuc of about

60% over sodiwm, for a 15 cm radial bLlanket, Tor a 45 cm blanket, the

(S8

Lnprovement is only about 8%,
(2} For either sodiun or beryllium reflectors, reducing the
1. 1 PRI - 1 H - . N ERRS 1 1.7 1, .
blanket thickuess always reduces the plutonium bred by the vlanket i,e.
effect (c) mentioned above is not sufficient to offset effect L.
(3) Optimum irradiation time decreases with decreased radial

blanket thickness,
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TABLE 5,4

REFERENCE AND MORE FAVORABLE

ECONOMIC ENVIRONMENTS

Radial Blanket Fabrication
Cost, $/kgHM

Radial Blanket Reprocessing
Cost, §$/kglii

Fissile Market Value, $/kg

)
°

Discount Rate,

Reference

69

31.50

10,000

More Favorable

40

31,50

20,000

202
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(4) The effect of the choice of radial reflector material on
the optimum irradiation time is more pronounced the thinner the blanket,

(5) Optimum irradiation time decreases as the economic environ-
ment improves,

(6) In the reference economic enviromment, the sodium reflected
radial blanket displays a weak optimum thickness between 15 and 30 cm,
For the beryllium reflected radial blanket, the optimum, if it exists, is
between 0 and 15 cm, that is, the 15 cm beryllium reflected blanket is
superior to the 30 and 45 cm blankets, owing to effect (c) above,

The increment of 15 cm is a representative thickness for a row of
fuel subassemblies, LMFBR operators may have the option of adding or
subtracting radial blanket Tows in accordance with current economic
conditions - fissile market value, fabrication and reprocessing costs, etc,
Thicker radial blankets are indicated when (i) fabrication and reprocessing
Costs decreases, and/or (ii) fissile market value increases, as seen in
Figure 5.2,

Figures 5.3 and 5.4 show the local neutronics obtained from the multi-
group '"'snapshot" physics computations (2DB), In Figure 5,3 the beginning
of fuel life capture reaction rate per U238 atom, Otzgtb, is plotted along
the radial blanket midplane (z=0), Breeding performance, for a particular
case, may be associated qualitatively with the area under that case's

°C28 ¢ vs, r curve, The improvement of the breeding performance of inner
regions by reducing the blanket thickness, effect (c) above, is noted,
This effect is quite weak for the sodium reflected blanket, e.g. %F§¢ in
the inner 15 cm of radial blanket is insensitive to the location of the
radial reflector, However, the improvement is quite pronounced for the
Be reflected blanket, and the advantage of the Be reflector (over the Na

reflector) is seen to increase as blanket thickness decreases,
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Figure 5,4 shows the resolution of the U238 capture rate into its
components, (EZS and ¢, Both reflective (blanket ¢) and moderating

(blanket <%28) properties of Be are superior to those of Na,

5.4 RADIAL BLANKET FUEL MANAGEMENT SCHEMES

Case studies discussed elsewhere in this report assume that all ra-
dial blanket fuel sees the same irradiation time, the optimum for the
blanket as a whole, From Figure 4,7, the optimum irradiation times of
the annular regions range from about three years for the innermost region
to about ten years for the outermost, At the "wiole blanket'" irradiation
time of 6.5 years, the inner regions are past their optimum, while outer
regions are under-exposed,

Clearly, an improvement in radial blanket performance would result
if each annular region were irradiated to its own local optimum exposure,
This schene is labeled '"regional' management in this report. Table 5.5
compares the radial blanket fuel energy costs (mills/XWle) under whole
blanket and regional management schemes, The regional scheme improves
blanket profit by about 30%, Other advantages of the regional scheme, not
implicit in Table 5,5, are power flattening and reduction of power buildup
in the immer regions over an irradiation cycle,

Otier fuel managenent schemes proposed for FER radial blankets are:

« out-in (4)
* in-out (10, 73), and
¢ fuel assembly rotation (10)

The out-in scheme has been evaluated by lasnain and Okrent (4) for

a somewhat smaller reactor (800 liter core) than the reference reactor
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TABLE 5.5

WHOLE BLANKET VS, REGIONAL

FUEL MANAGEMENT SCHEMES

Reactor Configuration Radial Blanket Fuel Energy Costs (mills/Kile)
Whole DBlanket Regional
Management Management

#1 (reference):
45 cm radial blanket;
Na radial reflector -0.0364 -0.0494

#2: 45 cm radial blanket;
Be radial reflector -0.03%4 -0.0519
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assumed in the present study, In this scheme, fresh fuel is loaded in

the outermost blanket region, then moved inward in the following consecu-
tive cycles, and discharged, finally, from the imnermost region. The fuel
econonic advantage of out-in management, relative to batch and scatter
schemes, is that uniformity of discharge composition may be achieved,
However, Hasnain and Okrent found little fuel economic advantage in this
scheme, A major engineering advantage is that local power density change
with time is lessened, thereby reducing orificing control requirements,
The out-in scheme would not, however, be expected to assist in power flat-
tening,

Although it was not demonstrated quantitatively in their study, Hasnain
and Okrent (4) argued that in-out management would be uneconomic, due to
the holdup of bred plutonium, Froelich (10) has shown that in-out manage-
ment has a strong power flattening‘effect, as well as reducing the power
swing of radial blanket fuel over an irradiation cycle,

Froelich (10) has also shown that rotation of fuel assemblies imple-
ments power flattening and decreases power swing,

Advantages and disadvantages of various radial blanket fuel management

options are summarized in Table 5,6,

5,5 SENSITIVITY OF FUEL ENERGY COSTS TO THE ECONGMIC ENVIRONMENT

5.5.1 Introduction

The purpose of this section is to examine the sensitivity of the
reference IMFBR (Reactor #1) fuel energy costs (mills/KWHe) to changes in
economic environment,

Unit costs ($/kgti, $/kg fissile), credits ($/kg fissile), and carrying
charges throughout the nuclear fuel cycle are ultimately transferred to the

utility company, burdened to the production of electricity, and, together
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with utility company carrying charges, borne by the electricity consumer
via a levelized price (cost) of electricity in mills/KWHe, These unit
costs, credits, and carrying charges are determined largely by factors
outside the scope of this report, e.g. supply-demand effects in the
market place, technical-economic characteristics of fuel cycle processes,
fuel processing capacities and throughputs, availability and structure of
capital, fuel element design, -etc, Thus, in this report, the following
variables are regarded as comprising the "economic enviromment' and are
treated in parametric fashion, as input to the depletion-economics

calculations:

unit costs for fabrication and reprocessing and C
p f;,, '(%ab Crepr,
in dollars per kilogram of heavy metal (U + Pu);
nmuclide market values, CZS’ Cpgs +=e 1Cy9 in dollars per
kilogram of the respective nuclide;
utility company financial paramters i.e, tax rate ( T), capital
structure (£, fs) and rates of return (rb, rs) from which the discount
rate (x) may be determined, x = (1-'r)rbfb+rsfs.
In the sensitivity studies reported below, the economic parameters
were varied over the ranges shown in Table 5.7. Reference values are
1 . _L' 3 1 o 3
shown in parentheses, Reference values of Cfab and Crepr are typical
of those projected for oxide-fueled IMFBR's by the USAEC Fuel Recycle
Task Force (18), and of those assumed in the several 1000 Mve LMFBR
design studies, Reference values of the utility company financial para-
meters, leading to a reference discount rate of 8%, are typical of those
of the Cormmonwealth Edison Company in the late 1960's (82),
The fuel energy costs (mills/Kille) associated with the major regions

(cqre, axial blanket, radial blanket) were computed by the procedure
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TABLE 5.7

RANGES OF ECONOMIC ENVIRONMENT PARAMETERS *

Unit Processing Costs [$/kgHM]
Fabrication (Cggp)
Core 150-(314)-330
Axial Blanket 20-( 80)-314
Radial Blanket 20-( 69)-100
Reprocessing (C )
Core TP 15.(31)-60
Axial Blanket 15-(31)-60
Radial Blanket 15-(31)-60

Nuclide Market Values [$§/kg]

Fertile (C2g, C4() 0
Fissile (C49, C41) 5000-(10,000) -25,000

Utility Company Financial Parameters

Income Tax Rate ( T) (0.5)

Discount Rate (x) 0,06-(0,08)-0.10

* Reference values are given in parentheses ( ),



outlined in Section 4,1, Each economic parameter was varied individually,

holding all other parameters fixed at their reference values.

5.5.2 Core and Axial Blanket

Figures 5.5 through 5,12 display the behavior of reference reactor
core and axial blanket fuel energy costs as the economic environment is
varied around the reference environment,

Since the core and axial blanket irradiation times are fixed by the
core burnup limit, core and axial blanket fuel energy cost equations can
be reduced to convenient linear forms, From Equation (4-6), the fuel
energy cost associated with region s (core, axial blanket,or radial

blanket) is given by

- - . .=

es efab,s erepr’s Qmat'l,s

1000 1
- ot @ F. (T) +C FE (M
fab,s fab Tepr,s’ repr
BT
0

+ (.. F ™ - ™ F T 5-1
15s( €5 T (D7 €D 7 (O] (5-1)

With irradiation time (T) fixed, Lquation (5-1) reduces to a linear

expression in the unit costs C C

C :
fab,s’ repr,s’ ~fiss

= + C~. -
®s afab,scfab,s arepr,screpr,s * amatl,s'“flss (5-2)

where the constants {aq s} are given by
b

=) e
4,3 4,s 1000 |
a = =7 M, g .

a,s X q,S 0
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The subscript q denotes the cost component (fabrication, reprocessing,
material); the subscript 0 denotes the reference economic condition, while
x refers to an arbitrary economic condition,

Core and axial blanket irradiation time is set by the burnup limit
of the core, in this case, 2 years, corresponding to an average core burn-

up of 102,000 MWDt/MT. Equation (5-2) for the core is

&  =1.09x107°

~ _3,‘
core “fab,core * 0.784 x 107> C

repr,core

-3
+0.06027 x 10 © Ce. . (5-3)
For the axial blanket,
— -3 -3
e, = 0.872x10 " C + 0,625 x 10 © C
AB fab aB repr,AB
-3
- 0,02307 0-C -
.02307 x 1 Lfiss (5-4)

A''sensitivity coefficient", (Aq s)O’ is defined, to measure the sen-
b

sitivity of €  to changes in parameter Ca from its reference value, all
1,
other parameters remaining fixed at their reference values:

@ ) - Cq,s aeS
q,s “0

Eé 0 gc ,S

) Aes/(es)O
Acq,s/(cq,s Jo
C e
qa,S q,s

=\ a =
E; q,s (5-5)

o|
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Values of (A )0 for the core and axial blanket are summarized in
H]

Table 5.8, For both the core and axial blanket, the material (fissile)

component dominates, i,e, energy costs are most sensitive to Cf_ . Fabri-

iss
cation is the next most important component, followed by reprocessing,
Changes in e-s due to sirmultaneous changes in several economic para-

meters may be computed by linear superposition:

AT = AC + A(C + AC..
s~ %fab ,S CEab ,S arepr, s repr,s nat1 ,5 fiss
or (5-6)
Aeg Acfab,s A Crepr,s Acfiss
= A + A + A
= fab,s ‘repr, s fiss
€ C > C C..
s fab,s Tepr,s fiss

5.5.3 Radial Blanket

Figures 5,13 through 5,16 display the behavior of radial blanket fuel
power costs as the economic environment is varied around the reference
enviromient, The optimum irradiation time (Topt) is seen to decrease as
C.. increases, as ( decreases, as G decreases, or as the
“fiss fab,RB repr,R3
discount rate (x) increases,

Unlike the axial blanket, the radial blanket may be fuel-managed
independently of the core, The radial blanket may thus be irradiated to
its optimum exposure, which occurs somewhat beyond the two year core burnup
limit, One is concerned, then, with the sensitivity of the optimum radial
1 - — . .
blanket fuel energy cost, (T, ) , to the economic environment,

B TOpt
The optimum irradiation time, Topt, is an implicit function of the

economic enviromment, Ilence, the fuel energy cost expression (5-1) does

+ . ‘ _ . 1 . o
not reduce exactly to a linear form (5-2) in the unit costs Lfab’ G repr?

223
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TABLE 5.8

CORE AND AXTAL BLANKET SENSITIVITY COEFFICIEI\TTSL(A.G s)o*
1,

qy s — Core Axial Blanket
Fabrication 0.357 -0.495 #*
Reprocessing 0.025 -0,140 #=%
Material 0,628 1,635
1.000 1.000
e. / (€g)
* Q%hs)o = S >0
Cq,s/(cq,s)o

** These terms are negative because ( T,. ) is negative,
D

0
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C.. as is the case for core and axial blanket, However, plots of (€. )
fiss Rp" Topt
~ i 3 A 1 a. 3
versus the unit costs, Figures 5,17, 5,18 and 5.19 show that [eRB )Topt is
O C
fab? repr? and fiss”®

For small perturbations in the economic environment (A C) the assump-

nearly linear in C

tion of linearity is especially good, This is shown by the broken lines
in Figures 5,17, 5,18 and 5,19, which represent linearizations at the

reference conditions, e.g.

€
(g-.)TOwt - fab,RB .

o _
C fab ,RB
fab R/ 0,Topt

————

5
The constants of proportionality,( q,RB ) ,in units of
“fab ’B/ 0,Topt

1072 kg/Xifle are

Cfab BB
3

Cfab,RB ) 0,Topt 1.154 x 10

€
repr,RB

C

) = 0.519 x 107>
Tepr,RB 0,Topt

3

®matl,Rp
C. = -0,0132 x 10~
Iiss,RB 0,Topt

A composite linear form, analogous to Equation (5-2) valid near

reference economic conditions, is
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(EﬁB )Topt = afab’RBCEab,RB * 8repr,RBCrepr,RB ¥ Pmatl,RB Ciss

=( ®fab 1B ) (erepr,RB)
~ Cre 1y o - C .
“fab ,RB /0,Topt fab,R3 "\ Crepr rp/ 0, Topt repr,RB

E;natl,RB c
oo fiss
fiss O,Topt
= 1.154x1073 C +0.519x1073 C
* fab’RB . repr,m
_ -3
-0,0132x10  C_.. (5-8)
fiss

Values of the radial blanket sensitivity coefficients, defined as in
Section 5.5,2, are given in Table 5.9, Optinum radial blanket fuel energy
cost is seen to be most sensitive to fissile price, and least sensitive

to unit reprocessing cost,

5.5.4 Fissile Market Price and the Economic Potential of IMFBR Blankets

In Sections 5,5,2 and 5,5.3, core, axial blanket, and radial blanket

fuel energy costs were found to be most sensitive to fissile market price

(C.. ). It was alsc shown that €© and €,,, assuning a fixed irradia-
fiss core ABR?
tion time, are linear in the unit costs {C while (pn is
’ { n,S} ( RB )TOpt

!
approximately linear in the {Cq RB} .

’

Figure 5.20 shows the reactor fuel energy costs as a function of

Cfiss’ The total reactor fuel energy cost is the sum of the energy costs

associated with each region:

mills’
A —————

™ Ccore * % " Jropt e

S
reactor



TABLE 5.9

RADTAL BLANKET SENSITIVITY COEFFICIENTS*, (A
— 1 }] ( q’P\B JO,TOI_)t

4 (Aq,RB )O,Topt
Fabrication -2,15 #*
Reprocessing -0.44 #=
Material (fissile) +3 .59

1.00

= &)
(4 I1opt 7 Crs 20, Topt

q,R8 ~0,Topt AC pp/ (C
’L

q,RB )O,Topt

** These terms are negative because ( ERB Jo Topt is negative,
2
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The values of (EﬁB )Topt used in constructing Figure 5,20 were taken from
actual computed results, Figures 5,19 and 5,15, rather than the linear
approximation, Equation (5-8).

Figure 5.20 displays several features:

(a) © pyctoy inCTEases with Cfiss despite the fact that the
reactor produces more fissile material than it consumes, This is due to
the high core fissile inventory cost, An increase in Cfiss results in an
increase in net direct material revenue, but this advantage is overcome
by the increased core inventory costs,

(b) The axial blanket is more profitable than the radial blanket,
because the axial blanket sees more neutrons (Ii/D=0,4)., A two enrichment
zone core configuration (Reactor 1', Section 4.4), of course, upgrades
radial blanket performance by enhancing racdial leakage,

(c) Below inséi 8 $/gm, the blankets are of marginal importance,
As the fissile price increases, the blankets become more viable, sub-
stantially offsetting the high core inventory cost,

(@) The axial blanket breakeven point, from Figure 5,20, occurs
at 3.88 §/gm. This is confirmed by solving Equation (5-4) for C%iss with
€, =0,

(e) The radial blanket breakeven point, from Figure 5.20, occurs
at 7.25 §/gm. This agrees with the solution of the linear approximation,

Equation (5-8), with (Eb 0.

B )Topt -

6
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CHAPTER 6
CONCLUSIONS AND RECONTENDATIONS

In the preceding chapters, a variety of specific conclusions have
been reacihed in regard to a broad spectrum of FBR fuel ecomnomic questions,
An FBR fuel depletion-economics model was developed and applied to a
nuber of 1000 ifie LMFBR case studies, In this chapter, the specific
concluéimls, in both the methods development and application phases, are

reviewed as a prelude to a discussion of broader issues and recommenda-

tions as to tie scope and direction of future work,

6.1 CONCLUSIONS

The major conclusions of this study are swmarized below,

Depletion-Econonics Methods

1. Blankets impose several unique accounting problems: blanket fuel

appreciates with irradiation, thus raising certain income tax questions;
aind the long irradiation times in the radial blanket make the accounting
treatment of blanket carrying charges inportant, Two methods of treating
post-irradiation transactions were compared:

Method A, Tax the revenue from sale of fissile material (material
Credit) as ordinary income, along with electricity revenue; treat repro-
cessing costs as tax deductible expenses in the year in which they occur;

dMethod B, Capitalize fissile revenue and reprocessing costs,

Method A results in significantly lower valucs of levelized fuel

Costs (mills/Kitie), While the choice between fuel cost accounting methods
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has a significant effect on absolute values of energy costs, it does mnot
distort comparative and incremental results, e,g, design rankings, opti-
mization of radial blanket residence times, etc, However, choice of
method B would lead to the selection of thinner blankets, since under
mwethod B more of the radial blanket is unprofitable,

The question of whether or not to tax fissile revenue must ultimately
be resolved by taxing authorities or by common usage. Fast breeder re-
actors have two major products: electricity and fissile material. Thus
it would appear that fissile revenue should properly be taxed as ordinary
income, along with the revenue from the sale of electricity, For this
reason, metiod A is recommended for future studies,

2, Several effects complicate the physics-depletion of FBR blankets:
spectrum softening with distance from the core-blanket interface; spectrum
hardening and flux shift with irradiation; and heterogeneity effects,

The two exposure dependent effects - spectrum hardening and flux shift -
influence the blanket breeding rate in opposing directions. The flux
shift effect dominates. A single multigroup physics computation, to ob-
tain the flux shape and local spectra for depletion calculations, is
sufficient for evaluating blanket/reflector design changes, scoping
studies, and sensitivity studies, The major source of error in computing
fissile buildup by this procedure is the assumption of constant flux over
an irradiation cycle,

Corrections (to the U238 capture cross section) for blanket hetero-
geneity effects influence computed fissile production in two opposing
ways: (a) reduction in C%ZS, tending to reduce the bred fissile inventory;
and (b) reduction in neutron attenuation, tending to increase blanket
fluxes and increase breeding rate, Of these effects, (a) dominates, and

heterogeneity leads to a net adverse effect on blanket breeding, For a



typical radial Llanket, heterogeneity corrections lead to a reduction in
discharge fissile inventories of about 10%.
It was also found that core and axial blanket fuel costs are in-

sensitive to radial blanket/reflector configuration changes,
[+ o

1000 1We LMFBR Casc Studies

2. Substitution of a moderating reflector (e.g. Be) for the outer
radial blanket row/s can improve overall radial blanket economic perfor-
mance significantly, Choice of radial reflector material, e.g. Be vs,
Na has little effect on the fuel econonics of thick ( ~ 45 cm) radial
blankets, The relative advantage of a mocerating reflector increases
as tue reflector is moved nearer the high flux zones of the blanket,
that is, as the blanket thickuess decreases.

4. Reducing blanket thickness (Uy replacing outer blanket regions
with reflector) reduces the bred fissile inventory of the blanket, that
is, the plutonium forfeited in the region eliminated is greater than the
additional plutonium bred in the remaining region due to its improv -
ed- breeding performance ( UC28¢ ). This loss of plutonium revenue is
opposed by savings in fabrication and reprocessing costs of the blanket
clements eliminated, Radial blanket thickness optimization is weak,
1.e, net blanket revenue does not display a sharp peak as radial blanket
thickness is reduced from 3 rows to 2 rows to 1 TOW,

5. Core enriciment zoning, in addition to its advantages to core
fuel economics, significantly enhances vreeding in the radial blanket,
and can increase net radial blanket revenue by a factor of two or more,

6, Optimwi radial blanket fuel residence times increase with distance
from the core, ranging from approximately 2 years for fuel assemblies

nearest the core to about 10 years for fuel in the outer row of a 45 cm

239
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blanket, Thus, if the blanket is irradiated to a single irradiation time
(whole blanket management), the optimum irradiation time for the blanket
as a whole, then inner blanket fuel is overexposed and the outer blanket
fuel is underexposed, Significant improvement (~ 30% increase in net
blanket revenue) results frow irradiating ecach annular reglon to its own,
local optimum irradiation time,

7. For a fixed irradiation time set by the burnup limit of core fuel,
Core and axial blanket fuel costs (mills/KWHe) are simple linear functions
of the unit costs vfor fabrication, reprocessing (§/kgill) and fissile
material (§/kg fissile), Core and axial blanket fuel costs are most
sensitive to fissile value, Fabrication is the next most important com-
ponent,

Unlike the axial blanket, the radial blanket may be fuel-managed
independently of the core, and thus may be irradiated to its optimum ex-
Posure which occurs somewhat beyond core residence times, The radial
blanket fuel cost (or net revenue) at its optimum irradiation time is an
luplicit function of the unit costs for fabrication, reprocessing and
fissile material, as is the optimum irradiation time., Thus the optimum
radial blanket fuel cost is not exactly linear in the unit costs, as
is the case for core and axial blanket, liowever, both tie optimum ir-
radiation time and the corresponding radial blanket fuel cost (or net

revenue) are approximately linear functions of the unit costs,

Optimum radial blanket fuel cost (mills/Kilie) is most sensitive to
fissile price, |

For increased fissile prices, both blankets (axial and radial)
become more important in offsetting the increased core fissile inventory

Costs,
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0.2 RECO:MINDATIONS

1., Blanket Power and Blanket Seeding

The availability of neutrons for fertile-to-fissile conversion is
a key factor in blaiket econoimics, Deep in the blanket (far from the
core), where neutrons arc relatively scarce, the conversion rate may be
too 1QW to overcoiie the rates of increase of fabrication and fissile
Carrying charges with residence time, resulting in net positive costs
for fuel assemblies there, Tus design or fuel manangement options
which tend to increase blanket flux have the potential of enhancing
blanket economnics,

Overall reactor fuel economic performance, represented by the net
total fuel costs of core and blankets (mills/Kille), is improved Ly
increasing blanket power, This statement asswies that the maximm local
power density in the core is held fixed,

A scheme which increases both blanket nultiplication (and hence
blanket flux) and Llanket power is the inclusion of fissile material in
blanket load fuel, or blanket seeding, Depending on the orificing scheme
adopted, other advantages of blanket seeding are increased coolant exit
temperatures (reducing the mixed mean temperaturc degradation) and
reduced blanket power-swing over an irradiation cycle. Another incentive
for seeding, or some equivalent accomodation, is the desirability of
modifying a given blanket so that the theoretically optinum blanket
thickness matches the discrete thickness allowed by fixed subassembly
dinensions, Blauket seeding has a number of disadvantages, including
increased inventory cost, increased pumping power requirements, decreased
fertile material load available for conversion, and, in the case of uran-

ium seeding, additional processing charges, for enrichment.
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Table 0,1 swmarizes the advantages and disadvantages of blanket
seeding, A parametric study to examine these tradeoffs in a more
quantitative manner is recomaended,

Other investigators (12) have shown that reducing the load fissile
enriciment from that of natural uranium (0,7% U235) to zero has negli-
gible effect on blanket breeding, Thus substitution of natural uranium
for enrichment plant tails (~0,2% U235) would offer no improvement in
blanket breeding,

Figure 3,11 shows that the local breeding ratio decrcases from
greater than unity to below unity as load enrichment is increased from
zero (blankets) to about 14% (core), because of the enhanced competition
for neutrons by the fissile species, At some intermediate point, the
local blanket breeding ratio will be unity, Offsetting the diminished
local blanket breeding ratio is the increased blanket flux, which tends
to increase net blanket revenue at the local optimum irradiation time and
to decrease the local optimum irradiation time,

2. Radial Blanket Fuel Management

The literature scarch, Appendix D, failed to render a comprehensive,
comparative evaluation of alternate fuel management strategies for a
fixed reactor configuration, This is perhaps due to the complexity of
fuel management calculations and tie lack, until recently, of computer
programs flexible enough to survey all feasible options with ease.
Several recently developed programs promise to be useful for FBR fuel
nanagement studies: DPIGNIX (31), REBUS (32), FUMBLE (45), and
2DBCOST (17). A comparative evaluation of scatter, batch, ocut-in, and
lo-out equilibrium radial blanket fuel management schemes is recommended.

Table 6,2 gives qualitative advantages and disadvantages of these options,



TABLE 6,1 ADVANTAGES AND DISADVANTAGES OF BLANKET SEEDING

ADVAINTAGES DISADVANTAGES

. Increased blanket multiplication . For the same fuel volume fraction,
(more neutrons available for slightly less fertile material
fertile-to-fissile conversiomn) available for conversion,

J'Bonus power', Tor a fixed local . Increased blanket coolant pumping
power density limit in the core, requirerents,

increased reactor power.

. Reduced mixed mean temperature . Increased fissile inventory costs,
degradation from blanket cool-
ant,

. Decreased power swing over an . In the case of U235, a possible
irradiation cycle, increase in processing costs
(enriclment)
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Once tie reactor is in operation, the radial blanket offers the major

remaining area of fuel ianagement flexibility, The operator may tailor
its size (or uumber of rows of subassenblies), Joad canposition (enrich-
nent in fissile plutonium or uranium, or possibly the use of fertile
thoriuwm) , and fuel management scheme to current and projected econonic
enviromients, Thus, for example, if higher plutonium prices and/or

lower fabrication end reprocessing costs are forccast, he may decide

to add a row of subassemblies, Under other conditions, he may elect

to alter the radial reflector design, include moderating material in the
radial blaiket, etc, A recent study (17) has addressed the general
problen of optimizing FOR fuel management options in a variable economic
enviromnent, Continued effort in this area is recomended, with the

aim of paramcterizing and siuplifying fuel management decision-making.

3. FIR Fuel Management and Design

Ini-reactor fuel management, particularly that of the blanket, is
conmionly treated an an after-thought in reactor design, The reactor is
designed first; then fuel management is optimized, subject to the con-
figuration selected and its engineering limitations and constraints.
Ideally, the tasks of design and of setting the fuel management schene
siould be intimately coupled,with the goal of reaching a more 'global"
optimum, |

For example, the power swing (and hence orificing requirements) over
an irradiation cycle in a radial blanket region, i, may be diminished
by decreasing the fraction, g;, of fuel replaced in that region per
refueling event, This, in turn decreases the region throughput, in-
Creases tihe irradiation time, and increases the fissile inventory in
the region, wiich may affect the net blanket fuel revenue adversely,

Similarly, a degree of power flatteninug across the blanket can be achieved
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by dividing the radial blanket into annular regions and assigning them
refueling fractions (gl » 8y s ...) which decrease with distance from the
core, The design benefits of power shaping should be included explicitly
in the analysis of fuel nanagement strategies,

Whatever aspects of bLlanket fuel management arc subjected to further
scrutiny should be approached on a more global basis, at the minimum taking
into cousideration the strong interaction of management schemes and the
flow orificing pattern adopted,

Finally, since unit sizes are projected to increase to 2000 Mye and
beyond after the year 2000, a more thorough parametric study of blanket
perforuance versus reactor rating is recommended, The reactor size-
blanket fuel economics preliminary study in Appendix B identifies some
of the design-fuel nanagement issues which should be addressed by such

an effort,
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APPENDIX A - NOMENCLATURE

Subscripts, Superscripts and Abbreviations,

mp
fab

repr
nc

28
49
40
41
42

M
CEM

CIM
SIM

cost component index; mp, fab, repr or mc
material purchase
fabrication
reprocessing
material credit
U238

PuZ39

Pu240

Puz41

Pu242

heavy metal (U + Pu)
cash flow method

compound interest method
simple interest method

Levelized Cost (Price yof Electricity

)

Unit Costs

c:fab

levelized cost (price)of electricity mills
associated with fuel,
KiWHe

Depending on context, the symbol & denotes:

*total reactor levelized fuel cost
(sum over all fuel streams)

*levelized fuel cost associated with a
given fuel stream (sum over the cost
components, q, of the fuel stream).

unit fabrication cost for a
given type fuel kgHH
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unit reprocessing cost for a

repr given type fuel kgM
3
Cj market value of isotope j
kg

Annual Quantities for CPM Derivation

L. electrical energy generated by the plant, year j KWHe

V. taxable revenue from sources other than the sale cf

J electricity, year j $
0; tax deductable cost, year j $
Dj depreciation for tax purposes, year j $
V' non-taxable revenue, year j $
J
Zj capitalized cost (new capitalization), year j $
Y. book value (liability to investors) in effect
J during year j 3
1, income tax, year j 5
w(j) discount factor, (14x) ~
Costs Associated with a TFuel Lot
z% direct cost, cost component q, fuel lot m $
(Z%)** carrying charge associated with cost component g,
: fuel lot m $
(zq *  total cost associated with component
il s
fuel lot m; $

C
= zh e gl
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Time

4
m

It

an
m

il

time from beginning of plant life to trans-
action ¢, fuel lot m

time from beginning of plant life to
irradiation midpoint of fuel lot m

irradiation time of fuel lot m

pre-irradiation time, component q, fuel lot m;
time between transaction q and start of
irradiation

post-irradiation time, component ¢, fuel lot m;
time between end of irradiation and trans-
action q

time between transaction q of lot m, and mid-
point of irradiation

Financial Parameters

discount rate

fraction of capital from bondholders
fraction of capital from stockholders
bondholders' rate of return
stockholders' rate of return

income tax rate

yr.

carrying charge factor associated with cost component q,

fuel lot m; q q
(z, )*/2

carrying charge rate associated with cost component q

Fuel Composition

M, (T) ’

Mass of indicated nuclide after irradiation

M8y,

49

(0}
Mogs

M°

49"

Initial mass of indicated nuclide

kg

kg
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GE(T) Fissile concentration after irradiation time T,

0
Mg (1) + My, (/M

€ Initial fissile concentration (enrichment),

0 0 0
M49 + M41 / MHM

Chapter 3 - Nomenclature

57 microscopic cross-section for event e,
K e energy group Kk, nuclide j
>
g J spectrum averaged one group cross-section,
e event e, nuclide Jj

. n
¢ G) / T ¢
k=1 k k’e k:l k

¢ neutron flux in energy group k
¢ total flux,

S

k=1 K
Nj atom density, nuclide j
N?* initial atom density, nuclide j
9 flux time

t
= [ ety at

Appendix B - Nomenclature

R. core radius

VE core volume

Bé critical core buckling
€ critical core enrichment
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barns

barrns

2
n/cm”sec

n/cmzsec

atoms/cm3

2
atoms/cm

cm
liter

cm”



c,ox

b,0x
f

AD%,49CT&

0
M:c,49
AMy 49(Ty)

c,proc
eb,proc
-,EE,BU

c,Inv,

b mat

of

252

internal breeding ratio,

fissile production fissile destruction
rate in core rate in core

external breeding ratio,

fissile production fissile destruction
rate in blanket rate in core

oxide volume fraction in core
oxide volume fraction in blanket
fraction of reactor thermal power produced in blanket

change in core PuZ39 inventory during core irradition

time Tc kg
initial core Pu239 inventory kg
change in blanket Pu239 inventory during kg
blanket irradiation time Tb

levelized core processing (fabrication + mills
reprocessing) cost, including carrying

charges KWHe
levelized blanket processing (fabrication + mills
reprocessing) cost, including carrying charges

KWHe
levelized core burnup (direct material) cost, mills
including material purchase and material
credit KWHe
levelized core inventory cost mills
(material carrying charge)

Kite
levelized blanket material cost (revenue), mills
including carrying charge

Kuie
total levelized core fuel cost, mills

ec,proc + ec,BU + ec,InV. KiWHe
total levelized blanket fuel cost mills
eb,proc + eb,mat KwtHe
total levelized reactor fuel cost mills
e+ ¢ KiHe

c )
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APPENDIX B

REACTOR SIZE AND BLANKET FUEL ECONOMICS

B.1 INTRODUCTION

Very large reactors (> 1000 Mie), advantaged by economics of scale,
have been predicted, For example, the EEI "Fast Breeder Reactor Report"
(58) suggests that light water reactors and fast breeder reactors may have
unit ratings in excess of 2000 Mie by the year 1990. The purpose of this
appendix is to examine relationships between FBR core size (or power rating)
and FBR blanket fuel economics,

As core size is increased, (holding shape fixed), core neutron leakage
(per core fission) and external breeding ratio decrease, Net blanket
revenue (plutonium credit less fabrication and reprocessing costs), per
unit of power, decreases, At the same time, core critical enrichment
decreases, resulting in lower core fissile inventory costs, With a higher
fertile concentration in the core, the internal breeding ratio is enhanced,
diminishing the burnup (direct material) component of core fuel energy cost,
Indeed, for a sufficiently large core, the internal breeding ratio exceeds
unity and the burnup component becomes a revenue,

For these reasons, the economic importance of the blanket tends to
decrease with reactor size, In fact, it may be worthwhile, for a suf-
ficiently large core, to substitute a non-breeding reflector for the breed-
ing blanket, This would eliminate fabrication and reprocessing costs, al-
though this advantage may be offset by the cost of the added reflector,

In addition, the core neutron econony may be improved, provided the reflec-

tor has superior neutronic properties compared to the breeding blanket,1

1. Design studies for the FFIF (84) have shown that Ni is superior to a
breeding blanket, as a core reflector.
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resulting in even  lower critical enrichment (lower core inventory cost)
and higher internal breeding ratio (lower burnup cost), If the reflector
is merely sodium coolant, it need not be fabricated or cooled in situ and
blanket fabrication costs and pumping requirements are eliminated, Against
these advantages of a non-breeding reflector must be weighed its obvious
disadvantage - the loss of blanket plutonium revenue,

The arguments above are largely academic, First,the core shape was
assumed to be held fixed as core size increases, In reality, high leakage
geometries (e.g, pancake, annular) may be required for large cores to en-
hance the negative component of the sodium void coefficient, Another
reason for spoiling large core geometry is to hold the internal breeding
rate near unity, thus minimizing reactivity control requirements, control
Systems costs, and parasitic loss of neutrons available otherwise for
breeding,

The purpose of this appendix is to examine some of these qualitative
arguments in a semi-quantitative way, Using simple, one energy group,
spherical geometry neutronics equations, the fuel economics of reactors
with and without blankets were compared as core size (power rating) is
increased, Three cases are considered:

Case A: Spherical core with a breeding blanket, assuming no
Pu239 burnup in the blanketl;

Case A*: Spherical core with a breeding blanket, corrected for
Pu239 burnup in the blanket, blanket power fraction =
Oi.'fll;

Case B: Spherical core with a sodium reflector (no breeding

blanket) .

1. Case A*, a refinement of Case A, is included to examine the effect of
blanket burnup on overall energy costs (mills/Kille).
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The spherical core size limit for a negative sodium void coefficient (50%
sodium loss) have been determined in an extensive parametric study by
Terasawa, et,al, (55), This limit is indicated in the results of

Section B,3,

B.2 EQUATIONS
B.2.1 Summary

The neutron balance, depletion, and economics working equations used
in this study are summarized in Table B,1, Major assumptions are listed
in Table B.2, Table B,3 gives the region compositions and one group physics
data, Table B.4 presents the economic data, Residence times and power-
Telated parameters are given in Table B.5. The equations of Table B.1 are
used as follows:

1. For a given core volume (Vé), the core critical buckling
(Bi ) is found by solving the transcendental critical Equation (B-4A) or
(B-4B) .

2. With this value of critical buckling, critical core enrichment
GCC) is computed, using Equation (B-15), Critical mass (h£,49) may also
be computed at this time, from €. and Vé, using Equation (B-17),

3. The internal breeding ratio (bi), a function of'Gé, is
determined from Equation (B-20), The external breeding ratio (bx)’ a
function of both €. and Bc’ is found from Equation (B-24),

4. Masses of Pu239 discharged from core and blanket (MC 19°
Mb’ 49) are found from Equations (B-36) and(B-37) respectively, witl; the
known values of Ve, EE, bi and by, This step may be by-passed since the
econoimics equations incorporate (B-36) and(B-37).

5. Core and blanket levelized fuel energy costs are determined

from Equations (B-48) through (B-78), with the values of GEC, bi and bx
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TABLE B,Z2 - ASSUMPTIONS

1. Geometry
. Spherical core
. Infinite outer region (for criticality calculation)
. Blanket Volume = 3 x core volume (for blanket processing

cost calculation)

2, For Case A, there is no Pu239 burnup in the blanket (blanket power

fraction is zero),*

For Case A*, Pu 239 burnup in the blanket is accounted for (blanket

power fraction is 0.1).%
3. Core rated power density is independent of core size,
4. No fissile material is loaded in the blanket,

5. Core and blanket have the same one group cross sections (no

spectral effects),
6. No higher isotopes of Plutonium are considered.
7. Corc enrichment is uniform (no zoned enrichment schene) ,

3, Increased control requirements for internal breeding ratios substan-
tially above unity are ignored,

9. There are no sodium void coefficient restrictions on the size of a
spherical core,

*® For blanket irradiation times near six years, U238 fission provides

about 15% of hlanket energy.
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TABLE B,4 - ECONGMICS DATA

Pu239 (C49) ..... $10 00 §$/kg Pu239
Fabrication Costs
core (Cc,fab)‘ . . . 314 $/kgHM (Putl)
Blanket (Cb,fab)' ... 69
Reprocessing Costs
core (Cc,repr) . . . 31.5 $/kgiM (Pu + 1)
Blanket (Cb,repr) .. . 31,5

Utility Company Financial Paramters
Income Tax Rate (r)......0,5
Capital Structure :
Bond Fraction (fb), v e . . .05
Stock Fraction (fs), e e o o o 0,5

Rates of Return

Bonds (r). . o ... 0,07
Stocks (rs). e e o . . 0,125
Discount Rate¥ x)

* = -7
x =(1 )fbrb + rsfS . .. . 0,08



TABLE B,5 - PLANT POWER RELATED PARAMETERS

Rated Core Power Density

Plant Load Factor

Net Thermal Efficiency

Fuel Irradiation Times
core

blanket

AND BATCH FUEL TIMING

(q"")
(L)

(n)

(1)
(1)

Pre and Post-Irradiation Times (core and Blanket)

material purchase

fabrication

reprocessing

material credit

500 kwt/liter

0.8

0.4

2 years

6 years

0.5 years

0.5

0,5

0.5

2062
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determined above,

B.2.,2 Derivation of Equations

B.2,2,1 Neutronic and Depletion Equations

Critical Core Bucklin&

The one-group criticality equation for a spherical core surrounded

by an infinite outer region is

D
b
B =1- T -
RCOtBR. =1 R (Xp R + 1) (B-1)
where ¢
2
BC = (critical core buckling)
k2 -1
< [ ]
= = v 2 - Z
L D f,c a,c ’
c c '
1 -k,
2 * 2 _ 2 5
X - = _B = - [ 2 - U ]
b 2 b a,b £,b0
Lb Db ’ ’
Rb = core radius
D = diffusion coefficient, region i
i
Z% ; = macroscopic fission cross section, region i
?
Ea,i = macroscopic absorption cross section, region i
V = neutron yield per fission
suﬁgtript i = c (core)

b (outer region)
The''outer region (b)" is either a breeding blanket (Case A) or a sodium
reflector (Case B). In the latter case, the outer region is not a multi-

plying medium, and Xé = l/Lg , as usual,
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The core radius expressed in terms of core volume (Vt) is given by

= (3/4 1/3
Re = (3/4 7V)

= 6.24 VC1/3 (B-2)
where Vc is in liters, and RC is in centimeters, Equation (B-1) thus
becomes Db

1/3 R i N 1/3
B_(6.24 Vc ) cot B_(0.24 VC ) = R [%,(6.24 V. ) + 1] (B-3)
c

Using the data of Table 6,3, Equation (B-3) becomes

1/3 1/3 , > 1/3
6.24 VC B cot(6,24 Ve Bc -0.3 VC - 0.1915,.Case A (B-4A)

-0.04815 V_1/3.1,4561 Case B (B-4B)

Critical Core Enrichment

For a given core volume, the transcendental Equation (B-4A) or (B-4B)
is solved for critical core buckling, by trial and error, or graphically,
An expression relating critical core énrichment (CC) and critical core
buckling is developed below,

The core diffusion equation, for criticality, is

2

-Z ¢ ¢ = -
BV e a,c +4lr)rzf,c 0 (B-5)
or
v2¢ + By - 0
c
where
2 v'Z - Iz
B = — f,c a,c
D
c
or
D p?.% + VX = 0 (B-6)
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But

v L = v Z + v z
f,c 28 f,c,28 49 f,c,49

z n z -
28 “a,c,2s T a9 *ac,49 (B-7)

where the subscripts 28 and 49 denote U238 and Pu239 respectively, Sub-

stituting (B-7) into (B-0),

z 2
+ " z = X + DB B-8
28 a,c,2s 49 a,c,49 a,c cc (-8)
Letting
Z; c = non-fuel macroscopic absorption cross section
’TE in the core,

the total core macroscopic cross section is given by

4 = Z + Z + I (B-9)
,¢ a,c,28 a,c,49 a,c,p

Substituting (B-9) into (B-8) one obtains

n_ - ) n o
(oD Zacas * Clao m D % g
= I + D B 2 (B-10)
a,c,p c ¢

The heavy metals uranium and plutonium have approximately the same
theoretical number densities in the form of oxides (Table B.3), Thus
their macroscopic cross sections may be expressed in terms of enrichment,

as follows:

= \* U % -
za’c,49 Mo €¢ 9 ox 2,49 (B-11)
hX - % . (9] _
a,c,28 N28 (1 E:C) gc,oxv a,z28 (B-12)

where
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%
N49 , N g = theoretical number densities of Pu239 and U238
Z in the form of oxides, atoms/barn- cm

Cc = critical core enrichment
= Puz39 number density/(Pu239 number density +
U233 number density )
0 = volume fraction of oxide in core (B-13)
c,0X

Ga 29 = Pu239 microscopic absorption cross section, barns

’
Ga og = U238 microscopic absorption cross section, barns,

H

Substituting (B-11) and (B-12) into (B-10) and solving for critical core

enrichment,
3 2 - * o
€ = * % g
c n - Y -(m, -
( 49 1) N49 gc,ox a,49 ( 28 1) st gc,ox 2,28

Assuming the representative values

> - 0.0002 cm L
a’c’p
9C,O)( = 0.3

and using the one group data of Table B,3, Equation (B-14) becomes

€ = 0.0651 + 62,76 BCZ (B-15)

- Critical Core Mass (Pu239)

Equation (B-15) is used to determine the critical core enrichment,
using the critical core buckling found from Equation (B-4A) or (B-4B).

Critical core mass (Pu239), Mg 4g» May be computed from enrichment as
>

follows:



0 .
= M e = B-
MC’49 A A (B-16)

where
0 s ..
M49 = critical core fissile mass ( kg)

= oxide density = 10 (kgM oxide/liter HM oxide)

O
Jn

0.88 (kg HM/kg HM oxide)

MC gy mass of heavy metal (U + Pu) in the core (kg).
’

For an oxide volume fraction of 0.3,

Mc,49 = 2,64 VC CC

Breeding Ratios

The Pu239 inventories in discharged core and blanket fuel are to be
expressed in terms of internal (core) and external (blanket) breeding
ratios, respectively, Internal breeding ratio (bi) is defined as

Pu239 production rate in the core

b, = (B-18)
1 Pu239 consumption rate in the core

Thus

N g o

c,28 c,28 1- CC c,28

bi = = € B (B-19)
o]

Nc,49 a,49 ¢ a,49

where
O‘C 28 = U238 microscopic capture cross section
H

g a4y = Pu239 microscopic absorption cross section,
>

Using the cross section data of Table B,3,

bi = 0,1255 1- €

€ (B-20)

267
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*The external breeding ratio (bx) is defined as follows:

Pu239 production rate in the blanket
b = '
X PuZ39 consumption rate in the core (B-21)

Thus,
core neutron leakage rate

b = .
X |Pu239 consumption rate in core

U238 capture rate in the blanket

core neutron leakage rate (B22)

Assuming no leakage from the outer face of the blanket, and no blanket

nultiplication,
2 z
DB
Cc c,b,28
b =\ "% 5 * (B-23)
b
N49 CC gC,OX a,49 za,b
where
Ec b 28 = UZ38 macroscopic capture cross section in the blanket
]
z = total macroscopic absorption cross section
a,b in the blanket

Using the data of Tabe B,3,

B2

b =76.19 c
X

CC

(B-24)

Discharge Pu239 Inventories

The change in core Pu239 inventory over the fuel lifetime in the core

is given by

- _ 0
AMc,49(Tc) = MC,49(TC) MC,49
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(Pu239 atom production rate -

Pu239 atom consumption rategore xT_ G

/ Pu239 atom production rate

\\Pu239 atom ccnsumption rate

Pu239 atom consumption rate

X
total fission rate

X total fission rate xT G
core c

Pu239 atom consumption rate
- X total fission rate xTCG
total fission rate

core
1t o (1-£) 1Q
= b, Y= T g

——/ EPF ©

1+ 6
c
1+ «

. “Ya-n 10
T.G
1+ 8 EPF ¢
c

1+ ¢«

) @-n g
= T. GO, -1), B-25)

1+ EPF c i

c
where
Al (TC ) = change in core Pu239 inventory over fuel life-
c,49 time, kg
h%’49(TC ) = discharge Pu239 inventory, core, kg.

= g

%y = a0/ Tg 9

b =Nc,28 %¢28 7/ Ne a9 9f 49

f = fraction of reactor power produced in the blanket

Q = rated reactor thermal power, kwt



Evaluating

Letting

c
L

G =

EPF =

AM

c,49

fuel residence time in core, years
plant load factor
39.67 x 10720 kg Pu239/atom Pu239

energy per fission=1,016 x 10721 kw-yr/fission

the constant, G/EFF, and substituting

l1+a
(To) = *
T @D KT (b -1

1+ 34

X 3.9045 x 10‘4

49 1.04

d

ana assuming negligible blanket power,

f~ 0

b

equation (B-26) becomes

AMc 49(T) = LQT. (b;-1) x 4.06 x 10”

4

A similar development for the blanket yields

where

0
A, 4o(Ty) = My 49Ty - ™, 49

ey

(B-26)

(B-27)

(B-28)

(B29)

(B-30)

i+ Y49 4
-ff L3 x 3.90 B
- hx(l-f)( ) ( ) pQ X 5.9045 x 10
1+ 6 1+ 8

270



Ah% 49(Tb) = change in blanket Pu239 inventory over
H

fuel lifetime, kg
0
Mb 19 = load Pu239 inventory in blanket Kg
h% 49(Tb) = discharge PuZ39 inventory, blanket kg
8 =7 g A a
b =% £2s’ M0 Foa0
Tb = fuel residence time in blanket Kg

Using Equations (B-27) and B-28), Equatidn (8-30) reduces to

4 \
b 49 (B-313

b

AM = ¢ 10~
(Tb) LT, bX x 4,06 x 10
Rated thermal power (Q) is given by
= iy
Q G Ve

where qg'is the rated core thermal power density in kwt/liter. Equations

(B-29) and (B-31) become

(AT _4
AM = - 2 { -
L 9T = 1AV T (b;-1) x 4,06 x 10 (B-32)
and
w -4
AMy 4o (T,) = L&;v T, b X 4.06 x 10 (B-33)
» C

Using the values for qg: L, T, and Tb from Table B,5, Equations(B-32)

and (B-33) become

Ai\'I = . - -
Ai‘»’ = 7 V -

The Pu239 inventory changes during irradiation were defined above as

.0

AM = - M
c,49(T) = M 4o(Te) -2 4

c,49

[}

A]\4’0,49(Tb)

b

Mo (T) - M
b,a0t T M a0

271



272

Combining these definitions with (B-34) and (B-35), using Equation (B-17)

for MS , and assuming that no Pu239 is loaded in the blanket, one
obtain;

Mc,49 = 2,64 Vo €+ 0.325 (b;-1) V, (B-306)
and

L 4g = 0,975 bX V. (B-37)

’

B.2.2,2 Economics LEquations

The expressions for levelized unit energy costs (nills/Kille) associ-
ated with regions under batch management arederived in Chapter 2. The
following cost components are identified with each region: material
purchase, fabrication, reprocessing, and material credit. Each of these
components are further subdivided into direct and carrying charge sub-
components, such that for region "s'', component "q'',

(cost)S q = (direct cost)S q Fq (TS) (B-38),

H ’

{carrying cnarge)S (direct cost}s,q(Fq(TS)-l)

4

(direct cost) £f (T) (B-39)
S q s

»
where Fq(Ts) is a carrying charge factor emerging from the levelizing pro-
cess and T_ is the residence time of region "s" fuel.Expressions for the
carrying charge factors are derived in terms of utility company financial

parameters in Chapter 2,

For the purposes of this study, the cost components and subcomponents
are re-aggregated as follows:
(1) core direct material components (direct material purchase
and direct material credit) are combined to form the core "burnup'' or

""depletion' component, EE py (mills/KWHe);
2
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(2) carrying charges associated with the core material components
(material purchase and material credit) are combined to form the core

"inventory' component, € (mills/KwHe) ;

c,inv
(3) core fabrication and reprocessing components (including their
direct and carrying charges) are combined to form the core '"processing'
component , e¢, proc (mills/KwWHe) ;
(4) blanket material components (including their direct and

carrying charges) are combined to form the blanket material component,

® mat (mills/KWHe) ; and

H
(5) blanket fabrication and reprocessing components (including

their direct and carrying charges) are combined to form the blanket ""pro-

Cessing'' component, €

b,proc (mills/Kite) .

Core Fuel Energy Costs

From the cost equations derived in Chapter 2, the core fuel energy

costs defined above are given by

1000 1000
— = By - ——— E\ ) }, )
®c,BU - Chg B, 4o(T) o Cro “c,49 . 29(TJ] (B-40)
Cc
1000 0
— . = _ P f T -41
ec,lnv ET C49 [Mc,49 fmp(TC) Ic,49(TC) mc( 8) (B-41)
C
1000
e = . M C F_(T) +C F T B-42
ec,proc ET lC,I‘]M [ c, fab fab( C) c,repr | Tepr ( C)] ( )
C

where

E = electric energy produced per year, kwhe/year

il

m ,
8760 nl.qc V. (8-43)

=
1]

net thermal efficiency , kwe/kwt
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Chapter 2 gives expressions for the carrying charge factors, F(=1+f),

in terms of utility company financial parameters:

£ (T)=F (T)-1

l?ﬁp C Ilp
1 T' +1/2T
= ) [ A+x) ' mp C -7]-1 (B-44)
~-T
fmc(TC) ) ch(Tc) -1
= (1+x) (Tetl/2Te ) 4 (B-45)
PRV REL VL B-46
Feap (T = 1-1 [ (1) (B-46)
(T, +1/2T )
F  (T) = (1+) F°PT < (B-47)
Tepr c

Using the data of Tables B.4 and B,S5,

f (T=2) = 0,2445
mp- C
f (T=2) = -0,1089
mec- cC
Ffab(TC=2) = 1,2445
(T =2) = 0,8911
Trepr ¢

Further, using Equations (B-36), (B-17) and the data of Tables B.4 and
B.5, Equations (B-40), (B-41), and (B-42) become

®.py = -1.16 (-1 (B-48)
S iny T 3335 €. +0.1260 (b, -1) (B-49)

3 = 0.3964 (B-50)
c,proc

The total fuel energy cost associated with the core, EE, is given by



e +e. . +e
C c,BU c,inv C,proc

o]
I

Blanket Fuel Energy Costs

3.335 € - 1.034 (b;-1) + 0.3964 (B-51)

From the cost equations derived in Chapter 2, the blanket fuel euergy

costs defined above are

1000

5 - c pb
b,mat ET, 49

rM
L"b

1000

— —

= M
", proc BT DM (G gab Fran(Ty)

where E is given by Equation (B-43),
From Chapter 2,

1 T' +1/2T
b

— mp
th(Tb) 1-1[ (1+x)

1}

_T]

1
- 2
(T . *+1/2T)

[}

FmCCTb) (1+x)

|
1 T *1/2T,

F_.(T) = [ (I+x)

fab b 1-71

-(T __+1/2T,)
F (1) = (1) TP¥ 0P
repr b

Using the data of Tables B.4 and B.5,

F (T, =6
' (Tp=0)

ch (Tb=6)

Fe, (T,=6) = 1.6175

]

1.6175

0,7041

Frepr(Tp™6) = 0.7641

C

F T. B-53
b ropr Frepe(T) 1 6759

(B-54)
(B-55)
-] (B-56)

(B-57)



For the purposes of estimating blanket processing costs, the blanket

volume is assumed to be three times the core volume,

= . B-58
VB 3 Vé ; ( )
and
Mb,HI\/I =3 VC gb,OX ‘Pox C
where

O, ox = oxide volume fraction, blanket
,0X

= oxide densit
$ox 7

C

0.88 (kgilM/ kgl oxide)

Further it is assumed that no Pu239 is loaded in the blanket,

0
y =0 B-59
b 49 (B-59)

Using Equations (B-54), (B-55), (B-43), (B-59), the material carrying
charges factor above, and data from Tables B.4 and B,5, Equation (B-52)

becomes

eb,mat = -0.886 bx (B-60)

Using Equations (B-56), (B-57), (B-43), the processing carrying charge

factors above, and data from Tables B,4 and B.5, Equation (B-53) becomes

eb,pmC 0.2555 (B-61)

The total fuel energy cost associated with the blanket, Eg, is given by

® = ®b,mat * ®b proc

-0,886 bX + 0,2555 (B-62)
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B.2.2.3 Rated Power and Core Volume

Core rated thermal power is given by

1y

Q= q. Vc kwt

where q@ is the rated core power density in kwt/liter and V. is the core
volume in liters, If the blanket is assumed to produce negligible power

(Case A), then plant rated electrical power, Pe in MWe is

= -3 - ':” -3 \ A1A
P_= 7Qx 10 ra. V.x 10 Mie (B-63)

where n is the net thermal efficiency, For rated core power density of

500 kw./liter and a net thermal efficiency of 40%,
P, = 0.2V, Mde (B-64)

If the blanket is assumed to produce 10% of the total thermal power

(Case A*), then plant rated electrical power, P:, is

P* =022V Mie B-65)
e C

B,2.3.4 Corrections for the Blanket Pu239 Burnup Assumption: Case A%*

In deriving the equations above, it was assumed that there was no
burnup of Pu239 in the blanket, i,e, that blanket power contribution was

approximately zero, and that all of the bred Pu239 was available at end
of blanket fuel life,

The assumption has several effects on fuel energy costs, For the

same core power rating, the cost components ec,BU’ ec,inv’ eC,proc’ and

€ proc are over estimated, since the total delivered energy E, in the
H
denominators of the cost equations, is underestimated, The assumption

effects the blanket material component, e, a revenue, in two ways,

,nat?
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both tending toward an overcstimation of this revenue: the total delivered
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energy E is underestimated (denominator) and the discharge Pu239 inventory
My 49 (numerator) is overestimated.
s ,
Corrections for the assumption are developed in this section. Numer-
ical comparisons of Cases A ar.d A* are given in Section 3.4.

Correction Factors for Blanket Discharge Pu239 Inventory

he asswipption in question causes the blanket Pu23¢ discharge inventory
to be overestimated, To compensate for this, a correction factor (C F )

is defined

= N T -
CF = L%AQ (T /1y 4o (1) (B-66)
wnere

M9 (Tb) = blanket Pu239 discharge inventory assuming
’ no Pu239 burnup (Case A),

Mg (T, ) = blanket Pu239 discharge inventory, allowing
49 7b for Pu239 burnup (Case A¥%)

The correction factor CF is estimated by two methods below,

Method (1)

The "true" discharge inventory, MZ’ 49(Ty) , is given by Equation (B-30)
while the assumed discharge inventory M 49(Tb) is found by setting
blanket power fraction (f) equal to zero,in Equation (B-30), Using Equa-
tion (B-30) and Equation (B-66),

CF=1-F - (/b [+ s0/a )] (B-67)
The parameters Bc and ﬁb are given by
g - € g
NC,28 f,28 1 €c f,28
6 = = T (B-68)
o N g € f’49
c,49 £,49 c
and G
g
. N, 28 £,28 1- € £.28
o =

"\
"b49  £,49 b £,49

o

s}



where Cb is some representative Pu239 fraction in the blanket, i.e,
at midpoint of an equilibrium cycle, Letting
€ =~ 0,15
C

€, =0.02

and using the cross section data of Table B,3, one finds

Assuming an external breeding ratio (bx) of ~ 0.5 and a blanket power

fraction (f) of ~ 10%,

CF ~0.8 (B-69)

Method (2)

The U238, Pu239 population equations, in terms of flux time (@), are

b 28
—— + N =0
de c,28 b,28

Ny 49

’

— . _ 1
do 2,49 Y49 T %28 Y28

Asswﬂing 1\1'8,49 = 0’ and that 03.,49 Nb’49 # 0’ the SOlU.tiOH fOI‘ Nb 49 iS
’

(¢]
N E3 NO C)28 ( g [1 G o
= g exp( - 6 ~-€ - -
b,49 b,28 3,49 _»ga’zg P a,zs )| xp(-[ a,49 8.,28]0)]
(Case A%) (5-70)

The solution, assuming that ‘\18 29 =0 and that Ga 40, 49=0, is
s ’ ’
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0 c,28
=4 1- i - B-7
No,49 Ny, 28 S, 2 [1-exp (-0, 5g6) | (B-71)
(Case A)
Thus,

*
N -9 -0 0

b,49 e a,28 - e a,49
Nb’49 e, 0 (B-72)

For a blanket flux of 1015 n/cm‘2 sec and irradiation time of six years,
9 ~1.9x 1{)23 n/cm 2
Using the cross section data of Table B.3,
CF =~ 0,76 : (B-73)
which is in rough agreement with the CF computed by the first method,

Corrections to the Economic Equations

A blanket power fraction of 10% and blanket discharge Pu239 correction
factor (CF) of 0.80 are assumed (Method 1),

Quantities with a superscript asterisk (*) denote Case A* (with
blankgt burnup) values; those without asterisks denote Case A (without
blanket Pu239 burnup).

With £=10%,

E* = E/0.9 (B-74)
and

—* -

eC’BU = 0,9 eC,BU (B-75)

e % = =y D
®chinv = 0.9 & iny (B-76)
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e * = € B-77
ec,proc 0.9 eC,proc ( )
T %

b,proc = 0.98, o (B-78)

The blanket material component is corrected both for E and h% 19
1

& = = - - )
eb,mat = (0.9) (0.8) eb,mat 0.72 eb,mat (B-79)
B.3 SAMPLE CALCULATICN
Table B,06 presents sample calculations for Cases A, A* and B, for a

core of 4000 liters,

B.,4 RESULTS

Neutronics

Principal neutronics results are given in Figures B.1 and B,2. Core
Critical enrichments for Cases A, A* (breeding blanket) and Case B (sodium
reflector) are plotted versus core volume in Figure B,1. Breeding ratios
are shown as a function of core volume in Figure B.2., Enrichments and
breeding ratios are independent of the blanket burnup assumption, with
core volume as the independent variable, Another scale is shown to
relate core volume to plant power rating,

As expected, critical enrichment and external breeding ratio decrease
with core size, while internal breeding ratio increases, Case B (sodium
reflector) enjoys slightly lower critical enrichment than Cases A, A®

(breeding blanket)., The lower critical enrichment of Case B improves
its internal breeding ratio, but not enough to offset the sacrifice of

external breeding,



TABLE B,6 - SAMPLE CALCULATIONS

Core Volume, Vé(liters)
Reactor Power Rating, Pz(Mie)
Critical Buckling, Bi(cm'z)
Critical Enrichment, € c
Critical iass, h£,49(kg)
Internal Breeding Ratio, bi
External Breeding Ratio, b
Total Breeding Ratio, b
Discharge Pu239

Core(TC=2yr), P%’49[kg)

Blanket (T, =0 i Ko
( b y-r), :{1’)’49(’\:)
Fuel Energy Costs (mills/Kiile):

Core Burnup, EE,BU
Core Invento €. .
Vs Ccinv
Core Processing, eC,proc
Core Total, €.
Blanket Material, ®b rat
Blanket Processing, €,
Blanket Total, &,

Reactor Total, €

¢
b,proc

A
4000

800
0,0007156
0.1096
1155
10198
0.4976

1.5174

1181
1940

-0,0229
0,3675
0.3564
0,7410

-0.441
0.2555

~-0,1855
0,5555

AR

4000

890
0.,0007156
0.1096
1155
1,0198
0.4976
1,5174

1181
1550

-0.0203
0.3300
0.357
0,666

-0.318
0,230

-0,088
0,4805
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B
4000

800
0.000552
0.0994
1050
1.1367

1.,1367

1228

-0.1585
0.,349C
0.3964
0.5869

0.5869

(T) Case A; Spherical core with breeding blanket (No Pu239 burnup in blanket)
Case A*: Spherical core with breeding blanket (with Pu239 burnup in blanket)

Case B: Spherical core with sodium reflector
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Case A versus Case A*:

Effect of Blanket Pu239 Burnup Assumption

The "no blanket power' (no blanket burnup) assumption affects energy
costs (mills/KWHe) in several ways, For the same core power rating,

(a) the core fuel cost components (burnup, inventory and
processing) are overestimated since the total energy delivered, in the
denominators of the cost equations, is underestimated;

(b) the blanket processing component is similarly overestimated;

(c) the blanket material component, a revenue, is overestimated
because the discharge Pu239 inventory is overestimated and the total en-
ergy delivered is underestimated,

Figures B,3 and B.4 show the effects (on energy costs) of the "o blan-
ket power' assumption, In Figure B.3, the assumption is seen to lead to
an overprediction, § = > 8  of order 0.05 mills/KWHe. This is not

TOT TOT
insignificant compared to the effects of the radial design and management
Changes demonstrated in Chapter 5, Figure B.4 compares the blanket costs
(net revenues), with and without the 'mo blanket power" assumption, The
assumption is seen to favor blanket revenue significantly, &, < EB*. This

bias is, however, offset by the overestimation of core fuel costs,

Cases A, A* versus Case B:

A Breeding Blanket versus A Sodium Reflector

Figure B,5 shows the total reactor fuel energy costs as functions of
plant power rating, for cases A, A* and B, The breeding blanket is seen
to be advantageous to about 1350 MWe (Case A) ,or to about 1600 MWe (Case
A*). The indifference points are not sharp and definitive, owing to the
similarity of the slopes of the curves; a slight change in the economic

environment could have a large effect on the indi ‘ference point, Beyond
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FIG., B.3 EFFECT OF BLANKET BURNUP (POWER FRACTION)
ASSUMPTION ON REACTOR FUEL ENERGY COSTS

1.5
i CASE A: No burnup of Pu239 in blanket
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FIG, B.4 EFFECT OF BLANKET BURNUP (POWER FRACTION)
ASSUMPTION ON BLANKET FUEL ENERGY COSTS
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A BREEDING BLANKET



tie indiffercuce points, the advantage of tae reflector-only configuration
is very sligat,

Tie fuel-econcnic advantages and cisadvantages of substituting a non-
breeding reflector for a Lreeding Llauket, in large LLIFBRs, are sunmarized
qualitatively in Table B.7, and are shown quantitatively, component-uy-coi-
ponent, in Figures 3,6 and B.7.

Figure B.0 shows the total core fuel energy costs for Cases A and B,

[

Tine difference AE‘C is the savings in core f{ucl energy cost occasioned by
tiic substitution of a sodium reflector for tiae breeding blanket, The savings

is seen to increcase with core size, Figure B,7 disaggregates the core fuel

savings, AC,

>, into its components Ae_C and AEC U The improvement

,inv ,B

is seen to result largely from the burnup component savings, AEC U
’JJ

(higher internal breeding ratio), tue inventory savings ac being
: c,lnv,

practically negligible,
Offsetting tae core savings A'e'c is tie loss of net blanket revenuc,

Ag, as snown in Figure B.7.
b

Core Size and tiae Sodium Void Coeificlent

Terasawa et,al, (55) have performed parametric studies similar to the
study described above, As in tne present study, spherical geometry was a-
dopted, Tie Terasawa study was confined to IMFER neutronics and involved
sodiun void and Doppler coefficients, in addition to the variables of tle
present study, e.g. core volume, critical enricument, breeding ratios, etc.

Of particular interest are their results conceruing enriciuaent (core

size), sodium void coefficient, and internal breeding ratic. Tue studies re-

N

veal that for a sodium voluue fraction avove about 10% (structure = 15%,
fuel < 75%), it 1s dmpossible to uave Lot (a) an internal breeding ratio
above unity and (U) a negative sodiwi voiu coefficient (50% sodium loss).

for a fucl Volume fraction of 3U% (assumed in present studies),
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TABLE B.7 - ADVANTAGES A DISADVANTAGES OF SULSTITUTING A

Advantages Jisadvantages

CORE

1. Lower core iuventory cost due
to lower critical enriclumelnt;

ASc iav

(OS]

. ligher internal breeding per-
formaice (lower buriup cost)

due to lower critical enricii-

TN . ) .
nl(fnt, A bC’BU
OQUTER REGICH
3. NO processing COStS we—— AT, ——3= 4, 1o external Lreeding

—a
O



(MILLS/XWie)

3
C

CORE FUEL ENERGY COST,

FUEL ENERGY COSTS (MILLS/KiiHe)
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FIG. B,6G CORE FULL ENERGY COSTS FOR REACTORS
WITH AND WITHOUT BREEDING BLANKETS
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CASE B: Core with Na Reflector
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FIG, B,7 FUEL ENERGY COST COMPONENTS FOR REACTORS
WITH AND WITHOUT BREEDING BLANKETS
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. , >1 f <0
(a) bi_.l for EC < 0,107

where Terawawa's atom ratio, &' (= Pu232/U238), has been converted to

!
c
enriclient GL:(= Pu239/Pu239+U238) . The threshold (a) for bi=1 is
confirmed by the present study, Figures D,1 and B.Z,

From Figure 3,1, the enrichment {b) of 12% occurs at a core volume of
2700 liters, or reactor power rating of 540 ‘fle (case A) or 600 'Te (Case
A*Y Thus, from Figure B,5, the breeding blanket cases arc preferable to
the sqdiuﬁ reflector case, for conscrvatively permissible values of sodium
void coefficient ( £ 0). For core volumes greater than 2700 liters, core
geometry may be altered to increase leakage, to wmaintain a negative sodium

void coefficient, This would favor external breeding,

Discussion

Several major assumptions were adopted in this study - not only to
simplify the analysis, but also to provide a net bias against the blanket
concept:

(1) Minimum leakage geometry (spherical) was assumed throughout

he range of core volumes considered, In actual design, the core geometry
may have to be "spoiled to enhance the negative component of the sodium
void coefficient in large FBRs ,

(2) It was assumed that blanket volume was three times core
volume, Thus while the leakage decreases as core size increases, the
blanket continues to be charged with constant processing charge per unit
energy delivered, In actual design practice, the blanket size would be

optimized, and one would expect the blanket-to-core volume ratio to

decrease with core size,
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(3) In Case A, Llanket power (blanket Pu239 burnup) was neglec-
ted, This assumption was seen to disfavor the blanket concept,

(4) Blanket cross sections were assumed to be the same as for
the core, TIn reality, blanket spectra will be softer, favoring external
breeding,

(5) A one zone core was assumed, An optimal material loading
pattern would call for some nulti-zone enriclment scheme, with outer core
zones having higher load enriclments, (52, 53), tending to increase blanket
flux,

(6) The study did not account for increasedcontrol costs and
control absorption neutronic penalties associated with increasing internal
breeding ratic substantially above unity,

In spite of these penalties, the blanket concept is seen to be econ-
omically desireable (over the no-blanket configuration) to an "indiffer-
ence point" somewhat over 1000 e, Beyond this "indifference point', the

advantage of the sodium reflector (no blanket)configuration is very slight.
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APPENDIX C

SPP1A, A DEPLETION-ECONOMICS PROGRAM FOR FAST BREEDER REACTORS
C.1 DESCRIPTION OF PROGRAM

The program SPP1A performs depletion-economics calculations for fast
breeder reactors under fixed-element fuel management schemes, i.e, batch
Or scatter management, Input includes fuel cycle cost information and
the neutronics data (local fluxes and spectrum-weighted cross sections)
from a siugle physics compution, The program uses the "Seml-Analytic
Depleticn liethod (SAD" described in Chapter 3 to obtain local nuclide
concentrations as functions of irradiation time, The cash flow equations
developed in Chapter 2 are used to coipute local and aggregate fuel
costs in mills/iGile, §/yr/kgll!, and §/%gil! as functions of irradiation
time, Chapter 4 gives a step-by-step procedure for using the FBR fuel
depletion-economics model embodied in SPPIA,

Local fluxes and cross sections nay be taken frow a rultigroup
physics program run for the reactor configuration assumed, Using these
local ¢'s and d's, SPPIA solves for time-dependent concentrations in
EBouations (3-9). The cost equations (2-30), (2-33),and (2-34) are then
used to obtain local (by depletion zone) , annular-regional, and major
regional (i.e, core, axial blanket, radial blanket) fuel costs as func-

tions of irradiation tine,
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C.2 INPUT INSTRUCTICNS

Table C,1 describes the input data for SPPIA, Control constants
and economic data for a single computer run are given on cards 1 through
9. Neutronic data for each depletion zone are provided by cards 10

through 14, each zone having an individual set 10-14.



Variable

CARD 1

ID(11)

:

Z

NCASE
VR

IPRINT

=

Da3

NTS

CARD 4

DT
CARD 5

EFF

CARD 0

FSKGHM
RSKGHM
S$KG49

294

TABLE C.1
SPP1A INPUT

Columns Format Description

1-60 11A0 Identification card,

1-6 16 The number of depletion zones,

7-12 16 The number of contiguous depletion
zones per region,e,g, amwlar region,
Although each zone is depleted in-
dividually, discharge compositions
and economics are computed by regions
which may consist of more than one
zone,

13-18 16 If NPRINT=0, print out of zone deple-
tion and economics results is omitted,
Only region results are printed, If
NPRINT= 1, botl: zone and region results
are printed,

1-6 16 The number of time steps, Depletion
and econonics results are printed out
after each time step,

1-12 F12.8 Duration of a time step, full power days,

1-12 F12.8 Net thermal efficiency,

1-10 F10,2 Unit fabrication cost, $/KGM

11-20 F10.,2 Unit reprocessing cost, $/KGi

21-30 . T10.2 Price of Pu239, $/XC Pu239



Variable
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CARD ¢ (continued)

S$KG28
S$KG40
SHKG41
S$KG42

CARD 7

TAX
BDRTE
BDFRN

SIRTE

SLF
CAPMVE

CARD 9

TFPRE

TMPPRE

TRPPST

TMCPST

CARD 10

SIGAZS

Price of U238, $/XG U238
Price of Pu240, $/XG Pu240
Price of Pu24l, $/XG Pu24l

Price of Pu242, $/KG Pu242

Bondholders' rate of return

Stockliclders' rate of return

Plant rated capacity, Mie

Time prior to begimning of irradiation
that fabrication cash flow occurs, years.

Time prior to begimning of irradiation

that material purchase cash flow occurs,

Time after end of irradiation that
reprocessing cash flow occurs, years,

Colums  Format Description
31-40 F10,2
41-50 F10.2
51-60 F10.,2
61-70 F10.,2
1-12 F12.8 Income tax rate
13-24 F12.8
25-36 F12.8 Bond Fraction
37-48 Fl12.8
49-60 F12.8 Stock fraction
1-12 F12.8 Plant load factor
13-24 F12.8
1-12 F12.8
13-24 Fl12.8

years,
25-36 F12.8
37-48 F12.8

Time after end of irradiation that
material credit occurs, years,

There are NCASE sets of Cards 10-14, each sct
corresponding to a single depletion zone, Zone
neutronic data is provided on Cards 10-14,

1-12

F12.8

U238 microscopic absorption cross
section, barns,
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CARD 10 (continued)

SICF28
SIGA49
SIGF49

CARD 11
SIGA40

SIGF40
SIGA41
SIGF41
SIGA42
SIGF42

CARD 12
FLUX
CARD 13

UZ28N0
P49NO
P40NO
P41MNO
P4ZNO
CARD 14
VOL

U238 microscopic fission cross sec-
PuZ39 microscopic absorption cross

PuZ39 microscopic fission cross

PuZ40 microscopic absorption cross
PuZ40 microscopic fission cross
PuZ4l microscopic absorption cross
Pu241 microscopic fission cross
Pu242 microscopic absorption cross

Pu242 microscopic fission cross

Neutron flux, 101 n/CmZ-sec

Initial U238 atom density, atoms/barn-cm
Initial Pu239 atom density, atoms/barn-cm
Initial Pu240 atom density, atoms/barn-cm
Initial PuZ41l atom density, atoms/barn-cm

Initial Pu242 atom density, atoms/barn-cm

Colums Format Description
13-24 F12.8

tion, barns,
25-36 F12.8

section, barns
37-48 F12.8

section, barns
1-12 F12.8

section, barns
13-24 F12.,8

section, barns
25-36 F12.8

section, barns
37-48 F12.8

section, barns
49-60 F12.8

section, barns
61-72 F12.8

section, barns
1-12 F12.8
1-12 F12.8
13-24 F12.8
25-36 F12.8
37-48 F1z .8
49-60 F12.8
1-12 F12.8

Zone volume, liters
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C.3 SAPLE PROBLEM

This section describes an SPPIA computer run for the reference LMFRR
radial blanket (Figure 4.2).

The radial blanket is divided into fifteen depletion zones, These
depletion zones were combined to form five aumular regions,three depletion
zones per amnular region, Figure C.1 shows the input data card deck,

The reference economic enviromment, Table 4.2, is assumed, Depletion
Zone neutronic data is taken from a 26 energy group multigroup computation
using the program 2DB, Figure C.2 is SPPIA printed output giving compo-
sition and economics results for the innermost annular region (V) at

an irradiation time of 3 years, The same computer run yields similar
printed output for each of the NTS irradiation intervals, for each of the
anular regions, Depletion-econonics of each depletion zone can be
obtained as well, by setting the control constant NPRINT equal to or
greater than unity, Table C.2 interprets the variable names and table

headings appearing in printed output,
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PROBLE LIPUT DECK - CONTTNUATION

5.082

8.73¢C

6.343

1l.44

6.248

11.11

6.548

11.75

8.023

15.0%

3.445

7.160

4.193

5.409

4.138

G.104

4.317

G.635

5.197

12.44

1.754

2.326

2.279

2,419

3.097

€.36436

C.04632

0.04518

0.03223
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Variable

RTTMEY
TIMED
ABNUP
APFRN

TABLE C.Z2
INTERPRETATION OF SPP1A PRINTED OUTPUT

Description Units
Actual irradiation time years
Irradiation time in full power days days
Burnup in the annular region MED/MTHM

Fraction of total reactor power
supplied by the annular region

MNuclide 'lasses:

AUZ8M

AP49M

AP401]
AP41M
AP42ZM

ATMKGL

Mass of UZ38 in annular region kg
after irradiation

Mass of Pu239 in annular region kg
after irradiation

Masses of Pu239,241,242 in annular kg
region after irradiation

Initial mass of heavy metal (U+Pu) kg

Nuclide Fractions:

A28 R
A49MR
AR
A4IMR
MZMR
EPS

Label or

Heading

MATPUR
FAB
REPR(A)

AUZ8M/ALMKGL
AP49M/NIIMKCL
APA9LY AHMKGL
AP4LM/AMKCL
APA2MR/AHKGL

Fissile Mass/Initial Mass of Heavy letal

Description
ifaterial Purchase Component
Fabrication Component

Reprocessing Component (Tax }Method A)



Label or
Heading

REPR(B)
MATCRE (A)
MATCRE (B)
DIR
CACIIG
TOTMAT

TOTPROC

Description

Reprocessing Component (Tax Method B)
Material Credit Component (Tax Method A)
Material Credit Component (Tax lMethod B)
Direct Component

Carrying Charge Component

Total Material Component (Burnup+Inventory)

Total Processing Component (fabricationtreprocessing,
including their carrying charges)



C.4 TFORTRAN LISTING

The SPPIA FORTRAN listing is given on the following pages,
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